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Abstract5

DNA supercoiling – the level of twisting and writhing of the DNA molecule around itself

– plays a major role in the regulation of gene expression in bacteria by modulating promoter

activity. The level of DNA supercoiling is a dynamic property of the chromosome, which varies

both at the global scale in response to external factors such as environmental perturbations, and

at the local scale in response to internal factors including gene transcription itself. These local10

variations can couple the transcription rates of neighboring genes by creating feedback loops.

The importance of the role of such supercoiling-mediated interactions in the regulation of gene

expression however remains uncertain. In this work, we study how this coupling could play a

part in the bacterial regulatory landscape by coevolving with genome organization. We present a

model of gene transcription and DNA supercoiling at the whole-genome scale, in which individuals15

must evolve gene expression levels adapted to two different environments. In this model, we

observe the evolution of whole-genome regulatory networks that provide fine control over gene
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expression by leveraging the transcription-supercoiling coupling, and show that the structure of

these networks is underpinned by the organization of genes along the chromosome at several scales.

Local variations in DNA supercoiling could therefore jointly help shape both gene regulation and20

genome organization during evolution.

1 Introduction

DNA is the material basis of genetic information. It is a flexible polymer that comprises two strands of

nucleotides that coil around each other, at a rate of 10.5 base pairs per turn in the absence of external

constraints. When subjected to torsional stress, DNA can either writhe and form 3-dimensional loops,25

or twist around itself more or less tightly than in its relaxed state (Travers and Muskhelishvili, 2005).

Both writhing and twisting are referred to as DNA supercoiling, and its level is measured as the rel-

ative density σ of supercoils in overwound (positively supercoiled, σ > 0) or underwound (negatively

supercoiled, σ < 0) DNA compared to its relaxed state. In bacteria, DNA is normally maintained

in a moderately negatively supercoiled state, with a reference value of σbasal = −0.06 in Escherichia30

coli (Travers and Muskhelishvili, 2005). In these organisms, DNA supercoiling is an important reg-

ulator of gene expression, as changes in the level of supercoiling directly affect gene transcription

rates (Dorman and Dorman, 2016). But gene transcription in turn also affects DNA supercoiling (Liu

and Wang, 1987; Visser et al., 2022), resulting in a coupling between transcription and supercoiling

that has been termed the transcription-supercoiling coupling (Meyer and Beslon, 2014). This coupling35

has been suggested to play an important role in bacterial gene regulation, as it could allow for the

presence of gene regulatory networks that do not depend on transcription factors, but could be di-

rectly rooted in the organization of the genome. In this manuscript, we question this hypothesis by

using an in silico experimental evolution approach, in which we model the evolution of a population

of organisms for which DNA supercoiling is the only regulator of gene expression.40

Regulation of DNA Supercoiling In bacteria, the level of DNA supercoiling is primarily con-

trolled by topoisomerases, enzymes that alter DNA supercoiling by cutting and rotating the DNA

strands. The two main topoisomerases are gyrase, which dissipates positive supercoiling by intro-

ducing negative supercoils at an ATP-dependent rate, and topoisomerase I, which oppositely relaxes

negative supercoiling (Champoux, 2001). However, numerous other processes also impact the level of45

DNA supercoiling, either by generating new supercoils or by constraining their diffusion. In particular,
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according to the twin-domain model of supercoiling presented in Liu and Wang (1987), the transcrip-

tion of a gene by an RNA polymerase generates both positive supercoils downstream and negative

supercoils upstream of the transcriptional complex (Guo et al., 2021; Sutormin et al., 2022; Visser

et al., 2022), as a consequence of the drag that hampers the rotation of the polymerase around DNA50

during transcription. Moreover, while the intrinsic flexibility of the DNA polymer would in principle

allow supercoils to propagate freely along the chromosome, many nucleoid-associated proteins such as

FIS, H-NS or HU bind to bacterial DNA (Krogh et al., 2018). These DNA-bound proteins together

create barriers that block the diffusion of supercoils, resulting in what have been named topological

domains of DNA supercoiling (Postow et al., 2004). The level of DNA supercoiling can additionally be55

affected by numerous environmental factors. Salt shock transiently increases negative DNA supercoil-

ing in E. coli (Hsieh et al., 1991); an acidic intracellular environment relaxes DNA in the facultative

pathogen Salmonella enterica var. Typhimurium (Marshall et al., 2000); and higher temperatures

relax DNA in the plant pathogen Dickeya dadantii (Hérault et al., 2014). These constraints overall

paint the picture of a very dynamic DNA supercoiling landscape in bacteria (Visser et al., 2022), in60

which the supercoiling level varies in both time and space, during the bacterial lifecycle and along the

bacterial chromosome.

Global Regulatory Role of DNA Supercoiling The level of DNA supercoiling influences gene

expression, as more negatively supercoiled DNA facilitates the initiation of gene transcription. Opening

the DNA double strand – the initial step of gene transcription – is thermodynamically favored in65

more negatively supercoiled DNA regions, and gene expression has indeed been shown to increase

sigmoidally with the level of negative DNA supercoiling (El Houdaigui et al., 2019). Through this

mechanism, DNA supercoiling has experimentally been shown to act as a broad regulator of gene

expression in several model bacteria. In E. coli, Peter et al. (2004) showed that 7% of genes were

sensitive to a global relaxation (a less negative supercoiling level) of chromosomal DNA, of which one70

third were up-regulated by relaxation and two thirds down-regulated. Similar results were obtained

for S. enterica, in which 10% of genes were sensitive to DNA relaxation (Webber et al., 2013), and

for S. pneumoniae, in which around 13% of genes were sensitive to relaxation (Ferrandiz et al., 2010).

When oppositely inducing hypercoiling (more negative supercoiling) in D. dadantii, 13% of genes were

affected in the exponential phase, and 7% of genes in the stationary phase (Pineau et al., 2022). In75

this bacteria, different genomic regions moreover exhibit markedly different responses to changes in

the supercoiling level (Muskhelishvili et al., 2019), allowing for the expression of pathogenic genes in
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stressful environments only.

Such a regulatory role of DNA supercoiling might be especially important in bacteria with reduced

genomes, such as the obligate aphid endosymbiotic bacterium B. aphidicola. As B. aphidicola is nearly80

devoid of transcription factors, global and local changes in supercoiling are thought to be one of the

main mechanisms for the regulation of gene expression available to this bacteria (Brinza et al., 2013).

Finally, mutations that alter DNA supercoiling have also been shown to be evolutionarily favorable in

experimental settings. For example, in the so-called Long-Term Evolution Experiment, 12 populations

of E. coli cells seeded from a common ancestor have been adapting to a laboratory environment85

for over 75,000 generations (Lenski et al., 1991; Lenski, 2023). In this experiment, 10 out of the 12

populations were shown to present a higher level of negative supercoiling relative to their ancestor, with

one population in particular presenting an increase of more than 17% in negative supercoiling (Crozat

et al., 2005). In this population, a mutation in the topA gene (which encodes topoisomerase I) and a

mutation in the fis gene (which encodes a histone-like protein) were both shown to increase negative90

supercoiling by 12% and 5% respectively when inserted back into the ancestral strain, and to provide a

significant growth advantage (that is, higher fitness) relative to the ancestral strain. This evolutionary

trajectory was then shown to be repeatable not only at the phenotypic level, but also at the genetic

level, with 10 of the 12 strains harboring mutations in DNA supercoiling-related genes (Crozat et al.,

2010). In the context of the LTEE, supercoiling mutations therefore played a role in the adaptation of95

E. coli strains to new environments, evidencing the important effect of DNA supercoiling on bacterial

gene regulation.

