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ON A GENERALIZED DERIVATIVE NONLINEAR SCHRÖDINGER

EQUATION

PHAN VAN TIN

Abstract. We consider a generalized derivative nonlinear Schrödinger equation. We prove
existence of wave operator under an explicit smallness of the given asymptotic states. Our method
bases on studying the associated system used in [31]. Moreover, we show that if the initial data
is small enough in H2(R) then the associated solution scatters up to a Gauge transformation in
sense of Theorem 1.6.
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1. Introduction

We consider the following equation

iut + uxx + i|u|2σux = 0, (1.1)

for given σ > 0, u : Rt × Rx → C is unknown function and ux denotes the derivative in space of
the function u.

Local well posedness of (1.1) was studied in [12] on general domain. More precisely, for σ ⩾ 1,
the authors proved that (1.1) is local well posedness in H1 and global in time if initial data is small
enough. Furthermore, in the case 0 < σ < 1, there exists a solution in (Cw ∩L∞)(R, H1) for given
initial data in H1.

In the special case σ = 1, (1.1) is known to be completely integrable. Global well posedness was
studied in [33]. The author proved that for each initial data in H1(R) with the mass bounded by
4π, the associated solution is global and uniformly bounded in H1(R). Later, in [7], the authors
improved this result by using variational argument. Moreover, the authors showed that the solu-
tions of (1.1) is global if its mass equals 4π and its momentum is negative. Using integrability of
(1.1), solutions of (1.1) were proved global in H2,2(R) by [17] and in a subset of H2(R) ∩H1,1(R)
by [28]. To our knowledge, the best result is given in [2] showing that solutions to (1.1) are global

in H
1
2 (R) and its H

1
2 (R) norm remains globally bounded in time.

The equation (1.1) admits two parameters family of solitary waves solutions (or solitons) uω,c

for c ∈ (−2
√
ω, 2

√
ω). Stability and instability of such solutions were studied in many works (see

for instance [24], [8], [23], [10], [6], [5], [11], [19], [26], [25], [18] and references therein). It turns
out that stability and instability of solitons depend on parameters σ, ω, c. More precisely, solitons
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2 PHAN VAN TIN

are unstable if σ ⩾ 2, stable if 0 < σ ⩽ 1. When σ ∈ (1, 2), there exists z0 ∈ (−1, 1) such that
solitons are stable if −2

√
ω < c < 2z0

√
ω and unstable if 2z0

√
ω ⩽ c < 2

√
ω. There are special

solutions, called multi-solitons, of (1.1) which behave in large time like sum of �nite solitons [30],
[31]. Stability of such solutions was studied in [22] when σ = 1 and [29] when σ ∈ (1, 2). More
precisely, the authors proved that sum of �nite numbers of stable solitons is stable in some sense.

Scattering theory of (1.1) was �rst studied in [4]. The authors showed that when σ ⩾ 2, so-
lutions are global and scattering when the initial data is small in Hs for 1

2 ⩽ s ⩽ 1. Moreover,
when 0 < σ < 2, there exists a class of solitons which are close arbitrary zero, this is against
the small data scattering statement. Relating to scattering theory, in [27, 16], the authors proved
existence of modi�ed wave operator when σ = 1 under a small condition on the asymptotic state
given at in�nity. Moreover, the modi�ed scattering operator for derivative nonlinear Schrödinger
equation was proved in [9]. Recently, in [3], the authors proved existence of wave operator by given
asymptotic state in H1 for all σ ∈ N, σ ⩾ 3. The authors used a Gauge transformation and the
normal form method to deal with the appearance of the derivative term in the nonlinearity. In this
paper, we prove existence of wave operator under an explicit smallness of given asymptotic state
by another approach, specially, we remove the assumption σ ∈ N used in [3].

The equation (1.1) admits three conserved quantities:

(Energy) E(u) =
1

2
∥ux∥2L2 −

1

2σ + 2
Re
∫
R
i|u|2σuuxdx,

(Mass) M(u) = ∥u∥2L2 ,

(Momentum) P (u) = Re
∫
R
iuxudx.

Let (ω, c) ∈ R+ × R be such that

−2
√
ω < c < 2

√
ω. (1.2)

De�ne, for all φ ∈ H1(R):

Sω,c(φ) = E(φ) +
ω

2
M(φ) +

c

2
P (φ)

Kω,c(φ) = ∥φx∥2L2 + ω∥φ∥2L2 + cP (φ)−Re
∫
R
i|φ|2σφφxdx,

µ(ω, c) = inf
{
Sω,c(φ) : φ ∈ H1(R) \ {0},Kω,c(φ) = 0

}
,

Kω,c =
{
φ ∈ H1(R) : Sω,c(φ) ⩽ µ(ω, c),Kω,c(φ) ⩾ 0

}
,

K =
⋃

−2
√
ω<c<2

√
ω

ω>0

Kω,c.

In [7], the authors proved that under su�cient conditions, solutions of (1.1) are global. More
precisely, we have the following result:

Theorem 1.1 ([7]). Let σ ⩾ 1 and (ω, c) satisfy (1.2). If the initial data u0 ∈ Kω,c then the

associated solution of (1.1) is global and its H1-norm is uniformly bounded in time. Specially, if

u0 ∈ K then the associated solution of (1.1) is global.

