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Extremal digraphs for open neighbourhood location-domination
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Florent Foucaud† Narges Ghareghani‡§ Pouyeh Sharifani

January 16, 2024

Abstract

A set S of vertices of a digraph D is called an open neighbourhood locating-dominating set if every
vertex in D has an in-neighbour in S, and for every pair u, v of vertices of D, there is a vertex in S that is an
in-neighbour of exactly one of u and v. The smallest size of an open neighbourhood locating-dominating
set of a digraph D is denoted by γOL(D). We study the class of digraphs D whose only open neighbourhood
locating-dominating set consists of the whole set of vertices, in other words, γOL(D) is equal to the order
of D. We call those digraphs extremal. By considering digraphs with loops allowed, our definition
also applies to the related (and more widely studied) concept of identifying codes. We extend previous
studies from the literature for both open neighbourhood locating-dominating sets and identifying codes
of both undirected and directed graphs. These results all correspond to studying open neighbourhood
locating-dominating sets on special classes of digraphs. To do so, we prove general structural properties
of extremal digraphs, and we describe how they can all be constructed. We then use these properties to
give new proofs of several known results from the literature. We also give a recursive and constructive
characterization of the extremal di-trees (digraphs whose underlying undirected graph is a tree).

1 Introduction
We consider extremal questions regarding the open neighbourhood location-domination problem on directed
graphs (digraphs for short). This problem is part of the area of identification problems in discrete structures
(such as graphs, digraphs or hypergraphs). In this type of problems, one wishes to uniquely determine some
elements of the structure (usually the vertices or the edges) by means of a solution set (of vertices, edges
or substructures), in the sense that each element to be distinguished is covered by a unique subset of the
solution. Problems of this kind have been studied under various names and in different contexts such as
separating systems, discriminating codes, or test collections, see for example [3, 4, 6, 22, 26, 29]. They have
many applications to various domains such as biological testing [26], threat detection in facilities [35] or fault
diagnosis in computer networks [24, 28].
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Definitions. In this paper, we consider directed graphs (digraphs for short) which can contain loops (a
loop is an arc from a vertex to itself). The vertex set and arc set of a digraph D is denoted by V (D) and
A(D), respectively. An arc from vertex x to vertex y is denoted xy, its tail is x and its head is y. Multiple
arcs between the same pair of vertices are allowed, but two arcs with the same tail and head are meaningless.
Hence, we assume there are no multiple arcs. A digraph with no loops and with at most one arc between
any pair of vertices is called an oriented graph. A digraph is called reflexive if each vertex has a loop. The
in-neighbourhood of a vertex x of D is denoted by N−

D (v), and similarly N+
D (v) is the out-neighbourhood of v

(we may drop the D subscripts if D is clear from the context). A source is a vertex with no in-neighbour, and
a sink is a vertex with no out-neighbour. By the underlying graph of a digraph D, we mean the undirected
simple graph (without loops and repeated edges) on vertex set V (D) obtained from D by adding an edge
between x and y if x ̸= y and there exists an arc in D between x and y. A di-tree is a digraph whose
underlying graph is a tree. A rooted directed tree is a directed graph without loops and directed 2-cycles
whose underlying graph is a tree, which contains a single source called root, and where each arc is oriented
away from the root.

We say that a digraph is connected if its underlying graph is connected (this corresponds to the notion
of weak connectivity of digraphs). If a digraph is not connected, we refer to its connected components as the
digraphs formed by the connected components of its underlying graph. A directed cycle is a sequence of arcs
such that the head of each arc is the same as the tail of the next one, the head of the last arc is the same as
the tail of the first arc, and every vertex occurs only in two arcs of the sequence.

