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High accuracy 3D locators tracking in realtime using monocular vision

C. Elmo Kulanesana,∗, P. Vachera, L. Charleuxa, E. Rouxa

aUniversité Savoie Mont Blanc Laboratoire SYMME, 74940 Annecy-le-Vieux, France

Abstract

In the field of medical applications, precise localization of medical instruments and bone structures is crucial to ensure
computer-assisted surgical interventions. In orthopedic surgery, existing devices typically rely on stereoscopic vision. Their
purpose is to aid the surgeon in screw fixation of prostheses or bone removal. This article addresses the challenge of localizing
a rigid object consisting of randomly arranged planar markers using a single camera. This approach is especially vital in
medical situations where accurate object alignment relative to a camera is necessary at distances ranging from 80 cm to 120
cm. In addition, the size limitation of a few tens of centimeters ensures that the resulting locator does not obstruct the work
area. This rigid locator consists of a solid at the surface of which a set of plane markers (ArUco) are glued. These plane
markers are randomly distributed over the surface in order to systematically have a minimum of two visible markers whatever
the orientation of the locator. The calibration of the locator involves finding the relative positions between the individual
planar elements and is based on a bundle adjustment approach. One of the main and known difficulties associated with
planar markers is the problem of pose ambiguity. To solve this problem, our method lies in the formulation of an efficient
initial solution for the optimization step. After the calibration step, the reached positioning uncertainties of the locator are
better than two tenth of a cubic millimetre and one tenth of a degree regardless of the orientation of the locator in space.
To assess the proposed method, the locator is rigidly attached to a stylus of about twenty centimeters length. Thanks to this
approach, the tip of this stylus seen by a 16.1 megapixel camera at a distance of about 1 m is localized in real time in a cube
lower than 1 mm side. A surface registration application is proposed by using the stylus on an artificial scapula.

Keywords: Monocular vision, 3D locators, planar marker, 3D tracking, Aruco.

1. Introduction

The pose estimation of an object in a scene is a clas-
sical computer vision problem. It is generally seen as
a least squares optimization problem called Perspective-N-
Points (PNP) in which the reprojection errors of a number of5

points of interests (POIs) located on a target and observed
on several images are minimized [1, 2, 3]. For real-time ap-
plications, the use of easy-to-detect fiducial markers provides
excellent computing time performance to detect them on the
images. At the same time, the use of a single camera, also10

referred to as monocular vision, reduces financial costs as
well as the complexity of the setup. Many applications pre-
sented in the literature take place in this context ranging from
positioning for augmented reality, drone navigation, gesture
recognition[4, 5, 6, 7].15

The fiducial markers used in the literature are mostly pla-
nar and use the 4 corners of a square as POIs. While 4
coplanars POIs are theorically sufficient for a pose estima-
tion based on a single maker, in practice, the PNP problem
becomes ill-posed. Two different solutions of pose estima-20

tion may exist, especially at large working distance and large
inclination. Figure 1 presents two configurations illustrating
this problem of pose ambiguity [8] in a simple case, rotation

∗Corresponding author: christian.elmo-kulanesan@univ-smb.fr

around the y axis of the marker. The first one (configuration
A) corresponds to a non-ambiguous observation of the pose,25

the observed projections allow without difficulty to establish
a reliable pose using the classical pose estimation algorithms.
In the second configuration, the marker is far from the cam-
era. We observe that two different orientations of the marker
lead to an almost identical projection on the optical sensor. In30

our application, the test conditions correspond to this second
configuration. In the absence of measurement noise on the
detection of the four corners of the marker, the two poses are
unambiguously discernible. In practice, measurement noise
exists and the solution obtained by optimization does not al-35

ways correspond to the real pose of the marker. The global
approach proposed here consists in making the placement of
the locator more reliable by increasing the number of mark-
ers visible on the images.

1.1. Related work40

The related work in the field of pose estimation and lo-
calization spans various domains, including monocular and
multiview camera systems as well as algorithms both with
and without dedicated markers. In the realm of single-
view pose estimation, the DTAM framework proposed by45

Newcombe et al. [9] enables real-time dense tracking
and mapping, while Kendall and Cipolla [10] address un-
certainty modeling in deep learning for camera relocaliza-
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Figure 1: Illustration of the pose ambiguity phenomenon. Two configurations are presented where a marker of 12 mm side is seen by a camera whose sensor
is located at two distinct distances. In this illustration, the camera has a resolution of 2048 px× 1536 px and a sensor size of 7.07 mm× 5.3 mm. The focal
length is 12 mm. In each configuration, two orientations of the marker differing from a simple rotation θ around its axis Ym by ±36◦ are presented. In
configuration A, the markers are positioned at a distance of 20 cm from the camera. The projections on the images clearly show the perspective effect of
the markers. Visually, the vertical edges are of different lengths. In configuration B, the markers are positioned at a distance of 75 cm from the camera.
The images observed for these two situations are almost identical despite the very different orientations of the two markers. A small uncertainty on the
identification of the spatial position of the 4 points of this quadrilateral can lead to strongly different pose estimation of this marker at the origin of the pose
ambiguity.

tion. Expanding to multiview scenarios, the seminal work
by Hartley and Zisserman [11] outlines the fundamentals
of multiple view geometry, and Snavely et al.’s concept of
"photo tourism" [12] introduces the notion of 3D exploration
through photo collections.5