In [15, 13, 14], the authors used a Gauge transformation to construct solutions to derivative non-
linear Schrödinger equations by given initial data. Using these Gauge transformations, we show
that there exists a solution scattering to a given asymptotic state. This solution is well de�ned in
large time. To show that the wave operator is well de�ned, we need to prove that this solution
can extend at least to zero and exists uniquely in some sense. Using Theorem 1.1, under suitable
conditions of asymptotic state, the solution scattering to this state exists globally in time.

Our �rst main result is the following.

Theorem 1.2. Let σ > 2 and u+ ∈ H3(R)∩W 2,1(R) be a given function. There exists a solution

u of (1.1) scatters forward to u+. The convergence is in polynomial rate, more precisely, for some
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T0 ≫ 1:

∥u− eit∂
2
xu+∥H1 ≲ t1−σ, ∀t ⩾ T0. (1.3)

Assume that u+ satis�es

∥∂xu+∥2L2 + ω∥u+∥2L2 < 2µ(ω, 0), (1.4)

for some ω > 0 then the associated solution u of (1.1) is global. Furthermore, if v ∈ C(R, H1) ∩
L4

loc
(R,W 1,∞) is a solution of (1.1) such that ∥vx∥L∞

x (R) is uniformly bounded on [T0,∞) and v

scatters to u+ in the sense of (1.3) then u(t) = v(t) for all t ∈ R. In this case, the wave map:

u+ 7→ u0 = u(0) is well de�ned.

Remark 1.3. If Kω,0(φ) = 0 then

Sω,0(φ) =

(
1

2
− 1

2σ + 2

)∫
(|∂xφ|2 + ω|φ|2)dx =

σ

2σ + 2

∫
(|∂xφ|2 + ω|φ|2)dx.

As in [7], we have

µ(ω, 0) = Sω,0(ϕω,0) =
σ

2σ + 2

∫
(|∂xϕω,0|2 + ω|ϕω,0|2)dx > 0,

where
ϕ2σω,0 = 2

√
ω(σ + 1) cosh−1(2

√
ωσx).

Thus, the condition (1.4) is equivalent to

∥∂xu+∥2L2 + ω∥u+∥2L2 <
2σ

2σ + 2

∫
(|∂xϕω,0|2 + ω|ϕω,0|2)dx.

Remark 1.4. The restriction on σ in the above theorem (i.e σ > 2) is required to ensure that
s1−σ ∈ L1(1,∞). This implies that the right hand side of (3.13) tends to zero as N tends to
in�nity. Thus, we obtain the desired relation for the solution given in Step 1 of the proof of
Theorem 1.2, which plays an important role in the proof.

Remark 1.5. The restriction on regularity of the �nal state in Theorem 1.2 make weaker our result.
In [3], the authors only use condition u+ ∈ H1(R).

For u ∈ H1, we de�ne the Gauge transformation of u by

G1(u) = exp

(
i

2

∫ x

−∞
|u(t, y)|2σ dy

)
u(t, x),

G2(u) = exp

(
i

2

∫ x

−∞
|u(t, y)|2σ dy

)
∂xu(t, x).

In the case when the initial data is small in H2(R), we show that the associated solution scatters
up to the Gauge transformation in the sense of Theorem 1.6. Our second result is the following.

Theorem 1.6. Let σ ⩾ 3, u0 ∈ H2 be such that ∥u0∥H2 is small enough and u be the associated

solution of (1.1) with initial data u0. Then there exists a unique φ±, ψ± ∈ H1 such that

∥G1(u)− eit∂
2
xφ±∥H1 + ∥G2(u)− eit∂

2
xψ±∥H1 → 0,

as t→ ±∞.

Remark 1.7. The assumption σ ⩾ 3 in the above theorem is a technical condition, which is useful
in the proof of this theorem. Our result in Theorem 1.6 is not the same in [4] where the authors
showed that the solutions of (1.1) scatters under the smallness of u0 in H

s for 1
2 ⩽ s ⩽ 1. However,

from [4], we conjecture that the above theorem holds true when σ ⩾ 2.

Remark 1.8. It is well known that if initial data u0 is in H
2 then the associated solution u of (1.1)

is de�ned uniquely (see for instance, [12, Theorem 1.1]). From theorem 1.6, the solution is global
in time. We refer the reader to [33, 7, 28, 17, 2] and conferences therein for the other results on
global existence of solutions of (1.1).

Remark 1.9. Let u ∈ Hs+1 for some s > 1
2 . Then (φ,ψ) = (G1(u), G2(u)) ∈ Hs+1×Hs. Moreover,

∥φ∥Hs+1 + ∥ψ∥Hs ≲ C(∥u∥Hs), where C : R+ → R+ is a continuous, locally bounded function.
Thus, we can also work in Hs+1, s > 1

2 and obtain a similar result of Theorem 1.6. However, to

avoid the complexities from fractional derivatives, we only work in H2 as in Theorem 1.6.
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Our strategy to prove Theorem 1.2 is to use the Gauge transformations of u to obtain the sys-
tem (3.4) of two Schrödinger equations without derivative nonlinearities. In [31, Lemma 3.8], we
studied this system to prove existence of multi-solitons, where the pro�le H decays exponentially
in time. Our method used in [31] is inspired by [20, 21], where the authors proved existence of
multi-solitons for classical nonlinear Schrödinger equations. In our case, the pro�le H only decays
polynomially in time. Combining to the fact that the pro�le W decays polynomially in time, it
su�ces to show that there exists a unique solution of (3.4) which decays polynomially in time and
hence we obtain a desired solution of (1.1) scattering to the given asymptotic pro�le by polynomial
rate. One of di�culty in the proof is to prove a relation of φ,ψ, the Gauge transformation of u.
More precisely, we need to prove ψ = ∂xφ− i

2 |φ|
2σφ. De�ne κ = ∂xφ− i

2 |φ|
2σφ, hence, it su�ces

to show that ψ = κ. Instead of considering the quantity ∥ψ(t) − κ(t)∥2L2 as in [15], we consider

the quantity ∥ψ̃(t) − κ̃(t)∥2L2 since we already have the boundedness of ψ̃ and κ̃ in large time by
Proposition 3.1.

