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Rochberg's coboundary theorem provides conditions under which the equation (I -T )y = x is solvable in y. Here T is a unilateral shift on Hilbert space, I is the identity operator and x is a given vector. The conditions are expressed in terms of Wold-type decomposition determined by T and growth of iterates of T at x. We revisit Rochberg's theorem and prove the following result. Let T be an isometry acting on a Hilbert space H and let x ∈ H. Suppose that ∞ k=0 k T * k x < ∞. Then x is in the range of (I -T ) if (and only if)

When T is merely a contraction, x is a coboundary under an additional assumption. Some applications to L 2 -solutions of the functional equation f (x)f (2x) = F (x), considered by Fortet and Kac, are given.

To the memory of Jörg Eschmeier 1. Introduction 1a. Coboundaries. Let T be a bounded linear operator acting on a complex Banach space X . An element x of X is called a coboundary for T if there is y ∈ X such that x = y -T y. Coboundaries are related to the behavior of the ergodic sums S n (T )x := x + T x + • • • + T n-1 x, n ≥ 1.

A variant of the mean ergodic theorem for power bounded operators on reflexive Banach spaces has been proved by von Neumann for Hilbert spaces and by Lorch in the general case ; see for instance [14]. Recall that T is said to be power bounded if sup n≥1 T n < ∞. We have

X = x ∈ X : lim n→∞ 1 n
S n (T )x exists = {y ∈ X : T y = y} ⊕ (I -T )X .

In particular, as a consequence of this ergodic decomposition, we have

x ∈ (I -T )X ⇔ lim n→∞ 1 n S n (T )x = 0.
One can say more about the rate of convergence of (1/n)S n (T )x to zero when x is a coboundary. Indeed, when there exists a solution y of the equation y -T y = x, the ergodic sums satisfy S n (T )x = y -T n y. It follows that (S n (T )x) n∈N is bounded. Therefore (1.1)

1 n S n (T )x = O 1 n .
This rate of convergence to zero, namely O(1/n), characterizes coboundaries of power bounded operators on reflexive spaces. Indeed, the converse result (whenever T is power bounded and X is reflexive, an element x satisfying (1.1) is a coboundary for T ) has been proved by Browder [START_REF] Browder | On the iteration of transformations in noncompact minimal dynamical systems[END_REF] and rediscovered by Butzer and Westphal [2]. We also note (see for instance [START_REF] Gomilko | On rates in mean ergodic theorems[END_REF], [3], [START_REF] Badea | The rate of convergence in the method of alternating projections[END_REF] and the references therein) that if (I -T )X is not closed, then for every sequence (a n ) n≥1 of positive real numbers converging to zero, there exists x ∈ (I -T )X \(I -T )X such that

1 n S n (T )x ≥ a n , ∀n ≥ 1.
In particular, there is no general rate of convergence in the mean ergodic theorem outside coboundaries.

1b. Rochberg's theorem. Browder's theorem has been extended to the case that T is a dual operator on a dual Banach space by Lin [16] ; see also Lin and Sine [17]. We refer the reader to the introduction of [START_REF] Cohen | Double coboundaries for commuting contractions[END_REF], and the references cited therein, for the history of Browder's theorem and for other extensions and generalizations. We mention here only two references, namely [19] and [START_REF] Kozma | Exponential Riesz bases, discrepancy of irrational rotations and BMO[END_REF], dealing with the Hilbert space situation. Any of these Hilbert or Banach space abstract characterizations is not strong enough to obtain as consequences classical results of Fortet and Kac [START_REF] Fortet | Sur une suite également répartie[END_REF]12] who dealt with the case X = L 2 (0, 1) and Sf (x) = f (2x). This operator S is the Koopman operator associated with the doubling map on the torus ; see the last section of this manuscript for more information about coboundaries of S. This situation has been remedied by Rochberg [20], who showed that a condition of o( √ n) growth of ergodic sums at x is sufficient to ensure that x is a coboundary for a unilateral shift on Hilbert space. Notice that the Koopman operator S acts as a unilateral shift on the subspace of L 2 (0, 1) of functions whose zeroth Fourier coefficient vanishes.

