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Abstract This paper introduces an optimized orbit jump strategy for nonlinear
Vibration Energy Harvesters (VEHs). Nonlinear VEHs are a promising alterna-
tive to linear VEHs due to their broadband characteristics. However, they exhibit
complex dynamical behaviors, including not only high-power inter-well orbits but
also low-power intra-well orbits and chaos. The existence of low-power orbits in
their dynamics can restrict their energy harvesting performance. In order to over-
come this issue, this study investigates an orbit jump strategy that allows the VEH
to transition from low-power intra-well orbits to high-power inter-well orbits. The
orbit jump strategy, which is based on varying the buckling level of a bistable
VEH, has been previously studied but not yet optimized. In this study, we opti-
mize this orbit jump strategy to ensure practical reproducibility and robustness
against variations in parameters or excitation. Through the combination of thor-
ough experimental identification and high performance computing of the complex
transients during orbit jumps, we achieved high numerical accuracy in orbit jump
modeling. This was possible by a developed Python CUDA code using GPU par-
allel computing to handle a large number of numerical resolutions of the nonlinear
VEH model. These simulations facilitate the optimization of both the robustness
and the energy cost of orbit jumps, based on a novel numerical criterion. Experi-
mental tests were performed on a bistable VEH over a frequency range of 30 Hz,
validating the numerical results obtained with the optimized orbit jump strategy.
Experimental results show an average success rate of 48%, despite a variation of
±15% in the starting and ending times of the jump, leading to a robust and opti-
mized orbit jump strategy. The proposed optimization procedure can be applied
to other orbit jump strategies, and other types of nonlinear VEHs. The results
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indicate that the energy consumption required for a successful orbit jump ranges
between 0.2 mJ and 1 mJ, and can be restored within 0.2 s in the worst case.

Keywords Orbit jump, Optimization, GPU parallel computing, Buckling
adjustments, Bistability, Nonlinear dynamics, Energy harvesting.

1 Introduction

Energy harvesting is seen as a viable alternative to the use of batteries for sup-
plying low-power electronic systems. The sources of energy that can be harvested
are diverse and numerous, including solar radiations, fluid flows, electromagnetic
waves, and mechanical vibrations. In particular, vibration energy is naturally ubiq-
uitous even in confined environments with little solar and thermal energies avail-
able. This study focuses on energy harvesters that convert vibrational energy from
ambient sources into electricity [1].

Vibration Energy Harvesters (VEHs) can be divided into two categories: linear
VEHs, which rely on linear oscillators, and nonlinear VEHs that exploit nonlinear
oscillators. Historically, linear VEHs have been studied because their behavior is
easier to predict and because they can be more easily manufactured. However,
linear VEHs have a narrow frequency bandwidth, and as a result, their energy
harvesting performance drastically decreases when there is a mismatch between
the driving frequency and their natural frequency [2, 3]. This makes linear VEHs
unsuitable for applications with a time-varying spectrum, limiting their use in
most environments. This has led to an increased interest in the development of
nonlinear VEHs, especially bistable VEHs.

Fig. 1: Orbit jump strategy using buckling level adjustments of bistable VEH to
switch from intra-well to inter-well orbits. Illustration inspired from [4].
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The study of bistable VEHs started in 2008–2009 with the works of Shahruz et

al. [5] and Cottone et al. [6]. Nonlinear VEHs have the advantage of exhibiting
broadband behavior [7, 8], but their complex dynamics with multiple orbits can
result in a drastic difference in power for a given driving frequency. Indeed, as
illustrated in Fig.1, bistable VEHs exhibit low-power intra-well orbits (in red), as
well as high-power inter-well orbits (in blue). Many studies have aimed to better
understand the underlying dynamics of multi-stable energy harvesters [9–11] (for
reviews, see [12–14]). In particular, intra-well orbits can lead to poor energy har-
vesting performance, which hinders the advantages of nonlinear VEHs, and is a
major limitation of this type of energy harvester.

To enhance the performance of nonlinear VEHs, researchers have developed meth-
ods called orbit jump strategies. As shown in Fig.1, orbit jump strategies enable
nonlinear VEHs to transition from low-power orbits (in red) to higher power or-
bits (in blue), maximizing energy harvesting performance and exploiting their full
potential (for review in multi-stable VEHs control, see [13] and for broader re-
view of nonlinear dynamical system control, see [15]). The concept of orbit jump
strategies in energy harvesting was first introduced a decade ago, with early stud-
ies conducted by Erturk et al. [16], Sebald et al. [7, 17] and Masuda et al. [18].
Erturk et al. [16] applied a “hand impulse” to impart enough velocity to a piezo-
magnetoelastic energy harvester, causing the nonlinear VEH to transition to the
high-power orbit. To the best of our knowledge, this is the first experimentally
and numerically demonstrated orbit jump strategy in the literature, using an ad-
ditional velocity input to enhance the performance of nonlinear VEH. Sebald et

al. [7] proposed a method, Fast Burst Perturbation (FBP), which consists in adding
an external sinusoidal excitation during a few cycles. This perturbation is added to
either the ambient excitation or the voltage of the electromechanical transducer in
order to use the latter as an actuator (which is limited by the maximum amplitude
that can be injected into the electromechanical transducer before it undergoes a
dielectric breakdown). The authors validated the FBP method through numerical
simulations [7] and experimental measurements [17]. Thereafter, Masuda et al. [18]
investigated an orbit jump strategy by theoretically and numerically analyzing the
variations in the load resistance value as a function of the displacement amplitude.
They implemented negative resistance, acting as a negative damping, to destabilize
low-power orbits during periods of low displacement amplitude. Once the nonlinear
VEH stabilizes on a high-power orbit, with a large amplitude of displacement, the
load resistance returns to its initial positive value. However, the study is limited
to numerical simulations and requires further experimental validation. Moreover,
this orbit jump strategy is only valid for a specific range of accelerations and fre-
quencies.

Subsequently, as illustrated in Table 1, the manner in which the nonlinear VEH
is perturbed permits the classification of orbit jump strategies into two distinct
categories:

(i) orbit jump strategies that add a temporary external force to the nonlinear VEH
(e.g., a pulse on the voltage across the electromechanical transducer) [7,16,17];

(ii) orbit jump strategies which involve temporarily modifying the dynamic charac-

teristics of the nonlinear VEH (e.g., its damping or stiffness) [18].
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Furthermore, subsequent studies have placed increased emphasis on analyzing the
energy expenditure associated with orbit jump strategies, which is a critical factor
to consider. Indeed, if the energy required to realize the orbit jump is not quickly
recovered, the effectiveness of this approach is questionable. With regard to orbit
jump strategies which introduce an external signal to disturb the system, Mallick
et al. [19] used the FBP technique by superimposing a sinusoidal signal on the
voltage across the electromechanical transducer over 15 cycles to use the trans-
ducer as an actuator. They pointed out the effect of the phase shift between the

External Forcing Authors
Parameter or

variable modified

Perturbation

waveform

Validity

range

Energy

cost

Recovery

time
Optimality

Hand

impulse

Erturk et al.

[16]
Velocity

0.25 s∗
Multiple freq.

6 Hz – 8 Hz
N/A N/A 7

Fast Burst

Perturbation

Sebald et al.

[17]
Voltage

0.7 s∗
Multiple freq.

27.3 Hz – 29.8 Hz
N/A 1.5 s∗ 7

Impact-

induced

Zhou et al.

[20]
Velocity

0.1 s∗
Multiple freq.

4 Hz – 23 Hz
N/A N/A 7

Electrical

switching

Mallick et al.

[19]
Voltage

0.2 s

Single freq.

70 Hz
0.563 mJ∗ 1 s∗ 7

Attractor

selection

Udani et al.

[4]
Voltage

2 s

Single freq.

19.8 Hz
1.21 mJ 5.66 s 3

Characteristic

Modulation
Authors

Parameter or

variable modified

Perturbation

waveform

Validity

range

Energy

cost

Recovery

time
Optimality

Negative

resistance

Lan et al.