Theorem 1.6 is proved by investigating the system (2.2). We show that under a su�ciently small
condition of the initial data, the associated solution of (2.2) scatters in both time directions and
this implies the desired result.

This paper is organized as follows. In Section 2, we give some useful notation and preliminaries
for the proof of our main results. Section 3 is devoted to prove the main results of this paper
Theorem 1.2 and Theorem 1.6.

Acknowledgement

The author was supported by Post-doc fellowship of Labex MME-DII: SAIC/2022 No 10078.
The author would like to thank an unknown reviewer for some useful discussions to improve this
paper.

2. Preliminaries and notation

For convenience, we de�ne L = i∂t + ∂2x the Schrödinger operator.
For a function f , we denote by fx or ∂xf the derivative in space of the function f .

We denote by eit∂
2
x the propagator of the linear Schrödinger equation.

Denote |(a, b)| = |a|+ |b| and ∥(a, b)∥X = ∥a∥X + ∥b∥X , for any Banach space X.
A pair (q, r) is called an admissible in dimension one if q, r > 0 and 2

q + 1
r = 1

2 . We de�ne A to

be the set of all admissible pairs.
For a function f(z) de�ned for a complex variable z and for a positive integer k, we de�ne kth

order complex derivative of f(z) by:

fk(z) :=

(
∂kf

∂kz
,

∂k

∂k−1
z ∂z

, · · · , ∂kf

∂z∂
k−1
z

,
∂kf

∂kz

)
,

where

∂f

∂z
:=

1

2

(
∂f

∂x
− i

∂f

∂y

)
,

∂f

∂z
:=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

We refer the reader to [1] for related notations.
Let I be an interval of R. The Strichartz space S(I) is de�ned by

∥u∥S(I) = sup
(q,r)∈A

∥u∥LqLr .

Let N(I) be the dual space of S(I). De�ne S1, N1 by

∥u∥S1(I) = ∥(u, ∂xu)∥S(I) = ∥⟨∇⟩u∥S(I),

∥u∥N1(I) = ∥(u, ∂xu)∥N(I) = ∥⟨∇⟩u∥N(I).
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Let φ = G1(u) and ψ = G2(u). Then, ψ = ∂xφ − i
2 |φ|

2σφ. As in [31], we see that if u shows
(1.1) then (φ,ψ) show the following system:{

Lφ = P (φ,ψ) := iσ|φ|2(σ−1)φ2ψ − σ(σ − 1)φ
∫ x

−∞ |φ|2(σ−2)Im(ψ2φ2),

Lψ = Q(φ,ψ) := −iσ|φ|2(σ−1)ψ2φ− σ(σ − 1)ψ
∫ x

−∞ |φ|2(σ−2)Im(ψ2φ2).
(2.1)

Let η = (φ,ψ) and F = (P,Q). We may rewrite (2.1) as follows:

Lη = F (η). (2.2)

We next introduce useful tools for the proof of the main results in the next section.

Lemma 2.1. For η1 = (φ1, ψ1), η2 = (φ2, ψ2) ∈ H1 ×H1, we have

|F (η1)− F (η2)| ≲ |η1 − η2|(|η1|2σ + |η2|2σ +

∫ x

−∞
|η1|2σ dy)

+ |η2|
∫ x

−∞
|η1 − η2|(|η1|2σ−1 + |η2|2σ−1) dy,

|∂x(F (η1)− F (η2))| ≲ |∂x(η1 − η2)|
(
|η1|2σ + |η2|2σ +

∫ x

−∞
|η1|2σ

)
+ |η1 − η2||∂x(η1, η2)|(|η1|2σ−1 + |η2|2σ−1)

+ |∂xη2|
∫ x

−∞
|η1 − η2|(|η1|2σ−1 + |η2|2σ−1) + |η1 − η2|(|η1|2σ + |η2|2σ).

To prove Lemma 2.1, we only need to prove the following estimates.

Lemma 2.2. Let σ > 2. We have the following estimates:∣∣∣|φ1|2(σ−1)φ2
1ψ1 − |φ2|2(σ−1)φ2

2ψ2

∣∣∣ ≲ |η1 − η2||(η1, η2)|2σ,∣∣∣|φ1|2(σ−2)Im(ψ2
1φ

2
1)− |φ2|2(σ−2)Im(ψ2

2φ
2
2)
∣∣∣ ≲ |η1 − η2||(η1, η2)|2σ−1,∣∣∣∂x(|φ1|2(σ−1)φ2

1ψ1 − |φ2|2(σ−1)φ2
2ψ2)

∣∣∣ ≲ |∂x(η1 − η2)||(η1, η2)|2σ,

where η1 = (φ1, ψ1), η2 = (φ2, ψ2).

