ON A GENERALIZED DERIVATIVE NONLINEAR SCHRÖDINGER EQUATION

. Moreover, we show that if initial data is small in H 2 (R) then the associated solution scatters up to Gauge transformation in sense of Theorem 1.3.

Introduction

We consider the following equation iu t + ∆u + i|u| 2σ u = 0, (1.1) for given σ > 0 and u : R × R → C is unknown function.

Local well posedness of (1.1) was studied in [START_REF] Hayashi | Well-posedness for a generalized derivative nonlinear Schrödinger equation[END_REF] on general domain. More precisely, for σ ⩾ 1, the authors proved that (1.1) is local existence in H 1 and global existence if initial data is small enough. Furthermore, in the case 0 < σ < 1, there exists a solution in (C w ∩ L ∞ )(R, H 1 ) for given u 0 ∈ H 1 .

In the special case σ = 1, (1.1) is known to be completely integrable. Global well posedness was studied in [START_REF] Wu | Global well-posedness on the derivative nonlinear Schrödinger equation[END_REF]. The author proved that for each initial data in H 1 (R) with the mass bounded by 4π the associated solution is global and uniformly bounded in H 1 (R). Later, [START_REF] Fukaya | A sucient condition for global existence of solutions to a generalized derivative nonlinear Schrödinger equation[END_REF] gave the same result by using variational argument. Moreover, the author showed that the solutions of (1.1) is global if its mass equals 4π and its momentum is negative. Using integrability structure of (1.1), solutions of (1.1) is global in H 2,2 (R) by [START_REF] Jenkins | Global well-posedness for the derivative non-linear Schrödinger equation[END_REF] and in a subset of H 2 (R) ∩ H 1,1 (R) by [START_REF] Pelinovsky | Existence of global solutions to the derivative NLS equation with the inverse scattering transform method[END_REF]. To our knowledge, the best result is given in [START_REF] Bahouri | Global well-posedness for the derivative nonlinear Schrödinger equation[END_REF] showing that (1.1) is global in H 1 2 (R) and that the H Stability and instability of such solutions were studied in many works (see e.g [START_REF] Miao | Instability of the solitary waves for the generalized derivative nonlinear Schrödinger equation in the degenerate case[END_REF], [START_REF] Guo | Orbital stability of solitary waves for generalized derivative nonlinear Schrödinger equations in the endpoint case[END_REF], [START_REF] Liu | Stability of solitary waves for a generalized derivative nonlinear Schrödinger equation[END_REF], [START_REF] Guo | Instability of the solitary wave solutions for the generalized derivative nonlinear Schrödinger equation in the critical frequency case[END_REF], [START_REF] Fukaya | Instability of solitary waves for a generalized derivative nonlinear Schrödinger equation in a borderline case[END_REF], [START_REF] Colin | Stability of solitary waves for derivative nonlinear Schrödinger equation[END_REF]). It turns out that stability and instability of solitons depend on parameters σ, ω, c. More precisely, we give instability for σ ⩾ 2, stability for 0 < σ ⩽ 1. This is more complex in the case σ ∈ (1, 2). In this case, there exists z 0 ∈ (-1, 1) such that solitons are stable if -2

√ ω < c < 2z 0 √ ω, unstable if 2z 0 √ ω ⩽ c < 2 √ ω.
There are special solutions of (1.1) which behave in large time like sum of nite solitons [START_REF] Van Phan | Construction of multi-solitons and multi kink-solitons of derivative nonlinear Schrödinger equations[END_REF], [START_REF] Van Phan | Construction of multi-solitons for a generalized derivative nonlinear Schrödinger equation[END_REF]. Stability of such solutions was studied in [START_REF] Coz | Stability of multisolitons for the derivative nonlinear Schrödinger equation[END_REF] when σ = 1 and [START_REF] Tang | Stability of the sum of two solitary waves for (gDNLS) in the energy space[END_REF] when σ ∈ (1, 2). More precisely, the authors proved that sum of nite numbers of stable solitons is stable in some sense.