OLD sets. The concept of open neighbourhood locating-dominating sets (OLD sets for short) was defined
for undirected graphs under the name of IDNT codes by Honkala, Laihonen and Ranto in [23, Section 5] and
independently rediscovered by Seo and Slater in [31, 32], who coined the term “OLD set”. We extend the
definition to digraphs, in the same way as the definition of dominating sets of undirected graphs is classically
extended to digraphs [19]. Given a digraph D, a set S of vertices is an open neighbourhood locating-dominating
set of D if (i) every vertex has an in-neighbour in S (open neighbourhood domination condition) and (ii) for
every pair of vertices, there is a vertex of S that is an in-neighbour of exactly one of the two vertices (open
neighbourhood location condition). The open neighbourhood location-domination number (OLD number for
short) of D, denoted γOL(D), is the smallest size of an OLD set of D. Note that a digraph with a vertex of
in-degree 0 or with two vertices with the same in-neighbourhood (called in-twins), does not admit any OLD
set, but if the graph does not contain any such vertices, the whole vertex set is an OLD set. A digraph is
called locatable if it admits an OLD set.

Since their introduction over a decade ago, OLD sets have been extensively studied, see [10, 15, 16, 20, 22,
25, 27, 32] for some papers on the topic. The concept of OLD sets is related to the one of locating-dominating
sets, defined by Slater in the 1980s [33, 34], where the open neighbourhood domination condition is replaced
by closed neighbourhood domination, and the location condition is only required for pairs of vertices that
are not in the solution set. In the related notion of identifying codes, one replaces open (in-)neighbourhoods
in both conditions by closed (in-)neighbourhoods. More precisely, a set S of vertices is an identifying code
of a digraph D if (i) every vertex of D has a vertex of S in its closed in-neighbourhood and (ii) for every
pair of vertices, there is a vertex of S that belongs to the closed in-neighbourhood of exactly one of the two
vertices. These notions were mainly studied for undirected graphs, but locating-dominating sets of digraphs
were studied in [1, 5, 9, 14, 30] and identifying codes of digraphs were studied in [2, 8, 9, 11, 17, 30].

In this paper, our goal is to study those locatable digraphs whose only OLD set is the whole set of vertices,
which we call extremal digraphs.

Previous results. All undirected graphs whose only OLD set is the whole set of vertices were characterized
in [13], as the family of half-graphs defined in [12] (a half-graph is a special bipartite graph with both parts of
the same size, where each part can be ordered so that the open neighbourhoods of consecutive vertices differ
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by exactly one vertex). Digraphs with no directed 2-cycles whose only identifying code is the whole set of
vertices were characterized in [17], as transitive closures of top-down oriented forests. The aim of this paper
is to study the set of digraphs whose only OLD set is the whole set of vertices. In fact, the above results can
be reformulated in our setting.

When a vertex has a loop, then its open in-neighbourhood is the same as its closed in-neighbourhood.
Thus, for a reflexive digraph, the concept of an OLD set is the same as the one of an identifying code, as
defined above. A digraph is symmetric if for each arc xy, the arc yx also exists. A symmetric digraph can
be seen as an undirected graph. Thus, considering OLD sets of digraphs where loops are allowed, generalizes
previous works on identifying codes of both digraphs and undirected graphs, and on OLD sets of undirected
graphs.

Using the digraph terminology, we can reformulate existing results from the literature in our setting as
follows (the two first theorems were proved in the context of identifying codes).

Theorem 1 ([21]). For a connected, symmetric and reflexive locatable digraph D of order n, γOL(D) = n if
and only if n = 1.

Theorem 2 ([17, Theorem 9]). For a connected and reflexive locatable digraph D of order n without directed
2-cycles, γOL(D) = n if and only if the digraph obtained from D by removing all loops is the transitive closure
of a rooted directed tree.

Theorem 3 ([13, Theorem 1]). For a connected, symmetric and loop-free locatable digraph D of order n,
γOL(D) = n if and only if the underlying graph of D is a half-graph.

Also note that both OLD sets and identifying codes can be seen as a special case of discriminating codes
in bipartite graphs, studied in [6, 7]. Given a bipartite graph G with partite sets I and A, a discriminating
code of G is a subset C of vertices of A such that each vertex of I has a unique and nonempty neighbourhood
within C. Given a digraph D, one can construct a bipartite graph where I and A are two copies of V (D)
and a vertex in I is adjacent to all vertices in A corresponding to its in-neighbours in D. Now, a subset C of
A is a discriminating code in the bipartite graph if and only if it is an OLD set in D. A similar construction
(with closed in-neighbourhoods instead of open in-neighbourhoods) can be done for identifying codes [17].
The problem of studying those bipartite graphs where all vertices of A are required in any discriminating
code was one of the main problems studied in [6], and thus the present paper partially answers this question.