[21]
Resistance

0.1 s

Multiple freq.

9 Hz – 11 Hz
0.2 mJ∗ 0.535 s 7

Load

perturbation

Wang et al.

[22]

Stiffness

and damping 4 s

Single freq.

5.2 Hz
N/A N/A 7

Negative

resistance

Ushiki et al.

[23]
Resistance

0.9 s∗
Single freq.

70 Hz
35 mJ∗ 20 s 7

Bidirectional Energy

Conversion Circuit

Wang et al.

[24]

Stiffness

and damping 10.9 s

Single freq.

7.6 Hz
22 mJ 120 s 7

Buckling

modification

Huguet et al.

[25]
Buckling level

20 ms∗
Multiple freq.

30 Hz – 70 Hz
1 mJ∗ 1 s ∼∼∼

Voltage Inversion

Excitation

Yan et al.

[26]
Stiffness

1.5 s.

Multiple freq.

48.6 Hz – 49.5 Hz
1.43 mJ 23 s 7

Adjustment

strategy

Huang et al.

[27]

Buckling level

and voltage
90 s∗

Multiple freq.

35 Hz – 40 Hz
4.67 mJ 120 s 7

Table 1: Main properties associated to the both groups of orbit jump strategies
defined in the current state of literature. ∗ indicates that the values have been
estimated based on the given papers. N/A denotes the absence of data.

ambient excitation and the resulting excitation1 on the success of the orbit jump.
That means, the success of the orbit jump strategy depends both on the nature
of the perturbation and on the control of its timing. Their work is also among
the first to consider the energy cost of the orbit jump strategy and gives the time
needed to recover the energy consumed during the orbit jump (2 s), as shown in
Table 1.

1 which is the effective excitation during the orbit jump, i.e., the FBP application on the
ambient excitation (which is harmonic in this study).
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Udani et al. [4] added an artificial excitation to the ambient excitation creating a
new excitation phase-shifted from the original ambient excitation. They demon-
strated that the resulting modification of the dynamics and the basins of attraction
of the orbits could facilitate escaping from the potential well. However, modifying
the ambient excitation is not easy to implement in practice, limiting the applica-
bility of their study. In a previous study [28], they developed a search algorithm
in order to design an efficient attractor selection strategy. Notably, their approach
was the first to search for the parameters of the perturbing signal that make their
orbit jump strategy efficient.

On the other hand, a number of orbit jump strategies that involve temporarily
modifying the nonlinear VEH’s dynamic characteristics have been developed. Lan
et al. [21] employed a method that emulates negative resistance using a nega-
tive impedance converter, similar to the approach taken by Masuda et al. [18].
They highlighted that the primary factor that disrupts the system is the increase
in piezoelectric voltage resulting from negative resistance emulation, rather than
damping modification, since the duration of orbit jump is brief.
Similarly, Ushiki et al. [23] defined a self-powered stabilization method using a nega-
tive impedance converter. Although they successfully destabilized low-power orbits
across a frequency band of 23 Hz, the process of achieving positive energetic bal-
ance takes between 10 and 100 s, indicating that there is room for improvement
in this aspect of the study.
Wang et al. [22] defined a load perturbation method based on the electrical load ef-
fects on the dynamics to attain high-power orbits. They disconnected the electrical
load by opening a switch that was in series connection with the load and driven
by an integrated circuit chip. This resulted in a reduction of the total damping
rate of the VEH. However, this orbit jump strategy is only applicable for a specific
combination of driving frequencies and amplitudes, making it non-robust and non-
reproducible. Later, in order to decrease the energy injection of the orbit jump,
Wang et al. [24] used a Bidirectional Energy Conversion Circuit (BECC) that in-
cludes the energy extraction circuit. The experimental test shows a jump duration
of 10.9 s, which requires an energy of 22 mJ. The corresponding recovery time of
2 min suggests that the orbit jump strategy could benefit from optimization.
Several recent studies have investigated the modification of the buckling level in
nonlinear VEHs as illustrated in Fig.1. Huguet et al. [25] introduced the buckling

level modification technique, using an additional electromechanical transducer2 to
alter the buckling level of the VEH. Figure 1 provides a summary of the orbit jump
strategy process. In particular, the left part of Fig.1 shows how the orbit jump
strategy works: (i) initially, the system (represented by a green dot) oscillates in its
potential wells, then (ii) the buckling level of the VEH increases, which modifies
its potential wells shape, represented by a dashed curve. This modification propels
the mass into this deeper potential, giving it a certain amount of potential energy.
Subsequently, (iii) the buckling level returns to its original value and the system
transitions to high-power orbit. The study of Huguet et al.demonstrated the ef-
fectiveness and reproducibility of this orbit jump through numerous experimental
tests, computing jumping probabilities across six tested driving frequencies.

2 There are two electromechanical transducers, one for energy harvesting and the other for
buckling level tuning.
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Furthermore, the study demonstrated that the energy consumed by the or-
bit jump strategy was quickly restored (in approximately 1 s), as shown in Table
1. Although this orbit jump strategy has been partially empirically optimized, a
complete optimization has not yet been conducted, which could further enhance
its robustness and effectiveness.
Huang et al. [27] introduced a new Voltage Inversion Excitation (VIE) method,
which reverses the voltage of the piezoelectric actuator at specific times to provide
additional excitation to nonlinear VEH. However, this method consumes a sig-
nificant amount of energy. To address this issue, they developed a more complex
combination of two orbit jump strategies, which generally involve longer jump du-
rations, as depicted in Table 1.
Yan et al. [26] used a stiffness modulation circuit to temporarily adjust the stiff-
ness of a monostable softening VEH and experimentally demonstrated the VIE
technique at 3 frequencies, which can be expanded to more frequencies.
Although there is a large pool of research on designing orbit jump strategies, in
general, very few strategies are optimized (i.e., a comprehensive optimization of
the orbit jump parameters) in the literature as can be seen from Table 1. In most
articles, the orbit jump parameters are determined through a preliminary numer-
ical study or intuitive reasoning, rather than effective optimization. This hinders
the performance of orbit jumps in the literature because they generally exhibit
poor reproducibility, low robustness to parameters or excitation variations, and
thus cannot be used in most application cases.
In this paper, we propose optimizing an orbit jump strategy in order to max-
imize its robustness, enhance reproducibility, and ensure successful orbit jumps
even when parameters or excitations vary. We focus our analysis on orbit jump
strategies based on the buckling level modification (as illustrated in Fig. 1), origi-
nally introduced and partially optimized in [25]. Based on a thorough experimen-
tal identification, combined with high performance in the numerical simulation of
transients, we have validated the possibility of accurately modeling orbit jumps
numerically. From these simulations, we have been able to optimize the robust-
ness, as well as the invested energy of the orbit jumps. This has been made possible
thanks to the definition of a new numerical criterion assessing the harvested en-
ergy and the robustness of the orbit jumps. The obtained optimized orbit jumps
have been experimentally validated and show better performance both in terms of
jumping time, recovery time and robustness among the literature.

This article is organized as follows: section 2 gives the electromechanical model
of the bistable VEH and an overview of its dynamics. Then, section 3 presents
the orbit jump strategy and its optimization based on a criterion which takes
into account both the effectiveness and the robustness of the orbit jump strategy.
Finally, section 4 presents experimental validation of the optimized orbit jump
strategy and proves its effectiveness under excitation amplitude variations.

2 Electromechanical dynamics of bistable VEH

This section introduces the electromechanical model of a bistable VEH, along with
a summary of the underlying dynamics with multiple behaviors, highlighting the
interest of introducing orbit jump strategies.
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2.1 Bistable VEH model

This paper studies a Duffing-type bistable VEH shown in Fig.2.

(a) Schematic representation of the bistable VEH.

(b) Experimental prototype from [29] with dynamics described by
(1).

Fig. 2: (a) Schematic structure of the bistable VEH. (b) Experimental bistable
VEH studied in this article from [29].