Scattering theory of (1.1) was rst studied in [START_REF] Bai | Optimal small data scattering for the generalized derivative nonlinear Schrödinger equations[END_REF]. The authors showed that when σ ⩾ 2, solutions are global and scatter for small initial data in H s for 1 2 ⩽ s ⩽ 1. Moreover, when 0 < σ < 2, there exist a class of solitons which converge to zero as c tends to some endpoint, which is against the small data scattering statement. Relating to scattering theory, in [START_REF] Ozawa | On the nonlinear Schrödinger equations of derivative type[END_REF], the author proved existence of a modied wave operator under a small condition on asymptotic states given at innity. In this paper, we prove existence of wave operator under an explicit smallness of the given asymptotic states.

The equation (1.1) admits three conservation quantities:

(Energy) E(u) = 1 2 ∥u x ∥ 2 L 2 - 1 2σ + 2 Re R i|u| 2σ uu x dx, (Mass) M (u) = ∥u∥ 2 L 2 , (Momentum) P (u) = Re R iu x udx. Let (ω, c) ∈ R + × R such that -2 √ ω < c < 2 √ ω.
(1.2) Dene, for φ ∈ H 1 (R):

S ω,c (φ) = E(φ) + ω 2 M (φ) + c 2 P (φ) K ω,c (φ) = ∥φ x ∥ 2 L 2 + ω∥φ∥ 2 L 2 + cP (φ) -Re R i|φ| 2σ φφ x dx, µ(ω, c) = inf S ω,c (φ) : φ ∈ H 1 (R) \ {0}, K ω,c (φ) = 0 , K ω,c = φ ∈ H 1 (R) : S ω,c (φ) ⩽ µ(ω, c), K ω,c (φ) ⩾ 0 , K = -2 √ ω<c<2 √ ω ω>0 K ω,c .
In [START_REF] Fukaya | A sucient condition for global existence of solutions to a generalized derivative nonlinear Schrödinger equation[END_REF], the authors gave some sucient conditions for which solutions of (1.1) are global. We have the following result: Theorem 1.1 ([5]). Let σ ⩾ 1 and (ω, c) such that (1.2). If the initial data u 0 ∈ K ω,c then the associated solution u of (1.1) is global and H 1 -norm is uniformly bounded in time. Specially, if u 0 ∈ K then the associated solution of (1.1) is global.

By using the idea in [START_REF] Van Phan | Construction of multi-solitons for a generalized derivative nonlinear Schrödinger equation[END_REF], we show that there exists a solution scattering to the given asymptotic state. This solution is well dened in large time. To show that the wave operator is well dened, we need to prove that this solution can extend to zero at least and this solution exists uniquely in some sense. Using Theorem 1.1, given some suitable conditions of asymptotic state, the associated solution scattering to this state exists globally in time.

Our rst main result is the following. Theorem 1.2. Let σ > 2 and u + ∈ H 2 ∩ W 2,1 be a given function. There exists a solution u of (1.1) scatters forward to u + . The convergence is in polynomial rate, more precisely, for some

T 0 ≫ 1: ∥u -e it∆ u + ∥ H 1 ≲ t 1-σ , ∀t ⩾ T 0 . (1.3) Furthermore, if v is a solution of (1.1) such that ∥v x ∥ L ∞ x (R) is uniformly bounded on [T 0 , ∞) and v scatters to u + in the sense of (1.3) then v ≡ u. If u + satises ∥∂ x u + ∥ 2 L 2 + ω∥u + ∥ 2 L 2 < 2µ(ω, 0), (1.4) 
for some ω > 0 then the associated solution u of (1.1) is global and the wave map:

u + → u 0 = u(0) is well dened.
For u ∈ H 2 , we dene Gauge transformations of u by

G 1 (u) = exp i 2 x -∞ |u(t, y)| 2σ dy u(t, x), G 2 (u) = exp i 2 x -∞ |u(t, y)| 2σ dy ∂ x u(t, x).
In the case where the initial data is small in H 2 (R), we show that the associated solution scatters up to Gauge transformations in sense of Theorem 1.3. Our second result is the following.

