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1. INTRODUCTION

1.1. General setting. This article concerns the nonlinear Schrédinger (NLS) equation

(1.1) i0ru + Au = g(u),
in space dimension d > 1, where g(u) is a L2-supercritical nonlinearity of the form
(1.2) g(u) = wolu[u+ g1(u), w0 € {1}

and g1 : C — C is a L?-supercritical lower-order term, i.e. g; is C* and

4
Elplvp27 g <Dp1 g P2 < po, Yu € (C’ Vk € [[OakO]L |Dkgl(u)| 5 |u|p2_k + |U‘P1—k7

for some kg that we will be specified later.
The model case for g is a sum of k£ + 1 powers, k > 1
k

| 4
(1.3) g(uw) = _uslulu, i, €R\{0}, & <pr<...<pi<po.
j=0
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2 THOMAS DUYCKAERTS AND PHAN VAN TIN

With the regularity assumption:

(1.4) Vi € {0,...,k}, p; is an even integers, or [so] < pj,

where sy = % - p% (see Subsection 2.1 for the notation [so| and other notations that will be used
in this introduction). The case of a double-power, energy-subcritical (i.e. sop < 1) nonlinearity was
studied in many work. Our goal is give a general setting for the study of (1.1) which includes also
the supercritical case sg > 1 and more general lower order nonlinearity g;.

We are interested in the global well-posedness and scattering for solutions of (1.1). Neglecting

the lower order term in g, we obtain the usual (NLS) equation with a single power nonlinearity
(1.5) 10 + Au = 1p|ulPu,

The equation (1.5) is invariant by scaling: if u is a solution of (1.5) and A > 0, then uy(¢t,z) =
A2/Poq(\2t, Az) is also a solution of (1.5). The critical Sobolev exponent sq for (1.5) is the unique
so such that [|ull z.o = [|ur(0)||z for all A > 0. The equation (1.5) is well-posed in H*® (with
additional technical conditions in high dimensions ensure a minimal regularity of the nonlinearity)
see [10].

1.2. Well-posedness and profile decomposition. In Section 2 we prove that (1.1) is locally
well-posed in the inhomogenous space H®, for any s > sg, assuming that ¢ € Cl*1*! and L2-
supercritical (see Assumption A p.8 for the precise assumptions). We also develop a full stabil-
ity /long time perturbation theory for (1.1). The existence and uniqueness of solutions yields for all
up € H*® a maximal interval of existence Iax(uo) = (T—(uo), Ty (up)). Assuming g(u) = G'(Jul?)u
for some C! function G, with G(0) = 0 we also have conservation of the mass:

M(u(t)) = / fu(t, =) e,

Rd
and, if s > 1, of the energy

Bu(t)) z/Rqu(t,x)de—i—/Rd G(lut, o)) dz.

and the momentum
P(u(t)) = Im/ Vu(t,z)u(t, z)dx
Rd

of a solution.

Our first main result is the construction of a profile decomposition adapted to bounded sequences
of H?° solutions of equation (1.1), which builds up on the stability theory developed in Section 2.
This amounts to expressing such a sequence as a sum of three distinct types of objects: a dispersive
behaving as a solution of the linear Schédinger equation, concentrating (nonlinear) profiles that
are solutions of (1.5) rescaled with a scaling parameter going to 0, and nonconcentrating profiles,
that are solutions of (1.1). We refer to Section 3, and in particular Subsection 3.3 and Theorem
3.15 for the detailed statements.

This profile decomposition is valid in the general setting described above, and generalizes various
previous constructions on double power nonlinearities (see Subsection 1.5 below for references).

1.3. Global well-posedness. Solutions of (1.1) are not always global. Indeed, in the case of
a double power nonlinearity, if p = —1 (the higher-order nonlinearity is focusing), a standard
convexity argument (see [53, 21]) shows that any solution with negative energy and finite variance
blows up in finite time (at least in the case of a double-power nonlinearity, (1.3) with k& = 2).
More surprisingly, Merle, Raphaél, Rodnianski and Szeftel [34] have constructed solutions of the
homogeneous equation (1.5) with a defocusing, energy-supercritical nonlinearity so > 1, ¢ = 1
that blow up in finite time. It is known however in the defocusing case ¢y = 1, for many values of
po, that solution of (1.5) that remains bounded in the critical Sobolev space are global and scatter.
We will prove that this property implies that solutions of (1.1), with g of the form (1.2) satisfying
the same boundedness condition are global. We will thus consider:

Property 1.1. Let Ag € (0,00]. For any solution u of (1.5) with initial data in F®, if
(1.6) limsup [|u(t)|| s < Ao-

t—T4 (u
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Then T, (u) = +0o and u scatters for positive times in H*, i.e. there exists vy € H* such that
tim fu(t) — ] 5., 0.

It is conjectured that Property 1.1 always holds for Ay = oo in the defocusing case ;g = 1. In
the defocusing energy-critical case d > 3, pg = d;izv Property 1.1 is unconditional (the bound (1.6)
is given by conservation of the energy), and was proved in [14], [45] and [48],

The study of Property 1.1 in the defocusing case for other critical exponents was initiated in [25]
where it was proved when d = 3, py = 2 (thus sg = 1/2), for radial solutions. It was later proved in
many other cases: see [29], [36], [32], [16] for supercritical nonlinearities in dimension d > 4 (with
technical restriction if d > 7), and [50], [40], [41], [19], [52] and [5] for several energy-subcritical
nonlinearities.

In the focusing case (g = —1, Property 1.1 is only known to hold when Aq is small, from the
small data theory for equation (1.5). In the focusing energy critical case, pg = ﬁ, it follows from
[24], [30] and [15] that Property 1.1 holds with A9 = |[VW/||7. in dimension d > 4, and d = 3 in
the radial case, where W is the ground state of equation (1.5). This is optimal, since the existence
of W shows that Property 1.1 does not hold for 4y > ||[VW|2,.

When o = —1 and sp € (0, 1), there exists standing wave solutions of (1.5), so that Property
1.1 does not hold for large Ag. When g = —1, sg > 1, travelling wave solutions in H#o do not
exist, and the validity of Property 1.1 for large Ay is an open question. Let us also mention that
the analogue of this property was proved for radial focusing nonlinear wave equation in the energy
supercritical and subcritical settings (see e.g. [18] for supercritical py in space dimension 3).

Our result on global well-posedness is as follows:

Theorem 1.2. Let vy, sg, g such that Assumption B holds, and such that Property 1.1 is valid
for some Ay € (0,00]. Let u be a solution of (2.1), with initial data in H*, such that (1.6) holds.
Then Ty (u) = +o0.

We refer to Definition 2.7 and Section 3, p. 19 for the details of Assumption B. Let us mention
that a multi-power non-linearity as in (1.3) with the additional technical assumption (1.4) satisfies
this assumption.

If Property 1.1 holds only for radial functions, then the conclusion of Theorem 1.2 is also valid
when restricted to radial solutions of (1.1).

Theorem 1.2 is new in the energy supercritical case sy > 1. In the energy-subcritical and energy-
critical cases 0 < sp < 1, it was proved in [47] for a double power non-linearity with the stronger
assumptions ¢g = 1, ug € H', without assuming Property 1.1.

The proof of Theorem 1.2 uses the profile decomposition mentioned above. The Property 1.1 is
used to deal with the concentrating profiles.

In the defocusing energy-critical case, by conservation of the energy and the scattering result
for the energy-critical Schrodinger defocusing equation, the global well-posedness is unconditional:

Corollary 1.3. Assume 19 = 1. Let d € {3,4,5}, and g such that Assumption B holds with
po = ﬁ. Let u be a solution of (2.1), with initial data in H'. Then u is global.

Corollary 1.3 was proved in the case of a double-power nonlinearity in [54] (d = 3) and in
[47] (for general d > 4). Corollary 1.3 generalizes these results to more general perturbations of
the energy-critical nonlinearity, in low dimension. The restriction on the dimension is due to the
regularity assumption g € C? in Assumption B. This restriction could be weakened using a refined
well-posedness/stability theory as in [7].

1.4. Scattering. Our next goal is to give sufficient conditions for scattering of solutions of (1.1).
We recall that a solution of (1.1) with initial data in H®° is said to scatter (in H®°, forward in
time) when T (u) = 400 and there exists vg € H*° such that

. itA, _
tlgglo l|e"* o u(t)HHsO 0.
We will prove scattering for a general defocusing nonlinearity defined as follows:

Definition 1.4. The nonlinearity g is defocusing when it is of the form g(u) = G'(|u|?)u for some
C! function G such that for almost all a > 0, aG’(a) — G(a) > 0.
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Note that any power nonlinearity with a positive coefficient is defocusing in the sense of Def-
inition (1.4). For a multi-power nonlinearity ¢ as in (1.3) the assumption that g is defocusing is
equivalent to

1.7 Vs >0, “1>o0.
( ) S ZLjp]+2

Note that (1.7) holds when all the ¢; are positive. Also, (1.7) implies to > 0, ¢; > 0.
For our scattering results, we distinguish between the energy-supercritical case and the energy-
subcritical case:

Theorem 1.5. Let d > 3 and assume sqg > 1. Let g be a defocusing nonlinearity that satisfies
Assumption B. Assume that Property 1.1 holds for some Ay € (0,00]. Let u be a solution of
(1.1) with initial data ug € H* and that satisfies (1.6). Then u is global and scatter in both time
directions.

When so < 1, we must further assume that the initial data has finite energy.

Theorem 1.6. Assume 0 < so < 1. Let g be a defocusing nonlinearity that satisfies Assumption
B. Let u be a solution of (1.1) with initial data ug € H*. Then u is global and scatter in both time
directions.

Note that the assumption that g is defocusing together with the fact that G(a)/a goes to 0 as a
goes to 0 (which is a consequence of Assumption B) implies that G > 0. Thus the assumptions of
Theorem 1.6 and the conservation of mass and energy imply that any H' solution of u is bounded
in H.

Theorems 1.5 and Theorem 1.6 show that scattering holds for a multi-power nonlinearity satis-
fying (1.3), (1.4) and (1.7).

In the case of a double-power nonlinearity the condition (1.7) is equivalent to 1o > 0, t; > 0. In
this case, Theorem 1.5 is new. Theorem 1.6 is proved in [47, Theorem 1.3] and [54]).

For a double-power nonlinearity with (9 > 0, 117 < 0) or (19 < 1, 0 < sp < $1 < 1), there are
solitary wave solutions and thus it is impossible to prove an analog of Theorems 1.5 and 1.6. This
is an open question for other double power nonlinearities.

When only the main order term of the nonlinearity is defocusing, i.e. when ¢y > 0, scattering
holds for initial data with small mass. We again distinguish between sy > 1 and sy € (0, 1]

Theorem 1.7. Let d > 3 and assume sqg > 1. Let g be a nonlinearity that satisfies Assumption
B with 19 > 0. Assume that Property 1.1 holds for some Ag € (0,00]. There exists m. > 0 such
that any solution of (1.1) with initial data in H®® such that M(ug) < m. and that satisfies (1.6)
is global and scatters in both time directions.

Theorem 1.8. Let g be nonlinearity that satisfies Assumption B with 1o > 0. There exists me > 0
such that any solution of (1.1) with initial data in H' and such that M(ug) < m. is global and
scatters in both time directions.

Theorem 1.8 is new, even for double power nonlinearities. Theorem 1.8 generalizes [47, Theorem
1.3] which concerns a double power nonlinearity with ¢y > 0 and ¢; < 0. In particular the case
where d = 3, pg = 4 (thus sg = 1), p; = 2 scattering was proved to hold for a larger set of initial
data in [28], [27]. In a subsequent work, we will use the material of this article, together with [31]
to obtain an improvement of Theorems 1.7 and 1.8 in the same spirit.

The proofs of Theorem 1.5 and Theorem 1.7 follow the by now classical rigidity-compactness
roadmap (see [24]), using the profile decomposition constructed in Section 3. This provides, in a
contradiction argument, a global critical solution w. of (1.1) such that there exists x(¢) such that

K ={u.(t,- + z(t)), t e R}
has compact closure in H*°.
To exclude this critical element and obtain a contradiction, we use the virial identity
d

(1.8) %Im/x -Vut =20(u),
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where

dp: dpo
O(u) = [ |Vul* + 11 ———|uP T2 4+ g ——|u|Po T2,
(W) = [ 190 + 05 P2 a0

and the center of mass identity:
d
(1.9) p z|u(t)|? = 2P(u).

which are valid for solutions of u with enough decay at infinity.
Using a localized version of (1.9), one can prove:

(1.10) lim L |2(t) — X(£)] = 0 where X(£) = zﬁ(&z)) .