This VEH (for more details on its design, see [29]) consists of buckled steel
beams of length L to which a proof mass M is attached that can oscillate between
two stable equilibrium positions, −xw and xw. The VEH is driven by a sinusoidal
excitation with a driving frequency fd = ωd/2π and a constant acceleration am-
plitude A. Two Amplified Piezoelectric Actuators (APA) are employed, with the
smaller – Energy harvesting APA – having a force factor α, a clamped capacitance
Cp, and the capacity to extract energy from the mechanical oscillator.
The electrodes of the energy harvesting APA are connected to a resistance R. The
second and stiffer APA – Tuning APA – acts as an actuator to implement the orbit
jump strategy by temporarily modifying the buckling level of the nonlinear VEH.
Therefore, this orbit jump strategy belongs to the category of orbit jump strate-
gies that modulate the nonlinear VEH characteristics. The energy harvesting APA
is the APA120S, and the tuning APA is the APA100M manufactured by Cedrat



8 Camille Saint-Martin et al.

Technologies (France). The model of bistable VEH [25] is given in equation (1),
ẍ+

ω2
0

2

(
x2

x2w
− 1

)
x+

ω0

Q
ẋ+ 2

α

ML
xv = A sin(ωdt)

2α

L
xẋ = Cpv̇ +

1

R
v

(1a)

(1b)

Where x denotes the mass displacement, ẋ its velocity and ẍ its acceleration. The
voltage in the the energy harvesting APA is noted v. Note that the equations of
the model (1) do not contain any term related to the tuning APA due to its higher
stiffness compared to the harvesting APA, and thus does not have any significant
influence on the dynamics of the VEH. The natural angular frequency ω0 and
the quality factor Q of the considered symmetrical bistable VEH are determined
by the underlying equivalent linear model [30], which is obtained by considering
small oscillations of the mass around one of its two stable equilibrium positions.
The tuning APA voltage, denoted vw, is used to modulate the buckling level of the
bistable VEH and facilitate transitions from low-power to high-power orbits. Table
2 shows the parameter values of the bistable VEH studied in this paper, which were
determined experimentally through low-power orbit characterizations using weak
sinusoidal vibrations (see Appendix C for more details on the characterization of
the experimental prototype). Note that for simplicity, we assumed that the force
factor of the bistable VEH was the same as that of the energy harvesting APA.

Parameters Values Units

xw 0.71 mm

M 6 g

L 35 mm

ω0 295 rad/s

Q 160

α 0.139 N/V

Cp 1 µF

Table 2: Parameter values for the buckled-beam nonlinear VEH [25].

2.2 Bistable VEH behaviors

The dynamics of a bistable VEH may exhibit multiple behaviors for a given driv-
ing frequency, including low-power intra-well orbits, high-power inter-well orbits,
and chaotic orbits. In this study, we define an orbit as robust if it is less sensitive
to perturbations and easily attainable. In order to detect all possible behaviors
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in the frequency range of [20 Hz, 100 Hz] and A = 4 m/s2, the nonlinear Ordinary
Differential Equations (ODEs) system (1) was solved for a large number of initial
conditions using the Dormand-Prince method [31].
Since the nonlinear ODEs (1) can be solved independently across multiple resolu-
tions, this problem is well-suited to parallel computing, that can greatly enhance
computational performance. For this task, a custom Python CUDA code was exe-
cuted on an NVIDIA RTX A5000 GPU featuring 8 192 CUDA cores, enabling the
resolution of (1) with 80 000 distinct initial conditions for each driving frequency.
In symmetric bistable VEH, the elastic potential energy is a quartic function of
(t, x) whose expression is given in (2). Note that the natural angular frequency ω0

depends on the value of xw and will therefore be influenced during the orbit jump.
The mean harvested power (for a given orbit) of the bistable VEH is the mean
power dissipated in R and is expressed by (3),

Ep(t) =
Mω2

0

8x2w
(x+ xw)2 (x− xw)2 (2)

Ph =
1

T

∫ T

0

v2

R
dt (3)

where T is the period of the displacement x.
Figure 3(a) shows the mean harvested power associated with existing orbits as

a function of driving frequency fd in [20 Hz, 100 Hz] when R = 1/2Cpωd for each
driving frequency (which corresponds to the resistance value maximizing electri-
cally induced damping [32] whose formula is valid for a harmonic excitation). Note
that “Other” gathers sub-harmonic orbits and chaos [8,33]. Producing Fig.3(a) re-
quires 80 × 80 000 numerical computations, which can be completed in just a few
minutes using parallel computing instead of the several hours required for sequen-
tial computing on CPU. It is worth mentioning that both power and existence
of orbits vary with the driving frequency. As seen in Fig. 3(a), the bistable VEH
dynamics exhibits multiple orbits with various powers. As a matter of example,
the high-power inter-well orbit allows to harvest 102 times more power than low-
power intra-well orbits for fd = 30 Hz.
The high-power inter-well orbits see their power increases with the driving fre-
quency while they stop existing beyond a particular frequency (the cutoff fre-
quency). As shown in Fig.3(a), the cutoff frequency of high-power inter-well orbits
occurs at 55 Hz. The power gap between intra-well and inter-well orbits becomes
larger for frequencies near the cutoff-frequency of the inter-well orbit, as seen in
Fig.3(a). Therefore, as the driving frequency approaches the cutoff frequency of
the inter-well orbits, it becomes increasingly difficult to attain inter-well orbits.
The green, orange, and red rectangles in Fig.3(a) highlight the driving frequencies
fd = 40 Hz, fd = 50 Hz and fd = 65 Hz whose orbits, basins of attraction3 and at-

tractors4 are plotted in the dimensionless phase plane (x/xw, ẋ/xw ω0) in Fig.3(b,
c, d).

The basins of the intra-well orbits are in light blue, while the basins of the inter-
well orbits are in dark blue. Note that Fig.3(d) shows the basins of attraction of the

3 which correspond to the set of initial conditions that converges to a particular stable orbit,
for a given excitation.

4 The attractor of a given periodic orbit is defined as the stabilized state of the bistable
VEH, occurring at instants t = k Td, where k ∈ N0 and Td represents the driving period.
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Fig. 3: (a) Mean harvested power Ph as a function of the driving frequency fd,
(b,c,d) basins of attraction, attractors, and orbits of coexisting behaviors in the
dimensionless phase plane (x/xw, ẋ/xw ω0) for fd = 40 Hz, fd = 50 Hz, and fd =
65 Hz, respectively. The denomination “Other” (in gray) regroups all the orbits
not indicated in the legend (i.e., sub-harmonic orbits and chaos). For example,
at 65 Hz, the highest orbits (whose basins are given in (d)) are sub-harmonic 3
inter-well orbits, which are characterized by a mass motion frequency 3 times lower
than the driving frequency. The basins of attraction in (b,c,d) were obtained after
80 000 resolutions of the ODE system (1).

sub-harmonic 3 inter-well orbits (in gray), which correspond to mass oscillations
with a frequency three times lower than the driving frequency.

The narrowing of the orbit basins indicates reduced robustness, meaning that
the system is more susceptible to transition into other orbits under small perturba-
tions. As shown in Fig.3(b, c), the inter-well orbit basins get thinner as the driving
frequency increases. Therefore, while the power of inter-well orbits increases with
the driving frequency (Fig.3), their robustness decreases, making them hard to
reach and to sustain.
Thus, the primary challenges stem from:

1. there are multiple orbits with different harvested powers for a given driving
frequency;
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2. the harvested power gap between intra-well and inter-well orbits tends to in-
crease with the driving frequency (particularly when ωd > ω0), with a maxi-
mum at the cutoff frequency of the inter-well orbits;

3. the inter-well orbits are less robust with larger driving frequencies.

The larger the power gap between intra-well and inter-well orbits, the greater
the benefit in defining an orbit jump strategy. However, as the inter-well orbits
become less robust with frequency, this task becomes increasingly difficult. All
of these aforementioned difficulties are challenging to overcome and motivate the
design of a robust orbit jump strategy in order to facilitate nonlinear VEHs to
operate in high-power inter-well orbit as often as possible.