We need the following classical definition in order to state Rochberg's abstract coboundary theorem.

Definition 1.1. Let T be an isometry acting on Hilbert space H. A closed subspace K of H is called wandering for T whenever

T p K ⊥ T q K for p, q ∈ N, p = q.
The isometry T is called a (unilateral) shift if H possess a closed subspace K, wandering for T and such that

∞ n=0 T n K = H.

Theorem 1.2 ([20]

). Let S be a shift and let f be an element of H. Using the notation of the preceding definition, we denote by f j the projection of f onto the closed subspace S j K. Suppose that there exists β > 0 such that

f j = O(2 -βj ).
Then there exists g in H such that (I -S)g = f if and only if

lim n→∞ 1 n n k=0 S k f 2 = 0. Remark 1.3. The condition f j = O(2 -βj
) is of course dependent of the decomposition of H associated with the unilateral shift S. It implies S * j f = O(2 -βj ).

1c. Statement of the main results. In the next theorem the unilateral shift S is replaced by an arbitrary isometry T and the growth of the norm of the projection f j by the convergence of the series ∞ j=0 j T * j f . The statement of the result does not depend on the Wold decomposition, at least not in an explicit way. For the convenience of the reader, the Wold decomposition theorem is recalled below. Theorem 1.4 implies Rochberg's theorem and it allows to recover Kac's results about the coboundaries of the Koopman operator of the doubling map.

Theorem 1.4. Let T be an isometry acting on a Hilbert space H and let x ∈ H. Suppose that

(1.2) ∞ k=0 k T * k x < ∞.
Then there exists y ∈ H such that x = (I -T )y if and only if

lim n→∞ 1 n n k=0 T k x 2 = 0.
Note however that the condition (1.2) implies that x is necessarily an element of the shift part of the isometry T .

Considering coboundaries of adjoints of isometries, we notice that the identity I -T = (T * -I)T shows that every coboundary of the isometry T is also a coboundary for its adjoint T * . It follows from [7, Proposition 4.3] that when the isometry T is not invertible (i.e., not a unitary operator), there are coboundaries for T * which are not coboundaries for T .

The following result, more general than Theorem 1.4, is about coboundaries of contractions (operators of norm no greater than one). Theorem 1.5. Let T be a linear operator acting on a Hilbert space H with T ≤ 1. Let x ∈ H and denote S n (T )x := x + T x + • • • + T n-1 x. Suppose that (1.2) holds, as well as

(1.3) S n (T )x = o( √ n), n → ∞ and (1.4) n k=1 S k (T )x 2 -T S k (T )x 2 = o(n), n → ∞.
Then there exists y ∈ H such that x = (I -T )y. In addition, y can be chosen such that T y = y .

We obtain the following consequence.

Corollary 1.6. Let T be a linear operator acting on a Hilbert space

H with T ≤ 1. Let x ∈ H and denote S n (T )x := x + T x + • • • + T n-1 x. Suppose that (1.
2) and (1.3) hold, as well as

(1.5) ∞ k=1 S k (T )x 2 -T S k (T )x 2 k < ∞.
Then there exists y ∈ H such that x = (I -T )y and T y = y .

Some remarks are in order. Theorem 1.5 and its consequence Corollary 1.6 shows that the coboundary equation can be solved within the maximal isometric subspace

M = {x ∈ H : T n x = x for every n ≥ 0}.
We refer to [START_REF] Sz | Harmonic analysis of operators on Hilbert space[END_REF] and [15] for the canonical decomposition of a contraction into the maximal isometric subspace and its orthogonal.

Conditions (1.4) and (1.5) are easily verified when T is an isometry. The conditions (1.2) and (1.3) are always satisfied when T < 1 ; however (1.5) is not, unless x = 0. In fact, T y = y and T < 1 imply that y = 0 and thus x = 0. Of course, as (I -T ) is invertible when T < 1 by Carl Neumann's lemma, the coboundary equation x = (I -T )y is always solvable in this case.