Theorem 1.3. Let u 0 ∈ H 2 be such that ∥u 0 ∥ H 2 is small enough. Then there exists a unique φ ± , ψ ± ∈ H 1 such that ∥G 1 (u) -e it∆ φ ± ∥ H 1 + ∥G 2 (u) -e it∆ ψ ± ∥ H 1 → 0, as t → ±∞.
Our strategy to prove Theorem 1.2 is to use Gauge transformations of u to obtain a system of two Schrödinger equations without derivative nonlinearities (3.2). In [START_REF] Van Phan | Construction of multi-solitons for a generalized derivative nonlinear Schrödinger equation[END_REF]Lemma 3.8], we study this system to prove existence of multi-solitons, where the prole H decays exponentially in time. In our case, the prole H only decays polynomially in time. Combining to the prole W decays polynomially, it suces to show that there exists a unique solution of (3.2) which decays polynomial in time and hence give a desired solution of (1.1) scattering to the given asymptotic prole by polynomial rate. Theorem 1.3 is proved by investigating system (2.2). We show that under small condition of initial data the associated solution of (2.2) scatters in both direction which gives the desired result. This paper is organized as follows. In Section 2, we give some useful notations and preliminaries for the proof of our main results. The next section 3 proves the main results of this paper Theorem 1.2 and Theorem 1.3. In Appendix 4, we establish some useful tools used in the proof of the main results.

Acknowledgement

The author is supported by Post-doc fellowship of Labex MME-DII: SAIC/2022 No 10078.

Preliminaries and notation

For convenience, we dene

L = i∂ t + ∆ the Schrödinger operator. Denote |(a, b)| = |a| + |b| and ∥(a, b)∥ X = ∥a∥ X + ∥b∥ X , for any Banach space X. A pair (q, r) is called a admissible in dimension one if r ⩾ 2 and 2 d + 1 r = 1 2 .
We call A is the set of all admissible pair.

Let I be a interval of R. The Strichartz space S(I) is dened by

∥u∥ S(I) = sup (q,r)∈A ∥u∥ L q L r .
Let N (I) be dual space of S(I). Dene S 1 , N 1 by

∥u∥ S 1 (I) = ∥(u, ∂ x u)∥ S(I) , ∥u∥ N 1 (I) = ∥(u, ∂ x u)∥ N (I) . Let φ = G 1 (u) and ψ = G 2 (u). Then, ψ = ∂ x φ -i 2 |φ| 2σ φ.
As in [START_REF] Van Phan | Construction of multi-solitons for a generalized derivative nonlinear Schrödinger equation[END_REF], we see that if u show (1.1) then (φ, ψ) show the following

Lφ = P (φ, ψ) := iσ|φ| 2(σ-1) φ 2 ψ -σ(σ -1)φ x -∞ |φ| 2(σ-2) Im(ψ 2 φ 2 ), Lψ = Q(φ, ψ) := -iσ|φ| 2(σ-1) ψ 2 φ -σ(σ -1)ψ x -∞ |φ| 2(σ-2) Im(ψ 2 φ 2 ).
(2.1) Let η = (φ, ψ) and F = (P, Q). We may rewrite (2.1) as follows:

Lη = F (η).
(2.2) ON GDNLS 3. Proof of the main results 3.1. Proof of Theorem 1.2. The aim of this section is to prove Theorem 1.2. We use similar argument in [START_REF] Van Phan | Construction of multi-solitons for a generalized derivative nonlinear Schrödinger equation[END_REF]. Let R = e it∆ u + . Then

LR + i|R| 2σ R x = i|R| 2σ R x := v(t, x).
Dene h, k are Gauge transformations of R:

k = G 1 (R), h = G 2 (R) = ∂ x h - i 2 |h| 2σ h.
By argument in [START_REF] Van Phan | Construction of multi-solitons for a generalized derivative nonlinear Schrödinger equation[END_REF],we have

Lh = P (h, k) + m, Lk = Q(h, k) + n,
where

m = exp i 2 x -∞ |R| 2σ dy v -σh x -∞ |R| 2(σ-1) Im(Rv) dy n = exp i 2 x -∞ |R| 2σ dy (∂ x v -σ∂ x R x -∞
|R| 2(σ-1) Im(Rv) dy).