In the absence of dedicated markers, markerless ap-
proaches have gained prominence. Newcombe et al.’s Kinect-
Fusion [13] facilitates real-time dense surface mapping and
tracking through a depth sensor, and Mur-Artal and Tardós’s
ORB-SLAM2 [14] presents a versatile open-source SLAM sys-10

tem catering to various camera setups.
Notably, optimization plays a pivotal role in refining these

methods. The Levenberg-Marquardt algorithm [15] has been
a cornerstone, as Levenberg’s method [16] and Marquardt’s
algorithm [17] significantly contribute to solving nonlinear15

least-squares problems. Additionally, bundle adjustment, as
elaborated by Triggs et al. [18], and alternative optimiza-
tion techniques such as those detailed by Lepetit and Lourakis
[19, 20] continue to enhance the precision and efficiency of
pose and localization estimation algorithms by working on20

a better mathematical representation of Rodrigues’ parame-

ters.
Some studies proposed solutions to solve the pose ambi-

guity by using a fifth or more POIs [21, 22]. In some config-
urations, these approaches show low reliabilities, as demon-25

strated by [23].
In a noise-free configuration, this second solution exhibits

a higher reprojection error than the true solution and can
therefore be easily discarded [8]. In practice, it is common
for the bad solution to have a lower reprojection error than30

the good one and makes it impossible to differentiate them
directly [24]. Consequently, a single plane marker cannot
always be used to estimate the pose of an object with confi-
dence.

To avoid pose ambiguity, several markers can be posi-35

tionned in a non-coplanar way on the object [25, 26]. In
this paper, this set of markers stuck on a rigid object is called
locator. A calibration is needed if the relative position of the
markers is not precisely controlled. The calibration of a lo-
cator can be seen as a Structure-from-Motion (SfM) problem40

[12, 27] which can be solved offline to obtain an accurate
model of the relative position of the fiducial markers within
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the locator [28, 29].
As before, this is an ill-posed problem which requires an

accurate enough starting point in order to converge towards
the solution. The pose ambiguity can jeopardize the estab-
lishment of a well-suited starting point. Thus, in some ap-5

plications, the markers must be placed according to a pre-
defined pattern (e.g. on a plane grid or on the faces of a
polyhedron) in order to make a direct resolution of the PNP
problem possible [26, 30, 31]. In the more general case con-
sidered here where the arrangement of markers is random, a10

specific methods must be developed to build an initial solu-
tion taking into account the pose ambiguity.

1.2. Our contributions

In this paper, we focus on the problem of ambiguity of
the pose as well as the identification of markers that are15

incorrectly detected or damaged but still detected (e.g., a
bent marker or partially occluded marker) as shown in the
Fig. 2. We propose a new method to construct a reliable
estimation of the relative position of fiducial markers. This
method allows the elimination of ambiguous positions as well20

as bad detections. The paper is organized as follows. Sec-
tion 2 presents the developed method after laying the math-
ematical foundations. Section 3 describes a series of exper-
iments setup to demonstrate the performance of the pro-
posed method. Section 5 proposes a discussion and a con-25

clusion regarding the results and the overall performance of
the method.

2. Proposed method

2.1. Initial concepts and definitions

2.1.1. Definitions30

In our approach, a set of planar square fiducial markers
M i with i ∈ {1, . . . , nM} are randomly glued at the surface of
an object with an arbitrary geometry. It is assumed that the
markers are not in a co-planar position. This object, noted L,
is referred to as the locator.35

In the present work, ArUco markers [32] are used, but this
approach could be similar to all type of square planar fiducial
markers such as AprilTag [33] or ARTag [34].

A set of images I j of the locator with j ∈ {1, . . . , nI} is cre-
ated from different viewpoints with a single camera. Each40

marker M i and each image I j are associated with a reference
frame. The images are processed with the ArUco method in
order to detect the visible markers [35, 36]. The pixel coor-
dinates of the 4 corners of a marker M i visible on the image
I j are noted ũM i/RI

( I j ) ∈ R2 ×R4. The sub-pixel position of45

these corners is refined using the "AprilTag 2 method" [37].

2.1.2. Affine transformations
When passing from one reference frame to another, the co-

ordinates of a point undergo a rotation r followed by a trans-
lation t . For the sake of simplicity, we use notations consis-50

tent with the ones used by [24]. Accordingly, such an affine

transformation is noted γ = (r , t ), with r =
�

rx , ry , rz

�T
,

the rotation vector as defined by Rodrigues convention and

t =
�

t x , t y , tz

�T
, the translation vector. The rotation matrix

R, bijectively associated to r verifies:55

R = I + r̄ sinθ + r̄ 2(1− cosθ ) (1)

Where θ = ∥r∥ and r̄ is the cross product matrix:

r̄ =
1
θ





0 −rz ry
rz 0 −rx
−ry rx 0



 , (2)

and θ ∈ [0, 2π], due to the periodicity properties of rota-
tions. The affine transformation matrix Γ (γ) ∈ R4 × R4 is
then defined by:

Γ (γ) =

�

R t
0 0 0 1

�

(3)

Affine transformation matrices Γa = Γ (γa) and Γb = Γ (γb)60

can be composed by matrix product so that Γb,a = Γb ⊗ Γa.
By extension, it is assumed that the symbol ( · ) indicates the
composition for γ transformations so that γb,a = γb ·γa.