The Transcription-Supercoiling Coupling The transcription of a given gene by an RNA poly-

merase generates an accumulation of positive and negative supercoiling on either side of the transcribed

gene (Guo et al., 2021; Sutormin et al., 2022). Whenever a second gene is located closely enough to100

this first gene on the genome, the change in supercoiling at the location of the promoter of that second

gene can impact its transcription rate, as more negative supercoiling facilitates gene transcription (For-

quet et al., 2021). In turn, the transcription of that second gene can also generate a local change in

supercoiling around the first gene, resulting in an interaction between the transcription levels of these

two genes, which has been called the transcription-supercoiling coupling (Meyer and Beslon, 2014).105

Depending on the relative orientation of these genes, the coupling can take several forms. Divergent

genes can increase their respective transcription level in a positive feedback loop; convergent genes can

inhibit the transcription of one another; and in tandem genes, the transcription of the downstream
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gene can increase the transcription of the upstream gene, while the transcription of the upstream gene

can decrease the transcription of the downstream gene.110

This supercoiling-mediated interaction between neighboring genes has been experimentally docu-

mented in several bacterial genetic systems. In the E. coli -related pathogen Shigella flexneri, the virB

promoter is normally only active at high temperatures, but can be activated at low temperatures by

the insertion of a phage promoter in divergent orientation (Tobe et al., 1995). Similarly, the expres-

sion of the leu-500 promoter in S. enterica can be increased or decreased by the insertion of upstream115

transcriptionally active promoters, depending on their orientation relative to leu-500 (El Hanafi and

Bossi, 2000). Finally, the magnitude of the effect of the transcription-supercoiling coupling has also

been explored in a synthetic construct in which the inducible ilvY and ilvC E. coli promoters were

inserted on a plasmid in divergent orientations (Rhee et al., 1999). In this system, a decrease in the

activity of ilvY has been associated with a decrease in ilvC activity, and an increase in ilvY activity120

with a corresponding increase in ilvC activity.

The biological relevance of the transcription-supercoiling coupling might however not be limited to

these particular instances. Indeed, in E. coli, the typical size of topological domains – inside which the

positive and negative supercoils generated by gene transcription can propagate – is usually estimated

to range around 10 kb (Postow et al., 2004), and transcription-generated supercoiling has been shown125

to propagate up to 25 kb in each direction around some specific genes (Visser et al., 2022). As

genes stand on average 1 kb apart on the E. coli chromosome (Blattner, 1997), any single topological

domain could therefore encompass multiple genes that can interact via the transcription-supercoiling

coupling. Supercoiling-sensitive genes have indeed been shown to group in up- or down-regulated

clusters in bacteria such as E. coli (Peter et al., 2004), S. enterica (Webber et al., 2013) and S.130

pneumoniae (Ferrandiz et al., 2010). Focusing on E. coli, a statistical analysis of the relative position of

neighboring genes on the chromosome of this bacteria indeed has shown that genes that are up-regulated

by negative supercoiling have more neighbors in divergent orientations, while genes that are down-

regulated by negative supercoiling have more neighbors in converging orientations (Sobetzko, 2016).

The co-localization of genes in such clusters has therefore been hypothesized to play a phenotypic role135

by enabling a common regulation of their transcription through local variations in the supercoiling level.

Finally, synteny segments – clusters of neighboring genes that show correlated expression patterns –

have been shown to be conserved between E. coli and the distantly related Bacillus subtilis (Junier and

Rivoire, 2016), possibly as a consequence of co-regulation of the genes within these segments through
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supercoiling. Overall, this body of empirical evidence suggests that local variations in the supercoiling140

level, due to its coupling with transcription, could indeed play a substantial role in the regulation of

gene activity and consequently impact the evolution of genome organization.

In this paper, we address the question of the effect of the transcription-supercoiling coupling in the

evolution of the local and global organization of bacterial genomes, by studying its role as a regula-

tory mechanism. To this end, we present a two-level individual-based artificial evolution framework,145

in which a whole-genome model of the transcriptional response of genes to the local transcription-

generated level of supercoiling is embedded within an evolutionary simulation. In this framework,

individuals must evolve gene expression levels that are adapted to two different environments, charac-

terized by supercoiling level constraints, through chromosomal rearrangements only. We first show that

complex environment-driven patterns of gene expression are present in evolved populations. In partic-150

ular, we observe the emergence of a class of relaxation-activated genes, as have been observed in many

real-world bacterial genomes. We furthermore characterize the spatial organization of genes along the

genome that is responsible for these expression patterns. We show that genes are locally organized in

convergent or divergent pairs of genes which leverage the transcription-supercoiling coupling for either

mutual activation or inhibition. Then, we show that this local organization is not entirely sufficient155

to fully account for the complex gene expression patterns that we observe, but that obtaining gene

inhibition in particular requires the coordination of a larger number of genes. Finally, we show that,

in our model, genes form a densely connected genome-wide regulatory network, overall showing that

supercoiling-based regulation could indeed coevolve with genome organization in bacterial genomes.

2 Results160

2.1 Evolution of Gene Regulation through the Transcription-Supercoiling

Coupling

We introduce a model (detailed in Methods) in which populations of individuals are described by

their circular genome and whose gene expression levels depend on the local level of DNA supercoiling.

Individuals in the model must adapt to two different environments, each characterized by their impact165

δσenv on the background supercoiling level of individual genomes, by adjusting the expression levels

of their genes. The first environment, named environment A, induces a global relaxation of DNA
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which decreases baseline gene expression (δσenv = δσA = 0.01), as in the acidic macrophage vacuoles

encountered by S. enterica (Marshall et al., 2000). The second environment, named environment B,

oppositely induces a global hypercoiling of DNA which increases baseline gene expression (δσenv =170

δσB = −0.01), as observed for example when shifting E. coli cultures to a salt-rich medium (Hsieh et

al., 1991). In order to have a high fitness value in our model, an individual must display environment-

specific gene expression patterns, obtained by the activation or inhibition of three disjoint subsets of

its genes – called A, B and AB – in each environment. More precisely, A genes must be activated in

environment A but not in environment B, B genes in environment B but not in environment A, and175

AB genes must be activated in both environments. We define the expression level of the genes of a

given individual in each of these environments as the solution to the system of equations that are given

by the supercoiling-mediated interactions between the transcription of neighboring genes (Equations 1

to 4 in Methods). At every generation of the simulation, we compute the fitness of every individual

based on these gene expression levels, then create the next generation by making individuals reproduce180

proportionally to their fitness, and applying random mutations to their offspring. Importantly, in order

to focus on the evolution of genome organization, the only mutational operator that we use is genomic

inversions, which can reorder genes on the genome and thereby affect gene expression levels and fitness.
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Figure 1: Genome of the best individual at the last generation of evolution of replicate 21, evaluated in
the two environments: A (relaxed DNA, left) and B (hypercoiled DNA, right). The outer ring shows
the type, orientation, and expression of each gene on the genome (darker color: activated; lighter color:
inhibited). Genes are considered to be activated if their expression is above the threshold e1/2, and
inhibited otherwise (see Methods). Genes are numbered clockwise according to their position on the
genome. The inner ring shows the level of transcription-generated DNA supercoiling σTSC at every
position on the genome. Shades of blue represent negative supercoiling (σTSC < 0), and shades of red
positive supercoiling (σTSC > 0).