When the momentum of u, is zero, this allows to control the growth of x(t). A localized version

of (1.8) using the relative compactness K, gives a contradiction if infieg ®(u.(t)) — % > 0.
In the defocusing/defocusing case (as in Theorem 1.5), this property is true whenever w,. is not
identically zero. In the defocusing/focusing case, we show, using the quite complete study of the
elliptic problem in [31], and some of the ideas in [28], that ® is positive in the region described in
the assumptions of Theorem 1.7, yielding again the desired contradiction.

One must adapt this argument when the momentum of u. is not zero. The standard strategy,
going back to [17] is to use the Galilean transformation to reduce to the case to a critical solution
with zero momentum. However the effect of the Galilean transform on the Sobolev norm H® of
the solution is not explicit, and thus the strategy breaks down in the case so > 1, where our proof
relies on an induction-type argument on this norm. To tackle this difficulty, we observe that (1.8),
(1.9) and the conservation of momentum imply:

d _ 2|P(u)?
—T —X(¢ =20(u(t)) — ———
ST [ o= X(0)Vun = 20(u(0) ~ Z7 0T
which we localize with a time-dependant localization around X (¢). This gives again a contradiction
2
using an improved Cauchy-Schwarz inequality going back to [3] to prove that ®(u) — “;/I(?Jl) is still

positive for the solutions that we consider.

1.5. Previous works. To our knowledge, the profile decomposition, and the problem of scattering
for a general nonlinearity of the form (1.2) were not considered before.

Let us mention a few works on NLS equation with a double-power nonlinearity. The study of
this type of equation was initiated in [54], in dimension 3, where the author investigated the global
well-posedness, scattering and blow-up phenomena in the case pg = 4. This includes in particular
a scattering result for small mass, in the spirit of Theorem 1.7. Similar results were obtained in
[47], in general dimension d in the energy-critical and subcritical setting so < 1.

The problem with p; = %, 11 = —1,py < ﬁ was considered in [11], [42], where the author
investigated scattering below or at the mass of the ground-state for the mass-critical homogeneous
equation. See also [8] which considers the case (po,p1,to,t1) = (4,2,1,—1) in space dimensions 1,
2 and 3.

The problem with a focusing dominant nonlinearity g = —1 was considered in many works,
always in the energy-critical or subcritical cases. Let us mention in particular [1] where a nine-set
theorem in the spirit of [43], [44] was proved. We also refer to [37], [49],[23], [51], [12], [38], [33] for
scattering result or scattering blow-up dichotomy in the case (g = —1.

Let us mention that in several of the preceding works, the authors construct and use a profile
decomposition adapted to NLS equation with a particular double-power nonlinearity. The profile
decomposition in Section 3 generalises these profiles decompositions to the large class of non-
linearities described above.

1.6. Outline. We conclude this introduction by an outline of the article. Section 2 is devoted
to some preliminaries, well-posedness and perturbation theory for the NLS equation (1.1) with a
general nonlinearity g. In Section 3, we construct a profile decomposition for sequences that are
bounded in H*° adapted to (1.1) with a nonlinearity of the form (1.2). This profile decomposition
is based on the linear profile decomposition of Shao [46] (which relies ultimatly on the result by
Merle-Vega [35]) and the long-time perturbation result proved in Subsection 2.4. In Section 4, we
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use this profile decomposition to prove our global well-posedness result, Theorem 1.2. In Section
5 we prove a general rigidity result for solutions of (1.1) with a relatively compact trajectory in
H?o. In Section 6, we prove our scattering result Theorems 1.5 and 1.7, using the material of the
preceding sections.

ACKNOWLEDGMENT
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2. PRELIMINARIES AND CAUCHY THEORY

This section is concerned with the Cauchy and stability theory for the equation:
(2.1) i0ru + Au = g(u).

for a general L? supercritical nonlinearity g(u) in space dimension d > 1. Our assumptions on
g will of course include the case of double power nonlinearities that we are interested in. We
start by introducing some notations and functions spaces (see §2.1) and recalling some nonlinear
estimates (see §2.2). In §2.3 we prove estimates on the nonlinearity g(u) that are crucial for the
well-posedness theory. In §2.4 we prove our main results.

2.1. Notations and function spaces. For s € R, [s] is the smallest integer number larger or
equal s, and [s] is the largest integer smaller or equal s (the integer part of s). If j and k are
integers with j < k, we denote by [7,k] = {j,7+1,...,k—1,k}.

When A and B are two positive quantities depending on some parameters, we denote A < B
when there is a constant C > 0 such that A < CB and A~ B when A < B and B < A.

For each g > 1, we define ¢’ such that

qa g
If X is a vector space, (u,v) € X2, we will make a small abuse of notation, denoting ||(u,v)||x =

[l x + o]l x.
We fix d > 1. If m is a complex valued function on R¢, we define by m(V) the Fourier multiplier

with symbol m(&), i.e. nﬁu = m(&)u(€), where 4 is the Fourier transform of u. For s > 0, p > 1,
we define

[ull gor = IV ull o s Nullgron = V0l Lo
where (¢) = (1 + |=|?)®/2. Tt follows from Mikhlin multiplier theorem that

(2:2) ull gew = lulle + [IVIPull L, 1 <p<oo.
(see the proof in the appendix). For a multi-index o = (a1, as, ..., ag), denote
d
DY =001 - 0%, ol =) oul.
i=1

For s >0 and 1 < p < co and v = s — |s], we have (see [2, Lemma 3.2]),

(2.3) > 1D fllgow 2 £l e
lor|=Ls]
We recall that a pair (g, r) is Strichartz-admissible for the Schrédinger equation when 2 < ¢ < oo,
2 < r < oo, %—i— 4 =4 and (¢,7,d) # (2,00,2). We recall that if (¢,7) and (a,b) are Strichartz
admissible, we have,
lullpary < lluollLz + I1f Il pe ro

for any solution of the Schrodinger equation i0;u + Au = f with initial data ug. We denote:
L (I, L3(R?)) N L? (1, L (Rd)) if d>3
S°I) = QL= (I, LA(R?)) N L% (I, L72(R?))  ifd=2
L> (I,L*(R)) N L* (I, L=(R)) ifd=1,
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where when d = 2, (g2,72) is an admissible pair with g2 > 2 close to 2, and
LY (I, L2(RY)) + L2 (I, L%(Rd)) if d>3
NO(D) = QLY (1, L2 (R2) + L (1, L5 (R2))  ifd =2
L' (I, L*(R)) + L*3 (I, L*(R)) if d =1,

Note that the norm of S°(I) is equivalent to the supremum of all L¢(I, L") norms, and that the
norm of NY(I) is smaller than the infimum of all LY (I, LTI) norms, where in each case, (¢,r) is
taken over all Strichartz admissible pairs (with ¢ > g2 if d = 2). We also define the following
Strichartz spaces, and dual Strichartz spaces:

2(d+2)

(IxRY)  Z°(1) = (W°(1)) = L™aw

2(24+d)
d

wWoI)=1L
so that we have S°(I) C WO(I) and Z°(I) C N°(I) (with continous embedding). We denote

(I xRY),

p(d+2)

X,(I)=1L (I x RY).
For s > 0, we denote

[[ul

sory = V) ullsocry s ullgery = IVIPullgory

and define similarly W*(I), W*(I), N*(I), N*(I), Z*(I) and Z°(I).
2.2. Preliminary nonlinear estimates.

Lemma 2.1. (Product Rule 1) Let s > 0 and 1 < r,r1,70,q1,q0 < 00 such that 1 = % + é, for
1=20,1. Then,

(2.4) VGO L S W llLp V@l g + 1V Fll Lo 1ol oo
(2.5) V)" (Pl SNl IKV) el pan + 1KV Fllro llell o -

Proof. See e.g [13, Proposition 3.3]. For (2.4), see e.g [2, Lemma 2.2] for the statement and [13]
for proof in dimension 1 and s € (0,1).
By (2.2), (2.4) and Holder inequality, we have

V)" (Pl ~ Ll LNV IR e S 1]

Lo 1@l Lo F A VPRl ay VI Fll Lo 0] ao
S, IV @l + 1EV)7 £l Nl -

Hence (2.5). O

Lemma 2.2 (Product rule 2). (see e.g [2, Corollary 2.3]). Let s > 0, n € N (n > 1), and, for
i,j € [1,n], 1 <r,ri < oo, such that for all k € [1,n], % =" L. Then

=1 ri
s = Z el s TLIED
i=1 | gsr k=1 ik
Lemma 2.3 (Fractional chain rule). (see e.g [2 Lemma 2.4]). Let G € C}(C,C), s € (0,1),
1 <rre <oo, and1<r1<oosatzsfymgf —+—

Gl 7o S NG (w)]
Lemma 2.4 (Gagliardo-Nirenberg inequality [6]). . Let s1 < S2, p2 > 1, s = 0s1 + (1 — 6)sa,
1_ 9 1 0
P

Lo el grors -

= + . Then

lallprow S Netl zgen.mn el 200 -

Lemma 2.5 (Homogeneous Gagliardo-Nirenberg inequality). Let s; < 2, po > 1, s =60s1 + (1 —
0)sa, % = pel 1;;_29' Then

HUHH&P ||u||H31 P1 HU'HHQQ P2
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Proof. Let ¢ € H® Define p*(z) = ¢(A\z). Applying Lemma 2.4 for ©*, we have

1

(A el + A ol )
1 1

< (Al + X el ) (7 Dl + A el )

(1=6)

By dividing both sides by A°~5 = A% 51 \A-0s— 2% o have
1 1
(X7 ol + 1y, ) S (P Bl + 1l )™ (A7 120 + 12 )

Let A\ — +o00, we obtain the desired result. O

Lemma 2.6 (Leibniz rule). Let f € C*(C,C) and a = (a1, 0, - -, aq) € N? such that |a| < k
Then D™ (f(u)) is a linear combinations of terms of the form

hl h2
(002 £)w) [] D7*u [] D,
k=1 k=1

where 221:1 Bk + ZZ; Ve =ca, 1 < hy+he <|al, |Bk] 2 1, |yk| =1 for all k.
Proof. The proof is by induction, using the formula:

O, f(u) = 0, f(u)0z,u + Oz f (u) Oz, u

O

2.3. Local Lipschitz continuity of the nonlinearity. In this subsection we consider the fol-
lowing general classes of nonlinearities:

Definition 2.7. Let 0 < p; < po, s = 0 be real numbers. We denote by N (s, po, p1) the vector
space of functions g € C*1+1(C,C) such that

(2.6) 30 > 0, Vk € [0, [s] + 1], ¥z € C, ’g(k)(z) <C

(‘Z|P0+1*k 4 |Z|p1+1fk) )

In the definition |¢(®)(2)| denotes the supremum of all the derivatives (in z, Z) of order k of g.

Assumption A. d > 1, g € N(s,po,p1) with 0 < s, 4 < p1 < po, 1 < p; and
[s] < po or g is a polynomial in u, .

We recall the notation X, (1) = L= (I x R?). We will prove:
Proposition 2.8. If Assumption A is satisfied, we let
(2.7) X(I) = Xpo (I) N X, (1) = LRV (1 x RY) 0 L2 (1 5 RY).
Then
28) llg(u) — )Ly (I m 0)IRGE+ 1012

x [l = vle (1 0) Ly + e = vl 1 s ) v ]
In particular
(2.9) 9@l 5oy S lullwe ) (Ilul (,)+||ullx(1>)

Let us insist on the important fact that the first norm of u — v in the second line of (2.8) is the
norm in the homogeneous space W?.
We start with a few lemmas.

Lemma 2.9. Let p > 1 be an integer, and g(u) be a homogeneous polynomial of degree p+1 in u,
u. Let s >0, u,v € S*(I). Then

(210)  IVI*(g() = g@N)lloqry S (Il by + el br))

IV (u = ) llwory (lullx, o) + vl x, ) + llu—vllx, ) (IVPullwory + 1IVIP0llwor) },
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and

(2.11) lg(u) = g(0)llyvory S llu = v, 0l (s 0) I 1y 1 ) oy

Proof. Tt is sufficient to prove (2.10) and (2.11) for g(u) = uP*1=7w’, where j € [0,p+ 1]. We have
(2.12) g(u) — g(v) = (uPT7 — PP g 4Pt (Gl — ).

We treat the contribution of the first term in the right-hand side of (2.12). The contribution of

the second term is similar. We have

p—J
(2.13) (P13 — PP = (=)@ S IRk
k=0

We work on the interval I for all norms. We note the following relations between the exponents
defining the W°, 70 = (W°)" and X, norms:
d+4 d 2
2.14 = +p X .
(2.14) 20d+2)  2d+2) 7 pd+2)
By Holder inequality, the definitions of X, and Z, and the fact that Z; is continuously embedded

into N*, we obtain (2.11).
We next prove (2.10). Using (2.13), Lemma 2.1 and the definitions of X, and Z°, we have

o -l 5 o (0 -0

A

p J
k k
191 = o) o Nl ol
k=0
= k—1 k k—1 k
+ 3 lu=oll, (119 ulwo lull5 = ol + V1wl ol luliF)
k=0

-1 -1
lully, + vll%,) + llu = vl x, (lully. + ol )l + ol ).