2.1.3. Single marker pose estimation
In its own reference frame RM i

, the spatial homogeneous65

coordinates of the corners ςk with k ∈ {0, . . . , 3} of a marker
M i are consolidated in matrix C M i/RM i

such as:

C M i/RM i
=

1
2

ς0 ς1 ς2 ς3
↑ ↑ ↑ ↑






−d d d −d
−d −d d d

0 0 0 0
1 1 1 1






, (4)

with d the side length of each marker. These coordinates can
be expressed in any reference frameR by their homogeneous70

coordinates:

C M i/R = ΓR←RM i
⊗C M i/M i

= γR←RM i
·C M i/RM i

(5)

By composing the resulting coordinates of the corners of the
marker M i with a Ψ operator, these points are projected into
the pixel space of the camera on the I j image. Ψ is a unique
affine transformation obtained by calibrating the camera sen-75

sor which integrates the change of reference frame from the
camera frame Rc to the image frame RI by perspective pro-
jection and a change of scale operation. The coordinates of
the projected points will then be expressed as :

uM i/RI
(γ ( I j )) = Ψ (δ) ·γ ( I j ) ·C M i/RM i

(6)

Where δ =
�

fx , f y , cx , cy , k1, . . .
�

is the tuple of intrinsic cam-80

era parameters, ( fx , f y) are the focal lengths parameters,
cx , cy the optical center parameters and (k1, . . .) the distor-
tion parameters. The reprojection error of the marker M i on
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the image I j , as a function of γ ( I j ), is then written:

eM i ,I j
(γ ( I j )) =

4
∑

m=1

2
∑

l=1

�

∆uM i/RI
(γ ( I j ))
�2

l,m , (7)

with l and m denote respectively the number of coordinates
and the number of corners of the marker M i . ∆uM i/RI

∈
R2×R4 are the reprojection residues in pixels calculated from
the difference between the measured corners ũM i/RI

( I j ) and5

the projected corners uM i/RI
(γ ( I j )):

∆uM i/RI
(γ ( I j )) = uM i/RI

(γ ( I j ))− ũM i/RI
( I j ) (8)

In theory, the pose of the marker M i relative to the camera
reference frameRc by an image I j can be determined by min-
imizing the reprojection error according to γ ( I j )Rc←RM i

:

γ ( I j )Rc←RM i
= arg min

∗
γ ( I j )

Rc←RM i
∈ R3×R3

eM i ,I j
(
∗
γ ( I j )Rc←RM i

) (9)

The knowledge of the pose of each individual marker allows10

the locator structure to be determined. This structure is re-
trieved by an optimisation step called bundle adjustment de-
scribed in the paragraphe 2.1.6. In practice, some pose esti-
mation of individual marker can be wrong, due to pose am-
biguity or misdetected markers.15

2.1.4. Pose ambiguity
Due to the co-planarity of the corners of each individ-

ual marker, the reprojection error eM i ,I j
(γ ( I j )) can have two

minimums [See 3, Fig. 1-3]. When two solutions exist, they
are noted γ ( I j )Rc←RM i

,0 and γ ( I j )Rc←RM i
,1. One is the real20

solution and the other is a bad solution. The presence of mea-
surement noise implies that in some cases, the minimum of
the reprojection error does not necessarily correspond to the
real solution. This problem is called pose ambiguity [8, 38].
In the following, we systematically calculate these two poses25

using the method proposed by [3]. If they are differents,
both are kept and the right one will be identified afterward.
We used markers of size d = 12.41 mm at a typical working
distance of L = 800 to 1200 mm. In this configuration, the
probability of presence of two poses is almost systematic.30

2.1.5. Bad markers and bad detections
In practice, the following 2 configurations can also lead to

incorrect pose estimation illustrated in Fig. 2:

Bad marker: A damaged marker but still detected. It oc-
cures when a marker is no longer flat or if it is stained35

or scratched. In this case, both poses are systematically
incorrect.

Bad detection: Poor marker detection typically caused by
a corner being detected at the wrong position. This
can happen on partially occluded markers or bad image40

quality. In this case, the detection results also in two
incorrect poses.

a

c

b

Figure 2: Illustration of two configurations that can lead to incorrect pose
estimation. (a) Appropriate detection of the marker. (b) Bad marker: mis-
detection of the marker. In this case, it is bent but a stain could produce the
same effect. The associated poses are systematically wrong. (c) Bad detec-
tion: a marker is detected incorrectly. In this case, the marker is partially
occluded but is still detected. One of its corners is detected in the wrong
position and the associated poses are erroneous.

The detections from these configurations must be eliminated
before the bundle adjustment to allow convergence to the
correct solution. This implies eliminating the bad detections45

and not considering the bad markers in the construction of
the locator.

2.1.6. Bundle adjustment

The pose and structure of the locator L is determined by
solving a bundle adjustment problem. Since the markers are50

not co-planar, the locator is not affected by pose ambiguity
for a single marker. Firstly, among all the markers, a marker
M0 is arbitrarily taken as reference within the locator. The
structure of the locator will be fully defined by knowledge of
γS =
¦

γRM0
←RM i

|i ∈ {1, . . . , nM}
©

. The pose of the locator in55

the image batch I j is defined by:

γI =
n

γ ( I j )Rc←RM0
| j ∈ {1, . . . , nI}
o

(10)

The reprojection error is defined as :

E(γ∗S ,γ∗I ) =
nM
∑

i=1

nI
∑

j=1

ηM i ,I j
(γ ( I j )Rc←RM0

·γRM0
←RM i

), (11)

where:
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ηM i ,I j
(γ) =

¨

eM i ,I j
(γ), DM i ,I j

= 1

0, DM i ,I j
= 0

, (12)

and D a detection mask defined as follows:

DM i ,I j
=

�

1, ∃(i, j) | M i ⊂ I j

0, otherwise
(13)

Consequently, the optimal parameters γS and γI are the so-
lutions of:

γS ,γI = arg min
γ∗S ,γ∗I

E(γ∗S ,γ∗I ) (14)

The optimal result highly depends on the initial guess pro-
vided (γS,0,γI ,0). We propose a method based on graph the-5

ory that is able to handle several problems prior to the bundle
adjustment. It is therefore essential to eliminate bad poses
beforehand by removing the pose ambiguity and by elimi-
nating bad detections of markers.