Let W = (h, k), H = -(m, n) and η = η -W = ( φ, ψ). Then, ∂ x ψ = ∂ x φ - i 2 (| φ + h| 2σ -|h| 2σ h). (3.1) 
We see that if u show (1.1) then η show the following system

Lη = F (η + W ) -F (W ) + H.
(3.2) We divide the proof of Theorem 1.2 into three steps.

Step 1. Existence of a solution of the system Consider (3.2). We show that (3.2) admits a solution which decays polynomially in large time.

Proposition 3.1. Let H = H(t, x) : [0, ∞) × R → C 2 , W = W (t, x) : [0, ∞) × R → C 2 be
given functions which satises for some C 1 , C 2 > 0, T 0 > 0:

t 1 2 ∥W (t)∥ L ∞ ×L ∞ + ∥W (t)∥ L 2 ×L 2 + t σ ∥H∥ L 2 ×L 2 ⩽ C 1 , ∀t ⩾ T 0 , (3.3) 
t 1 2 ∥∂ x W (t)∥ L ∞ ×L ∞ + ∥W (t)∥ L 2 ×L 2 + t σ ∥∂ x H∥ L 2 ×L 2 ⩽ C 2 , ∀t ⩾ T 0 . (3.4) 
There exists a unique solution η to (3.2) such that

t σ-1 (∥η∥ S[t,∞)×S[t,∞) + ∥∂ x η∥ S[t,∞)×S[t,∞) ) ⩽ 1,
for all t ⩾ T 0 .

Proof. Fix T 0 > 1 large enough. Dene

B = η : t σ-1 ∥(η, ∂ x η)∥ S[t,∞)×S[t,∞) ⩽ C, ∀t ⩾ T 0 ,
for some C > 1 large enough and

Φ(η)(t) = i ∞ t e i(t-s)∆ (F (η + W ) -F (W ) + H)(s) ds.
If η tends to zero in H 1 -norm then the system (3.2) is rewritten as follows

η = Φ(η).
Thus, it suces to prove that Φ is a contraction mapping on B for T 0 large enough. We divide the proof in two steps.

Step 1. Proof Φ maps B into B Let t ⩾ T 0 , η = ( η1 , η2 ) ∈ B, W = (w 1 , w 2 ) and H = (h 1 , h 2 ). By Strichartz, we have

∥Φη∥ S[t,∞)×S[t,∞) ≲ ∥F (η + W ) -F (W )∥ N [t,∞)×N [t,∞) (3.5) 
+ ∥H∥ L 1 L 2 ([t,∞))×L 1 L 2 ([t,∞)) .
(3.6) For (3.6), we have

∥H∥ L 1 L 2 ([t,∞))×L 1 L 2 ([t,∞)) = ∥(h 1 , h 2 )∥ L 1 L 2 ([t,∞) ≲ ∞ t s -σ ds = t 1-σ .
Using Lemma 4.2, we have

∥F (η + W ) -F (W )∥ N [t,∞)×N [t,∞) ≲ ∥F (η + W ) -F (W )∥ L 1 L 2 [t,∞)×L 1 L 2 [t,∞) ≲ ∥η∥ L q L r ∥η∥ 2σ X1 + ∥η∥ L 1 L 2 ∥W ∥ 2σ L ∞ L ∞ + ∥η∥ L q L r ∥η∥ 2σ X2 + ∥η∥ L 1 L 2 ∥W ∥ 2 L ∞ L 2 ∥W ∥ 2σ-2 L ∞ L ∞ ≲ t (1-σ)(2σ+1) + t 2-σ t 1-σ ≲ t 1-σ .
This implies that