S llu = ol (

Combining with the same bound for the second term in (2.12), we obtain (2.10), concluding the
proof. O

Lemma 2.10. Let s, p be real numbers such that 0 < s, [s] < p, 1 < p and % < p. Let
g € CIs1H1(C,C) such that

(2.15) vk € [0, [s] + 1], ’gac) (u)‘ < CluPHi=k.
Then (2.10) and (2.11) hold.
Proof. We have
1 1
w) = 9(0) = (u =) [ g.(v+6(u—))d0+T=5 [ g2(v+ 0w ~v) db
0 0

69

Since ‘%’, %‘ < C|z|P, we have
lg(u) — g(v)| < Clu —v[(lul” + [0").
Thus, by Holder inequality and (2.14),
(2.16) lg(u) = g()llxo S lg(u) = g(0)ll 20 S lu = vllx, Il (s o) 5, (s 0) o
This yields (2.11). We are left with proving (2.10) when s > 0 . We define a by
1 d+4 2

a  2d+2) pd+2)

where g, = az, gz =
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Note that the assumption p > % implies 2(;1:42) <a< %. By using product rule Lemma 2.1, we

have
(2.17) lg(w) = g()ll = < IV[*(g(u) — g(v))ll 70

1 1
(2.18) S VI (u = v)]lyo <H/O g=(v+0(u—v))dd /O gz(v+ 0(u —v)) df

d+2 +‘

2
L,z

"
L,
By the assumption (2.15), the term (2.18) is bounded as follows
(2200 (218) S flu— vl

1 1
(219)  +llu—vlx, (H/O V%9 (v + 0(u — v)) db /O|V|ng(v+0(u—v))d0

|qup(d+2)/2 + ||U||pp(d+2)/2) ~ flu — U”Ws (u,v)Hfl;( :
Lt,w Lt,z P

We now consider the term (2.19). We will prove the following bound
(2.21) (2.19) < flu = vllx, [l (s 0) lyirs | (u, 0) 15,

Combining (2.20) and (2.21), we obtain the bound (2.10). We are thus left with proving (2.21).
Note that the term (2.19) is bounded by

Ju=ollx, (s 1IVFg=(0 00— Dlsg, + sup [191°9=(0+ 0w = )l

)

Letting f = g, or f = gz, we will prove, for a general function u € Wwsn Xy,

(2.22) VIl Lg, S el

Note that this will conclude the proof of (2.21).
The function f belongs to C'*! and satisfies

(2.23) IFE @) S 1P,

—1
ulli

for each 0 < k < [s]. We use similar argument as in |2, Proof of Lemma 3.3]. Using the
equivalence of norms (2.3), we have

(2.24) IVEF )l S Y 1D F@llgegron
laf=[s]
where v = s — [s]|. By Lemma 2.6, D* (f(u)) is a linear combinations of terms of the form
h1 ho
@0 £)w) [[ D%u [ D™
k=1 k=1

where 221:1 ﬁkJrZZQ:l Ve =, 1 < hi+hy <o, |Bk] 2 1, || = 1 for all k. To simplify notations
we will only consider terms of the form

h h
FO @) [[ D%, > Bi=a, 1<h<al, 1Bl > 1,
k=1 k=1

where (") = (%)h f+ The proof is the same for the other terms. We distinguish between the cases

h <pand h=p.

Case h < p.
Using Lemma 2.2 and (2.23), we have
h
(2.25) FP ) T D%
=1 Lafv.a
h
(2.26) =S TR P (P
Ko h
(2.27) + H|u‘p_hHL§}; Z H |D%u Ly, |D5ku||kaH”'Pk :

k=1i=1,i#k
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where, for i € [1,A],
@2&1:|&|a’)+(1_/?>(2 ;::WA+vd)+(L_mA+v> (2

i s 2(d+2 p(d+2)’ s 2(d+2 s p(d+2)
and
1 v d 2 |s] 20p—h-1) 1 2(p—h)
2.29 R n Ls]  2p=h—-1) 1 _2b-h)
(2.29) o s22+d) At s T pd+D) 0 @ pdr2)

Since ZZ:1 |Bk| = || = |s], we see that the right-hand sides of the equalities in (2.28) and (2.29)
are positive, and thus that g1, g2, and, for ¢ = [1, h], r; and p; are finite and positive. Using also
that v = s — | s], we obtain

11
,:7+Zri77+ Z 4=
“o @i 1<i<h |
z;ék
which proves that ¢i, g2, and, for ¢ = [1,h], r; and p; are all greater than a, and that the
assumptions of Lemma 2.2 are satisfied.
By Gagliardo-Nirenberg inequality Lemma 2.5 and the definition of ri, pi, we see that

) 1_7" ] IH
HD'BIUHL v S H|V|S“H 2(2+d) ] p(d+2)’ ||DBZU|}Hv,p7 S |||V|Su|| 2<2+d> ”“H p<d+2) :
L, z

L
Integrating in time and using Holder 1nequahty, we obtain

1831 18] 5 1Byl +v
UHXP ) HD 7'uHLfiHv,m ~ ||UH ||uHXp

(2.30) | D

i, S llully,
By (2.30), we obtain:
~1
(2:27) S Jull%e ullyp
Using the first inequality in (2.30), (2.26) is estimated by

(2.26) Hf(h) ‘

La1 Eva H ||u”Ws Hu||X
i1

.
lull 5.

La1 fva1 We

(231) o )] ally,

In (2.31), we will estimate Hf(h) u)HLthwn by ||u||Xp and |ul|j,. using fractional chain rule
Lemma 2.3 and Gagliardo-Nirenberg inequality Lemma 2.5.

If s ¢ N then [s] > h+ 1 (because h < |a] = [s]). Using Fractional chain rule Lemma 2.3, we
have

(h) (h+1) )
Hf (u)‘ Lo g Hf (u)‘ LE, el
< |||U|p_h_1||L§3m ||u||LLz4Hv,q4
—h—1
= ||’u’||iiz7—h—1)(13 H’U’HL‘MHWMM 9
where
1 2(p—-h-1) 1 1 v d ls] 2
a3 p(d+2) " a0 @ gz s22+d) s p(d+2)

For (qq,74) as above, using Gagliardo-Nirenberg inequality Lemma 2.5, we have

lell pas grora S
Thus, for s ¢ N,
h—1 , - -1
(2.32) (2.26) < (2.31) < [lully, Vijs lullx, = = lully- llull,
yielding (2.22). If s € N then v = 0, Y.F | |B,| = s, and - W Using (2.30), we obtain
(226) S (231) £ I 0, Bl Fll? = B ol

which proves (2.22) in this case also.
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Case h = p.

In this case, we have p = ||, and thus, since |a| = |s] < [s] < p, s is an integer, v = 0 and
s=p.

By the assumptions on f, we have |f*)(u)| < 1. Thus
h

HD/BW

i=1

h

£ () H DBy

i=1

h

<ITIp%

Lo Hv.a =1

(225) S <

Tio
Lt,ac

LaFv.a

where the r; are defined as above. Using (2.30) and since Z?Zl |Bi] = s, and h = p, we obtain
(2.22), which concludes the proof of the Lemma. O

Proof of Proposition 2.8. Proposition 2.8 follows easily from Lemmas 2.9 and 2.10. We fix g €
N (s,po,p1) with 0 < 's, po = q4 and pg > [s]. All the norms used are over the interval I.
The estimate (2.9) is exactly (2.8) with v = 0. To prove (2.8), we decompose g(u) as follows:

g(u) = P(u) + g(u).

Where P(u) is the Taylor expansion of g at u = 0 up to order [s]. As a consequence P is a
polynomial of the form

Pu) = E Ay g U2,
p1+1<ki+ka<s]

By Lemma 2.9, using that by the definition of X and the assumptions p; > % and py > [s] we
have

N

1 <g<[s]—1=|lulx, <llulx,

we obtain

(233)  11P(@) = P©)llye S (lullf ™" + ol ™+l ™" + olg ™)

x [Ilu = 0llys (lullx + [[ollx) + llu = vl x (lullws + f[ollw) |-

Next, we notice that since g € N(s,po,p1), the definition of P and the inequalities p; < po and
[s] < po imply, for k € [0, [s] + 1], z € C,

2] > 1= [§9()| < Claf 1%, 2] 1= [309(:)| < Ol

We let x be a smooth function such that

1 if e <1,
10 if x| > 2.

Set go(u) = (1 — x(u))g(u), g1(u) = x(uw)g(u), so that gy satisfies the assumptions of Lemma 2.10
with p = max(po, [s]) = po, and ¢; the same assumptions with p = [s]. Combining the conclusion
of this Lemma for gg, g1 with the estimate (2.33), we obtain the conclusion of the proposition. [

2.4. Cauchy and stability theory for general nonlinearities. In all this subsection, we fix
g, Po, P1, S such that Assumption A holds. We assume furthermore

d 2
So— = — —.
2 po

Note that these assumptions are satisfied for a sum of powers:

(2.34) s

WV

k
g(u) = AjluPu,
i=0

where k > 0, % <p1 < ... < pr—1 < po, Aj € R for all j, provided g € Cs1+1 (which is the case,

for example, when all the p; are even integers), s > % — p%, and [s]| < po if g is not a polynomial.

Definition 2.11. Let 0 € I be an interval. By definition, a solution « to (1.1) on I, with initial
data in H*® (s > sg) is a function u € C(I, H®) such that for all K C I compact, v € S*(K) and u
satisfies the following Duhamel formula

t
(2.35) u(t) ="y i [ I g()(r) dr,
0
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for all t € I.

We recall from (2.7) the definition of X (). Noting that the assumption py > % implies po(d +
2)/2 > 2 (and po(d+2)/2 > 6if d = 1), we can choose ¢o such that (po(d+2)/2, qo) is an admissible
pair. By Sobolev inequality and the definitions of sg, go, one can check

(2.36) |IUHLm<;+2> S IVIPull po

and thus

(2.37) HUIILM(MRL{) SVIPullsoy,  Nullxay S lullssom-

Proposition 2.12. Let ug € H®. Let g, py, p1, s such that Assumption A holds and s > g — p%.

Let 0 € I be an interval of R, and A > 0. Assume that ||uol| . < A and
Hei.AUOHX(I) =06 < 0p(A) small.

Then there exists a unique solution u to (1.1) such that

w(0) = wo, ullgery S luollge s Nullxy <26

Moreover, if ug — ug in H® (so that, for k large, ||eiltA

solution ux, — w in C(I, H®).

u07kHX(I) < §) then the corresponding

Remark 2.13. By Strichartz estimates, (2.37) and Proposition 2.12, if ||ugl| ;. is small then u is
global and
[l

g0 S lwoll g -

Proof. We use similar argument as in [24, Lemma 2.5]. We work on the interval I for all norms.
Consider
B={u: |lulx <26, |lu

o < M4},

for some large universal contant M, with the topology induced by the norm in S*(I). We denote
by W(u) the right hand side of (2.35). We show that if 6 < Jp(A) small enough, and M large
enough (independently of A), ¥ is a contraction map on B.

For u € B, we have, by Strichartz estimates and Proposition 2.8

t
H\D(U)HX(I) < HeztAuOHX(I) + H[) ez(t—T)Ag(u)(T) dr

X(I)

<0+ Cllg(u)llne(r) <0+ Cllul
Se(1)

t
@w‘ / (=18 ) () dir s (lull + lull?)
0

Thus,
19 (u)ll () < 6+ CMAS < 26,

if & is small enough (so that CM AsP1~! < 1). Similarly,
19(w)lls. < [le"uollg. + Cllg(w)lly. < CA+CMAS < MA,

choosing M > 2C, and § < §p(A4) small enough. Thus ¥(u) € B.
Now, let u,v € B. We have, by Strichartz estimates and Proposition 2.8,

—1 —1

se) (Jlullfe ™ + ol ™)

< CP T MA||u — v
Thus, taking § small enough, we obtain that W is a contraction map on B. By the fixed point
theorem, there exists a unique u € B such that u = ¥(u). Thus, v is a solution to (1.1). Also, since
u € B (and since we can take A = |lug||r=) we have as anounced ||ul|s(r) < [luollzs, |Jullx ) < 20.
If |lugl| ;. is small then Hei'AuOHX(R) < C|luollg- is small. Thus, u is global and [ul|g. ) <
M [|uol| - - O
Remark 2.14. We have ||ei'Au0||X(R)

interval I around 0 such that Hei‘AuOH X <& This implies local existence of solution.