1d. Outline of the paper. A proof of Theorem 1.4 is given in the next section. The more general Theorem 1.5 and its consequence Corollary 1.6 are proved in Section 3. Some applications to the functional equation g(x) -g(2x) = f (x) are presented in the next section. The last section collects the acknowledgments, a dedication statement and (imposed) conflict of interest and data availability statements.

Proof of Theorem 1.4

We first recall Wold's decomposition Theorem (see [18, Chapter 1]).

Theorem 2.1 (Wold decomposition). Let T be an isometry on a Hilbert H. Then H decomposes as an orthogonal sum H = H 0 ⊕ H 1 such that H 0 and H 1 are reducing for T , the restriction of T to H 0 is a unitary operator and the restriction of T to H 1 is a unilateral shift (one of the subspaces can eventually reduce to {0}). This decomposition is unique ; in particular, we have

H 0 = ∞ n=0 T n H and H 1 = ∞ n=0 T n K , where K = H ⊖ T H. Proof of Theorem 1.4. If x = (I -T )y, then n k=0 T k x = x -T n+1 x.
Therefore n k=0 T k x is bounded since the isometry T is clearly power-bounded. In particular,

lim n→∞ 1 n n k=0 T k x 2 = 0. Suppose now that lim n→∞ 1 n n k=0 T k x 2 = 0.
We want to show the existence of a solution y of the equation (I -T )y = x.

Let H = H 0 ⊕ H 1 be the Wold's decomposition associated with T . We notice that x ∈ H 1 . Indeed, if x = x 0 + x 1 according to Wold's decomposition of H, then

lim k→∞ T * k x 1 = 0 and T * n x 0 = x 0 , ∀n ∈ N. Therefore lim n→∞ T * n x = x 0 .
On the other hand, it follows from (1.2) that lim n→∞ T * n x = 0.

We obtain that x ∈ H 1 . In particular, if H 1 is reduced to {0}, then x = 0 = (I -T )0. Therefore, without loss of any generality, we can assume that T is a shift.

For each n ∈ N, we denote by P n the projection onto the subspace T n K. For u ∈ H, we set u n := P n (u), u n := n j=0 u j and R n := u -u n . Suppose that y is solution of the equation (I -T )y = x. We first obtain, by projecting to T k K for each k ∈ N, the following system of equations :

                 x 0 = y 0 x 1 = y 1 -T y 0 . . . x k = y k -T y k-1 . . . We then obtain                  y 0 = x 0 y 1 = x 1 + T y 0 = x 1 + T x 0 . . . y k = x k + T y k-1 = x k + T x k-1 + • • • + T k-1 x 1 + T k x 0 . . .
Consider now, for each r ∈ N, the element

y r = r k=0 T k x r-k ∈ T r K.
We will prove that ∞ r=0 y r 2 is convergent, thus showing that y = ∞ r=0 y r is well defined in H. In that case, for every r ∈ N, we have

P r (I -T )y = y r -T y r-1 = r j=0 T j x r-j - r-1 j=0 T j+1 x r-1-j = x r .
This shows that (I -T )y = x.

To prove that ∞ r=0 y r 2 is finite, we need two more results.

Lemma 2.2. Let u ∈ H be such that j≥0 T * j u < +∞. Then

lim n→∞ 1 n n k=0 T k u 2 = u 2 + 2Re ∞ k=1 u; T k u .
Proof. We first notice that the sum ∞ k=1 u; T k u is absolutely convergent since ( T * j u ) j≥0 is summable. For each n ∈ N * , we have

1 n n k=0 T k u 2 = 1 n   n i=0 T i u 2 + 2Re   0≤i<j≤n T i u; T j u     = 1 n   n i=0 u 2 + 2Re   0≤i<j≤n u; T j-i u     = n + 1 n u 2 + 2 n Re n r=1 (n -r + 1) u; T r u = n + 1 n u 2 + 2Re n r=1 u; T r u - 1 n n r=1 (r -1) u; T r u .
On the other hand, we have