∥Φη∥ S[t,∞)×S[t,∞) ⩽ Ct 1-σ ,
for some constant C > 0. Moreover,

∥∂ x Φη∥ S[t,∞)×S[t,∞) ≲ ∥∂ x (F (η + W ) -F (W ))∥ N [t,∞)×N [t,∞) (3.7) + ∥∂ x H∥ L 1 L 2 [t ∞)×L 1 L 2 [t,∞) .
(3.8)

For (3.8), we have

∥∂ x H∥ L 1 L 2 ([t,∞))×L 1 L 2 ([t,∞)) = ∥(h 1 , h 2 )∥ L 1 L 2 ([t,∞) ≲ ∞ t s -σ ds = t 1-σ .
Furthermore, using Lemma 4.2, we have

∥∂ x (F (η + W ) -F (W ))∥ N [t,∞)×N [t,∞) ≲ ∥∂ x η∥ L 1 L 2 (∥(η, W )∥ 2σ L ∞ L ∞ + ∥η∥ 2σ L ∞ L 2σ ) + ∥η∥ L 1 L 2 ∥∂ x (η, W )∥ L ∞ L ∞ ∥(η, W )∥ 2σ-1 L ∞ L ∞ + ∥∂ x W ∥ L ∞ L 2 ∥η∥ L 1 L 2 ∥(η, W )∥ L ∞ L 2 ∥(η, W )∥ 2σ-2 L ∞ L ∞ + ∥η∥ L 1 L 2 ∥(η, W )∥ 2σ L ∞ L ∞ ≲ t 1-σ .
Thus, Φ map B into B if we chose C large enough.

Step 2. Proof Φ is a contraction map on B By using (3.3), (3.4) and a similar argument as in the step 1, we may prove that, for any η, κ ∈ B, we have

∥Φη -Φκ∥ X ⩽ 1 2 ∥η -κ∥ X ,
where

∥η∥ X = sup t⩾T0 t σ-1 ∥(η, ∂ x η)∥ S[t,∞)×S[t,∞) .
Thus, Φ is a contraction map on B. This implies the desired result.

□ Remark 3.2. By Strichartz, we have ∥R∥ L ∞ ≲ t -1 2 ∥u + ∥ L 1 .
The assumption on u + ensures that all conditions in Proposition 3.1 are satised.

Step 2. Existence of a desired solution We prove that the solution η found in Step 1 satisfying the relation 3.

1. Let ṽ = ∂ x φ -i 2 (| φ + h| 2σ ( φ + h) -|h| 2σ h).
Using argument in [START_REF] Van Phan | Construction of multi-solitons for a generalized derivative nonlinear Schrödinger equation[END_REF], we have for N ≫ t:

∥ ψ(t) -ṽ(t)∥ 2 L 2 ≲ ∥ ψ(N ) -ṽ(N )∥ 2 L 2 exp N t K 1 + K 2 + K 3 ds , (3.9) 
where

K 1 + K 2 + K 3 = ∥φ∥ 2σ-1 L ∞ ∥ ψ + ṽ + 2k∥ L ∞ + ∥φ 2(σ-1) ( ψ + k) 2 ∥ L 1 + ∥ṽ + k∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 + ∥∂ x (|φ| 2(σ-1) φ 2 )∥ L ∞ + ∥∂ x φ∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 + ∥φ 2σ-1 ( ψ + ṽ + 2k)∥ L ∞ + ∥φ 4σ ∥ L ∞ + ∥φ 2σ+1 ∥ L 2 ∥φ 2(σ-1) ( ψ + ṽ + 2k)∥ L 2 .
Hence, by using σ > 2, we see that

(K 1 + K 2 + K 3 )(s) ≲ s 1-σ ∈ L 1 ,
Thus, (3.9) converges to zero as N → ∞ and ψ = ṽ. Dene

u = G -1 1 ( φ + h).
We have

∥u -R∥ H 1 ≲ ∥ φ∥ H 1 ≲ t 1-σ → 0.
This implies that u scatters forward to u + . It is clear that