Our results. We first study, in Section 2, general properties of digraphs of order n with OLD number
n. In such digraphs, every vertex is needed in every OLD set, either to dominate a vertex, or to locate a
pair of vertices. Such vertices are called forced. We show that however, in such a digraph, no vertex can
be double-forced (i.e. forced because of two distinct reasons). We also show that the vertex set of such
graphs can always be partitioned into subsets, each of which contains a spanning directed cycle. We then
give a characterization of the (very rich) class of digraphs of order n with OLD number n. We use the found
structural properties and the characterization to give new proofs of Theorem 1, Theorem 2 and Theorem 3 in
Section 3. Then, we focus, in Section 4, on the class of extremal di-trees, and give a recursive and constructive
characterization of these digraphs. We conclude in Section 5.

2 Structural properties of extremal digraphs
We now describe the structure of digraphs whose only OLD set is the whole vertex set. There are many such
digraphs, as we will see. To achieve this, we will first prove some preliminary results.
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2.1 Forced vertices
In a locatable digraph D, some vertices have to belong to any OLD set: we call such vertices forced, as was
done in e.g. [18] in the context of identifying codes. There are two types of forced vertices: those that are
forced because of the domination condition, and those that are forced because of the location condition.

Definition 4. Let D be a locatable digraph. A vertex v of D is called domination-forced if there exists a vertex
w, such that v is the unique in-neighbour of w. Vertex v is called location-forced if there exist two distinct
vertices x and y, such that N−(x)⊖N−(y) = {v} (where A⊖B denotes the symmetric difference of two sets
A and B). A vertex v is called double-forced, if either it is both domination-forced and location-forced, or it
is location-forced because of two different pairs of vertices.

We can observe the following.

Proposition 5. If there is a vertex v in a locatable digraph D which is neither domination-forced nor
location-forced, then V (D) \ {v} is an OLD set of D.

Proof. Since v is not domination-forced, every vertex of D has an in-neighbour in V (D) \ {v}. Moreover,
since v is not location-forced, for every pair z, w of distinct vertices in D, there is a vertex in V (D) \ {v} in
the symmetric difference N−(z)⊖N−(w), which therefore distinguishes z and w.

Proposition 5 implies that in any extremal digraph D, every vertex is domination-forced or location-forced
(or both). (In fact, we will show in Proposition 11 that no vertex of D could be both domination-forced and
location-forced.)

We get a direct corollary of Proposition 5, which will be used several times in the proofs of Section 4.

Corollary 6. Let D be an extremal digraph. If a vertex is not domination-forced (resp. location-forced),
then it must be location-forced (resp. domination-forced).

Before proving our characterization, we will use the following celebrated theorem of Bondy, which is
important for our line of work (see for example [17] and references therein).

Theorem 7 (Bondy’s Theorem [4]). Let V be an n-set, and A = {A1,A2, . . . ,An} be a family of n distinct
subsets of V . There is an (n− 1)-subset X of V such that the sets A1 ∩X,A2 ∩X,A3 ∩X, . . . ,An ∩X are
still distinct.

Corollary 8. Every locatable digraph D of order n has at most n− 1 location-forced vertices.

Proof. Construct from digraph D the set system with V (D) as its n-set and where the Ai’s are all the open
in-neighbourhoods of vertices of D. Theorem 7 implies that there is one vertex such that removing it does
not create two same open in-neighbourhoods. In other words, this vertex is not location-forced.

2.2 Forcing arcs
When a vertex x is forced, either it is the unique in-neighbour of some vertex y, or there are two vertices y, z
such that x is the only vertex in the symmetric difference between N−(y) and N−(z), and x ∈ N−(y). In
some sense, the arc xy is remarkable in that respect. We highlight such arcs as follows.

Definition 9. Let D = (V,A) be an extremal digraph. Then the arc xy ∈ A is called a forcing arc if either
N−(y) = {x} or there is a vertex z ∈ V such that N−(y) \N−(z) = {x}. A forcing cycle is a cycle all whose
arcs are forcing arcs.
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Note that a vertex is forced if and only if it is the tail of a forcing arc. Thus, if D has only forced vertices,
every vertex has a forcing outgoing arc.