3 Orbit jump strategy: numerical modeling and optimization

This section introduces the orbit jump strategy [25] studied in this paper and its
optimization using an evolutionary strategy algorithm.

3.1 Strategy description

The considered orbit jump strategy is based on the modification of the buckling
level of bistable VEH. This orbit jump strategy has already been studied and ex-
perimentally validated in multiple studies [25,34], with promising results. However,
in most of these studies, the ending time of the jump has been fixed to the instant
when the mass reaches its maximum displacement which may not be the optimal
time to minimize the energy cost of the orbit jump and maximize its robustness.
Therefore, in this study, we chose to optimize this ending time. The orbit jump
strategy adjusts the buckling level of the bistable VEH from xw to kw xw at a
starting time t0 for a (relatively short) duration ∆t.

Figure 4 illustrates the important steps of the aforementioned orbit jump strat-
egy. For each step (before, during and after the orbit jump), the potential wells,
the evolution of the tuning APA-mass system, and the displacement waveform
of the mass are shown. As seen in Fig.4(a), at the beginning of the orbit jump
process (when t < t0, denoted t−0 in Fig.4(a)) the mass oscillates around one of
the two stable equilibrium positions at x = xw (low-power intra-well orbit oscil-
lations). The gray dot in Fig.4 illustrates the mass position in the potential well
curve. Thereafter, between t0 and t0 + ∆t (when t0 ≤ t ≤ t0 + ∆t, denoted t+0
in Fig.4(b)), the voltage of the tuning APA vw changes and the buckling level
increases5 to kw xw (with kw > 1). It is worth noting that, while the buckling
level theoretically increases instantaneously, a certain amount of time is required
in practice. As seen in Fig.4(b), the potential well changes: equilibrium positions
are greater (x = ±kw xw) and the potential energy barrier is also larger. Thus, the
gray dot which was in the previous potential well (in gray dashed line) is now in
a higher position, meaning that the inertial mass received potential energy during
the buckling level modification. Finally, at (t0 +∆t)+ (that is, when t > t0 +∆t),

5 The elongation of the tuning APA leads to a higher level of buckling, resulting in the two
equilibrium positions moving further apart from each other.
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Fig. 4: Different steps of the aforementioned orbit jump strategy using buckling
level modifications. From the left to the right: potential wells, the APA-mass sys-
tem, and the displacement of the mechanical oscillator. Colored frames give corre-
sponding equilibrium position and instant in the orbit jump strategy. It is worth
noting that the mass motions in the central diagram are deliberately large in order
to highlight the consequences of the variation of the buckling level on the mass.

the initial buckling level is restored, reintroducing potential energy to the mass
and setting both equilibrium positions back to x = ±xw. As illustrated in Fig.4, if
the values of the orbit jump parameters (t0,∆t, kw) are properly set, the bistable
VEH should operate in its high-power inter-well orbit. For the sake of generality,
we considered t0 and ∆t multiples of the driving period Td and used the both
following dimensionless times:

• τ0 = t0/Td, the dimensionless starting time;

• ∆τ = ∆t/Td, the dimensionless orbit jump duration.

Figure 5 shows an example of application of this orbit jump strategy for fd = 50 Hz
(we intentionally chose orbit jump parameters that make possible to jump on high-
power inter-well orbit in order to illustrate the approach). Figure 5(c,d) shows the
impact of orbit jump parameters (τ0,∆τ, kw) on stable equilibrium positions and
potential wells during the orbit jump strategy. Blue dots in Fig.5(a,b,d) represent
the instant when starting the orbit jump process, denoted by tref. Triangle up (resp.
down) markers represent the instants when the buckling level of the bistable VEH
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Fig. 5: Example of a successful orbit jump strategy for fd = 50 Hz with
(τ0,∆τ, kw) = (0.46, 1.01, 2.00): (a) time displacement signal, (b) trajectories in
the phase plane (x, ẋ/xw ω0), (c) evolution of the left stable equilibrium position
before (in blue), during (in orange) and after (in green) the application of the orbit
jump strategy and (d) the both elastic potential energy curves associated to the
both buckling levels.

increases (resp. decreases) at t− tref = t0 (resp. t− tref = t0 +∆t ). As illustrated
in Fig.5(d), when the buckling level is increased, then decreased, the inertial mass
acquires potential energy that comes from the APA actuating system. This energy,
called invested energy Einv, consists in the potential energy (2) difference between
t0 and t0 +∆t. As shown by (4), Einv can be computed from the potential energy
expression given by (2). The total harvested energy Etot (5) is the invested energy
subtracted from the harvested energy over a duration of 100 Td from the instant
tref. Note that we arbitrary take a duration of 100 Td for the evaluation of the orbit
jump strategy in the rest of the paper, as it is long enough to yield significant total
energy if we successfully jump to a high orbit, while also being short enough to
account for the invested energy during the orbit jump.

Einv(t0,∆t, kw) = Ep
[
t+0
]
− Ep

[
t−0

]
+ Ep

[
(t0 +∆t)+

]
− Ep

[
(t0 +∆t)−

]
(4)

= ∆E0 +∆E1

Etot(t0,∆t, kw) =

∫ tref+100Td

tref

v2

R
dt− Einv(t0,∆t, kw) (5)

As a matter of example, (4) and (5) allow to estimate the invested energy (Einv '
1.27 mJ) and the total harvested energy over a duration of 100 Td (Etot ' 5.54 mJ)
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in the orbit jump shown in Fig.5. The harvested power in high orbit (after the
jump) is about 45 times larger than the power in low orbit (before the jump), for
this driving frequency.
On the other hand, inherent experimental imprecision exists due to the non-ideal
experimental setup (such as delays and parasitics effects) and imperfect experi-
mental identification (with uncertainties regarding the values of ω0 or xw). All of
these possible variations in parameters must be considered, which emphasizes the
need to optimize the orbit jump strategy to reduce its sensitivity to parameter
variations (i.e., its robustness) and enhance its performance. In the rest of the
paper, we will investigate the optimization of the orbit jump strategy (for several
driving frequencies) that can enhance its effectiveness based on its energy cost and
its robustness against variations.

3.2 Optimization of the orbit jump strategy

As noticed in the previous subsection, the success of an orbit jump strategy de-
pends drastically on the values of its parameters (τ0,∆t, kw) (which then depend
on the driving frequency or the starting intra-well orbit for example). Properly
defining both time parameters (τ0,∆τ ) is crucial to the success of the orbit jump,
regardless of the buckling factor (kw). For example, setting the starting time of the
orbit jump τ0 to 0.9 renders the orbit jump strategy in Fig.5 ineffective, meaning
that the VEH remains in low-power intra-well orbit even after the orbit jump. To
ensure an effective orbit jump strategy, we conduct a numerical investigation of
the optimal values of the orbit jump parameters which:

(C1) maximize the total harvested energy over 100 cycles, Etot;

(C2) maximize the success rate of the orbit jump within a neighborhood of the orbit
jump parameter values, with a variation of ±15%.

The criterion (C1) allows to select orbit jump parameters that maximize the har-
vested energy while minimizing the invested energy. This criterion allows to eval-
uate effectiveness of the orbit jump strategy. While the criterion (C2) makes it
possible to anticipate potential experimental deviations in the characteristics of
the VEH or in the parameters of the orbit jump strategy. This criterion allows to
evaluate robustness of the orbit jump strategy. Then, the optimization of the orbit
jump parameters according both (C1) and (C2) criteria is performed by means of an
evolutionary strategy algorithm [35] implemented in our in-house Python CUDA
code. Evolutionary strategy algorithm has been selected due to its robustness in
handling multi-extremal and discontinuous fitness functions, as well as its abil-
ity to benefit from GPU parallel computing. For that we define the average total

harvested energy in (6) which is the fitness function6 to maximize,

Etot(τ0,∆τ, kw) =
N−1∑
i=0

Etot(τ
i
0,∆τ

i, kiw)
/
N, ∀N > 1, N ∈ N (6)

6 which is used for evaluating how close a given solution is to the optimum solution.
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where N > 1 is the number of parameter combinations tested (e.g., N = 8 000)
and for all i ∈ J0, N − 1K, (τ i0,∆τ

i, kiw) ∈ V(τ0,∆τ, kw), the neighborhood of a
given parameters combination (τ0,∆τ, kw) with a variation of ±15%. Therefore,
the optimization problem to solve is formulated as (7).