Evolution of Environment-Specific Gene Expression Levels Using the model presented above,

we let 30 populations of 100 individuals evolve for 1,000,000 generations. The genome of a typical185

individual at the end of the evolutionary simulation is depicted in Figure 1, in environments A (left)

and B (right). The outer ring depicts gene position, orientation, type, and activation, and the inner

ring the local level of supercoiling. We consider that a gene is activated if its expression is above the

expression threshold e1/2, and inhibited otherwise (see Methods). Different activation patterns are

visible on the genome of this individual, for each gene type, as a function of the environment. All the190

AB genes except one (gene 51) are correctly activated (dark blue) in the two environments; 19 out of

20 B genes are correctly inhibited (light green) in environment A (left) while 18 are correctly activated

(dark green) in environment B (right); and 16 A genes are activated (dark red) in environment A,

while 16 are inhibited (light red) in environment B. Note that this asymmetry between the number of

A and B genes that are in the expected state is due to an asymmetry in the effect of the environments195

themselves, which we will discuss below in more detail.

The transcription-generated supercoiling that is represented in the inner ring can also be seen to

change consistently with the gene activation patterns between the two environments: zones of negative
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DNA supercoiling (in blue) are delineated by divergently oriented activated genes, while zones of

positive DNA supercoiling (in red) contain inhibited genes. The genome of this evolved individual200

therefore shows that, in the context of this model, it is possible for evolution to adjust gene expression

levels to an environment-dependent target solely by rearranging relative gene positions and leveraging

the transcription-supercoiling coupling between neighboring genes.
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Figure 2: Geometric average of the fitness of the best individual in each of the 30 populations, at every
generation. Lighter lines represent the first and last decile of the data.
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Figure 3: Average number of activated genes (expression higher than e1/2) of each type in the best
individual at every generation, averaged over the 30 populations, in environments A (left) and B
(right). Lighter lines represent the first and last decile of the data.

This behavior is however not specific to this particular individual. Figure 2 shows that the fitness

of the best individual of each population, averaged over all the populations, evolves smoothly towards205

higher values over the course of the simulation. More precisely, Figure 3 shows that the numbers of

activated genes of each particular type also evolve towards their respective targets, in environment A

(left) and B (right). In each environment, the average number of activated AB genes (in blue) quickly
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nearly reaches 20, its maximum value, as expected from their target; B genes (in green) follow the

same behavior, evolving towards nearly full activation in environment B and nearly full inhibition in210

environment A. A genes (in red) follow a slightly different course, as the number of activated A genes

seems to converge to approximatively 15 out of the expected 20 in environment A, but continues to

decrease towards the expected 0 in environment B by the end of the simulations.

The incomplete match of A genes with their evolutionary target – as compared to B genes – could

however be partially expected. Environment A is indeed characterized by a less negative global super-215

coiling level, while environment B is characterized by a more negative global supercoiling level. As less

negative supercoiling reduces gene transcription, it is by construction more difficult for a gene to have

a high transcription rate in environment A than in environment B. A genes must therefore complete

the more difficult task of being activated in the inhibiting environment A, while being inhibited in

the activating environment B, whereas B genes must complete the comparatively easier task of being220

activated in the “easier” environment and inhibited in the “harder” environment.

Well-differentiated expression levels nonetheless evolve in our model for both types of genes, in

response to the different supercoiling levels imposed by the environmental conditions. These patterns

of gene expression are moreover remarkably robust to the difference between the environments. Indeed,

we observe such patterns even when repeating the experiment with environmental perturbations 10225

and 100 times smaller in magnitude (see Supplementary Figures S1 and S2).
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Figure 4: Average gene expression level for each type of gene (AB, A, and B in blue, red, and green
respectively), as a function of the background supercoiling level σbasal+δσenv (see Methods), averaged
over every gene of that type in the best individual of each of the 30 replicates. The dashed vertical lines
represent the supercoiling effect δσA and δσB of environments A and B, in which individuals evolve
during the simulation, and the pink horizontal line marks e1/2, the threshold above which a gene is
considered active. The dashed light blue line represents the expression level of a single neighbor-less
gene, and the dash-dotted light blue line represents the average expression level of genes on a random
genome.

Evolution of Relaxation-Activated Genes In our model, the expression level of an isolated

gene increases exponentially with the opening free energy of its promoter, which itself increases as

a sigmoidal function of negative supercoiling (see Equations 3 and 4 in Methods). When measuring

the response of the genes of an evolved individual to a variation in the background supercoiling level230

(the sum of the basal supercoiling level σbasal and of the environmental perturbation δσenv), one could

naively expect a qualitatively similar response.

Figure 4 shows the average expression level of genes of each type as a function of the background

supercoiling level, or equivalently as a function of the environmental perturbation (upper horizontal

axis), since the basal supercoiling level is kept constant in our model. It highlights striking differ-235

ences between the responses of genes of each type in evolved genomes, when compared to isolated,

non-interacting genes in our model (dashed light blue line) and to the average response of genes in

random non-evolved genomes (dash-dotted light blue line). While AB and B genes (in blue and green
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respectively) display an average expression level that decreases with the level of negative supercoiling,

and that remains qualitatively similar to the behavior of random genes (dash-dotted line), A genes240

(in red) display a completely different behavior. Indeed, A genes show a non-monotonic response to

environmental supercoiling, as their average expression level decreases until a local minimum in ex-

pression at δσB , then increases – even though background negative supercoiling decreases – until a

local maximum at δσA, before decreasing again similarly to other genes types. In other words, due

to their interaction with their neighbors, A genes present a phenotype of activation by environmental245

relaxation of DNA, for perturbations between δσB and δσA, even though the promoter activity of an

isolated A gene decreases with background DNA relaxation (dashed light blue line). The evolution of

this relaxation-activated phenotype is furthermore very robust, as we can observe it when replaying the

main experiment with environments responsible for a 10 or 100 times smaller supercoiling perturbation

than in the main experiment (see Supplementary Figures S3 and S4 respectively).250

In our model, the transcription-supercoiling coupling is therefore able to provide a regulatory

layer that mediates the transcriptional response to the global variation in DNA supercoiling caused

by environmental perturbations. Indeed, it remarkably allows for the evolution of a transcriptional

response to supercoiling that is opposite not only to that displayed by a non-interacting, neighborless

gene, but also to that of randomly positioned genes, therefore demonstrating the importance of relative255

gene positions on transcriptional activity.

2.2 Evolution of Local Genome Organization

Having first characterized the different patterns of gene transcription that evolved in our simulations in

response to different environmental conditions, we then sought to determine the genome organization

that necessarily underlies these patterns in our model, given that the only difference between individuals260

in the model is the relative position and orientation of the genes on their genomes.

We started by studying genome organization at the most local level: pairs of neighboring genes.

We measured the relative abundance of such pairs in each relative orientation (convergent, divergent,

or tandem), as the relative orientation of two neighboring genes determines their mode of interaction

through the transcription-supercoiling coupling: mutual activation for divergent genes, mutual inhibi-265

tion for convergent genes, and activation (resp. inhibition) of the upstream (resp. downstream) gene

by the downstream (resp. upstream) gene.

As, in our model, different gene types must evolve different activation patterns in each environment
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for an individual to have high fitness, we additionally stratified these pair counts by the type of each

gene in the pair, resulting in 9 kinds of gene pairs. Finally, in order to quantify the actual strength270

of the coupling between the genes in a given type of pair, we also summed the total level of positive

and negative supercoiling generated by the transcription of each gene in the pair at the promoter of

the other gene in the pair, for all relative orientations. These data are presented in Figure 5, with the

left-hand side panel showing the number of gene pairs of each kind, and the right-hand side panel the

corresponding transcription-generated supercoiling levels.275
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Figure 5: Interactions between pairs of neighboring genes. The left-hand side panel shows the number
of gene pairs of each kind, split by the type of the focal gene (row) and of the second gene (column)
in the pair, and by relative orientation (bars in each sub-panel: convergent, divergent, upstream, or
downstream). For instance, the AB → B top-right panel shows the influence of AB genes on B genes,
and the B → AB bottom-left panel the influence of B genes on AB genes (in the same pairs). In
these pairs, there are on average 7.8 AB genes directly upstream of a B gene (top-right panel, in red),
or equivalently 7.8 B genes directly downstream of an AB gene (bottom-left panel, in green) on an
evolved genome. The right-hand side panel shows, for each kind of gene pair, the total amount of
negative (green) and positive (red) transcription-generated supercoiling due to each gene type (row)
measured at the promoter of each gene type (column), summed over all orientations, and split by
environment. All data is averaged over the final best individual of each of the 30 replicates, and box
plots indicate the median and the dispersion between replicates.