Proof. For each function f ∈ C1, we have the following expression (see for instance [32]):

f(u)− f(v) = (u− v)

∫ 1

0

∂zf(v + θ(u− v))dθ + u− v

∫ 1

0

∂zf(v + θ(u− v))dθ. (2.3)

Using the above expression for f(z) = |z|2(σ−1) with noting that f ∈ C1 (since σ > 2) and
|f (1)(z)| ≲ |z|2(σ−1)−1, we have∣∣∣|φ1|2(σ−1) − |φ2|2(σ−1)

∣∣∣ = |f(φ1)− f(φ2)| ≲ |φ1 − φ2||(φ1, φ2)|2(σ−1)−1.

This implies easily the �rst estimate. To prove the second estimate, we using the expression (2.3)
for f(z) = |z|2(σ−2)z2. As f ∈ C1 (since σ > 2) and |f (1)(z)| ≲ |z|2(σ−1)−1, we have∣∣∣|φ1|2(σ−2)φ1

2 − |φ2|2(σ−2)φ2
2
∣∣∣ ≲ |φ1 − φ2||(φ1, φ2)|2(σ−1)−1.

This implies easily the second estimate. Consider the third estimate. The most di�cult contribu-
tion in the third estimate is the following∣∣∣∂x(|φ1|2(σ−1)φ2

1 − |φ2|2(σ−1)φ2
2)
∣∣∣ .

From (2.3), we have

|∂x(f(u)−f(v))| ≲ |∂x(u−v)| sup
θ∈[0,1]

|f (1)(v+θ(u−v))|+ |u−v| sup
θ∈[0,1]

|∂xf (1)(v+θ(u−v))|. (2.4)

We use the above expression for f(z) = |z|2(σ−1)z2. The �rst term is easy to handle. Consider the
second term. We have

∂zf(z) = (σ + 1)|z|2(σ−1)z, ∂zf(z) = (σ − 1)|z|2(σ−2)z3.
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Thus,

|∂x∂zf(u)| ≲ |∂xu||u|2(σ−1), |∂x∂zf(u)| ≲ |∂xu||u|2(σ−1).

From this, we easily estimate the second term in (2.4) and the third estimate is proved. □

3. Proof of the main results

3.1. Proof of Theorem 1.2. The aim of this section is to prove Theorem 1.2. We use the similar
argument as in [31].

Let R = eit∂
2
xu+. Then

LR+ i|R|2σRx = i|R|2σRx := v(t, x).

The Gauge transformations of R are de�ned by:

h = G1(R),

k = G2(R) = ∂xh− i

2
|h|2σh.

We prove that

Lh = P (h, k) +m, (3.1)

Lk = Q(h, k) + n, (3.2)

where m,n are functions depending on R, v:

m(t, x) = exp

(
i

2

∫ x

−∞
|R(t, y)|2dy

)
v(t, x),

n = ∂xm− i

2
(σ + 1)|h|2σm− i

2
σ|h|2(σ−1)h2m.

Indeed, since h(t, x) = exp
(

i
2

∫ x

−∞ |R(t, y)|2σdy
)
R(t, x), we have

∂th = exp

(
i

2

∫ x

−∞
|R(t, y)|2σdy

)(
∂tR+

i

2
R∂t

∫ x

−∞
|R(t, y)|2σdy

)
,

∂xxh = exp

(
i

2

∫ x

−∞
|R(t, y)|2σdy

)(
Rxx + i|R|2σRx +

i

2
∂x(|R|2σ)R− 1

4
|R|4σR

)
.

Moreover, as in [12][Section 4], we have

1

2
∂t

∫ x

−∞
|R|2σdy = −σ|h|2(σ−1)Im(hk) + σ

∫ x

−∞
∂x(|h|2(σ−1))Im(hk)dy − 1

4
|h|4σ.

Thus,

Lh = exp

(
i

2

∫ x

−∞
|R(t, y)|2σdy

)(
LR+ i|R|2σRx − 1

2
R∂t

∫ x

−∞
|R|2σdy + i

2
R∂x(|R|2σ)−

1

4
|R|4σR

)
= exp

(
i

2

∫ x

−∞
|R(t, y)|2σdy

)
v + h

(
−1

2
∂t

∫ x

−∞
|R|2σdy + i

2
∂x(|h|2σ)−

1

4
|h|4σ

)
= exp

(
i

2

∫ x

−∞
|R(t, y)|2σdy

)
v + h

(
σ|h|2(σ−1)Im(hk)− σ

∫ x

−∞
∂x(|h|2(σ−1))Im(hk)dy +

i

2
∂x(|h|2σ)

)
= exp

(
i

2

∫ x

−∞
|R(t, y)|2σdy

)
v + h

(
iσ|h|2(σ−1)hk − σ(σ − 1)

∫ x

−∞
|h|2(σ−2)Im(h

2
k2)dy

)
= exp

(
i

2

∫ x

−∞
|R(t, y)|2σdy

)
v + P (h, k)

= P (h, k) +m,
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which gives (3.1). Furthermore, using k = ∂xh− i
2 |h|

2σh, we have

Lk = ∂xLh− i

2
L(|h|2σh)

= ∂xLh− i

2

(
i∂t(h

σ+1h
σ
) + ∂xx(h

σ+1h
σ
)
)

= ∂xLh

− i

2

(
(σ + 1)|h|2σi∂th+ σ|h|2(σ−1)h2i∂th+ (σ + 1)|h|2σ∂xxh+ σ|h|2(σ−1)h2∂xxh

+(σ + 1)∂xh∂x(|h|2σ) + σ∂xh∂x(|h|2(σ−1)h2)
)

= ∂xLh− i

2

(
(σ + 1)|h|2σLh+ σ|h|2(σ−1)h2(2∂xxh− Lh)

)
− i

2
(σ + 1)∂xh∂x(|h|2σ)−

i

2
σ∂xh∂x(|h|2(σ−1)h2).