1 n n r=1 (r -1) u; T r u ≤ 1 n u n r=1 (r -1) T * r u .
Using again the summability of the sequence ( T * j u ) j≥0 and the Kronecker's lemma (see for instance [21, Lemma IV.3.2]), we get

1 n n r=1 (r -1) u; T r u -→ n→∞ 0.
As the series k≥1 u; T k u is convergent, we obtain, as n tends to infinity,

lim n→∞ 1 n n k=0 T k u 2 = u 2 + 2Re ∞ k=1 u; T k u .
Lemma 2.3. Let u ∈ H. For every r ∈ N we have r j=0

T j u r-j 2 = lim n→∞ 1 n n j=0 T j u r 2 .
Proof. Let n ≥ r. For k ∈ N we have

P k   n j=0 T j u r   =          k j=0 T j u k-j if 0 ≤ k < r, r j=0 T j u k-j if r ≤ k ≤ n, r j=k-n T j u k-j if n < k ≤ n + r, 0 if k > n + r.
Using the decomposition of H as H = ∞ n=0 T n K, we obtain

1 n n j=0 T j u r 2 = 1 n r-1 k=0 k j=0 T j u k-j 2 + 1 n n k=r r j=0 T j u k-j 2 + 1 n n+r k=n+1 r j=k-n T j u k-j 2 .
We have

1 n   r-1 k=0 k j=0 T j u k-j 2   -→ n→∞ 0 and 1 n n+r k=n+1 r j=k-n T j u k-j 2 = 1 n   r k=1 r j=k T j u k-j 2   -→ n→∞ 0,
as well as

1 n n k=r r j=0 T j u k-j 2 = n -r + 1 n r j=0 T j u r-j 2 -→ n→∞ r j=0 T j u r-j 2 .
We thus obtain

lim n→∞ 1 n n j=0 T j u r 2 = r j=0 T j u r-j 2 .
We finally show that r≥0 y r 2 < ∞. Using Lemma 2.3, we have for each r ∈ N,

y r 2 = r i=0 T i x r-i 2 = lim n→∞ 1 n n i=0 T i x r 2 .
Using the parallelogram identity for the vectors x r + R r = x, we get

2 n n i=0 T i x r 2 = 1 n n i=0 T i x 2 + 1 n n i=0 T i (x r -R r ) 2 - 2 n n i=0 T i R r 2 .
Make now n tends to infinity. Using Lemma 2.2 for R r and x r -R r , and the hypothesis

1 n n k=0 T k x 2 -→ n→∞ 0, we obtain 2 y r 2 = lim n→∞ 2 n n i=0 T i x r 2 = lim n→∞ 1 n n i=0 T i (x r -R r ) 2 -2 lim n→∞ 1 n n i=0 T i R r 2 = x r -R r 2 -2 R r 2 + 2Re ∞ k=1 x r -R r ; T k (x r -R r ) -2 R r ; T k R r = x r 2 -R r 2 + 2Re ∞ k=1 x r ; T k x r -x r ; T k R r -R r ; T k x r -R r ; T k R r = x r 2 -R r 2 + 2Re ∞ k=1 x r ; T k x r -2Re ∞ k=1 R r ; T k x .
Using now Lemma 2.2 applied to x r and Lemma 2.3, we get

x r 2 + 2Re ∞ k=1 x r ; T k x r = lim n→∞ 1 n ∞ i=0 T i x r 2 = y r 2 .
We can infer that

2 y r 2 = y r 2 -R r 2 -2Re ∞ k=1 R r ; T k x , so y r 2 = -R r 2 -2Re ∞ k=1 R r ; T k x .
For each fixed r we have R r = T r+1 T * (r+1) x. Thus R r = T * (r+1) x . As