The next lemma is important for our study.

Lemma 10. Let D be an extremal digraph. Let x be an arbitrary vertex of D and let D′ be the digraph
obtained from D by deleting all non-forcing arcs of D, which have x as their tails. Then, D′ is locatable and
extremal. Moreover, if x is not location-forced, then D and D′ have the same sets of forcing arcs.

Proof. First, we prove that D′ is locatable. Towards a contradiction, suppose that there exist two in-twins:
vertices y and z such that N−

D′(y) = N−
D′(z). Since D is locatable, we conclude that x had exactly one of

y and z as an out-neighbour in D; without loss of generality suppose that xy is an arc of D. But then, xy
would be a forcing arc and it would not have been deleted from D, a contradiction. Moreover, assume that
there is a vertex t of in-degree 0 in D′. Then, x must have been the only in-neighbour of t in D, but then
the arc xt would be forcing and t would have in-degree 1 in D′, a contradiction. Therefore, D′ is locatable.

We will now show that every vertex of D′ is the tail of a forcing arc, implying that γOL(D
′) = n, and

that if x is not location-forced, then D and D′ have the same sets of forcing arcs.
By Proposition 5, all vertices of D are either domination-forced or location-forced. By deleting all non-

forcing arcs of D which have x as their tail, it is clear that all domination-forced vertices remain domination-
forced, and each forcing arc xy having a domination-forced vertex as its tail remains forcing. Thus, to
complete the proof, it remains only to consider location-forced vertices and those forcing arcs of D that have
a location-forced vertex as their tails.

To this end, consider a location-forced vertex t in D, that is, there are two vertices u and v such that
N−

D (u)\N−
D (v) = {t}; thus, tu is a forcing arc in D. If x is neither an in-neighbour of u nor an in-neighbour of

v, or if x = t, then in D′ we still have N−
D′(u)\N−

D′(v) = {t} and tu is still a forcing arc in D′. Otherwise, x is
an in-neighbour of u or v and x ̸= t, thus, x must be an in-neighbour of both u and v in D (possibly, x = u or
x = v). If both arcs xu and xv are not forcing or if both are forcing, then again in D′, N−

D′(u)\N−
D′(v) = {t}

and tu is still a forcing arc in D′. If xu is forcing and xv is not forcing in D, since u has both x and t as
in-neighbours, xu is a location-forcing arc and there is a vertex w with N−(u) \N−(w) = {x}. We note that
since x ̸= t and t ∈ ND(u), we have tw ∈ A(D). But then, in D′, we have N−

D′(w) \N−
D′(v) = {t}. Thus, t is

still location-forced in D′. Though the forcing arc tu is no longer forcing in D′, now the arc tw is forcing in
D′ (and in that case we had that x is location-forced).

Assume finally that xv is forcing and xu is not forcing in D. If xv is forcing because of domination, it
means that x is the unique in-neighbour of v in D, and thus u is dominated only by x and t; in D′, u is
dominated only by t, and thus in D′ the arc tu remains forcing and t is now domination-forced. Otherwise,
xv is forcing because of location: there is a vertex w such that N−

D (v)\N−
D (w) = {x}. We note that since xu

is non-forcing arc in D, and N−
D (u)\N−

D (w) = {x, t}, we conclude that in D′, we have ND′(u)\ND′(w) = {t}.
Thus, the arc tu stays forcing in D′ and t is still location-forced.

This means that each vertex of D′ is either domination-forced or location-forced, and thus, we conclude
that γOL(D

′) = n. Moreover, the only case where D′ and D had different sets of forcing arcs occurred when
x was location-forced, as claimed.

We next show that in an extremal digraph, no two forcing arcs can have the same tail.

Proposition 11. No extremal digraph contains a double-forced vertex.

Proof. We prove this by induction on n. We can assume D is connected, as it suffices to prove the claim for
each connected component. If n = 1, the only locatable digraph has a single vertex with a loop, for which
the claim is clearly true. If n = 2, one can check that there are three connected locatable digraphs of order 2
and in fact they all have OLD number 2 (see Figure 1). For each of them the claim is true.
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Let n ≥ 3 and assume the result is true for all digraphs D of order m < n with γOL(D) = m. Towards a
contradiction, suppose that there is a digraph D of order n with γOL(D) = n, which contains a double-forced
vertex. Among all such digraphs of order n, let D = (V,A) be a digraph which has the smallest number of
arcs.