S : max
{
Etot(τ0,∆τ, kw)

∣∣∣ (τ0,∆τ, kw) ∈ D
}

where D = [0.2, 1.2]× [0.2, 1.5]× [1, 2]

(7)

Note that we only consider τ0 and ∆τ larger than 0.2 for the ease of experimen-
tal implementations. Moreover, the maximum mechanical constraints that can be
supported by the considered prototype of bistable VEH have been taken into ac-
count by limiting the kw to 2. kw > 1 was chosen due to the prototype’s reference
buckling level xw being close to the estimated minimum value, and optimization
results showed no interesting solutions for kw < 1.
The detailed optimization procedure is described in Appendix A. Figure 6 presents
a comparison between the optimized and suboptimized 50 Hz orbit jump strategy
(as shown previously in Fig.5). The optimized orbit jump strategy requires an
invested energy of 0.49 mJ and yields a total harvested energy of 6.06 mJ over 100
oscillation cycles. It is worth noting that the end of the optimized orbit jump is
defined slightly after the maximum displacement of the mass, in contrast to previ-
ous studies where the end time was generally defined at the instant of maximum
displacement. The next section will investigate optimal orbit jump parameters
combination (τ0,∆τ, kw) satisfying (7) for [30 Hz, 60 Hz], and the optimization re-
sults will be presented jointly with the experimental results.

4 Optimized orbit jump strategy: experimental validation and energy

analysis

This section compares experimental and numerical results of the optimized orbit
jump strategy.

4.1 Experimental validation

In order to experimentally validate the aforementioned optimized orbit jump strat-
egy, experimental tests have been made around each optimal orbit jump param-
eters combination for driving frequency in [30 Hz, 60 Hz]. Figure 7 shows the ex-
perimental setup. The bistable VEH prototype shown in Fig.2(b) is fixed on an
electromagnetic shaker driven by a power amplifier. The acceleration amplitude A
of the shaker is measured by an accelerometer and sent to the control board. As
illustrated in Fig.7(b), the amplitude of the signal driving the power amplifier (vA)
is regulated in order to maintain a constant acceleration amplitude A = 4 m/s2

by means of an internal Proportional Integral (PI) controller. The piezoelectric
electrodes of the energy harvesting APA (in blue) are connected to:

– a voltage follower in order to prevent the control board’s impedance impacting
the piezoelectric element and to avoid the control board to be exposed to a
voltage stricly higher than 10 V which could damage it;
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Fig. 6: Comparison between optimal (a,c) and suboptimal (b,d) of time displace-
ment signals and trajectories in the phase plane (x, ẋ/xw ω0) for fd = 50 Hz before
(in blue), during (in orange) and after (in green) the application of the orbit
jump strategy. Blue dots correspond to the beginning of the orbit jump process,
triangle up (resp. down) markers refer to the instant when the buckling level in-
creased (resp. returned to its initial value). Optimal orbit jump parameter values
(τopt0 ,∆τopt, koptw ) = (0.23, 0.46, 1.81). Suboptimal orbit jump parameter values
(τ sub0 ,∆τ sub, ksubw ) = (0.46, 1.01, 2.00).

– a resistive decade box whose resistive value can be adjusted with a signal sent
from the control board.

Displacement and velocity (x, ẋ) of the inertial mass are sensed with a laser dif-
ferential vibrometer. At given times, when modifying the buckling level of the
bistable VEH, the control board sends a signal to the high speed bipolar amplifier
which controls the voltage across the tuning APA, vw.
In order to smooth the variation of the buckling level and avoid to damage the
VEH prototype, we implemented in the control board a second-order filter that
reduces the sharpness of vw variations. The rise time of the buckling level is ap-
proximately one twentieth of a cycle, which is acceptable. Before any runs, the
acceleration amplitude is gradually increased to A = 4 m/s2 and the buckling
level is decreased to obtain xw = 0.71 mm. It is worth noting that the parameters
of the VEH prototype have been identified in low-power orbit characterization and
given in Table 2.
In order to experimentally validate the model described in equation (1) and the
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Fig. 7: (a) Experimental setup used to test the optimized orbit jump strategy and
(b) its schematic representation.

numerical orbit jump modeling, 2 000 experimental results are launched with sev-
eral values7 of τ0 and ∆τ (kw = 1.5, τ0 ∈ [0.2, 1.2],∆τ ∈ [0.2, 1.5]) for fd = 40 Hz
and arbitrary resistor R = 20 kΩ. Identical simulations are performed with 8 000
parameters combinations.
Figure 8 shows corresponding experimental and numerical scatter plots (τ0,∆τ)
with each point associated to its final orbit after the jump and gives compari-
son between experimental and numerical structures of the basins for fd = 40 Hz
and R = 20 kΩ. As shown in Fig.8, there are three possible behaviors: low-power
intra-well orbit (in light blue), high-power inter-well orbit (in dark blue) and chaos
(in dark salmon). As an example, for experimental data in Fig.8(a), increasing the
buckling level from xw to 1.5xw over a duration of 0.3Td starting at t−tref = 0.7Td
will result in the bistable VEH operating on the high-power inter-well orbit. The
ranges of parameter values where the VEH jumps are approximately the same,
although more chaos is observed experimentally. This may be attributed to an
insufficient waiting time for the nonlinear VEH to reach steady-state conditions in
the experimental setup. However, the experimental and numerical basins’ struc-
tures given in Fig.8 are almost identical which validates the numerical model of the
bistable VEH and numerical model of the orbit jump application. Additionally,

7 Note that we opted to fix kw and to vary τ0 and ∆τ because the times are more susceptible
to experimental variations due to the time delay of the board and the amplifier.
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Fig. 8: Experimental (a) and numerical (b) maps (τ0,∆τ) with kw = 1.5, fd =
40 Hz and R = 20 kΩ.

Fig.8 shows the pseudo-periodicity of the inter-well orbit’s basin in τ0 (described
with the two basins in the middle of Fig.8(a,b)). Therefore, since the starting orbit
is Td–periodic, the values of τ0 can be restricted to a semi-open interval of length
1 without loss of information and justifies the values of τ0.

In order to validate the model of the bistable VEH and the orbit jump strategy
effect, we perform experimental tests around the optimized orbit jump parame-
ters (obtained with the evolutionary strategy algorithm introduced in section 3.2,
and detailed in appendix A) for fd = 50 Hz. Figure 9 compares experimental
(Fig.9(a,c)) and numerical (Fig.9(b,d)) time displacement signals and trajectories
in the phase plane respectively before, during, and after the application of the or-
bit jump strategy. Note that the transient trajectory for optimal successful jumps
remains almost identical over the frequency range 30 Hz – 60 Hz. Experimental
orbits are asymmetric, as shown in Fig.9(a,c), which can be attributed to mechan-
ical irregularities resulting from the manufacturing process of the bistable VEH.
Moreover, the experimental transient just after the jump in Fig.9(a,c) (in green)
shows excitation from higher modes of the VEH prototype due to the quick buck-
ling level variation. The corresponding experimental trajectory in the 3D plane
(t, x, ẋ/xw ω0) is presented in Appendix B.