2.2. Proposed algorithm10

2.2.1. Detection graph and cycle basis
We consider a graph Gs whose vertices are the markers and

the images. The sets of images and markers being indepen-
dent, each detection DM i ,I j

= 1 corresponds to an edge of
this graph. A cycle basis {ξi |i ∈ {1, . . . , Nc}} is then gener-15

ated from this graph [39]. A basic example is shown in Fig.
3.

2.2.2. Pose classification using cyclic rotational errors
Let us consider the cycle ξ0 = (M1, I1, M2, I0) from Fig. 3

with length Ne = 4. For each edge of the cycle corresponding20

to the detection of the marker M i on the image I j , the true
affine transformation is noted γ ( I j )Rc←RM i

. By composing

these transformations, a residual pose γ̂ξ0
=
�

r̂ξ0
, t̂ ξ0

�

for
this cycle is calculated as:

γ̂ξ0
= γ ( I1 )RM2

←Rc
·γ ( I0 )Rc←RM1

·γ ( I1 )RM1
←Rc

·γ ( I0 )Rc←RM2

(15)

If the pose estimations were free of errors, this residual25

pose would be null. In practice, there is always some de-
gree of error in the pose estimations. In addition, in case of
pose ambiguity, there are two pose estimations γ ( I j )Rc←RM i

,0
and γ ( I j )Rc←RM i

,1. It follows that the residual affine trans-

formation γ̂k
ξ0

associated with a given cycle can be com-30

puted according to Np combinations of estimated poses for
k ∈
�

1, . . . , Np

	

where 1 ≤ Np ≤ 2Ne . A priori, only one of
these combinations should be correct while the others should
produce large residual affine transformations. Since the pose
ambiguity predominantly affects the rotational component of35

a transformation γ, the angular residual θ̂ k
ξ0
= ||r̂ k

ξ0
|| is used

as the sole indicator of combination quality. The following

Detection Valid. Counter To class
Id. Mark. Img. γ0 γ1 γ0 γ1

0 M1 I0 1 0 G B
1 M1 I1 2 2 U U
2 M2 I0 2 8 B G
3 M2 I1 5 G
4 M3 I1 0 B

. . .

Table 1: Example of application of the proposed method in the case of the
graph of Fig. 3. Only the poses which are in class (U) at the beginning of the
current iteration are represented. The column "To class" indicates to which
class the poses are moved. Detections 3 and 4 have no pose ambiguity which
explains the absence of γ1 in these two cases. We can see that except for the
poses associated with detection 1, all the poses are initially in (U) are placed
in (B) and (G).

criterion is therefore used to validate the combinations asso-
ciated with a cycle of length Ne:

θ̂ k
ξ0

Ne
≤ θ̂c , (16)

where θ̂c is the critical angle below which the angular error40

per edge is considered negligible. This angle is arbitrarily set
up to 0.1◦ in our application.

In fact, we observe that several combinations of the same
cycle may often validate this criterion. This implies that in-
correct pose estimations can be involved in combinations that45

validate the criterion of Eq. 16. There are two main reasons
for this observation. First, the presence of almost identical
images within the same cycle necessarily implies that two
combinations of the cycle will validate the angular criterion.
Secondly, fortuitously and due to the large number of pose50

estimates, we sometimes observe validations of this angular
criterion for wrong cycles. A statistical approach can separate
the correct pose estimations from the incorrect ones.

A counter CI j ,M i ,k is associated with each pose
γ ( I j )Rc←RM i

,k for k ∈ {0,1}, which can belong to one55

of the following classes: bad (B), undetermined (U) and
good (G). The goal of our method is to move the poses
from their inital class (U) to classes (B) and (G). All the
combinations of each cycle are tested using Eq. 16 and each
time, one of them is validated, the counters are incremented60

by 1. We assume that incorrect validations of combinations
involving bad poses are in the minority. We thus assume
that of two poses associated with the same detection, the
good one will be validated at least α times more often than
the bad one. The α criterion is formalized by the following65

equation:

α=
max(CI j ,M i ,0, CI j ,M i ,1)

min(CI j ,M i ,0, CI j ,M i ,1)
(17)

To secure the validation of good poses, the value α= 1.5 has
been chosen.

Tab. 1 proposes an example of implementation of

5
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Figure 3: Simple example of construction of a graph Gs . a) The sets of 3 images and 6 markers are represented. Each detection DM i ,I j
of a marker M i on

an image I j corresponds to an edge of the graph. For example, the markers M1, M2 and M3 are here detected on the image I1. b) The cycle base allows to
browse at least once each edge. Here, 3 cycles ξi are necessary to build the base. The marker M0 was observed only once, so it does not belong to any cycle
and is therefore excluded from the cycle base.

this approach. The final value of this counter allows to
treat each detection associated with poses belonging to
(U) individually. In the absence of pose ambiguity, if
CI j ,M i ,k > 0, the only pose is reclassified as (G), (B) oth-
erwise. If CI j ,M i ,0/CI j ,M i ,1 ≥ α, the pose γ ( I j )Rc←RM i