Genomes Are Enriched in Divergent AB/AB Gene Pairs The most frequent kind of gene

pair in evolved genomes is divergently oriented AB/AB pairs. 13 such pairs are found on each genome

on average (AB → AB sub-panel on the left-hand side of Figure 5), out of a possible maximum of 20

(since any given gene can only be part of a single divergent pair), meaning that two-thirds of AB genes

are part of a divergent pair with another AB gene. These mostly divergent AB/AB gene pairs generate280
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an average negative supercoiling of around -0.012 at their promoters, in both environments (summing

the positive and negative bars in the AB → AB sub-panel on the right-hand side of Figure 5). This

value is comparable in magnitude to – but has the opposite sign than – the shift in supercoiling that

is caused by environment A (δσA = 0.01). This shows that the interaction between neighboring genes

can locally counteract the global shift in supercoiling caused by this environment, in order to maintain285

environment-agnostic high gene expression levels.

As shown in Figure 5, genomes also contain divergent A/A and B/B gene pairs, although less

frequently than divergent AB/AB pairs. As both A genes and B genes must be conditionally expressed

or inhibited depending on the environment, the unconditionally positive feedback loop resulting from a

divergent orientation seems less evolutionarily favorable for A/A or B/B pairs than for AB/AB pairs.290

Consistently with this observation, divergent A/A and B/B pairs result in slightly weaker interactions

(middle and bottom-right sub-panel of the right-hand side of Figure 5), in the environment in which

these genes are active. On the contrary, divergent A/B gene pairs are almost never found, consistently

with theoretical expectation, since A and B genes must not be expressed in the same environment.

Genomes are Enriched in Convergent A/B Gene Pairs The pattern in which B genes appear295

most frequently, and A genes nearly most frequently (just after divergent A/A pairs), is that of

convergent A/B gene pairs. In this case, each gene in the pair theoretically inhibits the expression of

the other gene. In environment A, A genes indeed generate an average positive supercoiling variation

of 0.01 at the promoter of convergently oriented B genes, and hence decrease the expression of such

B genes with a strength that is comparable to the environmental change in supercoiling, similarly to300

AB/AB pairs above. In this environment, B genes are mostly inhibited, and therefore do not strongly

impact the expression of A genes. In environment B, it is oppositely B genes that strongly inhibit

the expression of convergently oriented A genes, through the generation of positive supercoiling at the

promoter of such A genes. Convergently oriented A/B gene pairs therefore behave as toggle switches,

or bistable gene regulatory circuits, in which the expression of one gene represses the expression of the305

other gene (Gardner et al., 2000).

In our model, the effect of the transcription-supercoiling coupling is therefore strong enough that

specific local genome organizations can be evolutionarily selected for in order to attain favorable gene

expression levels. In particular, we observe the formation of divergent pairs when consistently high

expression is required, and of toggle switches when an environment-specific switch between activation310

and inhibition are required.
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2.3 Pairwise Interactions Do Not Recapitulate the Regulatory Network

As we just saw, pairwise interactions between neighboring genes seem to play an important role in the

regulatory response to environmental changes in supercoiling in our model. However, this local response

cannot suffice to completely explain the environment- and gene-type- specific activation patterns that315

we observe; in particular, A/B toggle switches have to be pushed towards one stable state or the

other by external factors. In the dense bacteria-like genomes of individuals in our model, genes indeed

do not only interact with their closest neighbors, but also with genes located further away on the

genome. In order to quantify more precisely the extent to which pairwise interactions can explain this

regulatory response, we therefore studied the behavior of genes when considered as part of contiguous320

neighborhoods of increasing sizes.

For every odd subnetwork size k between 1 and the genome size, and for every gene on the genome,

we extracted the subnetwork of k consecutive genes centered around that gene, computed the expression

level of every gene in this subnetwork (in the same way as for a complete genome) in each environment,

and compared the expression level of the central gene with its value in the complete genome. This325

allowed us to compute the minimum subnetwork size at which a gene presents the same activation

state as in the complete genome, which we interpret as an indicator of the complexity of the interaction

network required to produce the behavior of that particular gene. Two representative examples of this

process are presented in Figure 6, and the complete results are shown in Figure 7.
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Figure 6: Top: contiguous subnetworks of size 3 (left) and 5 (right) centered around gene 31 (of type
B, in bold) of the final best individual of replicate 21, evaluated in environment A. Bottom: contiguous
subnetworks of size 7 (left) and 9 (right), centered around gene 6 (of type A, in bold) of the same
individual, evaluated in environment B. The complete genome of this individual is shown in Figure 1.

Figure 6 depicts the smallest subnetworks that are required in order to obtain the inhibition of a330

representative gene of type B in environment A (top row, gene 31), and of a representative gene of type

A in environment B (bottom row, gene 6), both taken from the genome of the same evolved individual

as in Figure 1. This B gene is not inhibited by a subnetwork of size 3, but requires a subnetwork

of size 5 in order to be inhibited, and, similarly, this A gene is not inhibited by a subnetwork of size

7, but requires a subnetwork of size 9 in order to be inhibited. In each case, increasing the size of335

the subnetwork by two (one gene on each side) drastically changes the expression level of the central
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gene of the subnetwork, alongside with the associated level of transcription-generated supercoiling.

Indeed, in the two subnetworks centered around the B gene (top), all 3 genes in the small subnetwork

switch from activation in the small subnetwork to inhibition in the large subnetwork, and in the two

subnetworks centered around the A gene (bottom), the two B genes and two out of the three central340

A genes also switch from activation to inhibition when moving from the small to the large subnetwork.

In both examples, the activity of a gene does therefore not only depend only on its interaction with

its closest neighbors, but with a broader section of the genome.
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Figure 7: Minimal contiguous subnetwork size required for the central gene in the subnetwork to present
the same activation state as in the complete genome, for each gene type, and in each environment.
The data is computed only for genes in the best final individual of each replicate which present the
correct activation state in both environments (which represents 97.7% of AB genes, 92.7% of B genes
and 53.2% of A genes). In each case, a box plot showing quartiles and fliers is overlaid on a violin plot
representing the whole distribution, and the mean is represented by the smaller tick.

We then computed these minimal subnetwork sizes for every gene that presents the correct acti-

vation state in each environment in the final best individual of each of the 30 replicates. Markedly345

different patterns again appear, depending on whether the targeted behavior for the gene is activation

or inhibition, as depicted in Figure 7. For AB genes in both environments, as well as for A genes in

environment A and B genes in environment B, the experimentally obtained minimum subnetwork size

is 1, which is consistent with the expression profile of an isolated gene (previously shown in Figure 4).

With a basal supercoiling value of σbasal = −0.06, an isolated gene indeed experiences a high expression350
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level in both environments – even without interactions – in the model, as in real-world bacteria.