Let z ∈ V be a double-forced vertex of D. By Corollary 8, there is a vertex x in D which is not location-
forced, hence it is domination-forced. So, there is a vertex y ∈ V with N−(y) = {x} and xy is a forcing arc
(possibly x = y and the arc is a loop). Since x is not location-forced, and there cannot be another vertex
that has x as its unique in-neighbour (otherwise it would be an in-twin of y, contradicting the fact that D is
locatable), we conclude that xy is the unique forcing arc which has x as its tail.

Now, we claim that N+(x) = {y}. Indeed, otherwise, we can delete all non-forcing arcs from D which
have x as their tails, to obtain a new digraph D′; by Lemma 10 applied to D and x, which is not location-
forced, we have γOL(D

′) = n and the set of forcing arcs of D and D′ are the same. Thus, all double-forced
vertices of D remain double-forced in D′, in particular, there is at least one double-forced vertex in D′. But
D′ has at least one arc less than D, which contradicts the minimality of D in terms of the number of its arcs.
(Moreover, if D′ is not connected, we contradict the induction hypothesis applied to a connected component
of D′ containing a double-forced vertex.) Therefore, we have N+(x) = {y} as claimed. As n ≥ 3 and D is
connected, this implies that x ̸= y.

Now, let D′′ be the digraph obtained from D by contracting the arc xy. That is, we delete x and y and
add a new vertex vxy that represents both x and y. Then, for each arc whose head is x or y (except the arc
xy), we add an arc from its tail to vxy; similarly, for each arc whose tail is x or y (except the arc xy), we
add an arc from vxy to its head. Then, every domination-forced vertex of D (except x) remains domination-
forced in D′′. Moreover, every location-forced vertex of D remains location-forced in D′′ (note that vxy is
domination-forced in D′′ if y was domination-forced in D, and is location-forced if y was location-forced in
D). Hence, γOL(D

′′) = n− 1 and the vertex z (or vxy if z = y) is double-forced in D′′, which contradicts the
induction hypothesis. Thus, D does not exist, a contradiction which completes the proof.

Figure 1: The four connected locatable digraphs of order 1 and 2. Forcing arcs are dashed.

2.3 Structural properties of extremal digraphs
Theorem 12. Let D be a digraph of order n and D′ be the subdigraph of D induced by the forcing arcs of
D. Then, D is extremal if and only if D′ is the disjoint union of directed cycles that spans the whole vertex
set of D.

Proof. Assume γOL(D) = n. By repeated use of Lemma 10, we deduce that D′ is locatable and γOL(D
′) = n.

Thus, each vertex of D′ is forced, has at least one in-neighbour, and at least one out-neighbour. In fact, by
Proposition 11, each vertex of D′ has exactly one out-neighbour. Thus, there is a total of n arcs in D′, and
so, every vertex of D′ has exactly one in-neighbour and one out-neighbour, and D′ is the disjoint union of
directed cycles.

Conversely, if D′ is the disjoint union of directed cycles, then γOL(D
′) = n. By Lemma 10, D and D′

have the same set of forced vertices, thus γOL(D) = n.
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By Theorem 12, every vertex v of a digraph D of order n with γOL(D) = n has a unique outgoing and a
unique incoming forcing arc (possibly they are the same if v has a forcing loop).

Definition 13. For a vertex v of an extremal digraph D, we denote by f−(v) and f+(v) the unique in-
neighbour and out-neighbour of v, respectively, corresponding to the two unique incoming and outgoing forcing
arcs incident with v (if v has a forcing loop, we have f+(v) = f−(v) = v).

Theorem 12 implies that in an extremal digraph D, every vertex appears in a directed cycle, thus we get
the following corollary.

Corollary 14. Let D be a digraph of order n containing a source or a sink. Then, γOL(D) ≤ n− 1.

We also get the following corollary.

Corollary 15. If each vertex of a digraph D is forced, then D is locatable.