,05

is considered as (G) and γ ( I j )Rc←RM i
,1 (B). Conversely, if

CI j ,M i ,1/CI j ,M i ,0 ≥ α, the pose γ ( I j )Rc←RM i
,1 is considered

(G) and γ ( I j )Rc←RM i
,0 (B). Finally, in the remaining cases,

neither pose is clearly better and both are kept in (U). The
graph Gs is updated from the detections present in the classes10

(G) and (U) and a new basis cycle is generated. The CI j ,M i ,k
are reset to 0 for all the remaining poses. The equation 16 is
once again applied to increment the counters.
This procedure is re-iterated until the size of the (U) class
does not decrease during an iteration. If the graph ob-15

tained during the iterations is disjoint then the iterations are
stopped. The remaining poses in class (U) are then placed in
(B) then all poses are classified as (G) or (B).
Consequently, each edge of the final graph Gs is associated to
a single pose belonging to the class (G).20

2.2.3. Formalization of the educated guess initial solution
The formulation of the initial solution requires the selec-

tion of a reference marker from which the locator structure
is described. Among the markers, the one with the lowest
eccentricity is chosen as the reference marker and noted M025

as in section 2.1.6. The relative pose of each marker γS,0 and
each frame γI ,0 is then estimated by looking for the shortest
path between the reference marker and each other node of
the simple graph Gs [40].

The main interest of this algorithm lies in the quality of30

this initial solution. Indeed, it is close enough to the opti-

mal solution and thus represents an excellent starting point
for a bundle adjustment procedure described in section 2.1.6
which allows to further refine this solution to obtain γS and
γI from equation Eq. 14.35

2.3. Locator pose estimation from a single image

After the proposed structural calibration, the pose of the lo-
cator can be estimated from a single image. The coordinates
of the marker corners are then known relatively to the cho-
sen reference marker M0. The locator’s reference frame RL40

is then equal to the reference frame RM0
. Knowing the loca-

tor structure γS , the coordinates of the corners of the markers
are expressed in the locator’s reference frame RL such as:

C M i/RL
= γS ·C M i/RM i

(18)

Consequently, the coordinates of the markers in the camera
reference frame Rc are given by the following expression:45

C M i/Rc
( I j )= γ ( I j )Rc←RL

·C M i/RL
(19)

The coordinates of the projections of the corners of the mark-
ers visible to the camera (DM i ,I j

= 1) projected onto the im-
age I j can be expressed in the image reference frame RI as:

uM i/RI
( I j )= Ψ (δ) ·γ ( I j )Rc←RL

·C M i/RL
(20)

The reprojection error residuals ∆uM i/RI
∈ R2 ×R4 give the

difference between the projections uM i/RI
and the measured50

detections ũM i/RI
( I j ). Therefore, if at least two markers are

visible, then the reprojection error of the composite marker
on an image I j can be defined as:

6



EL(γ ( I j )Rc←RL
) =

nm
∑

i=1

4
∑

m=1

2
∑

l=1

�

∆uM i/RI
(γ ( I j )Rc←RL

)
�2

l,m,i

(21)
By optimization, the locator pose on this image is

calculated by minimizing this error by a transformation
∗
γ ( I j )Rc←RL

such as:

γ ( I j )Rc←RL
= argmin

∗
γ ( I j )

Rc←RL
∈R3×R3

EL(
∗
γ ( I j )Rc←RL

) (22)
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3. Experiments and results

c.1 c.2

b.1

a

b.2

Figure 4: Experimental setup equipments. a) Camera, ring light and micro-
metric stage. The camera reference frame is represented. The micrometric
stage allows to perform rotations and translations close to camera x and z
axis. b.1) Locator made from stone, ArUco were glued on glass. b.2) Stylus
made from stoned-based locator. c.1) The double-dodecahedron used had
the dimensions 9 cm×7 cm×7 cm. ArUco markers glued on 21 faces of the
solid. c.2) Stylus using the double-decahedron. The spherical contact probe
is shown.

This section presents the experimental validation of the
proposed method. A first part is focused on the calibration

and measurement uncertainties of locators made from two
different shapes of the host objects. A second one concern5

the use of these locators as stylus where their respective tip
are tracked. The last part is dedicated to the surface regis-
tration on an artificial scapula with points digitized by one
of the presented styli. All tests were performed on a laptop
using an Intel Core i9-9880H processor with 32 GB of RAM10

and Ubuntu 18.04 as the operating system. An SVS-VISTEK
EXO542 MU3 camera with a resolution of 5320×3032 pixels,
23 fps max and a 16 mm focal length PENTAX TV lens were
used. The scene is lit by a ring light. The intrinsic camera
parameters were identified by the chessboard corner method15

[41]. An overview of the experimental setup is provided in
Fig. 4.a. The working distance (distance camera-object) is in
the range of 800 mm to 1200 mm. The aperture of the lens
diaphragm is set to obtain a depth of field of about 400 mm.

3.1. Calibration and measurement uncertainties of locators20

The first proposed locator is composed by 12 mm sided
6 × 6 ArUco markers placed on the surface of a stone of
approximate dimension of 70× 70× 60 mm3 with a random
shape, see Fig. 4.b.1. The ArUco markers are stuck on glass
plates to guarantee their flatness, themselves glued on the25

stone. These markers were placed randomly on the surface
of the object, simply avoiding placing them in a co-planar ori-
entation. Depending on the geometry of the host object, the
number of markers visible to the camera can vary. We pro-
pose to analyze another geometry in the form of a double-30

dodecahedron, see Fig. 4.c.1. This geometry offers the ad-
vantage of presenting a minimum of 6 ArUco markers what-
ever the camera’s observation point.