In quantitative terms, the mean harvested power is 26.5 times higher after the orbit
jump in Fig.9, while the experimental invested energy required is equal to 0.65 mJ
and can be recovered in 0.21 s. Then, we optimize the orbit jump strategy in the fre-
quency range [30 Hz, 60 Hz] and obtain an optimal triplet (τopt0 ,∆τopt, koptw ) satis-
fying the criterion S (7) for each driving frequency. Subsequently, we launch experi-
mental maps around each optimal triplet and driving frequency in order to evaluate
the robustness of the approach. It is worth mentioning that experimental maps are
defined with 49 parameters values and a variation rate of ±15%. Specifically, we
take 7 values in [0.85×τopt0 , 1.15×τopt0 ] for τ0, 7 values in [0.85×∆τopt, 1.15×∆τopt]
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placement signals and trajectories in the phase plane (x, ẋ/xw ω0) for fd = 50 Hz
before (in blue), during (in orange) and after (in green) the application of the
orbit jump strategy. Blue dots correspond to the beginning of the orbit jump pro-
cess, triangle up (resp. down) markers refer to the instant when the buckling level
increased (resp. returned to its initial value). Experimental orbit jump parame-
ter values (τexp0 ,∆τexp, kexpw ) = (0.26, 0.44, 1.81). Numerical orbit jump parameter
values (τnum0 ,∆τnum, knumw ) = (0.23, 0.46, 1.81).

for ∆τ and kw = koptw .
Figure 10 compares numerically (dots) and experimentally (stars) mean harvested
power (3) as a function of the driving frequency. Note that experimental power
(stars) plotted in Fig.10 comes from experimental results of the orbit jump. The
VEH starts in an intra-well orbit at each driving frequency. Then, the optimal
jump is applied, and the power is measured in order to evaluate the inter-well
orbit power. Through optimization of the orbit jump strategy, the highest orbit
was achieved at each driving frequency both experimentally and numerically, as
illustrated in Fig. 10. Differences between experimental and numerical data may
result from the mismatch between the numerical model and our experimental pro-
totype. It is worth mentioning that applying an orbit jump strategy always yields
a significant increase in power in this frequency range. As a matter of example,
for fd = 55 Hz the experimental mean harvested power of the intra-well orbit is
0.044 mW despite of 4.44 mW for the inter-well orbit leading to a power gain of
100 after a successful orbit jump. Then, as shown in Fig.(8, 9, 10), experimental
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Fig. 10: Orbital mean harvested power Ph obtained numerically (dots) and experi-
mentally (stars) as a function of the driving frequency fd for a sinusoidal excitation
of amplitude A = 4 m/s2 with optimal resistor R = 1/2Cpωd. The experimental
data (stars) were obtained through the implementation of the optimized orbit
jump strategy.

results are consistent with numerical results and allow to validate the model and
the proposed orbit jump strategy.

4.2 Energy harvesting performance analysis

Figure 11(a,b,c) shows the optimal orbit jump parameter combinations (blue dots)
along with successful experimental parameters closest to the optimal (red stars) for
each driving frequency. The corresponding recovery times up to 55 Hz8 are shown
in Fig.11(d). Note that the automated pre-characterization of the relationship
between xw and vw allows the experimental determination of the modified buckling
level kw xw with good accuracy (for more details on obtaining the experimental
relationship between vw and xw, see the appendix D). As shown in Fig.11(a,b,c),
experimental data with a variation of ±15% around the optimal times parameters
and fixed kw = koptw are in good agreement with the optimized data except for
fd = 40 Hz. The discrepancy between experimental and numerical models observed
at fd = 40 Hz can be attributed to the sudden change in behavior of the intra-
well orbit due to softening nonlinearity of the potential wells for this particular
acceleration amplitude (which equals 4 m/s2), as seen in Fig.10. Similarly, the
variations between the numerical and experimental models (Fig.3) may explain
the observed differences in the recovery times.

The experimental success rate associated with tested (τ0,∆τ) pairs, distributed
with a variation of ±15%, is shown in Fig.12. It is worth noting that despite

8 Note that, recovery times above 55 Hz are not plotted in Fig.11(d) because the inter-well
orbit (in dark blue) no longer exists beyond this frequency, as shown in Fig.3.
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Fig. 11: The optimal numerical values (blue dots) and the optimal experimental
values (red stars) of (a) the amplification coefficient kw, (b) the starting time τ0,
(c) the orbit jump duration ∆τ , and (d) the corresponding dimensionless recovery
time trec/Td for successful orbit jumps as a function of the driving frequency.
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Fig. 12: Experimental success rate with ±15% variations around each optimal
times parameter as a function of the driving frequency.

the relatively large variation around the optimal times parameters, the average
experimental success rate is about 48 %, which demonstrates the robustness of
the optimized orbit jump strategy. However, the highest inter-well orbit ceases
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to exist beyond 55 Hz (both numerically and experimentally), resulting in the
sub-harmonic 3 [8] becoming the highest inter-well orbit. Nonetheless, this orbit
is challenging to reach and highly unlikely, leading to a decline in success rate
between 55 Hz and 60 Hz.
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Fig. 13: (a) Invested energy and (b) Total harvested energy over 100 cycles for the
numerical optimal orbit jump parameters (in blue dotted curve) and the experi-
mental orbit jump parameters that allowed to jump (green star-shaped markers)
as a function of the driving frequency with optimal load resistor. The dotted or-
ange curve represents the minimum mechanical energy difference (8) between the
highest inter-well orbit and the lowest intra-well orbit.

Figure 13 shows invested energy (4) and total harvested energy (5) over 100 cycles
as a function of the driving frequency for both successful experimental data and
optimal numerical data. The dotted orange curve corresponds to the minimum
difference in mechanical energy between the high-power inter-well orbit and the
low-power intra-well orbit, ∆Emin, whose expression is given by (8).

∆Emin = min
∀t∈[0,Td[

([
Ep(t) +

1

2
mẋ(t)2

]
inter-well

−
[
Ep(t) +

1

2
mẋ(t)2

]
intra-well

)
(8)

As shown in Fig.13, the invested energy required for the orbit jump does not
exceed 1 mJ, even experimentally. For example, at fd = 50 Hz, the numerical
optimum has an invested power of 3.5 mW (see Fig.10) and an invested energy
of approximately 0.5 mJ (Fig. 13), leading to a recovery time of about 0.15 s.
Moreover, the invested energy associated with the optimal parameters is close to
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the minimum energy limit ∆Emin, validating the optimization of the orbit jump
strategy. Note that a portion of the electrical energy injected into the system is
currently lost as electrostatic energy in the tuning APA. For example, at fd =
50 Hz, the experimental mechanical energy injected into the system is equal to
0.45 mJ (as shown in Fig.13(a)), while the electrostatic energy lost in the tuning
APA is 4.16 mJ (which is not shown in Fig.13). As a result, the total invested
energy is 4.61 mJ with an invested power of about 3.1 mW (see Fig.10 at fd =
50 Hz). Even when considering the electrostatic energy in the tuning APA, the
recovery time does not exceed 2 s. Note that a power electronic converter could be
used to store the lost electrostatic energy in the tuning APA and reintroduce it into
the system at the appropriate time, although this approach was not implemented
in this study.
As illustrated in Fig.13, the driving frequency increases, achieving a high-power
orbit becomes more challenging. This leads to an increase in the amplification
factor, the invested energy and the total harvested energy over 100 cycles.

References Frequency range Jump duration Energy cost Recovery time
Robustness to

parameters shifts
Optimized

Udani et al.

[4] (2017)

Single freq.

19.8 Hz
2 s 1.21 mJ 5.66 s No 3

Wang et al.

[24] (2019)

Single freq.

7 Hz
10.9 s 22 mJ 120 s No 7

Huang et al.

[27] (2022)

Multiple freq.

35 Hz – 40 Hz
90 s∗ 4.67 mJ 120 s No 7

Huguet et al.

[25] (2019)

Multiple freq.

30 Hz – 70 Hz
20 ms∗ 1 mJ∗ 1 s Partial (Exp.) ∼∼∼

This paper

(2023)

Multiple freq.

30 Hz – 60 Hz
8.3 ms 0.6 mJ 0.1 s

Yes

(48 % robustness

with a ±15% variation)

3

Table 3: Comparison between the optimized orbit jump strategy developed in this
paper and other previous orbit jump strategies in literature. * indicates that the
values have been estimated based on the given papers.