[W(u) = (v)llg: < Cllg(u) = g(@)lys < llu—v

s + o]

se ([lul

SS

< C||luoll s < 00. Thus, for each € > 0, there exists a small
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Remark 2.15. Tf u, v are two solutions to (1.1) on 0 € I such that u(0) = v(0) then u = v. We first
show this assertion when I’ C I is a small interval around 0. Shrinking I’ if necessary, we assume

llullx iy < 00(A), [vlxry < do(A),
with §p(A) as in Proposition 2.12, and

A= rtléaXHu( Wes + |[o(@)] -

Thus, u,v € B (where B is as in the preceding proof), which shows that w = v on I’. Repeating
this argument, we deduce that v = v on all I. This allows us to define a maximal interval
Inax = (T—,Ty) with T_ <0, Ty > 0.
Lemma 2.16. Let u be a maximal solution on I, as in Proposition 2.12, Remark 2.15. Assume
that

ue X([0,T4)).
Then Ty = oo, and u scatters in the future in in H*. A similar result holds in the past, if

we X((T,0).

Remark 2.17. Lemma 2.16 implies the blow-up criterion 7 < oo == |[Jul|x(,r,) = oo (and

similarly for 7_). In the case s > % — p% we can also show (see e.g. [10]) that if T (u) is the

maximum time of existence of u and T’y (u) < 400 then

lw(t)|| g = 00, as t — Ty (u).
Proof. We only work on [0,7}). In (T_,0], we use similar argument. We only need to prove that
(2.38) |

Indeed, if (2.38) holds and T is finite, then Proposition 2.12 shows that one can extend the
solution u beyond Ty, a contradiction with the definition of T'y. Thus Ty = oo, and Proposition
2.8 implies ||g(u)||n(jo,00)) < 00, which implies by standard arguments scattering in H*.

We divide [0,7%) into finite intervals Iy such that [[ufly,) < &. On each Iy = [tk tk41], we
have

lullseryy < Clulti)llgre + Cllullge oy (lull oy + el )
<C ”u(tk)HHa +C ||'LL‘ Sa (L) (gpl _|_€P0).

Choosing ¢ small and using that [|u(try1)|lms S |lullss(r,), we obtain by induction on £ that
[ll £oo (0,73 o), 775) < 0 then (2.38), concluding the proof. O

One can also prove the existence of wave operators for equation (1.1):

2

Proposition 2.18. Let ug € H®. Let g, po, p1, s such that Assumption A holds and s > o

d

Z 32
Let vy € H® and vr(t) = e™®vg. Then there exist a unique solution u € C°((T_(u),o0)) of (1.1)
such that

lim ||u(t) — vr(t)|| g = 0.

t—o00

We omit the proof which is similar to the proof of Proposition 2.12.

Theorem 2.19. (Long time perturbation theory) Let A > 0, s > so. There exists constants
e(A,s) € (0,1], C(A,s) > 0 with the following properties. Let 0 € I be an compact interval of R
and w be a solution of the following equation

Lw = g(w) +e,
and ug € H® such that
lwoll gre + lwllx 1y < A llellysry + lluo = w(O)| 5oy = € < e(4,5).
There the solution u of (1.1) with initial data ug is defined on I and satisfies
(2.39) lu — w||55(1) < C(4,5)e, HUHSS(I) < C(4,s).
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Proof. Without loss of generality, using the reversibility of the equation, we can assume I = [0, 7).
We can also assume that I C Iyax(u) (indeed, if Ty (u) < T, the proof below will show that (2.39)
holds with I replaced by [0,7T), contradicting the blow-up criterion).

Divide I into J = J(A4, s) subintervals I; = [t;,t;4+1], j € [0, J — 1], with ¢ = 0, such that

(2.40) Hw”X([j) <0,

where ¢ is a small constant (depending only on s), to be specified. On each I;, by Strichartz and
Proposition 2.8, we have

[wllgs(ryy < Cllwti)gs + N9(@lns 1) + lellvs )
S Jlw(t )”H +||w|55(1 )( I)JFHU’”X(I]'))JF{':
S Nlw()l g (1) (871 +6™).
Thus, for § small enough, Hw||S < lw(t))| s +€. Since |Jw(tjr1)|l . < Hw||Ss(Ij), lw(0)]| ;e <

A, we obtain by a finite 1nduct10n ||w( i)l ge <C(A,s), and thus
s+ < C(4A,s).

Thus, we may divide I into J = J(A,s) subintervals, which we still denote by I; = [t;,t;11],
j €[0,J — 1], such that for all j,

(2.41) |lw]

(2.42) lwllys,y + llwllx ;) <6
Taking ¢ small (independently of A and ¢), and ¢ < £(A4, s) small, we prove by induction
< (

(2.43) Vi€ 0,7 1], |lu—wl Kj+K + 1),

So(I;) X

for some large constant K independent of A and . This will imply the desired conclusion (2.39).
More precisely, we will prove, for j € [0,J — 1],

(2.44) Ju(t;) — w(tj)ll e < (Kj+ e = [lu—wlge ) < (Kj+ K+ 1),

which will yield (2.43), since ||u(to) — w(to)|| 5. < e.

Assuming j € [0, J — 1], [lu(t;) — w(t;)| ;o < (Kj + 1)e, we argue by contradiction, assuming
also that there exists T' € [tj,t;41] such that ||u —w| So([t;T]) = (Kj+ K + 1)e. Then by the
equation satisfied by v — w and Strichartz estimates, we obtain

(2.45) |lu — w|

ss(it;, 1) < Ju(ty) — vt ms + Cllellvs ;1) + Cllg(w — )l ns (e,

We have ||u||Ws (1) < llu—wllwesqe, ) + lwllwsqe, ) < (Kj+ K+ 1)e + 6, and similarly
lull s (e, < C’( j+ K + 1) + 6. Thus by Proposition 2.8, taking e small enough, so that
(Kj+K+1e<1

lg(u = w)lxveqe, rp < OO+ K + D) ((Kj+ K + 17 + 7).
Going back to (2.45), we deduce
se(ity,1)) < Ce+ (Kj+1)e+C(Kj+ K +1)e((Kj+ K+ 1)P1ePt 4 671).
Taking K large enough, € < e(s, A) small (so that (KJ + K + 1)e < 0), and J small, we obtain.
(Kj+K+1)e < (Kj+ K/2+ 1),

(Kj+ K+ 1)z = |[u—wl

a contradiction which concludes the proof. 0

Remark 2.20. Assume d > 1, g(u) = |ulPou, s > s = % — p%, po = % and g € CI*1*+1 (ie. pg is an

even integer or pg > [s]). Then analogs of Proposition 2.12 and Theorem 2.19 where all the spaces
are replaced by homogeneous spaces hold. Precisely, in the statement of Proposition 2.12, one can
replace in this case X (1) by X,,(I) = L5 )(I x RY), H® by H*, S*(I) by S*(I), and similarly
for Proposition 2.12. The proof is the same, replacing Proposition 2.8 by Lemma 2.9. See also e.g.
[24].
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Proposition 2.21 (Conservation laws). Let g such that Assumption A holds and g(z) = G'(|z|*)z
for a C! function G : [0,00) — R with G(0) = 0. Let u € C°(I, H*(R)) be a solution of (2.1),
where s > & 2 Then the mass

2 ho
M(u) ::/|u(t, z)|?dx
is conserved on I. Furthermore, if s > 1, then the momentum:
P(u) := Im/Vu(t,x)ﬂ(t,x)dJ;
and the energy
Bu) ::/|vu(t,x)|2dm+/G(|u(t,x)\2)dx.
are well-defined and conserved on I.

We omit the classical proof. See e.g. [9]. Observe that the assumptions of Proposition 2.21
imply

(2.46) G(luf*) < fufPo? 4 ful 2,

so that by Sobolev inequalities, F(u) is well-defined if s > 1.

3. PROFILE DECOMPOSITION

vla.

3.1. Profiles in homogeneous Sobolev spaces. Let 0 < s < 2. We denote by ur (t) = e®®uq

the solution to the linear Schrédinger equation on R x RY
(3.1) 10sur, + Auy, = 0,

with initial data

(3.2) U ji—o = U € H*.
Definition 3.1. Let p > % such that s = g — %. A linear Hs—proﬁle, in short profile, is a sequence
(¢Ln)n, of solutions of (3.1), of the form
1 t—t, r—x,
(33) @Ln(tx) = =z %L < )\% ) /\n > )

Ay

where ¢, is a fixed solution of (3.1), (3.2) and A,, = (A, tn, Tn)n is a sequence in (0,00) x R x R?
(called sequence of transformations) such that

. *tn
Definition 3.2. We say that two sequence of transformations A, = (\,,tn,x,) and M, =

(tin, Sn, Yn) are orthogonal when they satisfy

ty — n - n

n—00 )\% An n

We say that two Hs—proﬁles ©rLn and ¥, are equivalent (in HS) when
Jim {920 (0) = ¢ra(0)]l 4o =0

We say that they are orthogonal when one of the two profiles is identically 0 or when the corre-
sponding sequence of transformations are orthogonal.

Remark 3.3. For a given H-profile ¢, the choice of the solution ¢y, and the sequence of transfor-
mations (A,,), are not unique. However the definitions of equivalent and orthogonal profiles do not
depend on these choices. Also, two equivalent H*-profiles are orthogonal to the same H*-profiles.
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Definition 3.4. Let (ug), be a bounded sequence in H®, and ug, = eimuo’n. We say that

the sequence ((gojLn) ) of Hs-profiles is a profile decomposition of (wo,n)n if these profiles are
n/ j>1

pairwise orthogonal, and satisfy

(3.5) Jim hgljogp HwinHXp(]R) + |||V|Swin”W0(R) =0,
where
J .
(3.6) Wiy = Ui = D Pl
j=1

Proposition 3.5. For any bounded sequence (ugn)n in H?, there exists a subsequence (that we
still denote by (uo.n)n) that admits a profile decomposition (((pin)n) . Furthermore, we have the
j

Pythagorean expansion:

J
. 2 5
(3.7) V21 fuoall =Y "‘pJL(O)“Hs + i (0)| 5. +o(1), 1 — oo,
j=1

J

where wy, is as in Definition 3.4.

Proposition 3.5 is proved by Shao in [46], using the L?-critical profile decomposition of Merle
and Vega [35], generalized to higher dimension by Bégout and Vargas [4]. See also [26] for the
4

energy-critical case p = ;=.

Remark 3.6. In the notations of Definition 3.4, if (ug ,) admits a profile decomposition, then

n—oo

(3.8) (NPt o + M) 225 0in ) j £k
3.9 NVowd (tin @in + M) 2220000 HS, J>j
n Ln\"J, Js n
(3.10) N Bt (Ejoms T + M) 2225 00 (0) in HP.

Indeed, (3.8) follows from the orthogonality of the profiles. The property (3.9) follows from (3.5)
and the orthogonality of the profiles. Finally, (3.10) follows easily from the two other properties.
By (3.9),(3.10), one sees that the initial data of the nonzero profiles are exactly the nonzero weak
limits of the form (3.10). This implies in particular that the profile decomposition is unique, up to
reordering and equivalent profiles, if one ignore the null profiles.

Let g = di—%s = %p be the Lebesgue exponent such that the Sobolev embedding H*® c L4 holds.
Let (uo.n)n be a sequence that has a profile decomposition as above. We next prove the analog of
the property (3.5) of the remainder w; in the space L>(R, L9) and obtain a Pythagorean expansion
of the L? norm of ug ,. Extracting subsequences, we can assume that for all j, the following limit
exists in R U {zo00}:

) 4
(3.11) 77 = lim t" .

We can also assume (translating the profiles in time if necessary), 77 € {0, —oo, +oc}. If 77 €
{£o0}, we have

(3.12) lim_|l¢7,(0)ze = 0.