As shown in Fig. 5.a, a continuous recording during about
20 s of freehand manipulations of the stylus is performed35

with great variety of poses. This provided a set of 423 frames.
Attention was paid to avoid motion blur, overexposure and to
respect the camera depth of field.

The proposed algorithm is applied to calibrate the locator
made from a stone. The structure of the locator is calculated40

from the individual poses of each of the ArUco markers on the
set of images (2525 detections lead to 2 × 2525 poses due
to the pose ambiguity). The Fig. 5.b represents the graph
which connects all the images to the 15 markers glued on
the locator. Fig. 5.c shows the corner positions detected by45

the AprilTag 2 fiducial marker detection method [42]. The
position of these same corners determined by projection with
our method alone and after the bundle adjustment are repre-
sented jointly on these 4 images. Some marker’s detections,
although visible on some images, are excluded by our method50

because they don’t reach the criteria defined by Eq.16 and
Eq. 17 . Figure 5.d presents the starting point given by our
method and the optimized state. The mean and standard de-
viation values of these reprojection errors along x and y axes
are respectively : X̄ x = 3.73e−4 pixel, σx = 1.55e−1 pixel;55

X̄ y = −1.36e−3 pixel, σy = 1.61e−1 pixel. To sum up, 98%
of the points have a reprojection errors contained in a square
box of 1 pixel side. The points outside this area are due to

8
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Figure 5: Workflow for the calibration of a rigid body. a) Sample of 4 calibration images of the locator object. The stylus was moved manually in front of the
camera during image acquisition. All faces of the stone were presented so that all markers are considered during calibration. b) Initial graph obtained during
the calibration of the locator object, red and blue nodes denote images and markers respectively. The edges represent the detections. c) Positions of each
corner of each marker on the images. In red, the positions obtained using the AprilTag 2 fiduciary detection method [42]. In blue, the positions obtained after
projection of the poses estimated by our method. And finally, in green, the positions obtained after the least squares optimization using the blue positions as
initial solutions. d) Residuals of reprojection errors of the markers corners from initial solution (blue) and the results of least-square optimization (green) on
the all image batch. The majority of the points (98%) after optimization presents an absolute value reprojection error lower than 0.5 pixel.
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markers strongly tilted to the camera’s optical axis (approx-
imately greater than 60◦). Keeping or removing them only
marginally affects the result of the optimization. In practice,
the calibration time varies between 3 and 6 minutes depend-
ing on the number of images recorded and the number of5

present markers.
Using equation 22, the pose of the locator obtained after

calibration can be calculated from an image in lower than
0.1 second, examples are shown in figure 6. We propose to
qualify the measurement uncertainties in translation and in10

rotation of the resulting locator.

Figure 6: Different poses of the locator. The pose of the locator can be calcu-
lated in real time regardless of its orientation if a minimum of two markers
are visible. The reference frame associated to the locator correspond to cen-
ter of the chosen reference marker M0. Note that even if M0 is not visible
on an image, the pose of the locator can be still calculated and drawn using
the other markers detections.

→ Translation uncertainties
From a reference position noted Q0, two successive transla-
tions of target distance Lt = 25 mm are performed on the
locator using a micrometric translation stage. The directions15

of these two translations are orthogonal to each other. The
first translation moves the locator from the position Q0 to
position Q1 along a direction close to the camera optical axis
(z axis). The second translation brings the locator from Q1
to Q2 with a direction close to the camera x axis. For each20

position, Ni = 10 images are recorded. We calculate the asso-
ciated Euclidean distance noted L between the different posi-
tions. Note that the distances are calculated from all the com-
binations of images between the two positions, so there are
N2

i = 100 distances calculated between each position. The25

whole procedure is repeated for 3 orientations of the locator
and the associated distances are noted Ll , with l ∈ {0,1, 2}.
We impose that the visible markers between the 3 orienta-
tions are different.

The results of these tests are shown in Figure 7. For all the30

movements made along the camera pseudo z axis, an aver-
age distance of 25.08 mm is recorded. The associated stan-
dard deviation dispersion is 0.06 mm. Similarly, the mea-
surements taken on the pseudo x camera axis give an av-
erage of 25.01 mm and a standard deviation dispersion of35

0.03 mm. According to these measurements, a positioning
error of less than one millimeter is possible. As expected, the
standard deviation dispersion is higher for the movements
along the camera optical than the orthogonal direction.
→ Rotation uncertainties40

A qualification of the measurement uncertainties in rotation
of the locator is proposed. From an initial orientation, suc-
cessive imposed rotations of θt = 45◦ are performed on the
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Figure 7: Translation uncertainties of the locator for l ∈ {0, 1,2} given ori-
entations. a) Distribution of the distances Ll calculated between positions
Q0 and Q1, close to camera z axis direction. b) Distribution of the distances
Ll calculated between positions Q1 and Q2, close to camera x axis direction.

locator using a rotation plate. A total of Nr = 7 rotations
are thus imposed. For each orientation, Ni = 10 images are45

taken. Between each rotation, the pose of the locator is es-
timated and the value of the rotation angle θ performed is
then deduced.

44,00 44,25 44,50 44,75 45,00 45,25 45,50 45,75 46,00

Angle θ [°]

0

50

100

150

C
ou

nt

θt Stone Double-dodecahedron

Figure 8: Rotational uncertainties of the stone locator. From a initial orien-
tation, 7 rotations of θt = 45◦ are imposed.

The results of these tests are given in Fig. 8. For the
imposed angles θ , a standard deviation of σθ = 0.33◦50

and σθ = 0.14◦ respectively for the stone and the double-
dodecahedron locators.