+∞ j=1 j T * j x < +∞, we obtain that ( R r 2 ) r is summable. It suffices to show that ∞ r=0 ∞ k=1 R r ; T k x < ∞.
We have

∞ k=1 R r ; T k x = r k=1 R r ; T k x + ∞ k=r+1 R r ; T k x = r k=1 R r ; T k x + ∞ k=r+1 R k ; T k x ≤ r k=1 R r T k x + ∞ k=r+1 R k T k x ≤ x r R r + ∞ k=r+1 R k ≤ x r T * (r+1) x + ∞ k=r+1 T * (k+1) x .
Using again the summability of (r T * r x ) r , we get

∞ r=0 ∞ k=r+1 T * k x = ∞ k=0 k T * k x < ∞.
Therefore ∞ r=0 y r 2 < ∞.

The case of contractions

We now prove Theorem 1.5 and its consequence Corollary 1.6.

Proof of Theorem 1.5. Let D denote the defect operator D = (I -T * T ) 1/2 , which is well defined since T is a contraction. As

T x 2 + Dx 2 = T * T x, x + (I -T * T )x, x = x 2 , the operator R : ℓ 2 (H) → ℓ 2 (H) given by R(x 0 , x 1 , x 2 , • • • ) = (T x 0 , Dx 0 , x 1 , x 2 , • • • )
and with matrix representation

(3.1) R =        T D I I . . .       
, is an isometry. We can thus apply Theorem 1.4 to R.

The iterates of R are given by

R k (x 0 , x 1 , x 2 , • • • ) = (T k x 0 , DT k-1 x 0 , DT k-2 x 0 , • • • , DT x 0 , Dx 0 , x 1 , x 2 , • • • )
while their adjoints are given by Every positive (i.e. positive semi-definite) operator has the same kernel as its positive square-root ; thus (I -T * T )y = 0. Therefore T y = y . An easy computation shows that the summability condition

R * k (x 0 , x 1 , x 2 , • • • ) = (T * k x 0 + T * (k-1) Dx 1 + • • • + T * Dx k-1 , Dx k , x k+1 , x k+2 , • • • ). Denote x = (x, 0, 0, • • • ) ∈ ℓ 2 (H) and ỹ = (y, y 1 , y 2 , • • • ) ∈ ℓ 2 (H).
∞ k=0 k R * k x < ∞ is equivalent to ∞ k=0 k T * k x < ∞. Notice now that R k x = R k (x, 0, 0, • • • ) = (T k x, DT k-1 x, • • • , Dx, 0, 0, • • • ). Therefore n k=0 R k x = ( n k=0 T k x, D( n-1 k=0 T k x), D( n-2 k=0 T k x), • • • , Dx, 0, 0, • • • ).
Hence, using the notation S n (T )

x = x + T x + • • • + T n-1 x, the o( √ n) condition n k=0 R k x = o( √ n) is equivalent to n k=0 T k x = o( √ n) and n k=0 D(S k (T )x) 2 = o(n).
The proof is now complete using the identity Du 2 = u 2 -T u 2 .

Corollary 1.6 follows from Theorem 1.5 and Kronecker's lemma, already used in the proof of Theorem 1.4.

Coboundaries of the doubling map

Let val 2 (n) be the 2-valuation of n, that is

val 2 (n) = k if n = m2 k with m / ∈ 2Z.
For n ∈ Z, we denote by f (n) = 1 0 f (t)e -int dt the n-th Fourier coefficient of f ∈ L 2 (0, 1). Corollary 4.1. Suppose f is a periodic function of period 1 such that f ∈ L 2 (0, 1), (4.1)

1 0 f (t) dt = 0
and there exists ε > 0 such that

(4.2) ∞ n=-∞ val 2 (n) 4+ε f (n) 2 < ∞.
Then there is a function g in L 2 (0, 1) of period one such that f (t) = g(t) -g(2t) a.e.

if and only if

lim n→∞ 1 n 1 0 n i=0 f (2 i t) 2 dt = 0
Proof. We use Theorem 1.4 applied to the isometry T : L 2 (0, 1) -→ L 2 (0, 1) defined by T f (t) = f (2t), t ∈ (0, 1) mod 1.