Lemma 3.7. Let (ugn)n be as in Proposition 8.5. Then

1 lim i H i -
(3.13) Sl Timsup w0 =0
(3.14) Tim Juoal%e = 3 6 (02

izt

T=0
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Proof. This follows from the elliptic profile decomposition of Patrick Gérard [20]. We first prove
(3.13) by contradiction, assuming that there exists n > 0 and a sequence J, — oo such that

(3.15) Yk, lim limsup [[w)® || po e ra) = 0.
J—=00 pooo ’
Let
€, = lim sup ||wi’;||xp(]R) — 0,
n— o0 k—ro0
where the convergence to 0 follows from (3.5). For all k, there exists Ny such that
nz N, = ||wi’%||xp(m<) < 2¢g.
By (3.15), we can find ng > Ng, t; € R such that

1
i, (E)llze > 5n-

As a consequence, by the main result of [20], we can find ¢ € H* \ {0} such that

J
wih, (k) P

By Strichartz estimates, this implies that the sequence (wi’;lk( + tk))k converges weakly to e"2¢

in X,(R), contradicting (3.5). This concludes the proof of (3.13). As a consequence (using also
(3.12)), we have the “elliptic” profile decomposition at fixed time:

Uon = > ¢, (0) +7,(0), Jim_lim sup |@7,,(0)|| s = 0.
1<j<J . n—roo
79=0

The pseudo-Pythagorean expansion (3.14) then follows from [20]: see the expansion (1.11) there.
O

3.2. Profiles in non-homogeneous Sobolev spaces. In all this subsection, we fix so > 0 and
po > 5 with so = p%. We consider a sequence (up ), which is bounded in the inhomogeneous

d
4
Sobolev space H* (R%). We assume that ug , admits a H* profile decomposition (¢}, ),.;, where
; 1 t—t x—2a)
I (tx) = — g ( L . ") .
Claim 3.8. For all j, the sequence ()\},),, is bounded.
Proof. We have
3.16 bV %uLn tj,)\j gl ) B0 goj 0) weakly in H*o,
n ny»‘n n L

Furthermore,

| s (8 X, +2) || = () uonlle.

e

Assume that A}, — oo along a subsequence in n. As a consequence, since ||ug ||z2 is bounded, we
L2 . . .

obtain, along the same subsequence, that (\,)rour, (t%, A +x%) converges strongly to 0 in L2

By uniqueness of the distributional limit, ¢’ (0) = 0 as announced. g

Using the claim and extracting subsequences we obtain that for all j, one of the following holds:

. @JL = 0. In this case we say that (@jLn)n is a null profile, and denote 7 € Jp.

e ¢} # 0and lim, ;oo M, = M € (0,00). In this case we say that (¢} ), is a non-
concentrating profile, and denote j € Jnco. The weak limit (3.16) and the fact that the
sequence (ug) is bounded in H*®® proves that <p% = @JL(O) € H®°. Replacing apé by

1
( ,\.7’)% )
can assume )\, = 1 for all n (this will modify the profile ¢7,, only by a term which goes
to 0in H as n — 00).

° % # 0 and lim, . M, = 0. In this case we say that ((p]Ln)n is a concentrating profile,
and denote j € J¢.

o (5%) and M, by M, /M, we see that we can assume M = 1. As a consequence, we
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Remark 3.9. Assume that the sequence (ug ) is bounded in H®2 for some s > so. Then it is easy
to see that Jo is empty, i.e. that there is no concentrating profile.

Remark 3.10. Let s such that 0 < s < sg. Then ((@JLn)n) - is a H* profile decomposition of
J€INC

(uo,n)n. Indeed, by Remark 3.9 the H s-profile decomposition of this sequence has no concentrating
profile. By the preceding subsection, we have the Pythagorean expansion

. 2 B 9
@1 WL fuwald. = Y [GO, [T + o), n o,
Jj€INC
A
where Ein =ULn — Y jedne cpin. One can also prove, as a consequence of the orthogonality of
1<g<d
the profiles,
, 2 B 5
318 WL Juoale= Y el + @O +o1), 0o
Jj€INC
1<<J
Remark 3.11. Let 2 < g < qo = %, and 77 be defined by (3.11). Assume as before 77 € {0, +o0}.
Then if 7; € {£o0}, one has, by standard properties of the linear Schrodinger equation,

(3.19) lim |7, (0)]|zo = 0.

Moreover, if j € J¢, then (3.19) holds by a simple scaling argument. Finally, using Lemma 3.7
and the same argument as in Remark 3.10, one obtain

1 Jluoalde = 3 Ied0)]%.
j€INC
77=0

3.3. Nonlinear profile decomposition. We now construct a nonlinear profile decomposition,
based on the preceding linear profile decomposition, and adapted to the equation (2.1), where g
satisfy the following assumptions.

Assumption B.

(3.20) g(u) = go(u) + g1(u), go(uw) = tolul"u, 1o € {£1}

and gi(u) is a nonlinearity of lower order. Precisely, we will assume

4
(321) g1 € N(SOaPQapl)a 8 <p1 < p2 < Po, 1< P1,
where as usual sy = % — 2 and
Po
(3.22) [s0] < po, or g is a polynomial in u, .

Furthermore, the nonlinearity is of the form g(z) = G'(|z|?)z, G € C'([0,00),R) with G(0) = 0.

We note that the last condition on g implies conservation of the mass, and, if sy > 1, of the
energy and the momentum. Note that Assumption B implies Assumption A with s = sg.
We will also consider the equation (2.1) with g = go, that is the homogeneous nonlinear
Schrédinger equation (1.5) with initial data in H®0.
To each (linear) profile @in, we associate a nonlinear profile ), and a modified nonlinear profile
@2 in the following way:
o If j € Jo, ) and @) are both equal to the constant null function.
o If j € Jn¢, the modified nonlinear profile and the nonlinear profile are equal, and defined
by
@%(tvx) = Sﬁﬂ(f,w) = on (t - tfmﬂﬂ - ‘T%) ’
where ¢/ is the unique solution of (2.1) such that
(3.23) lim Hgoj(t) - go%(t)” =0, 7/ = lim —#.
t—TJ Hso

n— oo

This solution is given by the well-posedness theory, Proposition 2.12 (if 77 is finite) or by
the existence of wave operators, Proposition 2.18 (if 77 € {£o0}).
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e If j € Jc, the nonlinear profile ¢ is defined by
, 1 ft—t] x— )
(3.24) Phlta) = ——) | 2 T
(ML) 7o (An)? An

where ¢/ is the unique solution of the homogeneous equation (1.5) such that

J | _ J— 1 J,m

lim
t—T1J

By definition of 7, we see that ¢7(7) is in H* for all 7 in the domain of existence of
@?. However it is not necessarily in H®°. To tackle with this difficulty, we fix ¢7 in the
maximal interval of existence of ¢’ (if 77 is finite, we can take o7 = 77, if 77 = +o0, |07|
large and with the same sign than 77). We let

= () +4]

and denote by @ the solution of (1.5) such that

n

o o , L x—x)
2 A =X ) Al =x ) e (T,
where y € C§°(RY) is radially symmetric, y(z) =1 for |z| < 1, x(z) = 0 for |z| > 2.
Lemma 3.12. Let j € Jo. Then
(3.26) lim_[¢,(0) = 7 (0)]| . = 0.

n—oo

t—td)
, (Xn)>?
exists an interval I in the domain of ezistence of ¢’ such that |[¢7(|x, (1) < oo and for large n,

More precisely, let 0 € J,, be a sequence of interval. Let I) = { te Jn}. Assume that there

I C I. Then for large n, J,, is included in the domain of existence of @I and

i) — 3 (1)) i
(3.27) sup [|en(®) = GOl + 10 = Ballseo () 52, 0
(3.28) Vs € [0, s0), sup 22| o + 120N 52 (1) 20

Proof. We first prove (3.27). Without loss of generality, we can assume o; € I. Let
B (r.y) = (N)PPE) (th + (M)°r. 2l + M) -

Then

~ . o2 . . . . . .

@) (0j,y) = (X,)70 &), (s, 27, + My) = x(My)¢’ (07, y).
Thus, using that M), — 0 as n — oo, we obtain that I is included in the domain of existence of 5{1
and

MN&i (9 _ (i _
Jr | ) =], =0

Using the long time perturbation theory for equation (1.5) (see Theorem 2.19 and Remark 2.20),
we obtain

. — 0
Ss0(I) n—o0

sup | (7) = B4(7)|
Tel

-3

Hso0
t—tjn

v = ””‘/\?”, we obtain (3.27). Applying (3.27), we obtain

By the change of variable 7 =

(3.26).
To prove (3.28), we first notice that using (3.25) and A}, — 0,

i 37 (g7 —
Jim [7,(s7.) ][ 2 = 0,

By conservation of the L? norm, and interpolation with the bound of the H* norm which follows
from (3.27)

(3.29) Vs €[0,50), lim sup ||

n—oo ted,

||Hs =0.

n
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It remains to prove the second limit in (3.28). We let s € [0,s0). To any J C J, such that
HgﬁnjHX(J) < € (where ¢ is a small constant), and a,, € J, we have by Strichartz estimates and
Proposition 2.8,

187l 50y S 20 @n) | o + 90 (B0 ey S (B0 (an) |l e + 1806

and thus (if € is srnall enough),

soon 1811 )

1205y = I C@n)]] e -

Since

lim sup || @7 | s°0(J,) < O
n—00

and S%0(J) is continuously embedded in X (J), we can divide the interval J, in N subintervals
JF, k € [1, N] (N independent of n), such that Hgb%HX(J,C) < e. Arguing as in the proof of the

long-time perturbation theory result (Theorem 2.19), and using (3.29), we obtain (3.28). O
When j € J¢, the modified profiles @7 are approximate solutions of (2.1):

Lemma 3.13. Let j € Jo, and J, be as in Lemma 3.12. Let

Then

=0.

nh_?;o HenHNSO(Jn)

Proof. Since @7, is a solution of (1.5) with p = pg, we indeed have &/, = —g1 (7). As a consequence,
by Proposition 2.8, using that g; € N(so,p2,p1),

CETI IRy XA TR (=51 RN |1 Y

S 1B seo sy (16805 ) + 168N,
where s, = % - p%, k € {1,2}. Since s1 < s3 < $g, the conclusion of the Lemma follows from
(3.28). O

We next give the announced approximation result. For this we must also modify the linear

remainder wim: we let ﬁ)in be the solution of the linear wave equation with initial data

J
(3.32) W7 ,(0) = uom — 3 (0)
j=1

Claim 3.14. For all s with 0 < s < s,

Jim B sup |07, gy + 182 nll gy = 0-

Proof. We have

@7, (0) = wi ,(0) + D (¢7,,(0) = h(0))-
1<5<T
By Lemma 3.12 and linear profile decomposition, we have

70 (0) =

Combining with (3.5), we obtain

hm < lim

HHSU n— 00

]n(o) _ SDgl(())HHSO + lim Htp @%(O)HH@@ — 0.

n—oo

(3.33) lim hmsuprLnHX ® + Hlvls win —0.
(o]

J—=o0o n HWO(R)

By Lemma 3.12, we also have

’LUi n(o) = Uo,n — Z CP%(O) + On(l)7 in HS, 0 <s < S0,
JjE€EINC
1<i<J
which shows by the Pythagorean expansion (3.18) that

sup lim sup ||1Di,n(0)”L2 < 0.
J n—oo
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Using Strichartz estimates, we obtain

(3.34) . lim sup Dl o sy < 005

which yields, combining with (3.33), the conclusion of the claim. O

Theorem 3.15 (Approximation by profiles). Let (ugn)n be a sequence bounded in H*° that ad-
mits a profile decomposition ((‘Pin)n) . Define as above the nonlinear profiles J,, the modified
J

nonlinear profiles @}, and the modified remainder ﬁ)im. Let I,, be a sequence of intervals such that
0 € I,,, and assume that for each j > 1, for large n, 0 € I,, C Iax(¢7),

(3.35) j € Jo = limsup [[|[V*¢] || 40, ) < o0,
n— o0

50(In)

< 00.

(3.36) j € Ine = limsup ||| gaq .
n—oo

Let u,, be the solution of (2.1) with initial data ug,,. Then for large n, I,, C Imax(un),

un(t) = Y Fht,x) + L, () +r(t), tel,

1<y<d
with
lim sup [|un [ go0 (1, ) < 00
n—oo
and
. . J .
(3.37) Jh_{r;o 11;11_}s01<1jp [|ra]| g0,y = 0-

We will also need the fact that Pythagorean expansions of the Sobolev norms hold in the setting
of the preceding Theorem:

Lemma 3.16. With the same assumptions and notations as in Theorem 3.15, if (t,,)n is a sequence
of time with t,, € I, for all time, then for all J > 1,

J

”un(tn)”i[so = Z H@%(tn)”zso + ”wr{(tn)”?{so + OJ,n(l)a
j=1

where lim j_, o limsup,,_, ., 050 (1) = 0. Furthermore, for all s with 0 < s < sg,
lun )13 = Y 15 E) 1. + 05 ()1, + 0 (1),

1<5<J
JjE€INC

Before proving Theorem 3.15 and Lemma 3.16, we need two technical lemmas.
Lemma 3.17. Let (q,r) be a Schridinger admissible pair with q,r finite, @ such that |D|*°¢ €

LiL"(R x RY), v € C°(R x RY)). Let A, = (Mnytn, ) and M, = (iin, Sn,Yn) be two sequences
of transformations that are orthogonal in the sense of Definition 3.2. Let

1 t—t, r—x, t— S, T—Yn
(Pn(t,l’) = AT%@ <)\%7 )\n ) ) ¢n(t733) = ﬂ} ( ,LL% ) Lin ) .
n

Assume that (tin/An)n is bounded. Then,

=0.

i (11 (o)

Proof. By density (since (g,7) are finite), we can assume ¢ € C§°(R x R4). Rescaling and trans-
lating .1, we can assume (since p,, /A, is bounded) that one of the following holds:

o lim, ,, A, = lim, o i, = 1. In this case, the fact that the two sequences are orthogonal
implies that ., = 0 for large n.
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e lim, A, = occ and Vn, u, =1, s, =0, y, = 0. In this case, we have
1
lntn(t, @)| < wllw\lmlw(w)l

and thus 1, goes to 0 in LYL" as n — oo. The same argument proves that for all
a €N, € N 9208 (pnibn) goes to 0 in LIL™ as n — oo. Interpolating we obtain the
conclusion of the lemma.