When the expression target of the gene is inhibition, that is for A genes in environment B and for

B genes in environment A, the picture is however quite different. In this case, a significantly larger

subnetwork is required in order to obtain inhibition of the focal gene: The median subnetwork size

required to inhibit A genes in environment B is 9, or 4 genes on each side. For B genes, the median355

subnetwork size for inhibition in environment A is lower than that required for the inhibition of A

genes in environment B, but higher than when the target is activation: Genes always need at least a

subnetwork of size 3 (1 gene on each side), and several outliers need a subnetwork of more than 20

genes in order to obtain inhibition.

The gene regulatory networks that evolve through the transcription-supercoiling coupling therefore360

exhibit a structure that cannot be summarized by the pairwise interactions between neighboring genes,

but that can on the contrary require the participation of a significantly larger number of genes in order

to allow genes to reach their required environment-specific expression levels.

2.4 A Whole-Genome Gene Regulatory Network

Having shown that the transcription-supercoiling coupling plays a major role in the regulation of gene365

expression in our model, and that supercoiling-mediated interactions can implicate more than just

neighboring genes, we then sought to describe these interactions in more detail using the framework of

gene regulatory networks. The matrix of gene interactions, whose coefficients ∂σi

∂ej
are the effect of the

transcription of every gene on the local level of supercoiling at every other gene (and decrease linearly

with distance, see Equation 1 in Methods), could seem to provide a natural graph representation of the370

interactions between the genes in the genome of an individual. However, as this representation does

not take into account actual gene expression levels, it provides an inaccurate picture of the effective

interactions between genes (for example, overestimating the influence of a weakly-expressed gene). We

therefore constructed an effective interaction graph, by measuring the effect of gene knockouts on gene

expression levels.375
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Figure 8: Knockout of gene 36 (of type AB, in bold, colored white) of the final best individual of
replicate 21, evaluated in environments A (left) and B (right). Hatched genes represent genes whose
activation state is switched by the knockout when compared to the original genome. The inner ring
represents the absolute difference |∆σTSC | in the level of transcription-generated supercoiling between
the knockout genome and the original genome (shown above in Figure 1).

Gene Knockouts Gene knockout is a genetic technique in which a gene of interest is inactivated

(knocked-out) in order to study its function (in our case, its possible role as part of a gene regulatory

network). In order to knock out a given gene in an individual in our model, we set the transcription rate

of that gene to zero during the computation of gene expression levels (as described in Methods). This

mimics a loss of function of the promoter of the gene, while keeping the intergenic distance between380

its upstream and downstream neighbors unchanged, thereby minimizing differences to the original

individual. The result of a gene knockout on the genome of an evolved individual is shown in Figure 8.

The knocked-out gene is gene 36 (bottom left of the genome), which is of type AB and originally

activated in both environments (see Figure 1 for the original genome of the same individual). We can

see that, in environment A, knocking out this gene results in a switch in the activation state of 7 genes385

(hatched in the left-hand side of Figure 8), and that these genes are not all contiguously located. This

knockout also results in local supercoiling changes that propagate up to the bottom-left third of the

genome, outside of the direct influence of the knocked-out gene. In environment B, knocking out this

gene instead results in milder supercoiling changes that do not result in any gene switching state. In

this example, knocking out even a single gene can therefore substantially affect gene expression levels,390

and lead to a switch in the activation state of other genes on the genome, even when these genes do

19

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2023. ; https://doi.org/10.1101/2022.09.23.509185doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.23.509185
http://creativecommons.org/licenses/by-nc/4.0/


not directly interact with the knocked-out gene.
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Figure 9: Left: effective interaction graph of the best individual at the last generation of replicate 21,
obtained by knocking out every gene one by one and measuring the resulting gene switches in either
environment. Activation edges are drawn in green, and inhibition edges in red. Gene numbering is the
same as in Figures 1, 7 and 8. Right: distribution of weakly connected component (WCC) sizes in the
effective interaction graphs of evolved individuals (left) compared to random individuals (right).

Constructing the Effective Interaction Graph We construct the effecting interaction graph in

the following manner: we successively knock out every gene in the genome, and each time add edges

from the knocked-out gene to every other gene whose activation state is switched by the knockout,395

in one environment or the other. If the knockout switches off a gene that was originally activated in

the complete genome, we mark the edge as an activation edge, meaning that the knocked-out gene

was necessary in order to activate the switched-off gene. If the knockout conversely switches on a

gene that was originally inhibited in the complete genome, we mark the edge as an inhibition edge. If

knocking out a gene switches on or off the same other gene in the two environments, we only add a400

single edge (even if one edge is an activation edge and the other an inhibition edge), as our main focus

is on the connectedness of the resulting graph. The effective interaction graph of the example evolved
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individual in Figure 8 is presented on the left-hand side of Figure 9. In this individual, there is only

one weakly connected component (WCC), meaning that all the genes of this individual contribute to

a single, whole-genome regulatory network.405

Structure of the Effective Interaction Graphs In order to characterize the effective interaction

graphs of evolved individuals, we compared them with the effective interaction graphs of 30 random

individuals drawn using the same genome parameters (shown in Table 1 in Methods) as the initial

individuals used at the beginning of evolution. The distribution of WCC sizes for each group of graphs

are presented on the right-hand side of Figure 9, and they show that the effective interaction graphs410

of evolved individuals are clearly different from those of random individuals. Indeed, evolved genomes

have WCC sizes of 58 to 60 genes (left), comprising every or nearly every gene on the genome, along

with very few single-gene WCCs. In particular, in 26 out of the 30 evolved populations, the interaction

graph of the best individual comprises only a single WCC that includes every gene on the genome,

similarly to the interaction graph in Figure 9. In random genomes (right), on the other hand, WCC415

sizes span the whole range from single-gene to whole-genome WCCs, with most of the connected

components counting less than 10 genes.
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Figure 10: Left: average out-degree (number of genes switched by knocking out a given gene) of the
nodes in the effective interaction graph, separated by gene type, for evolved and random individuals.
Right: average in-degree (number of genes whose knockout switches a given gene) of the nodes in the
effective interaction graph, separated by gene type, for evolved and random individuals.

Evolved genomes are indeed on average much more connected than random genomes, as we can see

in Figure 10, which presents the out- and in-degree of genes (averaged by gene type) in the effective

interaction graphs. The left-hand side of Figure 10 shows the average out-degree of each gene type420

(i.e., the number of genes that are switched either on or off by knocking out a gene of that type).

While knocking out a gene in a random genome switches the state of a little less than 2 other genes
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on average, independently of the type of the knocked-out gene, this figure is much higher in evolved

genomes. Knocking out A or B genes switches 4 other genes on average, and knocking out AB

genes switches up to 7 other genes. Through this higher connectedness, AB genes therefore play a425

quantitatively more important regulatory role than A genes or B genes. This can be explained by the

fact that AB genes are activated – and generate more supercoiling through transcription, as shown in

Figure 5 – in both environments, while most A and B genes are instead inhibited in one environment

or the other.

When looking at the in-degree of genes (the number of genes whose knockout will switch a given430

gene on or off), we can see that evolved genomes are again much more connected on average than

random genomes, and that the in-degree of genes greatly depends on their type. Indeed, AB genes

are only switched by one other gene on average, meaning that their activation state is robust to

perturbations in the regulatory network. The robustness of AB gene state could be expected, as these

genes must have the same activation state in both environments in order to attain high fitness. On435

the contrary, A genes and B genes have a much higher in-degree, meaning that their activation state

relies on the regulatory action of a large number of other genes. Similarly to AB genes, this high

connectedness could be expected, as a high in-degree could make A and B genes more sensitive to the

variations that these genes need to detect in order to distinguish between the two environments.

In our model, the evolution of the relative positions of genes on the genome therefore integrates local440

supercoiling-mediated interactions between neighboring genes into a single genome-wide regulatory

network, through which all genes interact to reach their targeted expression levels.