Proof. By Theorem 12, every vertex of D has an in-neighbour. Assume by contradiction that D contains two
vertices x and y with the same in-neighbourhood. By Theorem 12, x has a forcing incoming arc, tx. Thus,
there is an arc ty but by Proposition 11 ty is not forcing. Hence, t is not the only in-neighbour of y, and x, y
have at least two in-neighbours. Thus, t is location-forced and there is a vertex z with N−(x) \N−(z) = {t}.
But this implies N−(y) \N−(z) = {t} and the arc ty should be forcing, contradicting Proposition 11.

Definition 16. Given a digraph D, we define the digraph H(D) on vertex set V (D), where x has an arc to y
if and only if there exists a vertex v of D that is location-forced, with N−(x) = N−(y) \ {v} (possibly, v = y,
in which case y has a forcing loop; if v = x, then x has no loop but there is a forcing arc from x to y in D).

Such a construction was previously defined in [18] in the context of identifying codes. We will now give
some properties of H(D) when D is an extremal digraph.

Theorem 17. Let D be an extremal digraph.Then, H(D) is the disjoint union of rooted directed trees, where
for each root r, f−(r) is domination-forced in D (and thus r has only one in-neighbour in D), and for each
other vertex v, f−(v) is location-forced in D (and thus, v has an in-neighbour in H(D)).

Proof. Since an arc xy in H(D) implies that the in-neighbourhood of x is strictly smaller than that of y, it
is clear that H(D) is acyclic. Moreover, if some vertex x has two in-neighbours y, z in H(D), since f−(x) is
unique and by the definition of H(D), then we would have that N−(y) = N−(x) \ {f−(x)} = N−(z), and
thus y, z would be in-twins, contradicting the fact that D is locatable. Thus, H(D) is acyclic and each vertex
has at most one in-neighbour, hence H(D) is the disjoint union of rooted directed trees as claimed.

By Theorem 12, every vertex v of D has an incoming forcing arc from f−(v). By the definition of H(D), if
v is not a root of a tree of H(D), f−(v) is location-forced. If r is a root of a tree of H(D), then by the definition
of H(D), f−(r) is not location-forced, and since D is extremal by Corollary 6, f−(r) is domination-forced.

By the definition of H(D), each vertex v with an in-neighbour in H(D) has an incoming forcing arc wv
where w = f−(v) is location-forced. This completes the proof.

Using Theorem 12 and Theorem 17, one can show how all extremal digraphs can be built, as follows.

Theorem 18. For any locatable digraph D of order n, we have γOL(D) = n if and only if D can be
constructed as follows.

1. First, choose a decomposition of n as a sum of positive integers n1, . . . nk, corresponding to the orders
of the directed cycles C1, . . . , Ck consisting of all forced arcs of D, and create the corresponding cycles.

2. Next, choose a partition of V (D) into a set Vd of domination-forced vertices and a set Vl of location-
forced vertices, with |Vd| ≥ 1.
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3. Then, construct H(D) as a collection of vertex-disjoint rooted directed trees (note that such a tree may
consist of a single vertex), as follows. The roots of the trees are precisely the out-neighbours of the
vertices in Vd. Moreover, for any vertex x of Vl, its out-neighbour f+(x) has an in-neighbour in H(D).

4. Finally, for each rooted directed tree T of H(D) and every vertex v of T , we create an arc from f−(v)
to all descendants of v in T .

Proof. Assume that D is extremal. By Theorem 12, the subdigraph D′ of D induced by the forcing arcs of D
is the disjoint union of directed cycles that spans the whole vertex set of D. This corresponds to the first step
of the construction. Every vertex is forced, and by Proposition 11, no vertex is double-forced. Thus, there is
a partition of V (D) into the set Vd of domination-forced vertices and the set Vl of location-forced vertices.
This is Step 2 of the construction. Moreover, by Corollary 8, |Vd| ≥ 1. By Theorem 17, the digraph H(D) is a
collection of vertex-disjoint rooted directed trees where the roots of the trees are precisely the out-neighbours
of the vertices in Vd. Moreover, for any vertex x of Vl, its out-neighbour f+(x) has an in-neighbour in H(D)
(i.e. it is not a root of a tree of H(D)). This corresponds to Step 3 of the construction. Now, the arcs of
D comply with the definition of H(D): for any vertex x of a tree T in H(D), the in-neighbourhood in D of
each descendant of x in T contains the in-neighborhood of x in D, and moreover, for any arc xy of H(D),
N−