∥∂ x u∥ L ∞ t ([T0,∞),L ∞ x (R)) = ∥ψ∥ L ∞ t ([T0,∞),L ∞ x (R))
is bounded. Now, assume that u + satises the condition (1.4). Since

u + ∈ H 2 ∩ W 2,1 , we have ∥R∥ L ∞ → 0 as t → ∞ and hence Re R i∂ x RRdx → 0, as t → ∞.
Thus,

lim t→∞ S ω,0 (R) = 1 2 ∥∂ x u + ∥ 2 L 2 + ω 2 ∥u + ∥ 2 L 2 < µ(ω, 0), lim t→∞ K ω,0 (R) = ∥∂ x u + ∥ 2 L 2 + ω∥u + ∥ 2 L 2 > ω∥u + ∥ 2 L 2 > 0.
Since ∥u(t) -R(t)∥ H 1 → 0 as t → ∞, we have K ω,0 (u(t)) ⩾ ω∥u + ∥ 2 L 2 > 0 and S ω,0 (u(t)) < µ(ω, 0) for t large enough. By Theorem 1.1, u exists globally in time. It remains to show that the existence of u is unique in some sense.

Step 3. Uniqueness of the desired solution Assume that u, v are two solutions of (1.1)

on [T 0 , ∞) such that ∥(u x , v x )∥ L ∞ t ([T0,∞),L ∞ x (R)) ≲ 1
and for some T 0 ≫ 1:

sup t⩾T0 t σ-1 (∥u(t) -R∥ H 1 + ∥v(t) -R∥ H 1 ) ≲ 1.
We have

i(u -v) t + ∆(u -v) + i(|u| 2σ u x -|v| 2σ v x ) = 0.
Multiplying two sides of the above equation by (u -v), taking imaginary part and integrating by space, we have

0 = 1 2 ∂ t ∥u -v∥ 2 L 2 + Re R (|u| 2σ u -|v| 2σ v)(u -v)dx.
This implies that

1 2 ∂ t ∥u -v∥ 2 L 2 = -Re R (|u| 2σ u -|v| 2σ v)(u -v)dx = -Re R (|u| 2σ -|v| 2σ )u x u -v + |v| 2σ u -v(u x -v x )dx = -Re R (|u| 2σ -|v| 2σ )u x u -vdx - 1 2 Re R |v| 2σ ∂ x (|u -v| 2 )dx = -Re R (|u| 2σ -|v| 2σ )u x u -vdx + 1 2 Re R ∂ x (|v| 2σ )|u -v| 2 dx.
Hence,

∂ t ∥u -v∥ 2 L 2 ≲ R |u -v| 2 (|u| 2σ-1 + |v| 2σ-1 )(|u x | + |v x |)dx ≲ ∥u -v∥ 2 L 2 ∥(u, v)∥ 2σ-1 L ∞ x ∥(u x , v x )∥ L ∞ x ≲ ∥u -v∥ 2 L 2 t 1 2 -σ Dene M (t) = ∥u(t) -v(t)∥ 2 L 2 . Assume M (T 0 ) > 0. We have b T0 ∂ t M M ds ≲ b T0 ∂ t M M ds ≲ b T0 s 1 2 -σ ds
This implies that

| log(M (b)) -log(M (T 0 ))| ≲ T 3 2 -σ 0 -b 3 2 -σ .
Since σ > 2 and M (b) tends to zero as b tends to innity, the above estimate gives us an contradiction by letting b tends to innity. Thus, M (T 0 ) = 0. By uniqueness of H 1 solutions of (1.1), we have u ≡ v. This implies the uniqueness of existence of u and hence the wave map u + → u 0 = u(0) is well dened. This completes the proof. 