O

Lemma 3.18. Let (A)), = (M, t},2)n, 1 < j < J be a family of sequences of transformations
that are pairwise orthogonal. For j € [1,.J], we let ¢/ such that |V|*°¢/ € SO(R), and let @) be

defined by (3.24). Then

po(d+2) J po(d+2)
(3.38) JE&HZ@" o =2 1¥1lx, e
=
2(d+2) J 2(d+2)
(3.39) nlgm HZ|V|5°% ZHWPO@ ||W(§1(R)
ot
J . .
(3.40) Tim flgo { Db —Zgo(s@%) =0.
i=1 =t N°o (R)

Furthermore, assuming that \), = 1 and that ¢7 € S*(R) for all n, one has

pl(d+2> J P1(d+2)
2(d+2) J 2(d+2)
(3.42) lim_ H Z %HWO(R) ; €%l womy =0
(3.43) Tim_|g Z o | =X aleh) =0.
j=1 J=1 N0 (R)

Proof. Proof of (3.41), (3.42) and (3.43). By a density argument (and Proposition 2.8 for the
proof of (3.43)), we can assume that ¢/ € C5°(R x R?). As a consequence of the orthogonality
of the sequences A, we deduce that for large n, the supports of the functions ¢7, j € [1,J] are
two-by-two disjoint. The three estimates follow immediately.

Proof of (3.40). By a density argument and (2.10), we can assume ¢’ € C§° (R X Rd). We
argue by induction on J. We fix J > 2. Arguing by contradiction, reordering the profiles and
extracting subsequences, we see that we can assume

Yn, Al = min M.
J€l1,J]
It is sufficient to prove:
J J—1
. i\ _
(3.44) lim go(zlsan) 9o 7 ) = 90(7) 0.
j= j=

N<o(R)

J
We let x € C5° (R x R?), with x = 1 on the support of ¢/. We let x,,(t,z) = x (f;f)"z, x;%) By
Lemma 3.17, and Lemma 2.9 or Lemma 2.10 (see (2.10)),

J J—1
go(Z@i) = go((l — Xn) Z ol + @,{> + 0, (1) in N*0
go(Z<pn)—go(1—xn Z‘Pn)‘i’on ) in N,
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Next, we note that, since go(0) = 0 and the supports of (1 — x,,) Zj;ll @) and ¢ are disjoint, one
has

90 ((1 ~ Xn) Ji o1+ @i) = 9o ((1 ~ Xn) il @i;) +g0(en)-

j=1 j=1
Combining the preceding estimates, we obtain (3.44), and hence (3.40). We omit the similar proofs
of (3.38) and (3.39). O
Proof of Theorem 3.15. We let, for t € I,,,
(3.45) vi(t)= D Enlt,a) + B, (te), e = Lo — g(vy]).

1<

We will prove that there exists a constant C' > 0 such that
(3.46) vJ > 1, dimsup vyl ) + 1o llweo (r,) < C,

n—oo

and that for all 6 > 0, there exists Js such that
(3.47) VJ > Js, limsup e} nwo(r,) < 0.
n— oo

By the definitions (3.6) and (3.32) of win and zbi,n, we have v;] (0) = ug . This implies, together
with (3.46) and the assumption that (ug., ), is bounded in H®° that there exists a constant C' > 0
independent of J such that
V.J,  limsup ||v(0)| g0 < C.
n—oo

Thus we see that for J > Js, and n large enough, the assumptions of Theorem 2.19 are satisfied.
The conclusion of Theorem 3.15 follows. We are left with proving (3.46) and (3.47). In all the
proof, we will denote by C' a large positive constant that may change from line to line, might

depend on the sequence (u,)n, but is independent of J.

Proof of (3.46). We note that it is sufficient to prove the bound in (3.46) for J large.
By the Pythagorean expansion (3.7) we have,

J

W1 YL O, < lmsup fu ()., <C.

Hence 3277, ||<,0?:(0)Hi[s0 < oo. Letting 9 be a small positive number, we see that there exists
Jo = 1 such that

s ) 2
J <
(3.48) Z; HgoL(O)HHSD < gp.
J=Jo

Using the small data theory for equation (1.5) (see Proposition 2.12 and Remark 2.20), we deduce
that if j € Jo and j > Jy, ¢’ is global and

(3.49) >l

JjzJo
j€Jc

2
$so (R) < o0

Arguing similarly with the Pythagorean expansion of the H® norm given by (3.7), (3.18), we
obtain (taking a larger Jy if necessary) that if j € Jy¢ and j > Jo, goj is global and

(3.50) Z |

Jj=zJo
j€INC

< Q.

2
S%0(R)

Next, we see that the assumptions of the theorem implies that for all 1 < j < Jo — 1, there exists

an interval I/ C Iy (p?) such that for large n, {i te In} C I’ and

YRR
|7 |
7]

Sso(13) < 0 if j € Jo
Ss0(I9) < 0 ifjejNC.
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We let @7 (t, ) = ¢/ (t,z), if t € IV, @/ (t,x) = 0if t € R\ I/. We denote by @/, the corresponding
modulated profiles, defined similarly as in (3.24). By (3.49), (3.50), the definition of ¢/, and Lemma
3.18, we obtain, for J > Jp.

2(2+d) 2(2+d) 2(2+d)
g J E Jo—1
(3.51) limsup Zapn = limsup Z‘sz < limsup Z 7+ Z ol
Weo(I,) 7 Weo(I,,) J=Jo Weo (R)
Jo—1
-2 ¥ Ty S P o el
i=Jo

A similar argument yields limsup,,_, ., HZjd @

(3.28) in Lemma 3.12,

< C. We also have, for 0 < s < sg, by
Xpo (In)

2(24d 2(2+d
J ( 4 ) (2+4d)
i 57 = J
(3:52) LN DO L N I I
j=1 Ws(I,) 1<5<J Ws(I,)
Jj€INC

and the same argument as above, using (3.50) and Lemma 3.18, yields lim sup,,_, HZ;],

"Mlwar,)
C'. Combining the estimates above with Claim 3.14 and (3.34), we obtain (3.46).
Proof of (3.47). We have, by (3.45),
0 0 0
~ — . i T ; iy _;
S L —g@)+ D> Leh —go(@h) + Ly, —gwl) + > (@) + > g(wn)
1<y 1< 1< 1<
JjE€INC j€Jc JjE€EJc JEINC

By Proposition 2.8, (3.34) and (3.46),

nllx () + ||wi,nHW50(In))

—g(isaz;) < (|l
j=1

Neo(I,)

By Claim 3.14, there exists Js such that, for all J > Js,

J
(3.53) VJ > Js, limsup ||g(v (Z ) <

n—oo

N | >

Nso(I,)

Using Lemma 2.9 or Lemma 2.10 together with Lemma 3.18:

(3.54) go(igzaz;) = go(igoz;) +o0a(1) = Zg (i00) +0n(1) in Ko (L,),

and similarly (using also Lemma 3.12),

(3.55) g()(Z(pn) < > @{L)Jron(l): > go(@i;)Jron(l)

1<g<Jd 1<j<d
JjE€EINC JjEINC

>~ 90(@h) +ou(1) in NO(L,)

INA
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By Proposition 2.8 and Lemma 3.12, using that g1 € N (sg, po,p1), we obtain

J
91<Z¢%)—91( > @%)

Jj=1 1<ysd
Jj€INC NO(I,,)

s> e, (X I8l 7" 3 18hllwe =20

JE€EJc 1<j<J 1<5<J 1<i<d

Combining with Lemma 3.13 and Lemma 3.18, we obtain

(3.56) gl(isai;) =gl( > gaz;)+on<1>= > 91(8h) +ou(1) in N(1,).

1<isd 1<i<d
JjeEINC JEINC
By (3.53), (3.54), (3.55) and (3.56), we obtain (3.47), which concludes the proof. O

Sketch of proof of Lemma 3.16. By Theorem 3.15, (wy(t,)), is bounded in H?® (R?), and
J
Uun (tn) = Z @l (tn) + wi,n(tn) + Ti(tn)-
j=1
We will interpret this expansion as a profile decomposition of u,(t,). Using the property of u?in

given by Claim 3.14, the property (3.37) of r/ and the bound of ¢’ — 3%, j € Jo given by Lemma
3.12, we obtain

J
un(tna 1‘) = Z %(tn, x) + Ri(l‘)’
j=1
where
. . 7-A J —
Jim hrrlrfogp e Rn”Wso(R)mx,,O ® =0
We have

. 1 At —t) x—a)
J (tn, ) = — A Ty
Attt = 0w ((A%)Q X )

t,—td
(Ah)?

- 1 Sttty —th x—ad
7a(ta) = .mJL( n T I)

has a limit ¢/ as n — co. We define a new

Extracting subsequences, we can assume that

linear profile 1/)%7I by

(M) 7o (Xh)2 N,
where 7,[11 is the solution of the linear Schrédinger equation such that
I H 7(t) — th =0.
Jm vz () =’ @)

With these choice of wi, we see that (( ]L n)n) is a H% profile decomposition for the sequence
' i>1

(tn(tn))n. The conclusion of the lemma follows from the Pythagorean expansions (3.7), (3.17) and
(3.18). O

4. GLOBAL WELL-POSEDNESS

In this section we prove our theorem on global well-posedness, Theorem 1.2.
We first observe that Property 1.1 is equivalent to the existence of uniform space-time bound
for solutions of equation (1.5) that are bounded in critical norm.

Proposition 4.1. Letd > 2, py > %, So = %— p%. Assume Property 1.1. Then for all A € (0, Ay),
there exists F(A) > 0 such that for all interval 0 € I, for all solution u € C°(I, H*) of (1.5) such

that
(4.1) sup [lu(t)[ s < A
tel



DOUBLE POWER NLS 27

we have

(4.2) I

Se0(I) < ]:(A>

Sketch of proof. The proof is by contradiction. Let us denote by P(A) the property that there
exists F(A) € (0,00) such that (4.1) implies (4.2). By the small data theory for equation (1.5),
P(A) holds for small A > 0. Assuming that it does not hold for all A € (0, Ay), we obtain the
existence of a critical A, € (0, Ap) such hat P(A) holds for A < A., but P(A.) does not hold. Thus
there exists a sequence of intervals I,, = (an,by,) 3 0, and of solutions u,, € C°((an, b,), H*) such

s fun (@l =2, Ae

and

lim ||uy,|
n—oo

550 (an,0) — nli_{{.lo [[2n | $50(0,b,) = 10O

By a standard compactness argument, using the homogeneous profile decomposition of Subsection
3.1, with the analog, for the homogeneous equation, of Theorem 3.15, we obtain, after extraction
of subsequences, that there exists z,, € RV, \,, > 0 and ¢y € H* \ {0} such that

1 —
3 Un (07 )\l‘ )_SDO
)\TI;O n

and the solution ¢ of (1.5) with initial data ¢, satisfies that for all ¢+ € R there exist z(t) € RY,

A(t) > 0 such that
1 - —x(t)
{Mt)z@ (-5 e I“‘““”)}

has compact closure in H%° and

lim
n—oo

:O7

Hso

sup |[o(8)l| a0 < Ac
t€Imax

(see the similar proof of Theorem 6.5 below). Then ¢ is global by Property 1.1. Since ¢ is
not the zero solution, the preceding compactness property implies lim inf; .o ||g0(t)HLm >0, a
2

contradiction with the fact that by Property 1.1, ¢ must be scattering. The proof is complete. O

Proof of Theorem 1.2. We argue by contradiction, assuming that there exists a solution u of (2.1)
such that T (u) < co and

lim sup [|[u(t)|| g+ < m € (0, Ap).

n—0o0

Let g9 be such that m + 3¢9 < Ag. By conservation of mass, we have indeed,

(4.3) limsup ||u(t)||mgs0 < oo.
t—T+ (u)

Let t,, = T4 (u) — 1/2™. Extracting subsequences, we can assume by Proposition 3.5 that (u(t,))n
admits a profile decomposition ((@JL n)n) . By the Pythagorean expansion (3.7) of the FH®
' i>1

=

norm, we have

(4.4) D et )17, <m.
jz1

By the Pythagorean expansion of the L? norm,

(4.5) > ler )7 < oo
jz1

We denote by ¢/ the nonlinear profiles associated to the preceding profile decomposition. We
will prove that for every j € 7,

(4.6) sup ||<p{l(7')HHO <m+2, n>;L
o<r<Ty —ty
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Let € > 0 be a small constant. By (4.4) , (4.5) and the small data theory for equations (1.5) and
(2.1) there exists Jy > 1 such that for j > Jy + 1, 7 is global and

(4.7) < {”@”SSO(R) if j € Ine

7| gom HJeJe.