3 Discussion and Perspectives

DNA supercoiling, through its effect on promoter activation and hence on gene transcription (Dor-

man and Dorman, 2016), is an important actor of the regulatory response of bacteria to changing445

environmental conditions (Martis B. et al., 2019). But gene transcription itself has long been posited

to impact the level of DNA supercoiling in return, as suggested by the twin-domain model of super-

coiling of Liu and Wang (1987), and it has since been shown to indeed play a major role in shaping

the bacterial DNA supercoiling landscape (Visser et al., 2022), through what has been termed the

transcription-supercoiling coupling (Meyer and Beslon, 2014). Taken together, these results suggest450

that such supercoiling-mediated interactions between the transcription rates of neighboring genes could

play a part in regulating bacterial gene activity.
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In this work, we therefore sought to assess the possibility of the evolution of such supercoiling-based

gene regulation in an in silico bacteria-like model, and to determine its potential hallmarks on the

local and global organization of bacterial genomes. To this end, we developed an evolutionary model of455

the transcription-supercoiling coupling, in which populations of individuals must evolve differentiated

gene expression levels in response to different environmental conditions. We showed that, in this

model, gene regulation by DNA supercoiling is indeed a sufficient mechanism to evolve environment-

and gene- specific patterns of activation and inhibition. In particular, we observed the emergence of

relaxation-activated genes that respond to supercoiling oppositely to the majority of genes, which are460

classically inhibited by DNA relaxation (Forquet et al., 2021). Our results therefore demonstrate that

this response to supercoiling can result not only from promoter sequence – as in the case of the gyrA

promoter (Menzel and Gellert, 1987) – or spacer length (Forquet et al., 2022), but also from local

genome organization, as proposed by Sobetzko (2016) or El Houdaigui et al. (2019). As such, these

findings suggest that supercoiling-mediated regulation could be a sufficient mechanism to fine-tune465

gene expression in response to environmental constraints. This regulatory role could in particular be

especially important in bacteria that lack other regulatory mechanisms, such as the streamlined B.

aphidicola (Brinza et al., 2013).

We then investigated the patterns of genome organization that underlie this transcriptional response

to different supercoiling environments. At the most local scale, we found that evolved genomes in the470

model are enriched in divergent pairs of always-on genes that form positive feedback loops, as well as

in convergent pairs that oppositely act as bistable toggle switches controlled by supercoiling rather

than transcription factors (Gardner et al., 2000). The existence of such supercoiling-mediated toggle

switches had been earlier posited by using mechanistic biophysical models that explicitly describe the

movement of RNA polymerases during gene transcription (Sevier and Hormoz, 2022; Johnstone and475

Galloway, 2022), and their emergence in our model suggests that such toggle switches could indeed

evolve as a means to regulate the expression of neighboring genes. Then, we showed that the local

organization of the genome into convergent or divergent pairs of genes is in fact not sufficient to

explain the transcriptional response of individuals to different environments, but that interactions

between larger groups of neighboring genes can be required to selectively activate or inhibit genes in480

specific environments. Such regulation of gene expression through the interaction of groups of co-

located genes could help explain the persistence of synteny segments (clusters of genes that display

correlated expression levels at the supra-operonic scale) that has been evidenced in the evolutionary
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histories of both E. coli and S. enterica (Junier and Rivoire, 2016). Indeed, if local interactions play

a role in regulating the expression of groups of neighboring genes, genomic rearrangements that alter485

relative gene positions within these structures could disrupt their regulation and hence be evolutionarily

unfavorable. Finally, we characterized in further detail the gene regulatory networks that evolve

in this model by adapting the classical genetics tool of gene knockouts (Baba et al., 2006). We

showed that supercoiling-mediated interactions integrate the entire genome of evolved individuals into

a single connected regulatory network, in opposition to the sparse, disconnected networks displayed by490

randomly generated individuals. Moreover, we showed that genes play different roles in these networks

depending on their type, corresponding to the type-specific responses to environmental variations that

genes must display in the model. Overall, our simulations therefore demonstrate that the transcription-

supercoiling coupling provides a strong and precise regulatory mechanism that allows for the evolution

of complex regulation patterns based solely on the relative positions of genes on the genome, and can be495

sensitive to very small environmental perturbations (see Supplementary Material). They furthermore

evidence the possible impact of this particular mode of regulation on the structure of bacterial genomes,

both at the local and global scales.

In this work, we voluntarily kept our model as simple as possible in order to obtain easily in-

terpretable results, while retaining the core concept of the transcription-supercoiling coupling. In500

particular, in order to keep simulations computationally tractable, we restricted the number of genes

in each individual to 60, much fewer than the around 4,300 genes in the E. coli genome (Blattner,

1997), but importantly keeping chromosome size much larger than the supercoiling interaction dis-

tance, so that each gene directly interacts with a small proportion of the genome only. Increasing

the number of genes of genomes in our model should in principle therefore not affect the local- and505

medium-scale patterns that we observe, nor the formation of large-scale regulatory networks, although

such genomes might harbor several large weakly connected components rather than a single one. Sev-

eral other relevant questions could also be studied by modifying our model appropriately. For example,

it would be interesting to study how including transcriptional read-through, or the transcription of

successive genes by a single RNA polymerase, would alter the genomic structures that evolve in our510

model. Indeed, this mechanism has also been hypothesized to play a role in the evolutionary con-

servation of synteny segments in bacterial genomes, by correlating the expression levels of genes in

these segments (Junier and Rivoire, 2016). Incorporating read-through in our model could therefore

inform us about the relative importance of this mechanism compared to supercoiling-mediated reg-
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ulation in the conservation of these genomic segments. Similarly, letting the reaction norm of gene515

promoters to supercoiling coevolve with genomic organization could help understand the evolution of

unusual promoters such as the gyrA promoter, which is activated by relaxation due to its particular

sequence (Menzel and Gellert, 1987). Finally, integrating a more classical model of gene regulation

via transcription factors to our model, such as the one presented by Crombach and Hogeweg (2008),

could also help shed light on the coevolution between the different modes of gene regulation that520

are available to bacterial genomes. From a theoretical standpoint, a range of mechanistic biophysical

models of the transcription-supercoiling coupling have been put forward, using different hypotheses in

order to address related questions on this topic. Brackley et al. (2016) show a phase transition in the

transcription regime as the number of RNA polymerases transcribing a given gene increases; Sevier

and Hormoz (2022) show that bursty transcription can emerge from the transcription-supercoiling cou-525

pling; and Meyer and Beslon (2014) and El Houdaigui et al. (2019) try to predict gene expression levels

quantitatively, as a function of the local level of DNA supercoiling. An important validation of these

complementary approaches would therefore be to investigate the extent to which these models, includ-

ing ours, conform to one another as the level of abstraction changes. From an experimental standpoint,

comparing our simulated results on genome organization with data from real-world bacteria could also530

help determine the extent of the regulatory role of supercoiling in these organisms. One such effort

would be to quantify the level of correlation between genomic organization and gene transcription

levels in species with few transcription factors such as B. aphidicola (Brinza et al., 2013), applying the

methods presented in Sobetzko (2016) to study such organisms as E. coli or S. pneumoniae. Finally,

from a synthetic biology point of view, a better understanding of the regulatory interactions stemming535

from the transcription-supercoiling coupling could help design more finely controlled artificial genetic

constructs, as explored by Johnstone and Galloway (2022).