In the above expression, the contribution of ∂xxh can be removed from the contribution of ∂xP (h, k)
in ∂xLh. The contribution of m in the above expression of Lk appears only in the terms ∂xLh, Lh
and Lh. It is easy to check that this equals to

∂xm− i

2
(σ + 1)|h|2σm− i

2
σ|h|2(σ−1)h2m.

Since the remainder depends only on h, k and does not depend onm, which is actually a polynomial
of h, k, h, k, by using the similar argument to obtain the system 2.1, we have

Lk = ∂xm− i

2
(σ + 1)|h|2σm− i

2
σ|h|2(σ−1)h2m+Q(h, k) = Q(h, k) + n,

which gives (3.2). By Hölder's inequality and dispersive estimates, we have, for t ⩾ 1,

∥(m,n)∥H1 ≲ ∥v∥H2 ≲ t−σ∥u+∥2σ+1
W 1,1∩H3 .

Let Ŵ = (h, k), Ĥ = −(m,n) and η̃ = η − Ŵ = (φ̃, ψ̃). Then,

∂xψ̃ = ∂xφ̃− i

2
(|φ̃+ h|2σ(φ̃+ h)− |h|2σh). (3.3)

We see that if u shows (1.1) then η̃ shows the following system

Lη̃ = F (η̃ + Ŵ )− F (Ŵ ) + Ĥ. (3.4)

We divide the proof of Theorem 1.2 into three steps.
Step 1. Existence of a solution of the system

In this step, we show that (3.4) admits a solution which decays polynomially in time. To do so,
we need the following result.

Proposition 3.1. Let F = (P,Q), where P,Q are de�ned by (2.1). Let H = H(t, x) : [0,∞)×R →
C2, W =W (t, x) : [0,∞)× R → C2 be given functions which satisfy for some C1, C2 > 0, T0 > 0:

t
1
2 ∥W (t)∥L∞×L∞ + ∥W (t)∥L2×L2 + tσ∥H(t)∥L2×L2 ⩽ C1, ∀t ⩾ T0, (3.5)

t
1
2 ∥∂xW (t)∥L∞×L∞ + ∥∂xW (t)∥L2×L2 + tσ∥∂xH(t)∥L2×L2 ⩽ C2, ∀t ⩾ T0. (3.6)

Then the system

Lη̃ = F (η̃ +W )− F (W ) +H (3.7)

admits a unique solution η̃ that satis�es

tσ−1(∥η̃∥S[t,∞)×S[t,∞) + ∥∂xη̃∥S[t,∞)×S[t,∞)) ≲ 1, (3.8)

for all t ⩾ T0.

Proof. Fix T0 > 1 large enough. De�ne

B =
{
η̃ ∈ C([T0,∞), H1 ×H1) : tσ−1∥(η̃, ∂xη̃)∥S[t,∞)×S[t,∞) ⩽ C, ∀t ⩾ T0

}
,

for some C > 1 large enough and

Φ(η̃)(t) = i

∫ ∞

t

ei(t−s)∂2
x(F (η̃ +W )− F (W ) +H)(s) ds.
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If η̃ tends to zero in H1-norm as t tends to in�nity then the system (3.7) is rewritten as follows

η̃ = Φ(η̃).

Thus, it su�ces to prove that Φ is a contraction mapping on B for T0 large enough. We divide the
proof in two steps.
Step 1. Proof Φ maps B into B
Let t ⩾ T0. For convenience, let η̃ = (η̃1, η̃2) ∈ B, W = (w1, w2) and H = (h1, h2). By Strichartz's
estimates, we have

∥Φη̃∥S[t,∞)×S[t,∞) ≲ ∥F (η̃ +W )− F (W )∥N [t,∞)×N [t,∞) (3.9)

+ ∥H∥L1L2([t,∞))×L1L2([t,∞)). (3.10)

To estimate (3.10), using (3.5), we have

∥H∥L1L2([t,∞))×L1L2([t,∞)) ≲
∫ ∞

t

s−σ ds = t1−σ.

We have
∥η̃(s)∥L2σ ≲ ∥η̃(s)∥H1 ≲ s1−σ,

for all s ∈ [t,∞). It implies that

∥η̃∥2σL2σ
t,x(t,∞) ≲

∫ ∞

t

s2σ(1−σ)ds ≲ t1+2σ(1−σ) ≲ t1−2σ.

Moreover,

∥η̃∥L1L2(t,∞) ≲
∫ ∞

t

s1−σds = t2−σ.

Hence, using Lemma 2.1, Hölder's inequality and the estimate
∣∣∣∫ x

−∞ f(y)dy
∣∣∣ ⩽ ∥f∥L1 , we have

∥F (η̃ +W )− F (W )∥N [t,∞)×N [t,∞)

≲ ∥F (η̃ +W )− F (W )∥L1L2[t,∞)×L1L2[t,∞)

≲ ∥η̃∥L1L2

(
∥(η̃,W )∥2σL∞L∞ + ∥(η̃,W )∥2σL∞L2σ

)
+ ∥W∥L∞L2∥|η̃||(η̃,W )|2σ−1∥L1L1

≲ ∥η̃∥L1L2

(
∥(η̃,W )∥2σL∞L∞ + ∥η̃∥2σL∞L2σ + ∥W∥2L∞L2∥W∥2σ−2

L∞L∞

)
+ ∥W∥L∞L2

(
∥η̃∥2σL2σ

t,x
+ ∥η̃∥L1L2∥W∥L∞L2∥W∥2σ−2

L∞L∞

)
≲ t1−σ.