In particular (4.6) is satisfied for j € J¢o, 7 = Jo + 1. We next prove by contradiction that (4.6)
holds for j € Jo N[1, Jo]. If not, by (4.4), there exists 7;, € [0,T} — t,,) such that

(48) sup sup
JE[L,JolNTc 0T,

@31(7')”}[0 =m+e¢p € (0, Ag).
By the local well-posedness theory for equation (2.1) and the fact that A, = 1 for j € Jyc, there
exists 79 > 0 such that

(4.9) limsup  sup  [[@hllse0(0,m) < 00
n—oo je[l,Jo]NINnc

Since m + &9 < Ay, by (4.8) and Proposition 4.1, we obtain

vje [[17J0ﬂmk707 1imsup||§0‘ZL|Sso(07/) < 0

n—o00 v
Note that since 7,, — 0 as n — oo, we have 19 > 7,, for large n. Combining with (4.7) and (4.9),
we see that the assumptions of Theorem 3.15 are satisfied on the interval I,, = [0, 7). By Lemma

3.16, for all sequence (o,,),, with 0 < o, < 7}, for all J,
lim sup Z leh(on)]| 700 <m0
Jje1,JInJe

This clearly contradicts (4.8), proving (4.6).
Next, we observe that (4.6) implies by Proposition 4.1

o

Viell,Jo]NJe, limsup H‘PH §20 (0.4 1) <
n—oo }

Combining this information with (4.7) and (4.9), we see that the Assumptions of Theorem 3.15
are satisfied on the interval I,, = [0, — t,). By the conclusion of the theorem, we obtain that
for large n, u(- + t,) € S ((0, T} — t,,)). This implies u € S*°((0,T)), contradicting the blow-up
criterion for equation (2.1). The proof is complete. O

5. GENERAL RIGIDITY RESULT

In this section, we consider equation (2.1), where g satisfies Assumption A p. 8, and is of the
form g(u) = G'(|u|?)u for some C?! function G. We recall that with these assumptions, the mass
M (u), the energy E(u) and the momentum P(u) are conserved for H! N H*° solutions of (2.1),

2

where as usual sg = g = e We will also consider the virial functional:

(51) o) = [ 1Vuf + § [ (uP)uf? - GlluP)

Since the assumptions on g imply G’(|u|?)|u|? +G(|u|?) < |u[PoT2 +|ulP1+2] one easily checks, using
Sobolev inequalities, that ® is well-defined if v € H% N H'.
We prove the following result:

Proposition 5.1. With the assumptions above, let u be a solution of (2.1) defined on [0, 00) such
that there exists x(t), t € [0,00) with

(5.2) K ={u(t,x + x(t));t > 0}
has compact closure in H° N H'. Then

P 2
(5.3) min |@(u(t)) - LWL

>0 M (u)
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Define

(5.4) X(t)=2
where P(u) is momentum. The proof of Proposition 5.1 relies on an asymptotic estimate of x(t)
and a localized virial argument. We start with two lemmas.

Lemma 5.2. With the assumptions above, let u be a solution (2.1) such that there exists xz(t),
t >0 such that K = {u(t,z + z(t));t > 0} has compact closure in H*. Then

(5.5) i 20 = X

t— 400 t

=0.

Proof. We can assume that x is continuous (see e.g [17, Proposition 3.2|).

We argue by contradiction, assuming that there exists a sequence t, — 400, €9 > 0 such that
z(tn) — X (¢t
5.0 o) X (0],
n

Without loss of generality we may assume z(0) = 0.
For R > 0, we let

(5.7) to(R) = inf{t > 0;|z(t) — X(t)| > R}.

Since x(0) = 0 = X (0) and z(t) — X (¢) is continuous, we have to(R) > 0.
We define R,, = |z(t,) — X(t,)| and £, = to(R,) so that t, > t,. Thus we have the following
properties:

(5.8) VO <t <tp=|z(t) — X(t)| < Rn,
(5.9) |z(t,) — X (t,)] = Ry,
(5.10) sy €0,

where (5.10) follows from (5.6) and ¢, > t,
By precompactness of K, for any € > 0, there exists Ry(g) > 0 such that for all ¢ > 0

(5.11) / (Jul + |Vul2) dz < <.
|z—x(t)|=Ro(e)

Let R, = R,, + Ro(¢) (for & small enough).

Let 8 € D(R) be such that §(z) = z for |z| < 1, §(x) = 0 for |z| > 2 and [|0||; < 2. We write
(2) = (0(21),0(32), - 8(za)). Thus, (z) = o for || < 1 and ||| e < 2d.

We define

(5.12) 2 () = /}R Rny <‘”RX(”> lu(t, )2 da.
Let t € [0,7,]. We have 2 (t) = ([, ()1 [z (D)2, [ (1)]a), where

t)
2 (@) :—X;(t)/ 9/( O |t 2)]? da
n iy
X (t
+ QIm/ o' (W) Uujdr, ( where uj = 0ju = 0y, u).
Rd R,

For |z; — X;(t)| = R,, we have |z(t) — X (t)| > R, then |z —z(t)| > R,, — R,, (by the definition of
R,, and triangle inequality). Thus, |z — x(t)] > Ro(e). For |z; — X;(t)| < Ry, 0’ (%@) =1.
By (5.11) we deduce, for t € [0,%,],

(5.13) [, (B)]; = —%M(u) +2P;(u) + O(e) = O(e).
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Furthermore, we have

- x
5,0 = [ Fup () )P ds
R4 R,
~ x ~ x
:/ Royp ( - ) |u0(ac)|2dx —|—/ Ry <~> |u0(ac)|2dx.
|| < Ro(e) R, 2| > Ro (€) R,

Thus, for some constant C > 0,

(5.14) 25, (0)] < Ro(e)M (u) + CRye < 2Ro(e) M (u) + CRye,

where we have used for the first bound that |¢(x)| < |z| and for the second bound that ¢ € L.
Furthermore,

B} . — X (I, .
zp (tn) = / ~ Rup (M) lu(t, z)|* dx
|z—a(Fn)|>Rol(e) Ry,

. — X(t, -
+/ Rpyp (W) |u(tn,gc)|2 dx
lz—(E)|<Ro(e) R,

(5.15) =I+1I
Using (5.11), we have

< Re.

~

(5.16) ||
Furthermore, in the integral defining I1, we have:
|2 — X (ta)] < 2 — ()| + 2(tn) — X(Tn))]
< Ro(e) + Ry, = Ry,

where we have used the definition of R,,.
We next write

II = / (x — X () |u(tn, z)|? d
\a:—m(fn)\gRo(a)

u(ty, z)|? dx

= (z(tn) — X (tn)) g |

~(all) — X(0)) /

utn,2)P o+ [ (2 — a(F))lu(in, 2)]? da.
|wfx(t~n)|>R0(€)

lz—z(tn)|<Ro(e)
By (5.9), (5.11), we have
(5.17) 11| > R,(M(u) — Ce) — Ro(e)M (u).
By (5.15), (5.16) and (5.17), we obtain

|2Rn (tn)| = Rn(M(u) — Ce) — Ro(e)M (u) — R,c.
Thus,
(5.18) 2z, ()| = R (M (u) — Ce) = 2Ro(e) M (u),

where we chose £ < M (u).
By (5.13), (5.14) and (5.18), we have

R M (1) < Ro(e)M(u) + ek,
By (5.10), we deduce:
R M (1) < Ro(e)M(u) + a%.
0

Choosing ¢ < oM (u), we obtain R,, < Ro(e).
Letting n — +00, we obtain a contradiction. This completes the proof. O
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The second lemma concerns the derivative of the localized virial functional. We consider

Whrit) = RIm/Rd 0 (f”_é((t)) Vi dz,

where X (¢) is defined by (5.4) and ¢ is as in the proof of Lemma 5.2. By the relative compactness
of K and the continuous embedding of H' N H* into LPo+2 N LP1*+2  we have that for any € > 0,
there exists R;(e) such that

(5.19) / (Vul? + [uf® + |G (Jul*)[[uf* + |G([ul?)| dx < &
|z—z(t)|>R1(e)

By Cauchy-Schwarz inequality, we have
(5.20) (Wr(t)] < CR[[Vu@®)]; [[u®)], < R

For convenience, we denote Z;l:l by Zj, Or;u = Oju by uj, uy by dyu and f]Rd by . We have

Wh(t) ZRIm/G’ (“7] _Jf”( )) _)g(t)ujudx—l-ZRIm/H (”ﬂ%) Oy () dx .

Aq Ao

We will prove the following result on the terms A; and As:

Lemma 5.3. Let £, > 0 be small. There exist L(€) depending on & such that for R > 2R, (&),

L()<t<28,

—2|P(u)[?

A= )

+0(e), Ay =2®(u)+ O(e).
Proof. Writing 0y (u;u) = (u;u + u;u;) and integrating by part, we obtain
xzj— X;(t)\ _ xj— X;(t) _
= ;—2RIm/9 (jR]> ;U —zj:Im/G' <]R] Ty
:chJrZDj =T+1I.
J J
Using the equation (2.1), we obtain
C; = 2R7€e/0 (%RXJ@)) T (—Au + G (Jul*)u) dz
X, X, 1
= 2R72e/V (9 (x] Xj(t)) uj> Vu+0 (x] 7 ](t)> 58jG(|u|2)
j 2 X
= 2R/ (xﬁ )ajwu' dx+2/9’ (IJX](t)) Jus | da
2 R
zj — X))\ 1, >
+2R/9( 7 2896'(|u| ) dx
Summing up, we obtain
x; — X;(t) \Vu|2 x; (1)
I:—2/2j29’<j R] )( G(|u?) dx+22/0’ 22 )y da
_ 2 2 zj — X;(t) [Vul? 2
_7d/\Vu\ + Gl )szXj:/(e' (R> 1) ( : +§G(|u| 1) da
x; — X;(t)
+2/|vu|2dx+2§j:/ (9’ (JRJ> —1) u;|? da.
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Moreover

D, = Re/@’ (W) Tiwg da

_ Re/&’ (‘"”J;J(t)) W(—Au+ G (Juf*)u) da

- /9' ("”j gj(t)) G'(|u\2)|u|2dx7/9' <"Tﬂ' }fﬂ'(t)) (A'“; - |Vu|2) d
L (zﬁ _ij(t)) (G (uPlaf? + V) do — 5 [0 ("”j _]‘%Xj(t)> Jul? da.

where we have used [ 6’ (“_TW) (’)kk@ =0 for all k # j. Thus,

[I:d/|Vu|2—|—G’(\u|2)|u\2dz

+Z/ (e' (%_Rffa(t)) _1) (IVul2 + G (Jul?)ul?) dm—TRQ/g”’ (—>> l? dar

Combining the above, we have

A = 2D(u)
(5.21) - Z % /9 (fcﬂ_gﬂ(“) luf? dz
(5.22) c X (7 (B) 1) @b+ oGP - Glu).

Applying Lemma 5.2, for each &, there exists L(&) such that
(5.23) lz(t) — X (¢)| <&, Vt = L(E).
Assume L(é) <t < 5 and R > 2R;(e). Then

(5:21)[ +[(5.22)[ S / - QRQ [ul* + 2| Vul® + |G ([u*)[Jul® + |G (|uf*)| dz,

where we have used the fact that for | — X(¢)| < R then |z; — X;(t)] < R, for each 1 < j < d.
Thus, ¢’ (%*7]){9@)) =1 and 6" (LIW) =0foreach 1 <j<d.
Moreover, for |z — X (t)| > R and L() < t < £, we have
e —z(t)| =2 R—|z(t) — X(#)| > R— ¢t > R/2 > Ry(e).
This implies that
Similarly, for L(€) <t < £, R > 2R;(e), we have

A=Y _X;(t)zm/e’ (mf_;](t)) ;T da

e (0 (531) )

_Z—QP )+0(5):W+0(5).

This completes the proof of Lemma 5.3. d

We are now ready to prove Proposition 5.1.
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1P (u)|?
M (u)

Proof of Proposition 5.1. Assume that inf;>¢ (@(u) —

< dand e < 4.
From Lemma 5.3, we have

) = > 0. We fix small parameters

Wh(t) = A+ 42 =2 (w00 - 08 - 0pe),

for L(&) <t < £, R>2R,(3).