4 Conclusion

To the best of our knowledge, our work is the first to model the regulatory role of supercoiling on tran-

scription at a genomic scale, and the first to study its importance in the evolution of bacterial genomes540

through an evolutionary simulation approach. It demonstrates the importance of supercoiling-mediated

interactions between genes on their transcription rates, and exemplifies the precision and versatility

of the regulation mechanism that stems from these interactions. For experimentalists, it provides

an underlying theory that could help explain the heterogeneous transcriptomic response (with both
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up- and down-regulation of multiple genes) observed in bacteria confronted to supercoiling variations,545

due among others to virulence-inducing environments (Dorman, 2019) or to gyrase-inhibiting antibi-

otics (de la Campa et al., 2017). For evolutionists, it provides a plausible evolutionary rationale for

the observed conservation of local gene order along evolutionary histories (Junier and Rivoire, 2016).

Finally, for synthetic biologists, it provides a theory to help predict in finer detail the transcription

levels that can be expected from a given gene syntax (Johnstone and Galloway, 2022), and thus design550

new forms of genetic circuits.

5 Methods

This section presents the model that we use throughout the manuscript to study the role of the

transcription-supercoiling coupling in the evolution of gene regulation and genome organization in

bacteria-like organisms. The model consists in an individual-based evolutionary simulation, in which555

the phenotype of every individual is computed according to a biophysical model of the effect of su-

percoiling on gene expression. It is based upon and refines our previous model presented in Grohens

et al. (2022). We start by presenting the individual-level biophysical model, and describe how we

compute gene expression levels based on their relative positions on the genome, by taking into account

the interplay between DNA supercoiling and gene transcription. Then, we describe how we build an560

evolutionary simulation upon this individual-level model, how we evaluate the adaptation of individ-

uals to distinct environments, and the mutational operator that we use to create new individuals and

populations. Finally, we present the experimental setup that we used in order to run the simulations

presented in the Results section, and discuss code and data availability.

5.1 Individual-Level Model of the Transcription-Supercoiling Coupling565

We define the genotype of an individual as a single circular chromosome, meant to represent a bac-

terial chromosome. The chromosome consists in a fixed number of protein-coding genes, which are

separated by non-coding intergenic segments of varying sizes, and is additionally characterized by a

basal supercoiling level σbasal. Each gene on the chromosome is characterized by its starting position

(note that genes cannot overlap in our model), its orientation (on the forward or reverse strand), its570

length, and its basal expression level. We always consider individuals within an environment, which

we define by the perturbation δσenv that it imposes to the supercoiling level of the chromosome. We
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define the phenotype of an individual in a given environment as the vector that holds the expression

levels of all its genes. We compute this phenotype by solving the system of equations given by the

interaction of the individual’s genes with one another through the transcription-supercoiling coupling575

(described below), on a chromosome with a background supercoiling level of σbasal + δσenv.
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Figure 11: Left: genome (outer ring) and level of transcription-generated supercoiling (σTSC , inner
ring) of an example individual with 20 genes placed at random positions and orientations and colored
by position, with a gene length and average intergenic distance of 1 kb each, and a basal supercoiling
level of σbasal = −0.066. The individual is evaluated in an environment in which δσenv = 0. Right:
evolution of the expression level of each gene of the individual (reusing gene colors from the genome)
during the computation of the solution to the system given by equations 2, 3, and 4, starting from
initial expression levels of e1/2. Solid lines represent genes on the forward strand, dashed lines genes
on the reverse strand, and the dotted pink line represents e1/2, the gene activation threshold.

The genome of an example individual with 20 genes is shown on the outer ring of the left-hand side

panel of Figure 11. The inner ring depicts the local level along the genome of DNA supercoiling resulting

from gene transcription, when this individual is evaluated in an environment with a supercoiling shift

of δσenv = 0. As expected from the twin-domain model of supercoiling, we can observe a buildup580

in negative supercoiling (in blue) between pairs of genes in divergent orientations, such as the C-D or

F-G gene pairs, and a buildup in positive supercoiling (in red) between pairs of genes in convergent

orientations, such as the K-J or Q-R gene pairs. The right-hand side panel of Figure 11 shows the

computation of the gene expression levels for this individual in the same environment (as detailed

below). Note that, in this model and throughout the manuscript, we conflate gene transcription585

rates with mRNA concentrations, as we assume that mRNAs are degraded at a constant rate, and as

transcription rates in our model are only affected by the effect of supercoiling on transcription. We

additionally conflate transcription rates with expression levels (or protein concentrations), as we again
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assume proteins to be translated at a rate proportional to the associated mRNA concentrations and

degraded at a constant rate.590

Effect of Transcription on Supercoiling For an individual with a genome containing n genes,

we model the influence of the transcription of each gene on the level of supercoiling at the promoter

of every other gene in the form of an n-by-n matrix, which we call the interaction matrix. The

coefficient ∂σi

∂ej
at indices (i, j) in this matrix represents the infinitesimal variation in DNA supercoiling

at the promoter of gene i due to the transcription of gene j. The value of this coefficient is given by595

Equation 1:

∂σi

∂ej
= η · c ·max(1− d(i, j)

dmax
, 0) (1)

η gives the sign of the interaction, which depends on the position and orientation of gene j relative

to gene i, according to the twin-domain model (Liu and Wang, 1987). If gene j is upstream of gene i,

and if it is on the same strand as (points towards) gene i, then its transcription generates a buildup

in positive supercoiling at gene i (η = 1). Conversely, if gene j is upstream of gene i but on the600

other strand than (points away from) gene i, it generates a buildup in negative supercoiling at gene i

(η = −1). If gene j is instead located downstream of gene i, the sign of the interaction in each case is

reversed: η = 1 if the genes are on the same strand, and η = −1 otherwise.

We then apply a torsional drag coefficient c, which is a high-level representation of the effect

of transcription on the local supercoiling level. Finally, we model this change in supercoiling as605

linearly decreasing with the distance d(i, j) between genes i and j. More precisely, we consider the

distance between the promoter of gene i, the position at which the local level of supercoiling affects

the probability that an RNA polymerase binds to the DNA and starts transcribing gene i, and the

middle of gene j, the average location of the RNA polymerases that transcribe gene j, assuming that

DNA is transcribed at a constant speed. When this distance reaches a threshold of dmax, we consider610

the two genes to lie too far away to interact, and the effect vanishes. In other words, dmax represents

the maximum gene interaction distance on either side of a gene (see Figure 11). Finally, we consider

that genes do not interact with themselves, so we set ∂σi

∂ei
to 0 for all i.

Effect of Supercoiling on Transcription In order to compute the transcription level of a given

gene, we first compute the opening free energy of its promoter. This opening free energy depends on615
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the local supercoiling level, by following a sigmoidal curve that increases with negative supercoiling

until a saturation threshold is reached (Forquet et al., 2021). In order to model this effect, we adapted

the equations and parameter values presented in El Houdaigui et al. (2019), which are based on the

in vitro analysis of the transcription of model bacterial promoters. We first compute the local level

of supercoiling σi at the promoter of gene i, which is the sum of the background supercoiling level620

σbasal + δσenv (which is constant along the genome for any given individual in a given environment),

and of the local variation in supercoiling caused by the transcription of every other gene (represented

in Figure 11 as σTSC):

σi = σbasal + δσenv +
n∑

j=1

∂σi

∂ej
ej (2)

We then compute the expression level of the gene using a thermodynamic model of transcription.

First, we compute the opening free energy Ui of the promoter of gene i, which depends on σi, the level625

of supercoiling at the promoter and on σ0, the level of supercoiling at which the opening free energy

is at half its maximum level, according to the following sigmoidal function:

Ui =
1

1 + e(σi−σ0)/ε
(3)

Finally, we compute the expression level ei of gene i using the inverse effective thermal energy m:

ei = em(Ui−1) (4)

The transcription level of a gene is therefore expressed in arbitrary units between e−m, the minimum

expression level when the promoter is most hindered by supercoiling (when Ui = 0), and 1, the630

maximum expression level, when the promoter is most activated by supercoiling (when Ui = 1).