D (x) = N−
D (y) \ {f−(y)}. Since the root r of T has only f−(r) as an in-neighbor, there are no further arcs

in D incoming towards a vertex of T (otherwise there would be a similar arc towards the root r, contradicting
the fact that it has only one in-neighbour). Thus, there are in fact no more arcs in D than the ones following
the structure of H(D), and thus Step 4 completes the description of D.

Conversely, if D is constructed in this way, the digraph is clearly locatable and each vertex is forced, and
thus D is indeed extremal.

An example of the construction of Theorem 18 is depicted in Figure 2. Figure 2(a) shows the choice
of the directed cycles formed by the forcing arcs (two cycles (1, 3, 2) and (4)) as well as the partition into
Vd = {1} and Vf = {2, 3, 4}). Figure 2(b) shows the set of rooted diected trees H(D) (in this case, it consists
of a single tree T rooted at vertex 3, which is the out-neighbour of vertex 1, the only vertex in Vd). (Note
that H(D) is not a subdigraph of D.) Finally, Figure 2(c) shows the resulting extremal digraph obtained by
adding to the set of directed cycles, for each vertex v in T , an arc from f−(v) to all descendants of v in T .
That is, we add arcs from 1 = f−(3) to 1, 2 and 4 and from 3 = f−(2) to 1 (and no further arcs since 1 and
4 have no descendants in T ).

1

3

2

4

(a) The forcing arcs of D

1

3

2

4

(b) The rooted directed tree H(D)

1

3

2

4

(c) The final digraph D

Figure 2: An example of the construction from Theorem 18. The square vertex is the only one in Vd; the
circled vertices are those in Vl; the dashed arcs are the forcing arcs; the wriggled arcs are those of H(D).
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3 New proofs of known results
In this section, we show that the contents of the previous section enable us to give new proofs for already
known results.

3.1 A new proof of Theorem 1
Recall the statement of Theorem 1.

Theorem (Theorem 1). For a connected, symmetric and reflexive locatable digraph D of order n, γOL(D) = n
if and only if n = 1.

We note that Corollary 8, which is directly derived from Theorem 7 by Bondy [4], in fact implies Theorem 1
(this gives a different proof than the one from [21]).

Proof of Theorem 1. Let D be a connected, reflexive, symmetric and locatable digraph of order n. If
γOL(D) = n, by Proposition 5, every vertex of D is either location-forced or domination-forced. By Corol-
lary 8, D has at most n − 1 location-forced vertices, and so, it has at least one domination-forced vertex.
However, since D is reflexive and symmetric, a domination-forced vertex of D is necessarily a vertex with no
neighbours other than itself. Since D is connected, we must have n = 1.

3.2 A new proof of Theorem 2
Our tools can be used to give a new proof of Theorem 2 from [17] (the original proof uses induction), whose
statement we recall below.

Theorem (Theorem 2). For a connected and reflexive locatable digraph D of order n without directed 2-
cycles, γOL(D) = n if and only if the digraph obtained from D by removing all loops is the transitive closure
of a rooted directed tree.

Proof of Theorem 2. It is not difficult to see that if D is obtained from the transitive closure of a rooted
directed tree by adding a loop to each vertex, then γOL(D) = n as the root of the tree is domination-forced,
and each vertex is location-forced to locate itself from its parent in the tree.

For the other direction, let D be a connected reflexive locatable digraph of order n with no directed
2-cycle, and assume that γOL(D) = n.

First of all, we claim that the forcing arcs in D are exactly its loops. Assume by contradiction that it
is not the case, and there is a forcing arc from x to y with x ̸= y. Then, there is a vertex z such that
N−(y) \N−(z) = {x} (thus, z /∈ {x, y} since x is an in-neighbour of both x and y since there is a loop at x).
Since there is a loop at both y and z, there is an arc from y to z and vice-versa, contradicting the fact that
there is no directed 2-cycle in D. Thus, each forcing arc is a loop, and by Theorem 12, the set of forcing arcs
of D is exactly its set of loops.