This implies that
∥Φη̃∥S[t,∞)×S[t,∞) ⩽ Ct1−σ,

for some constant C > 0. Moreover,

∥∂xΦη̃∥S[t,∞)×S[t,∞) ≲ ∥∂x(F (η̃ +W )− F (W ))∥N [t,∞)×N [t,∞) (3.11)

+ ∥∂xH∥L1L2[t∞)×L1L2[t,∞). (3.12)

To estimate (3.12), using (3.6), we have

∥∂xH∥L1L2([t,∞))×L1L2([t,∞)) ≲
∫ ∞

t

s−σ ds = t1−σ.

Furthermore, using Lemma 2.1, we have

∥∂x(F (η̃ +W )− F (W ))∥N [t,∞)×N [t,∞)

≲ ∥∂xη̃∥L1L2(∥(η̃,W )∥2σL∞L∞ + ∥η̃∥2σL∞L2σ + ∥W∥2L∞L2∥W∥2σ−2
L∞L∞)

+
(
∥η̃∥L1L2∥∂xW∥L∞L∞ + ∥η̃∥

L
4
3 L2

∥∂xη̃∥L4L∞

)
∥(η̃,W )∥2σ−1

L∞L∞

+ ∥∂xW∥L∞L2∥η̃∥L1L2∥(η̃,W )∥L∞L2∥(η̃,W )∥2σ−2
L∞L∞ + ∥η̃∥L1L2∥(η̃,W )∥2σL∞L∞

≲ t1−σ.

Thus, Φ maps B into B if we chose C large enough.
Step 2. Proof Φ is a contraction map on B
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By using (3.5), (3.6) and a similar argument as in Step 1, we show that, for any η̃, ν̃ ∈ B, we
have

∥Φη̃ − Φν̃∥X ⩽
1

2
∥η̃ − ν̃∥X ,

where

∥η̃∥X = sup
t⩾T0

tσ−1∥(η̃, ∂xη̃)∥S[t,∞)×S[t,∞).

Thus, Φ is a contraction map on B. This implies the desired result. □

By the dispersive estimate, we have ∥R∥L∞ ≲ t
−1
2 ∥u+∥L1 . Thus, it is easy to check that the

functions Ŵ , Ĥ satisfy the conditions (3.5) and (3.6). Hence, using Proposition 3.1, there exists a
unique solution η̃ to the system (3.4) satisfying the estimate (3.8).

Step 2. Existence of a desired solution

In this step, we show that the solution η̃ given in Step 1 satis�es a desired relation. This implies
the existence of the desired solution of (1.1). More precisely, we have the following result:

Lemma 3.2. Let η̃ = (φ̃, ψ̃) be the solution of (3.4) given in Step 1. Then,

ψ̃ = ∂xφ̃− i

2
(|φ̃+ h|2σ(φ̃+ h)− |h|2σh).

Proof. De�ne (φ,ψ) = (φ̃, ψ̃)+ (h, k). Let κ̃ = ∂xφ̃− i
2 (|φ̃+h|2σ(φ̃+h)−|h|2σh) and κ = κ̃+ k =

∂xφ− i
2 |φ|

2φ. Hence, we only need to show that κ̃ = ψ̃. To do so, we use the idea used in [31] (see
also [15, 14, 13], where the authors constructed solutions by given initial data). We will consider

the quantity ∥ψ̃(t)− κ̃(t)∥2L2 and estimate the invariant of this in time. It seems that this quantity

is better to use than ∥ψ(t) − κ(t)∥2L2 since we already have the boundedness of ψ̃, ṽ in large time
by Proposition 3.1. As in [31], we have for N ≫ t:

Lψ̃ − Lκ̃ = Lψ − Lκ

= Q(φ, ψ̃ + k)−Q(φ, κ̃+ k)− ∂x(P (φ, ψ̃ + k)− P (φ, κ̃+ k)

+
i

2
(σ + 1)|φ|2σ(P (φ, ψ̃ + k)− P (φ, κ̃+ k))

− i

2
σ|φ|2(σ−1)φ2(P (φ, ψ̃ + k)− P (φ, κ̃+ k)).

Multiplying both side of the above equality by ψ̃ − ṽ, taking imaginary part and integrating over
space with integration by parts (see for instance [31]) we obtain

∥ψ̃(t)− κ̃(t)∥2L2 ≲ ∥ψ̃(N)− κ̃(N)∥2L2 exp

(∫ N

t

(K1 +K2 +K3)(s) ds

)
, (3.13)

where

K1 = ∥φ∥2σ−1
L∞ ∥ψ̃ + κ̃+ 2k∥L∞ + ∥|φ|2(σ−1)(ψ̃ + k)2∥L1 + ∥κ̃+ k∥L2∥|φ|2(σ−1)(ψ̃ + κ̃+ 2k)∥L2 ,

K2 = ∥∂x(|φ|2(σ−1)φ2)∥L∞ + ∥∂xφ∥L2∥|φ|2(σ−1)(ψ̃ + κ̃+ 2k)∥L2 + ∥|φ|2σ−1(ψ̃ + κ̃+ 2k)∥L∞ ,

K3 = ∥φ∥4σL∞ + ∥|φ|2σ+1∥L2∥|φ|2(σ−1)(ψ̃ + κ̃+ 2k)∥L2 .