The evaluation of the invested energy for orbit jumping is a major parameter
for analyzing the quality of an orbit jump strategy. Additionally, the recovery
time to achieve a positive energy balance allows the evaluation of the interest of
jumping and the assessment of the cost-effectiveness ratio. Table 3 compares orbit
jump strategies from the literature with results presented in this paper based on
these aforementioned parameters (the jump duration, the invested energy and the
recovery time), but also whether they are optimized or robust to parameter shifts
and if they were experimentally tested over a wide frequency range. It can be noted
that very few strategies are optimized in the literature and that the only reference
where a complete optimization of an orbit jump strategy has been considered
(Udani et al. [4]) has only been tested for a single driving frequency, which does
not validate its robustness, nor the generality of the optimization method. Wang’s
et al. [24] orbit jump strategy requires a high amount of energy which can be
optimized. On the other hand, Huang et al. [27] have defined an innovative orbit
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jump strategy that combines two other strategies (buckling level modification and
VIE) and is therefore more complex. However, the jump duration is high (90 s),
increasing the difficulties of implementation and decreasing both the robustness
and efficiency of the orbit jump strategy with a long recovery time equals to
120 s. Huguet et al. [25] introduced the orbit jump strategy considered in this
paper and examined two orbit jump parameters: the starting time of the jump
(tested in 4 different values) and the amplification factor of the buckling level
(tested in 6 different values). They fixed the ending time as the instant when the
mass reaches its maximum displacement. However, using the optimization criterion
defined in our study, results show that the optimal ending time for the jump occurs
slightly after the maximum displacement. Nonetheless, their study has the merit of
presenting numerous experimental trials, which allowed them to partially evaluate
the robustness of the approach through statistical analysis of the jumps (with a 0%
variation around each combination). The evolutionary strategy algorithm as well
as the new optimization criterion proposed in this paper enable the achievement
of performant orbit jumps, combining the shortest time duration (8.3 ms), lowest
energy cost (0.6 mJ), shortest recovery time (0.1 s) while being robust to large
parameters shifts (±15% variation).

4.3 Effectiveness of optimized orbit jumps under excitation amplitude
perturbations

In the previous sections, the robustness of the proposed orbit jump strategy has
been assessed with variations of the jump parameters (τ0,∆τ). In this section, a
numerical analysis has been performed to evaluate the effectiveness of the opti-
mized jump parameter combinations (τopt0 ,∆τopt, koptw ), obtained for Ad = 4 m/s2,
under perturbations of the excitation amplitude. Numerical tests of optimal orbit
jumps9 are computed for various acceleration amplitudes, ranging from 2 m/s2 to
6 m/s2, in the frequency range 30 Hz – 60 Hz. Figure 14(a) shows the success of
optimal parameters for each (fd, Ad) combination: whether sucessful (in green), or
unsuccessful (in red) or when intra-well orbits do not exist under large accelera-
tion amplitudes (in gray). The hatched area in Fig.14(a) indicates combinations of
(fd, Ad) where the highest inter-well orbit does not exist and the yellow line high-
lights the excitation amplitude Ad = 4 m/s2 used for the orbit jumps optimization.
Figure 14(b) shows the success probability of optimal parameters for each (fd, Ad)
combination tested. To calculate this probability, for a given pair of (fd, Ad), a
grid of uniformly distributed jump parameters with a variation of ±15% centered
around the associated optimal jump parameters, is tested.

Figure 14(a,b) demonstrates that optimal jumps remain robust under accelera-
tion amplitude perturbations. Remarkably, their effectiveness improves further at
higher acceleration amplitudes, as highlighted by the increased probability of suc-
cess in Fig.14(b). For example, at 45 Hz, the success probability of optimal jumps
is 62% for Ad = 4 m/s2, whereas it is 87% for Ad = 5.5 m/s2. Note that around
40 Hz, for excitation amplitudes less than 3.5 m/s2, the optimal jumps are un-
successful due to the amplitude-dependent softening resonance of intra-well orbits

9 which are defined by the optimal orbit jump parameter values (τopt0 ,∆τopt, koptw ), obtained
when Ad = 4 m/s2.
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when fd = 40 Hz for Ad = 4 m/s2 (Fig.10), which occurs slightly above 40 Hz for
lower excitation amplitudes. This shift of softening resonance of intra-well orbits
explains, for Ad ≤ 3.5 m/s2, the ineffectiveness of the optimal jumps around 40 Hz.
Note that for small excitation amplitudes, the highest inter-well orbit has a lower
cutoff frequency than at high excitation amplitudes, as shown by the hatched area
in Fig.14(a). For instance, at fd = 50 Hz, the highest inter-well orbit does not exist
(in dark blue in Fig.3) at Ad = 2 m/s2, but it does exist at Ad = 4 m/s2. Overall,
optimal orbit jumps remain robust to variations in the excitation amplitude

5 Conclusion

Due to the existence of low-power orbits in nonlinear VEHs dynamics, robust and
effective orbit jump strategies are essential to ensure good energy harvesting per-
formance by enabling transition from low-power to high-power orbits. To achieve
this, orbit jump parameters can be optimized. This paper presents the optimization
of an existing orbit jump strategy using an evolutionary strategy algorithm. The
developement of an in-house Python CUDA code for GPU computations allows
precise numerical simulations of complex transients involved during orbit jumps..
The experimental results consistently demonstrate that the optimized orbit jump
parameters generated high-power inter-well orbits, while maintaining their per-
formance even under potential fluctuations in the VEH bistable environment. By
considering the experimental amplification factor at its optimal value, and ad-
justing both the starting and duration times within a range of ±15% from their
optimal values, the robustness of the optimized orbit jump strategy was demon-
strated with an average success rate of 48%. Finally, the energy required for the
orbit jump does not exceed 1 mJ, even in experimental conditions. The proposed
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optimization of the orbit jump strategy enhances the robustness of an orbit jump
despite fluctuations in the environment of the VEH. In the last section of this pa-
per, the effectiveness of the optimal jumps under perturbations in the excitation
acceleration amplitudes is numerically demonstrated. The proposed optimization
approach can be applied to other types of multi-stable VEHs to design robust
optimized orbit jump strategies. In the future, the practical implementation of
self-powered optimized orbit jumps will be realized using ultra-low power inte-
grated power management circuits and algorithms [36–38], where the optimized
parameters of the orbit jump can be stored in an on-chip memory.
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A Evolutionary strategy algorithm methodology
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Fig. 15: Evolutionary strategy algorithm for optimizing orbit jump strategy. This
flowchart illustrates different steps that allow to determine optimal orbit jump pa-
rameters for each driving frequency. Here (τ0,∆τ, kw) ∈ D denotes the individuals
sequence for a given population in D.

Figure 15 illustrates the various steps involved in the evolutionary algorithm for optimizing
the considered orbit jump strategy for frequencies between 30 Hz and 60 Hz.

Initialization

First, we generate the initial population, which is randomly distributed in the optimization
domain D. The number of individuals in each population was arbitrarily set to 8 000. An
individual corresponds to a combination of orbit jump parameters (τ0,∆τ, kw). An example
of such an initial population is plotted10 in the 3D space D in Fig.16 (blue dots).

Evaluation

The corresponding orbit jumps are simulated and evaluated based on their fitness function
value, which is the average total harvested energy over 100 cycles by (9).

Etot(τ0,∆τ, kw) =

N−1∑
i=0

Etot(τ
i
0,∆τ

i, kiw)
/
N, ∀N > 1, N ∈ N (9)

Where N = 73 = 343, since we considered 7 elements per direction, defining the neigh-
borhood uniformly distributed around the given jump parameter combination (τ0,∆τ, kw).

10 for easier visualization, only 1 000 individuals from the initial population were plotted.
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Figure 16 shows an example of such a neighborhood (green dots) used to evaluate the robust-
ness of the associated orbit jump (with respect to the jump parameter values represented by
the red dot). Consequently, 343 additional orbit jump simulations are launched to compute (9)
for each individual. This means that for each generation, we simulate 2, 744, 000 orbit jumps
using parallel GPU computation.
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Fig. 16: An example of a neighborhood (green dots) around a given parameter
combination represented by a red dot in the initial population (blue dots) in the
3D plane (τ0,∆τ, kw).