We applied the same translations and rotations tests to the
double-dodecahedron locator geometry. The test results for
translational uncertainties along the camera z-axis and rota-55

tional uncertainties from the two types of locator geometries
are given in Table 2.

There is a significant improvement in the results with the
use of the double-dodecahedron, since the number of visible
markers is systematically greater.60
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Host object |d̄z − dt | σdz
dt
⋆⋆ |θ̄ − θt | σθ θt

⋆⋆

Stone 0.080 0.060
25

0.041 0.330
45

Dd⋆ 0.002 0.041 0.010 0.140

Unit [mm] [◦]

Table 2: Accuracy uncertainties in translation and rotation of the double-
dodecahedron shape locator compared to the locator made from a
stone.⋆Double-dodecahedron, ⋆⋆Target values.

3.2. Stylus tracking

A steel rod of length 200 mm with a spherical contact
probe (Ø2 mm) was embedded in the stone and the double-
dodecahedron locators see Fig. 4.b-c.2.

The position of the stylus tip was identified by using move-5

ments in which the tip was kept in contact with a fixed conical
surface relative to the camera. The performed movements
are random combinations of rotations including rotations of
360◦ around the axis of revolution of the stylus to ensure
observation of all markers. Twenty images are recorded as10

illustrated by figure 9.
The center of the tip is determined by looking for a unique

point PA/RL
in the locator frame of reference RL that would

also be stationary in the camera’s reference frame Rc dur-
ing the movements performed. This condition can be ex-15

pressed as the minimization of the variance of the coordi-
nates of point PA/Rc

in the camera frame:

PA/RL
= argmin

∗
PA/RL

∈R3

(Var(
n

γ ( I j )Rc←RL
·
∗
PA/RL

o

)) (23)

The coordinates of stylus tip’s center are thus known in the
locator reference frame.

To quantify uncertainties in the position of the tip of this20

stylus, we reuse the same types of movements as those ap-
plied when the tip identification. These motions are per-
formed via a micrometric translation stage for three positions
Q0, Q1 and Q2 of the tip relatively to the camera. The dis-
placement between Q0 and Q1 corresponds to a translation25

of dt = 10 mm in a direction close to the optical axis cam-
era (z axis). The second displacement Q1 to Q2 corresponds
to a translation of in a direction close to the x axis camera
with the same dt value. For each position, 100 images are
recorded.30

In order to identify the stability of the process, the stan-
dards deviations of the tip coordinates are calculated for the
Q0 position. The results are shown in the following table 3.

Then, we calculate the distances using the Euclidean norm
separating the positions Q0 and Q1 noted dzi

and the posi-35

tions Q1 and Q2 noted dx j
. The results are shown in figure

10 for the stone locator.
It is thus possible to identify by monocular vision the po-

sition of the tip of a stylus observed at a distance of 1 metre
with a standard deviation of less than 0.2 mm and a mean40

deviation of less than 0.1 mm.

Host object σx σy σz

Stone 0.120 0.040 0.240
Dd⋆ 0.096 0.039 0.302

Unit [mm]

Table 3: Comparison of the stability of tip point identification for the stone
and the double-dodecahedron locators. The results are obtained by calculat-
ing the standard deviations of the coordinates of the tip point in the camera
frame. ⋆Double-dodecahedron.

The comparison of the uncertainties related to the two styli
is given in table Tab. 4.

Host object |d̄zi
− dt | σdzi

|d̄x i
− dt | σdxi

dt
⋆⋆

Stone 0.063 0.344 0.058 0.169
10

Dd⋆ 0.081 0.193 0.022 0.053

Unit [mm]

Table 4: Comparison of the uncertainties on the position of the tip of the
styli between the localizers made from a stone and a double-decahedron.
⋆Double-dodecahedron, ⋆⋆Target distance value.

3.3. Surface registration on an artificial scapula

In the context of surgical navigation, we need to identify45

the position of a bone structure relative to the camera by
simply observing a locator rigidly attached to the bone struc-
ture. To illustrate our approach, we propose to find the po-
sition of an artificial scapula in relation to the camera using
a surface registration. The shape of the used locators were50

double-dodecahedron geometry.
In the example presented here, a digital scapula model

(Fig. 11.a) was obtained from a CT scan of a patient. This
STL model was used to reproduce an artificial copy of the
scapula by photopolymerisation using the Form 3+ printer55

from the manufacturer Formlabs. In this test, we propose to
use two locators, one attached to the stylus and the second
attached to the artificial scapula whom references frames are
respectivelyRs t y andRscp . The coordinates of the points of
the numerical model of the scapula are known in a reference60

frame noted Rs t l . Using the stylus, scans of certain areas of
the artifical scapula are made during which Ni = 90 images
are taken (Fig. 11.b).

For each image j ∈ {1, . . . , Ni}, the centre of the spheri-
cal tip of the stylus noted Pc j/Rscp

is known in the reference65

frame Rscp by the following equation:

Pc j/Rscp
= γ ( I j )Rscp←Rc

·γ ( I j )Rc←Rs t y
· Pc/Rs t y

(24)

Using the proximity.signed_distance() f function from
Trimesh module (Python3), we can calculate the signed dis-
tance, noted ls, between any point expressed in Rs t l refer-
ence and the surface S forming the numerical model. The70
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https://trimsh.org/trimesh.proximity.html#trimesh.proximity.signed_distance


a-0 a-1 a-2

b
c

Figure 9: Stylus tip identification. a) Sample calibration images of the locator tip. b) Illustration of the movements performed during image capture, the tip
of the stylus is held in a conical notch. The operator manipulates the stylus while keeping contact with the notch. At the same time, the operator rotates the
stylus along the axis of the stainless steel rod to present all the faces of the locator object. The range of motion of the locator is about ±100 mm around the
vertical position. c Photography of the tip of the stylus. The origin of the drawn reference frame is positioned on the tip of the stylus.
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Figure 10: Styli-tip distance of the locators dispersion where target value is
10 mm. a) Distribution of distances dzi

measured between positions P0/Rc
and P1/Rc

along an axis close to the z-axis camera. b) Distribution of dis-
tances dxi

measured between positions P1/Rc
and P2/Rc

along an axis close
to the x-axis camera.

sign of ls is negative when the considered point is outside
the surface S.