227
Let Ty = L(€), To = £, where R is large (and in particular R > 26L(¢)). We have

CR > |WR(T2) — WR(T1)| = (T2 — T1)|W}/3(t0)|, for some T > to > 14
>4 <§ - L(é)) :

3

(where we have used € < ¢ for the last inequality). This gives a contradiction letting R — oo,
since € < 4. O

6. SCATTERING

This section is dedicated to the proof of Theorems 1.5, 1.6, 1.7 and 1.8. Recall that M (p) =
[ l¢]?. We consider the following property:

Property 6.1. There exists m. > 0 such that Vo € (H* N HY) \ {0}, if M(¢) < m,. then
O(p) = 5 [|Vul® and E(p) > 5 [ |Vul*.

Property 6.1 holds for all m,. when g is defocusing. In the case where ¢y > 0, we have the
following:

Lemma 6.2. Let g be a nonlinearity that satisfies Assumption B with vy > 0. Then Property 6.1
18 true.

Proof. Using that ¢y = 1, we have
d
o) = [ 1VaP + 5 (@ (uP)lul® - G(luP)

dp d
= [1vul + g [1upt + § [Pl - (P

where G1(s) = G(s) — sP°/? is such that g;(u) = G} (|u|?)u. By Assumption (B), we have g; €
N (50, p2,p1), for some 5 < p; < ps < po. Using the definition of A, this implies
(6.1) |G1(lu*)[ + G (Jul) [ul)] S fufP2 2 + JufPr 72,

The claim that there exists m, such that ®(u) is larger than 1 [ |Vu|? when 0 < M(u) < m,
follows easily from (6.1) and the generalized Gagliardo-Nirenberg inequalities (See (3.25) in [31])

-2 . —0 2(1—-60 0 +2
P2 < ull2s O ) 28l @e

|l 1Pt S Lpo+2) *

The lower bound for the energy is obtained by the same proof. O
We have the following result.
Lemma 6.3. If Property 6.1 holds, for each ¢ € H* N H' such that M(p) < m., we have

o050

We next prove Theorems 1.5 and 1.7. The proofs of Theorems 1.6 and 1.8 are similar, but
simpler and we omit them. Both theorems are an immediate consequence of the following result:

> 0.

Theorem 6.4. Let g satisfy Assumption B. Assume that sqg > 1, Properties 1.1 and 6.1 hold. Let
u be a solution of (2.1) with M(u) < m. and u satisfies (1.6). Then u scatters in both direction.

We will prove Theorem 6.4 as a consequence of
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Theorem 6.5. Let g satisfy Assumption B. Assume that sy > 1, Properties 1.1 and 6.1 hold.
Then for all A € (0, Ag) there exists F(A,n) > 0 such that for any interval I, for any solution
u € C%I,H*) of (2.1) such that

(6.2) Mu) Sme—nand - sup [u(t) 5., -+ nllu(t)]3 < A

one has u € S*°(I) and ||u|

sso(r) < F(A,n).

Theorem 6.5 implies Theorem 6.4 by the scattering criterion (Lemma 2.16) and letting n go to
zero.

Proof of Theorem 6.5. We argue by contradiction, following the compactness/rigidity scheme as in
[24]. We fix n > 0 throughout the argument. In all the proof, we will endow H®° with the norm
defined by

(6.3) ullZreo = Nl + nllul3.

We will denote by P(A) the property that there exists F(A) such that for any interval I, for
any solution u € C°(I, H**) such that (6.2) holds, one has u € $* and ||ul|ss0(r) < F(A).

By the small data theory for (2.1) (see Proposition 2.12), if A > 0 is small and ||u(t)|| g < A
for some t € Inax(u), then u is globally defined, scatters and ||u||gsom) < A. This implies that
P(A) holds for small A > 0.

Thus if the conclusion of Theorem 6.5 does not hold, there exists A, € (0, Ag) such that for all
A < A., P(A) holds, and P(A.) does not hold, i.e. there exists a sequence of intervals ((an,bp))n,
a sequence (uy,), of solutions of (2.1) on (an, by,),

(6.4) Up € C%((an,by), H®), M(u,) <me—mn, lim  sup ||Ju,(t)||ge0 = Ae.

N0 g, <t<bn

and limy, o0 [|tnl[s50 ((ap,b,)) = 00- Time translating u,, we can assume

(6.5) ap, <0 <by, lm |uyl
n—0o0

50 ((an,00) = 1 [[un[s20((0,6,)) = +00-

We will prove

Claim 6.6. For any sequences (ap)n, (by)n with a,, < 0 < b, for any sequence (uy,),, of solutions of
(2.1) satisfying (6.4), (6.5), there exist, after extraction of subsequences, a sequence (z,,), € (R?)N
and ¢ € H®° such that

(6.6) lim ||u, (- — 2n) — @||gs0 = 0.

n—oo
We first assume the claim and conclude the proof of Theorem 6.5. By the claim, there exist
(after extraction of subsequences) ¢ € H*® and (z,,), such that (6.6) holds. Let u be the solution
of (2.1) such that u(0) = ¢. Since R, is closed in H*, we have ¢ € R,,.
We next prove by contradiction

(6.7) lim a, = —o0, lim b, = +oc.

Assume to fix ideas, and after extraction of subsequences lim, o b, = b € [0,00). Using that
limy, [[tn || 550 (0,6,)) = 00, We must have T, (u) < oo and b > T’ (u). By the last assertion of (6.4),
we obtain

sup |[u(t)[| g0 < oo
0<t<Ty (u)

This implies by Theorem 1.2 that T\ (u) = 400, a contradiction. Hence (6.7). Next, we see that
(6.6), perturbation theory for equation (2.1) and the last assertion in (6.4) implies that for any
compact interval I C Iyax(u),

sup [[u(t) [0 < Ae.

tel
This implies by Theorem 1.2 that u is global and

sup [[u(t) [0 < Ac.
teR

By (6.5) and stability theory for equation (2.1), one has

12l 550 ((—o00,00) = 1l 550 ((0,4-00)) = +00.
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If (¢tn)n is any sequence of times, Claim 6.6 and the preceding properties imply that one can
extract subsequence such that u(t,,- — z,) converges in H*® for some sequence (), € (R?)N.
This is classical that it implies that one can find a function z(t), ¢ € R such that K defined by
(5.2) has compact closure in H®°. We give a sketch of proof of this fact. Using the compactness
and the fact that the solution u is not identically 0, we first notice that there exists Ry > 0,7 > 0

such that
inf | sup / lu(t,z — X)|?dz | =n.
teR \ xere J|z|<Ro

Thus for all ¢, there exists x(t) € R? such that
/ lu(t,z — z(t))|*dz > n/2.
|z|<Ro

For this choice of x(t), one can check that K defined by (5.2) is compact.
By Proposition 5.1, we have

, |[P(u)]?
(6.8) min [ @(u(t) — | =
By (6.8), there exists a sequence of times (¢,), such that
: | P(u(tn))?
6.9 1 S(u(ty)) — ——-—" =0.
(6.9) o 0)) = )
By the claim, extracting subsequences, there exists (z,,), such that u(t,, - — x,) convergences to
o in H®0 (up to extract subsequence). By (6.9),
[P (o) ?
o)~ NG
Since R, is closed in H®°, ¢y € R,,. This implies, by Lemma 6.3, that
| P(¢0)|?
D(pg) — —F—+ > 0.
)~ Mgo)

This contradicts to (6.10). This completes the proof.

We are left with proving Claim 6.6.

Proof of Claim 6.6. Step 1. Profile decomposition. Extracting subsequences, we can assume that
uo.n = un(0) has a profile decomposition as in Section 3:

J
Uo,n = Z 90]Ln<0) + w;{v
j=1

1§ (t—t] ax—a)
MPL\N N
the modified nonlinear profiles.

Our goal is to prove that there is a unique jy > 1 such that @7 is not identically zero, and that
jo € J.. We first note that there is at least one j such that ¢/ is not identically zero. If not, by

the small data local well-posedness, we would have

where ¢ ==

). We denote by ¢ the corresponding nonlinear profiles, and @7,

li s =
T [funllso(r,) =0,
a contradiction with our assumptions.

In the remaining step, we will prove that there is at most one nonzero profile. Arguing by
contradiction, we assume that there is at least two nonzero profiles, say ! and 2. By the small
data theory, there exists €y > 0 such that

(6.11) inf ||/

tel, ||Hso Zey, JE€ {1,2}
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Step 2. Bound of the H*® norm. We prove that for all j > 1 we have I,, C Inax (%) and, for
large n,
1

(6.12) sup ||, (8)[| o < 4/ A2 — —€d.
tel, 4

By (6.4), and the Pythagorean expansions (3.7), (3.18), we obtain the bounds, for J > 1
St O, <A2 D 1610170 < A2
jz1 j€INC

Fixing a small € > 0, we obtain, by the small data theory for equations (2.1) and (1.5) and Lemma
3.12, that there exists Jo > 1 such that, for j > Jo + 1, Imax(¢’) = R,

(6.13) Vi Jo+1, ”W‘ goom) <00 ifjeJo
e [|s0 @)y <00 if j € Ine-
and
(6.14) Vji>Jo+1, limsupsup ||@(t)||meo <e.
n—oo teR

We next prove by contradiction that for j € [1,Jo], In C Imax(®%) and (6.12) holds. If not,
we can assume (inverting time if necessary, and using Theorem 1.2) that for large n, there exists
by, € (0,b,] such that [0,b,] C ¢, Tmax($7,) and

(6.15) sup  sup

; 2 1
O, =A% — 2.
1<) < Jo 0<E<Y, (pn( )HH 0 c 2 0

This implies that for large n
Vi e Jo N1, Jo], sup ||g0f1(t)||Hgo < A. < Ay.
o<ted!,

Thus by Proposition 4.1, we obtain a constant C' > 0 such that for large n,

(6.16) sup |04 [l g0 0.1 7) < C-
JEITcN[1,Jo] "

Going back to (6.15), we see also that for large n

) ; 1
Vi€l olNnInc,  sup [lgh(t)llmeo < \[AZ — <€
0<t<b), 4
Also, using the Pythagorean expansion of the mass we see that
Vj € Ine, M(97) <me—n.

Using that P(A) holds for A = /A2 — 2 we obtain that there exists a constant C' > 0 such that
for large n

(6.17) sup [l@hllseo (o) < C-

j€Inenll,Jol
Combining (6.13), (6.16) and (6.17), we obtain that the assumptions of Theorem 3.15 are satisfied
on [0,b],]. Using the Pythagorean expansion of Lemma 3.16 together with the limit in (6.4), we

obtain
Jo
. » )
fmon sup 3120 < 42

By (6.11), we deduce

F O < A2 23,

vy € [1,Jo], limsup sup }

n—oo 0t<h],
contradicting (6.15). This proves that (6.12) holds for all j > 1, for large n.

Step 3. Uniqueness of the nonzero profile.
In this step we still assume that ¢! and ¢? are nonzero profiles. Using (6.4) and (6.12), and
arguing as in Step 2, we see that the assumptions of Theorem 3.15 are satisfied on [a,, b,]. This
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proves that u, scatters for large n, contradicting (6.5). This concludes the proof that there is only
one nonzero profile.
Step 4. End of the proof.
We assume that ¢! is the only nonzero profile. By the same argument as before, we obtain that
for large n, I,, C Inax(4}) and
lim sup ||@L |0 < Ae.
n—o0 4y,
If 1 € Jc, we obtain by Proposition 4.1 that limsup,, ., ||g0}L||SSO(In) < oo. Thus the assumptions
of Theorem 3.15 are satisfied on I,,, a contradiction with (6.5). Thus 1 € Jy¢. By the same
argument, we obtain limsup,, . sup,c; |@0g,(¢)||gso = 0. Indeed, if not, we would have by
the conservation of the H®° norm for the linear Schrodinger equation (and after extraction of a

subsequence) limy, o0 sup,c;, [|wg,, (t)|| 0 = €9 > 0, and the same strategy as in Steps 2,3 would
yield that w, scatters for large n, a contradiction. We have proved

un(0,2) = @}J(—tl’n,x — Z1,n) +0(1) in H*.
By (6.5), t1,, must be bounded, and we can assume t;, = 0 for all n, i.e.
(6.18) un (0,2) = <p1(0,x —Z1n) +0(1) in H®,

which concludes the proof of the claim. O

APPENDIX A. EQUIVALENCE OF SOBOLEV NORMS

In this appendix we prove (2.2). We recall Mikhlin multiplier theorem [39], [22, Theorem 2.5]: if
m € C* (R?\ {0}) is such that 1€]*0g'm(&) is bounded for all multi-indices v such that o < 1+7,
then m(D) is a bounded operator from L? to LP for 1 < p < cc.
Using Mikhlin multiplier theorem with m(¢) = |£|*(1+|¢]?) /2 then with m(&) = (1+¢|2)~%/2,
we see that
llze + N9 ull o S 109l

By Mikhlin theorem with m(§) = %, we obtain

VY ull e S TA+ V)l S llullze + [1VPull 2o
which concludes the proof of (2.2).
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