Selection and crossover

Individuals are classified based on their fitness function value. The top 10% of individuals
are parents in the next generation (and are also in the next generation). Then, we used a
whole arithmetic recombination as a crossover operation to produce children for the next
generation. This consists of taking a percentage of each parent gene (or orbit jump parameter)
and combining them linearly to create the child. We randomly chose two different parents,
P1 = (τ10 ,∆τ

1, k1w) and P2 = (τ20 ,∆τ
2, k2w) among the top 10% of the current generation. We

generate a random ratio r ∈ [0, 1] and the corresponding child C = (τC0 ,∆τ
C , kCw ) is calculated

as follows:

C = rP1 + (1− r)P2 ⇐⇒


τC0 = rτ10 + (1− r)τ20

∆τC = r∆τ1 + (1− r)∆τ2

kCw = rk1w + (1− r)k2w

(10)

Figure 17 shows the crossover operation used to create new individuals.

Mutation

The mutation operator, analogous to biological mutation, is used to explore the search space by
introducing diversity into the population of genes and avoiding convergence to local minima.
Each individual is selected for mutation with a probability of 0.1. Individuals which are selected
for mutation will see their genes changed using a Gaussian distribution N (0, σ) with a standard
deviation of σ = 1/3. For example, suppose the individual (τ i0,∆τ

i, kiw) is selected for mutation,

its amplification factor mutated, kiw
′
, is obtained from:
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Parent 1:
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Fig. 17: Schematic illustration of the crossover operation used in this paper.

kiw
′

= kiw + δkiw, where δkiw ∼ N (0, σ) (11)

If one of the mutated genes, for example kiw
′
, falls outside the search space, specifically,

kiw
′
/∈ [1, 2], the mutated individual is not accepted. Consequently, the mutation process is

repeated until a mutated individual falls within the acceptable search space, D.

Convergence error

To evaluate the performance of the algorithm, we computed a convergence ratio (for each

individual) based on the ratio between the fitness value of the individual, Etot, and the final

fitness value of the best individual, Etot
∗
, found in the last generation. The convergence

error was then calculated by subtracting the convergence ratios of individuals from the final
convergence ratio of 1 (convergence ratio of the best individual in the last generation). Figure
18 illustrates the evolution of the convergence error over successive generations for fd = 50 Hz.
Star markers represent the convergence error of the best individual of the respective generation,
while orange dots indicate the convergence error of other (lower-ranked) individuals. The
results show that even at the initialization of the algorithm, the solution found is notably
close to the optimal solution, with a convergence error of about 10−1. This is due to the high
performance of GPU parallel computing, which allows for the consideration of a significant
number of individuals within each population. As generations advance, the algorithm refines
the solution, minimizing the convergence error of the final solution by a factor of 103 compared
to the error of the initial solution. It should be noted that the optimization method used in this
paper is computationally intensive and requires the utilization of parallel GPU computing. An
alternative to this high numerical cost would be to implement the cross-entropy method [39]
which has fast convergence and reduced computational cost.
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Fig. 18: Evolution of the convergence error over 10 generations for fd = 50 Hz.
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ẋ/xwω0 []

−2

−1

0

1

2

Fig. 19: Experimental trajectory in (t, x, ẋ/xwω0) 3D plane for fd = 50 Hz before
(in blue), during (in orange) and after (in green) the application of the orbit jump.
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C Details of the processes for identifying the key parameters of the

experimental prototype

This appendix describes the various processes used to characterize the experimental prototype,
ensuring the closest possible agreement between the numerical and experimental models. This
alignment is vital before optimizing any orbit jump strategies.

Prototype characteristics

Some parameters can be measured directly, such as the total inertial mass M = 6 g and
the horizontal distance from the mass to the frame L = 35 mm. The stiffness of the energy
harvesting APA (APA120S), K = 0.342 N/µm, was sourced from the Cedrat Technologies
data sheet. Note that the stiffness of the tuning APA (APA100M), Ktuning = 1.859 N/µm,
is larger than that of the energy harvesting APA. For this reason, we have assumed that the
tuning APA stiffness has negligible impact on the harvester dynamics.

Impedance analysis tests

Impedance analysis have been performed on the experimental prototype to identify the values
of its electromechanical coupling, k2m, the quality factor, Q, the linearized natural pulsation,
ω0, the capacitance, Cp, or the original buckling level, xw. By applying a low sinusoidal voltage,
with a constant amplitude of 5 mV, to the energy harvesting APA, the mass oscillates with
low amplitude around one of its two equilibrium positions. From current measurements, the
impedance amplitude and phase can be obtained. From this impedance analysis, the identifica-
tion of the theoretical model parameters, makes it possible to identify the values of k2m = 0.071,
Q = 290, ω0 = 295 rad/s and Cp = 1 µF, as detailed in [40]. Then, the equilibrium position
xw = 0.7 mm is deduced from the relation (12) (see [41] for details):

ω0 =
xw

L

√
4K

M
(12)

Furthermore, it is important to note that the quality factor value decreases with large
oscillation amplitudes. Therefore, the value of Q identified by the impedance analysis, derived
from low amplitude excitations, will not be representative of its value in high orbit opera-
tion. Orbit jumps will involve high-power orbit operation (with high displacement amplitude),
requiring a refinement of the quality factor value.

Frequency sweep

A frequency sweep was performed at an acceleration of 5 m/s2 over the 30 Hz – 60 Hz frequency
range, enabling the measurement of voltage, displacement amplitude, velocity and acceleration
of the experimental prototype operating in inter-well orbits. From these measurements, the
adjusted value of the quality factor Q = 160 is derived. This value was used in the numerical
simulations performed throughout this study.

Precise matching of the original xw value

To accurately model the orbit jump strategy, additional refinements to the initially identi-
fied value of xw were necessary, ensuring enhanced alignment between the experimental and
theoretical orbital structure. We experimentally performed orbit jumps at 40 Hz with various
combinations11 of (τ0,∆τ), while maintaining the amplification coefficient12 kw = 1.5 fixed.
From these experimental results, the experimental map shown in Fig.8 was plotted. The ad-
justed xw value was determined by selecting the value that produced a numerical jump map
most similar to the one obtained experimentally. This leads to the final equilibrium position
value xw = 0.71 mm, which is used to optimize the orbit jump strategy.

11 Exactly, 40 values were considered for τ0 and 50 for ∆τ .
12 kw represents a multiplicative factor of the original buckling level xw of the prototype.

See subsection 3.1 for more details on its use in the orbit jump strategy.
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Fig. 20: Diagram illustrating the various processes involved in identifying key
parameter values of the experimental prototype.

The buckling level of the prototype can be fine-tuned using the tuning APA. This ad-
justement is crucial for implementing the studied orbit jump strategy. We have experimentally
characterized the relationship between vw (the voltage across the tuning APA) and xw. Details
are given in the appendix D.

The whole identification methodology used in this paper is visually summarized in Fig.20.
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D Experimental measurement of the (vw, xw) relation

This appendix outlines the approach used to establish the experimental relationship between
the equilibrium position xw and the voltage applied to the tuning APA, denoted as vw. Precise
characterization of this experimental relationship is essential for improving the reproducibility
of the optimized orbit jump strategy. Using a downward tuning voltage sweep ranging from
80 V to 10 V, the stable position of the mass was measured using a laser vibrometer. Figure
21 illustrates the evolution of the equilibrium position xw as a function of the voltage applied
in the tuning APA. Using this experimentally-derived relationship, vw was fine-tuned to set
xw to its optimal value (obtained numerically), ensuring the successful implementation of the
orbit jumps presented in this paper.
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Fig. 21: Experimental evolution of the equilibrium position xw as a function of the
voltage applied to the tuning APA vw.
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