We first remark that condition (4.1) is justified by the fact that T acts as a shift operator on the subspace of L 2 (0, 1) of functions whose zeroth Fourier coefficient vanishes. The condition

lim n→∞ 1 n 1 0 n i=0 f (2 i t) 2 dt = 0 is exactly the condition lim n→∞ 1 n n k=0 T k f 2 = 0, which appears in Theorem 1.4. We want to show that ∞ k=0 k T * k f < ∞.
Recall that T acts as a shift operator on the subspace of L 2 (0, 1) of functions whose zeroth Fourier coefficient vanishes. Let (a n ) = ( f (n)) be the sequence of Fourier coefficients of f . We have a 0 = 0. The iterates of the adjoint of T at f can be computed as

T * k f (t) = ∞ j=-∞ a j2 k e 2iπjt , k ∈ N.
For ε > 0, using the change n = j2 k in the order of summation, we get

∞ k=0 k T * k f = ∞ k=0 k   ∞ j=-∞ |a j2 k | 2   1/2 = ∞ k=0 k -(1+ε)/2   k 3+ε ∞ j=-∞ |a j2 k | 2   1/2 ≤ ∞ k=0 k -(1+ε) 1/2   ∞ k=0 k 3+ε ∞ j=-∞ |a j2 k | 2   1/2 = ∞ k=0 k -(1+ε) 1/2   ∞ n=-∞ |a n | 2 val 2 (n) k=0 k 3+ε   1/2 ≤ 2 ∞ k=0 k -(1+ε) 1/2 ∞ n=-∞ val 2 (n) 4+ε |a n | 2 1/2
. Thus, under our hypothesis about the Fourier coefficients, we have

∞ k=0 k T * k f < ∞.
Corollary 4.2.

[20] Let f be a periodic function of period 1 such that f ∈ L 2 (0, 1),

1 0 f (t) dt = 0
and there exists α > 0 such that

(4.3) ∞ k=-∞ | f ((2k + 1))2 i | 2 = O(2 -αi ).
Then there is a function g in L 2 (0, 1) of period one such that

f (t) = g(t) -g(2t) a.e.
if and only if

lim n→∞ 1 n 1 0 n i=0 f (2 i t) 2 dt = 0
Proof. The result follows from Corollary 4.1 with ε = 1, say. Indeed, using the condition (4.3), one can estimate 3). Mark Kac has already considered in [12] the case when f is in the Hölder class C 0,α for some α > 1/2. We refer to [START_REF] Fortet | Sur une suite également répartie[END_REF]5,[START_REF] Fukuyama | On a gap series of Mark Kac[END_REF] for other contributions concerning the functional equation f (t) = g(t) -g(2t).

∞ n=-∞ val 2 (n) 5 f (n) 2 = ∞ i=1 ∞ k=-∞ i 5 | f ((2k + 1))2 i | 2 ∞ i=1 i 5 2 αi < ∞.
Remark 4.4. All the remarks at the end of the paper [20] apply also in our situation. In particular, the generalization to the functional equation f (t) = g(t) -g(nt) (for a fixed integer n) is immediate.
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  The equation x = (I -R)ỹ reduces to the system of equations x = (I -T )y, y 1 = Dy, y 2 = y 1 , y 3 = y 2 , etc. As ỹ ∈ ℓ 2 (H), we obtain y 1 = y 2 = • • • = 0. Therefore the equation x = (I -R)ỹ in ℓ 2 (H) is equivalent to x = (I -T )y and Dy = 0.

Remark 4 . 3 .

 43 Condition (4.3) is condition (a) from Theorem 4 in [20]. It has been proved in [20] that each of other three conditions of Hölder type, called there (b), (c) and (d), implies the condition (4.
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