During scanning, the actual probe point is shifted by the
radius of the contact sphere of radius r = 1 mm. Taking into
account the offset, we can write the following optimisation5

equation to identify the rigid transformation γRs t l←Rscp
be-

tween the digital model and the scapula locator as :

γRscp←Rs t l
= argmin

∗
γRscp←Rs t l

Ni
∑

j=1

�

f
�∗
γRs t l←Rscp

· Pc j/Rscp
,S
�

+ r
�2

(25)
Then the coordinates of the points Pc j/Rs t l

can then be ex-
pressed in the reference frame Rs t l according to the follow-
ing equation:10

Pc j/Rs t l
= γRs t l←Rscp

· Pc j/Rscp
(26)

We have repositioned these points in the stl reference frame
to represent them on the surface of the numerical model (Fig.
11.c). We evaluated the solution found by calculating the
obtained signed distance ls between the points Pc j/Rs t l

and
the surface S forming the numerical model.15

The results obtained are presented in figure 12. The mean
value of the signed distance ls j + r = 0.011 mm is observed
with a standard deviation σls j

= 0.26 mm.
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a b c

Figure 11: a) Numerical model of the scapula from CT-scan of cadaveric scapula. b) Scannning of the artificial scapula. One of the double-dodecahedron
shape locator is rigidly attached to the artificial scapula. The scapula and pen are manipulated freehand. The digitalisation of the points is made using the
stylus with a second double-dodecahedron shape locator. c) Registration of the scanned points on the artificial scapula with the digital model of the scapula.
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Figure 12: Distribution of the signed distance ls j + r between the measured
points Pc j/Rs t l

and the surface S of the digital scapula model taking into
account the offset of the contact sphere radius r.
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4. Discussion

Based on the aforementioned results, we evaluate the qual-
ity of the following aspects: calibration of locator, the en-
hanced value associated with the geometry of the doubledo-
decahedron, positioning of the tip of the stylus, and surface5

registration for the presented medical application.
A calibration step allow to find the relative positions of the

planar markers stuck on these objects by simply observing
images of them manipulated freehand in front of the cam-
era. This calibration method is based on graph theory. Af-10

ter optimization, we found the structure of the locator. The
reprojection errors observed on the images were mostly con-
tained in a square of 1 pixel.

To test the found solution, controlled movements were im-
posed on the locators alone. The analysis of the uncertainties15

for these movements showed that the geometry of double-
dodecahedron with at least 6 planar markers performs best.
For this locator, we obtain uncertainties of the order of 41 µm
in translation along the camera optical axis (the most criti-
cal axis in monocular vision) and uncertainties in rotation of20

0.14◦.
For the specific needs of shoulder surgery, a probing device

is necessary. A stylus of approximately 20 cm in length con-
sisting of a spherical tip and a double dodecahedron locator
is proposed. Tests from paragraph 3.2 have shown that it is25

possible to track the centre of this sphere with an uncertainty
of about 0.2 mm.

This stylus was used to perform a surface registration be-
tween an artificial scapula and its digital model based on the
scanning of a restricted area of this scapula (glenoid cavity).30

The deviations between the set of scanned points and the
mesh of the digital model are all less than 1 mm This accu-
racy is fully compatible with the expectations of orthopaedic
shoulder surgery. The results obtained from cadaveric shoul-
ders will be presented in a forthcoming publication. The cal-35

ibration time of the locators and the identification of the sty-
lus tip do not impact the operating time since these steps can
be performed preoperatively. However, the palpation of the
glenoid cavity and the surface registration are included in the
operating time (about 2 minutes in total).40

Improvement perspectives are possible for this monocular
localization. Currently, the calibration of the locator with a
hundred images in input takes about 1 minute. The cycle
basis obtained from the graph tool proposes short cycles but
also longer cycles, the latter penalizing the processing time.45

A reflection to limit this type of long cycle has to be con-
ducted. More generally, structural optimizations of the algo-
rithm should allow an improvement of the processing speed
using parallelization approaches.

5. Conclusion50

In this work, a method to track in real time an object pos-
tionned at about 1 meter from the camera by monocular vi-
sion was proposed. From a random shape object (stone)
or from a more controlled geometry (double-dodecahedron),

3D locators based on a cluster of planar markers were anal-55

ysed.
The resulting locators have translation uncertainties on the

order of one-tenth of a millimeter and orientation uncertain-
ties on the order of one-hundredth of a degree. We have also
shown that these locators can be used for surface registration60

with sub-millimetre uncertainties. These uncertainties are
reached whatever the visible plane markers of this locator.
These results, along with the locators’ geometric versatility,
show great potential for their implementation in orthopedic
surgical navigation applications. In this application, locators65

can be customized for use with medical tools such as probing
styluses, drills, surgical saws, implants, or prostheses.

The freedom offered by this approach allows to imagine
applications for other types of surgeries but also for various
fields of applications requiring real-time sub-milimetric local-70

izations between different objects.
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