Consider K1. To estimate this term, we use the boundedness of η̃ as in Proposition 3.1 and the

well-known boundedness of (h, k). Since, ∥φ(s)∥L∞ ≲ ∥φ̃(s)∥L∞ + ∥h(s)∥L∞ ≲ s
−1
2 , we have

K1 ≲ ∥φ∥2σ−1
L∞ (∥κ̃∥L∞ + ∥ψ̃ + 2k∥L∞) + ∥φ∥2(σ−1)

L∞ ∥ψ̃ + k∥2L2 + ∥κ̃+ k∥L2∥φ∥2(σ−1)
L∞ ∥ψ̃ + κ̃+ 2k∥L2

≲ s
1
2−σ(∥∂xφ̃∥L∞ + s−

1
2 ) + s1−σ.
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To estimate the contribution of the term ∥∂xφ̃∥L∞ in K1, we shall use Strichartz norm of this term.
Since σ > 2, we have, for all N > t,∫ N

t

K1(s)ds ≲ ∥K1∥L1(t,∞)

≲ ∥s 1
2−σ∥∂xφ̃(s)∥L∞∥L1(t,∞) + ∥s1−σ∥L1(t,∞)

≲ ∥s 1
2−σ∥

L
4
3 (t,∞)

∥∂xφ̃∥L4(t,∞)L∞
x

+ t2−σ

≲ t
5−4σ

3 t1−σ + t2−σ <∞.

Similarly, we show that K2,K3 ∈ L1(t,∞), where the contribution of ∥∂xφ̃∥L∞ in K2 are estimated

by using the Strichartz norm. Moreover, using (3.8), ∥ψ̃(N)− κ̃(N)∥L2 ≲ N1−σ → 0 as N → ∞.
Thus, �xing t, the right hand side of (3.13) converges to zero as N tends to in�nity. It implies that

ψ̃ = κ̃. This completes the proof of Lemma 3.2. □

Let u = G−1
1 (φ̃+ h). From Lemma 3.2, we obtain u is a solution of (1.1). Moreover, we have

∥u−R∥H1 ≲ ∥φ̃∥H1 ≲ t1−σ → 0.

This implies that u scatters forward to u+. It is easy to see that u ∈ C([T0,∞), H1)∩L4([T0,∞),W 1,∞).
Moreover, ∥∂xu∥L∞

t ([T0,∞),L∞
x (R)) = ∥ψ∥L∞

t ([T0,∞),L∞
x (R)) is well bounded.

Now, assume that u+ satis�es the condition (1.4). Since u+ ∈ H3 ∩W 2,1, we have ∥R∥L∞ → 0
as t→ ∞ and hence

Re
∫
R
i|R|2σ∂xRRdx→ 0, as t→ ∞.

Thus,

lim
t→∞

Sω,0(R(t)) =
1

2
∥∂xu+∥2L2 +

ω

2
∥u+∥2L2 < µ(ω, 0),

lim
t→∞

Kω,0(R(t)) = ∥∂xu+∥2L2 + ω∥u+∥2L2 > ω∥u+∥2L2 > 0.

Since ∥u(t)−R(t)∥H1 → 0 as t→ ∞, we have Kω,0(u(t)) ⩾ ω∥u+∥2L2 > 0 and Sω,0(u(t)) < µ(ω, 0)
for t large enough. By Theorem 1.1, u exists globally in time. Moreover, by Theorem 3.3, u ∈
C(R, H1) ∩ L4

loc
(R,W 1,∞). It remains to show that the existence of u is unique in some sense.

Step 3. Uniqueness of the desired solution

In this step, we show that the solution found in Step 2 is unique in some sense, which implies
that the wave map is well de�ned. We need the following well known result.

Theorem 3.3 ([12][Theorem 1.4). Let σ ⩾ 1 and u0 ∈ H1(R). Then there exists T > 0 and

a unique solution u ∈ C([−T, T ], H1) ∩ L4((−T, T ),W 1,∞) of (1.1). Moreover, u satis�es the

following properties:

(i) u ∈ Lq((−T, T ),W 1,r) for every admissible pair (q, r).
(ii) M(u(t)) =M(u(0)) and E(u(t)) = E(u(0)) for all t ∈ [−T, T ].
(iii) u depends continuously on u0 in the following sense. If un0 → u0 in H1 and if un is

the corresponding solution of (1.1) then un is de�ned on [−T, T ] for n large enough and

un → u in C([−T, T ], H1).

Using the above theorem, we have the following result.

Lemma 3.4. Let u,w ∈ C(R, H1)∩L4
loc

(R,W 1,∞) be two solutions of (1.1) such that ∥(ux, wx)∥L∞
t ([T0,∞),L∞

x (R)) ≲
1 and

sup
t⩾T0

tσ−1(∥u(t)−R(t)∥H1 + ∥w(t)−R(t)∥H1) ≲ 1.

Then u(t) = w(t) for all t ∈ R.

Proof. We have

i(u− w)t + ∂2x(u− w) + i(|u|2σux − |w|2σwx) = 0.