F (η) ∈ N 1 (R) × N 1 (R).
By Strichartz, we have

∥η∥ S 1 (R)×S 1 (R) ≲ ∥η(0)∥ H 1 ×H 1 + ∥F (η)∥ N 1 (R)×N 1 (R) .
Using Lemma 4.3, we have

∥F (η)∥ N (R)×N (R) ≲ ∥η∥ L q L r (∥η∥ 2σ X 1 + ∥η∥ 2σ X 2 ) ≲ ∥η∥ L q L r (∥(η, ∂ x η)∥ 2σ L m L h + ∥(η, ∂ x η)∥ 2σ L 2σ L k ),
where (q, r), (m, n) are as in Lemma 4.3 and (m, h), (2σ, k) are admissible pairs. Using Lemma 4.3 again, we have

∥∂ x F (η)∥ N (R)×N (R) ≲ ∥∂ x η∥ L q L r ∥η∥ 2σ X1∩X2 + ∥η∥ L q L r ∥η∥ 2σ X 1 ≲ ∥∂ x η∥ L q L r ∥(η, ∂ x η)∥ 2σ L m L h ∩L 2σ L k + ∥η∥ L q L r ∥(η, ∂ x η)∥ 2σ L m L h .
Dene Z = L q L r ∩ L m L h ∩ L 2σ L k . As the above, we have

∥(η, ∂ x η)∥ Z ⩽ C∥η(0)∥ H 1 ×H 1 + C∥(η, ∂ x η)∥ 2σ+1 Z ,
for some constant C > 0. Thus, for ∥η(0)∥ H 1 ×H 1 small enough (since ∥u 0 ∥ H 2 is small), by continuous argument, we have η, ∂ x η ∈ Z(R) and F (η) ∈ N 1 (R) × N 1 (R). By classical argument, there exists φ ± , ψ ± such that lim t→±∞ ∥η -e it∆ (φ ± , ψ ± )∥ H 1 ×H 1 → 0.

Hence, the proof is completed.

Appendix

Lemma 4.1 ([17]). Fix α, β ∈ R with α + β > 0. We have As a consequence of Lemma 4.1, we introduce (without proof) the following estimates for nonlinearities:

ON GDNLS Lemma 4.2. For η 1 = (φ 1 , ψ 1 ), η 2 = (φ 2 , ψ 2 ) ∈ H 1 × H 1 , we have

|F (η 1 ) -F (η 2 )| ≲ |η 1 -η 2 |(|η 1 | 2σ + |η 2 | σ + x -∞ |η 1 | 2σ dy) + |η 2 | x -∞ |η 1 -η 2 |(|η 1 | 2σ-1 + |η 2 | 2σ-1 ) dy, |∂ x (F (η 1 ) -F (η 2 ))| ≲ |∂ x (η 1 -η 2 )|(|η 1 | 2σ + |η 2 | 2σ + x -∞ |η 1 | 2σ ) + |η 1 -η 2 ||∂ x (η 1 , η 2 )|(|η 1 | 2σ-1 + |η 2 | 2σ-1 ) + |∂ x η 2 | x -∞ |η 1 -η 2 |(|η 1 | 2σ-1 + |η 2 | 2σ-1 ) + |η 1 -η 2 |(|η 1 | 2σ + |η 2 | 2σ ).
For (q, r) is a admissible pair, (m, n) satises 2 m + 1 n = 1 σ . Dene

∥u∥ X1 = ∥u∥ L m t L n x ,
and

∥u∥ X2 = ∥u∥ L 2σ t,x .

1 2 2 √

 12 (R) norm of the solutions remains globally bounded in time.The equation (1.1) admits two parameters family of solitary waves solutions (or solitons) u ω,c for c ∈ (-

  (w + z) α (w + z) β -w α w β ≲ |z| α+β + |z||w| α+β-1 .

We see that ∥u∥ X1∩X2(I) ≲ ∥⟨∇⟩ u∥ S(I) .

We note that

Thus, as a consequence of the above lemma, we have the following result. Lemma 4.3. We have

X2

+ ∥η 1 -η 2 ∥ L q L r ∥(η 1 , η 2 )∥ 2σ X1 .