Throughout the manuscript, we describe a gene as activated if its transcription level is above the mean

of these two values e1/2 = 1
2 (e

−m + 1), and inhibited otherwise.

Computation of Gene Expression Levels Recall that we define the phenotype of an individual in

an environment (described by δσenv) as the vector of gene expression levels that is solution to the system635

of equations given by Equations 2, 3 and 4, in that environment. In order to compute this phenotype,

we numerically compute a solution to the system of equations by using a fixed-point iterative algorithm,

starting from an initial state in which all genes are expressed at e1/2. A representative example of
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this computation is shown in the right-hand side panel of Figure 11. After an initially unstable phase,

the algorithm quickly converges to a fixed point, which we define as the gene expression levels of that640

individual in that environment.

5.2 Evolutionary Model

Equipped with a model of the coupling between DNA supercoiling and gene transcription at the whole-

genome scale, we now embed it into an evolutionary framework. In this framework, we model the

evolution of a population of individuals, each behaving as described in Subsection 5.1, placed in two645

distinct environments named A and B. Environment A is a DNA relaxation-inducing environment,

with a supercoiling shift of δσenv = δσA = 0.01 > 0, and environment B is a DNA hypercoiling-

inducing environment, with a supercoiling shift of δσenv = δσB = −0.01 < 0. We define three types

of genes by their environment-specific target expression levels: AB genes should be expressed in both

environments, akin to housekeeping genes; A genes should be expressed in environment A but not in650

environment B; and, conversely, B genes should be expressed in environment B but not in environment

A. Both latter types are meant to represent environment-specific genes, such as the pathogenic genes

of S. enterica or D. dadantii (Cameron and Dorman, 2012; Hérault et al., 2014). Finally, we assign

a type to each gene in the genome of each individual, ensuring that that there is the same number of

genes of each type in each genome.655

Fitness Let (eAA, e
A
B , e

A
AB) be the 3-dimensional vector representing the average gene expression level

per gene type of an individual with n genes in environment A, and (eBA, e
B
B , e

B
AB) be the average gene

expression per gene type of this individual in environment B. Let (ẽAA, ẽ
A
B , ẽ

A
AB) and (ẽBA, ẽ

B
B , ẽ

B
AB) be

target expression values for each gene type in each environment, reflecting the gene type definitions

presented above. For environment A, we choose to set ẽAA = ẽAAB = 1, and ẽAB = e−m, which are660

respectively the maximal and minimal attainable gene expression levels in the model. Similarly, for

environment B, we set ẽBB = ẽBAB = 1, and ẽBA = e−m. We can then compute the sum g of the squared

error (or gap) between the mean and targeted expression levels for each gene type in each environment:

g =
∑

i∈{A,B,AB}

(
eAi − ẽAi

)2
+

∑
i∈{A,B,AB}

(
eBi − ẽBi

)2
(5)

Finally, we define the fitness of the individual as f = exp(−k · g), where k is a scaling factor

representing the intensity of selection: as k increases, the difference in fitness, and hence in reproductive665
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success, between individuals with different values of g also increases.

Evolutionary Algorithm We consider populations of N = 100 individuals, which reproduce in

non-overlapping generations. At each generation, we compute the fitness of each individual, based on

its gene transcription levels in each environment (as described above). In order to create the following

generation, we choose a parent at random from the current population for each individual in the new670

population, with a probability proportional to the fitness of the parent. Then, we create the genome

of the new individual by stochastically applying mutations to the genome of its parent.

Mutational Operator: Genomic Inversions In order to model the evolution of genome organi-

zation, we use genomic inversions as the only mutational operator, so that genes might be reordered

on the chromosome through series of inversions over evolutionary time. Note that translocations can675

be modeled as a series of well-chosen consecutive inversions, and are therefore implicitly present in

our model. We however do not include large-scale duplications or deletions, as these rearrangements

might change the number of genes; in other words, we assume gene loss or duplication to be lethal

mutations in this model.

In order to perform a genomic inversion, we choose a start point and an end point uniformly at680

random in the non-coding intergenic sections of the genome. This ensures that genes cannot be broken

apart by inversions (remember that we assume that gene losses are lethal). Having chosen the ends of

the inversion, we extract the DNA segment between these ends and reinsert it at the same position,

but in the reverse orientation. The inversion thereby reverses the orientation of every gene inside the

segment, but conserves the relative positions and distances between these genes. On the contrary, the685

intergenic sections at the boundaries of the inversion can grow or shrink depending on the position of

its start and end points, thereby allowing intergenic distances to change over evolutionary time.

Finally, when mutating an individual, we first draw the number of inversions to perform from a

Poisson law of parameter λ = 2, meaning that the offspring of an individual will on average undergo

two inversions. Then, we perform each inversion in succession as previously described, in order to690

obtain the final mutated offspring.

5.3 Experimental Setup

In order to conduct the simulations presented in the Results section, we let 30 independent populations

of N = 100 individuals evolve for 1,000,000 generations. We initially seeded each population with 100
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clones of a randomly generated individual with 60 genes, or 20 genes of each type (A, B and AB), using695

a different seed for each population. For the simulations presented in the Supplementary Material, we

let 15 additional independent populations evolve for 250,000 generations, for each set of environmental

perturbation values (σA = 0.001 and σB = −0.001, and σA = 0.0001 and σB = −0.0001 respectively).

The parameter values that we used are given in Table 1, and can be broadly grouped into genome-

level parameters (gene length, intergenic distance, basal supercoiling level and supercoiling trans-700

mission distance) and promoter-level parameters (promoter opening threshold and effective thermal

energy, crossover width). Both the genome-level parameters that describe the chromosome and the

promoter-level parameters used to compute the transcriptional response to supercoiling were taken

from experimental values measured in E. coli. Note that, in our model, we introduce the torsional

drag coefficient c as a new parameter that represents the influence of torsional drag on the local level705

of supercoiling. We empirically chose its value so that this effect is of the same magnitude as that of

the other sources of supercoiling variations (i.e., environmental perturbations) in the model.

Parameter Symbol Value Reference

Gene length l 1,000 bp Blattner (1997)
Initial intergenic distance d0 125 bp Blattner (1997)
Supercoiling transmission distance dmax 5,000 bp Postow et al. (2004)
Basal supercoiling level σbasal -0.066 Crozat et al. (2005)

Torsional drag coefficient c 0.03

Promoter opening threshold σopt -0.042 El Houdaigui et al. (2019)
Inverse effective thermal energy m 2.5 El Houdaigui et al. (2019)
Crossover width ε 0.005 El Houdaigui et al. (2019)

Table 1: Parameter values of the transcription-supercoiling coupling model used in the evolutionary
simulations. The upper set of parameters is the genome-level parameters, the lower set the promoter-
level parameters, both taken from the E. coli literature; the middle parameter is a new addition from
our model.

5.4 Reproducibility and data availability

We implemented the simulation in Python, and optimized the computationally heavy parts using the

numba package (Lam et al., 2015). The source code for the simulation, as well as the notebooks710

used for data analysis, are available online at the following address: https://gitlab.inria.fr/

tgrohens/evotsc. Running the complete set of simulations took around 36 hours of computation

on a server using a 24-core Intel Xeon E5-2620 v3 @ 2.40GHz CPU, with each replicate running

on a single core and using approximately 300 MB of RAM. The data from the main run of the
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experiment is available online on the Zenodo platform, at the following address: https://doi.org/715

10.5281/zenodo.7062757. The supplementary data is available at the following address: https:

//doi.org/10.5281/zenodo.7789492.
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