ON GDNLS 11

Multiplying two sides of the above equation by (u− w), taking imaginary part and integrating by
space, we have

0 =
1

2
∂t∥u− w∥2L2 +Re

∫
R
(|u|2σux − |w|2σwx)(u− w)dx.

This implies that

1

2
∂t∥u− w∥2L2 = −Re

∫
R
(|u|2σux − |w|2σwx)(u− w)dx

= −Re
∫
R
(|u|2σ − |w|2σ)uxu− w + |w|2σu− w(ux − wx)dx

= −Re
∫
R
(|u|2σ − |w|2σ)uxu− wdx− 1

2
Re
∫
R
|w|2σ∂x(|u− w|2)dx

= −Re
∫
R
(|u|2σ − |w|2σ)uxu− wdx+

1

2
Re
∫
R
∂x(|w|2σ)|u− w|2dx.

Hence, ∣∣∂t∥u− w∥2L2

∣∣ ≲ ∫
R
|u− w|2(|u|2σ−1 + |w|2σ−1)(|ux|+ |wx|)dx

≲ ∥u− w∥2L2∥(u,w)∥2σ−1
L∞

x
∥(ux, wx)∥L∞

x

≲ ∥u− w∥2L2t
1
2−σ

De�ne M(t) = ∥u(t)− w(t)∥2L2 . Assume M(T0) > 0. We have∣∣∣∣∣
∫ b

T0

∂tM

M
ds

∣∣∣∣∣ ≲
∫ b

T0

∣∣∣∣∂tMM ds

∣∣∣∣ ≲ ∫ b

T0

s
1
2−σds

This implies that

| log(M(b))− log(M(T0))| ≲ T
3
2−σ
0 − b

3
2−σ.

Since σ > 2 andM(b) tends to zero as b tends to in�nity, the above estimate gives us an contradic-
tion by letting b tends to in�nity. Thus, M(T0) = 0 and hence, u(T0) = w(T0). Similarly, we have
u(t) = w(t) for all t ⩾ T0. By the existence and uniqueness of C(R, H1)∩L4

loc
(R,W 1,∞) solutions

to (1.1) stated in Theorem 3.3, we have u(t) = w(t) for all t ∈ R. This completes the proof. □

By Lemma 3.4, the wave map u+ 7→ u0 = u(0) is well de�ned. This completes the proof of
Theorem 1.2.

3.2. Proof of Theorem 1.6. Let σ ⩾ 3. To prove Theorem 1.6, it su�ces to prove that the
solution η to (2.2) scatters in both time directions provided η(0) is small enough in H1 × H1.
Consider the system (3.4). Assume that η(0) is su�ciently small in H1 × H1. By Strichartz's
estimates, we need only to prove that F (η) ∈ N1(R)×N1(R). Fix T > 0 and let I = [0, T ]. From
now on, we take all space-time estimates on I unless otherwise stated. By Strichartz's estimates,
we have

∥η∥S1×S1 ≲ ∥η(0)∥H1×H1 + ∥F (η)∥N1×N1 .

Using Lemma 2.1, we have

|F (η)| ≲ |η|2σ+1 + |η|
∣∣∣∣∫ x

∞
|η|2σ

∣∣∣∣ .
Thus, noting that S1(R) ↪→ L2σ

t,x(R×R) when σ ⩾ 3, ∥|η|∥L∞
t,x

≲ ∥|η|∥S1 , ∥
∫ x

−∞ f(y)dy∥L∞
x

⩽ ∥f∥L1 ,
we have

∥F (η)∥N×N ≲ ∥F (η)∥L1L2×L1L2

≲ ∥|η|2σ+1∥L1L2 + ∥|η|
∫ x

−∞
|η|2σdy∥L1L∞

≲ ∥|η|∥L∞L2∥|η|∥4L4L∞∥|η|∥2σ−4
L∞L∞ + ∥|η|∥L∞L2∥|η|∥2σL2σ

t,x

≲ ∥η∥2σ+1
S1×S1 .
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Using Lemma 2.1 again, we have

|∂xF (η)| ≲ |(η, ∂xη)||η|2σ + |∂xη|
∣∣∣∣∫ x

−∞
|η|2σdy

∣∣∣∣
Thus, similarly as above, we have

∥∂xF (η)∥N×N ≲ ∥∂xF (η)∥L1L2×L1L2

≲ ∥(|η|, |∂xη|)∥L∞L2∥|η|∥4L4L∞∥|η|∥2σ−4
L∞L∞ + ∥|∂xη|∥L∞L2∥|η|∥2σL2σ

t,x

≲ ∥η∥2σ+1
S1×S1 .

Combining the above, we have

∥η∥S1×S1 ⩽ C∥η(0)∥H1×H1 + C∥η∥2σ+1
S1×S1 ,

for some constant C > 0. Thus, for ∥η(0)∥H1×H1 small enough, by continuous argument, the
solution η exists globally in time. Moreover, ∥η∥S1(R)×S1(R) ≲ ∥η0∥H1 and F (η) ∈ N1(R)×N1(R).
By classical argument, there exists φ±, ψ± such that

lim
t→±∞

∥η − eit∂
2
x(φ±, ψ±)∥H1×H1 → 0.

The unique existence of φ±, ψ± is followed by the uniqueness of H2 solutions of (1.1) by given

initial data (see for instance [12, Theorem 1.1]) and the uniqueness of the limit of e−it∂2
xη(t) as

t→ ±∞. Hence, the proof is completed.
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