Now, consider the digraph H(D) from Definition 16. By Theorem 17, it consists of a disjoint union of
rooted directed trees. Since every vertex is dominated by itself through its loop, every domination-forced
vertex is the root of one of the directed trees of H(D). Consider a location-forced vertex x of D, and assume
its in-neighbour in H(D) is y. By the previous paragraph we have f−(x) = x and thus, since y has a loop, we
must have the arc yx in D as well. Thus, H(D) is in fact a subdigraph of D. Moreover, for any two vertices
x, y in the same rooted directed tree of H(D), where x is a descendant of y, we have the arc yx in D.

Moreover, we claim that there is a unique tree in H(D). For a contradiction, suppose there are at least
two of them (each of which has a domination-forced vertex as its root). Recall that H(D) is a subdigraph
of D. Since D is connected, there must be two trees T1 and T2 with an arc say, from a vertex x1 of T1 to a
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vertex x2 of T2. But then, since the in-neighborhoods of vertices of T2 only differ by vertices inside T2, x1

must be an in-neighbour of all vertices of T2 (including the root of T2), and thus the root of T2 is in fact not
domination-forced, a contradiction.

This shows that D is obtained from the transitive closure of a rooted directed tree by adding a loop to
each vertex, as claimed.

3.3 A new proof of Theorem 3
We next give a new proof using our structural theorems, that for every connected locatable symmetric and
loop-free digraph of order n with γOL(D) = n, the underlying graph of D is a half-graph (see below). We
recall the definition of a half-graph: for any integer k ≥ 1, the half-graph Hk is the undirected bipartite
graph on vertex sets {v1, . . . , vk} and {w1, . . . , wk}, with an edge between vi and wj if and only if i ≤ j.

Theorem (Theorem 3). For a connected, symmetric and loop-free locatable digraph D of order n, γOL(D) = n
if and only if the underlying graph of D is a half-graph.

Proof of Theorem 3. Assume that D is a connected, locatable, loop-free and symmetric digraph of order n
with γOL(D) = n. By Theorem 12, we know that the set of forcing arcs of D induces a disjoint union of
directed cycles.

First we show that all these directed cycles are, in fact, 2-cycles. Towards a contradiction, assume this
is not the case, and let C be a directed cycle of forcing arcs of length other than 2. Since D is loop-free,
there are no forcing loops, and so, C has length at least 3. Let c1, c2, . . . , ck be the vertices of C, ordered
along the natural orientation of C. Since D is symmetric, each vertex of C has at least two in-neighbours,
thus no vertex of C is domination-forced, and hence they are all location-forced. Thus, for each vertex ci
of C, there is a vertex c′i such that N−(ci) \ {ci−1} = N−(c′i). Consider i = 2. Since D is symmetric,
we have c3 which has an arc to c2, and thus, there are symmetric arcs between c3 and c′2 as well. Thus,
since N−(c3) \ {c2} = N−(c′3), there must also exist symmetric arcs between c′2 and c′3. However, since
N−(c2) \ {c1} = N−(c′2) and c1 ̸= c3, there must be symmetric arcs between c2 and c′3. But this contradicts
the fact that N−(c3) \ {c2} = N−(c′3), and proves the claim that all forced-cycles are 2-cycles.

By Corollary 8, we know that D contains at least one domination-forced vertex. Let v1 be a domination-
forced vertex of D and v1 = f−(u1). Since every forced-cycle of D is of length 2, we conclude that u1 = f−(v1).
Now, d−(u1) = 1, since v1 is domination-forced. Since D is symmetric, we have d+(u1) = 1. If u1 is also
domination-forced, since D is connected, then D is of order 2 and its underlying graph is the half-graph of
order 2. Otherwise, u1 is location-forced and thus there is a vertex v2 such that N−(v1) \N−(v2) = {u1}.

Now, let u2 = f−(v2), and again, since the forced cycles of D are all 2-cycles, we also have v2 = f−(u2).
Since N−(v1) \N−(v2) = {u1}, we also have the arc u2v1 and (since D is symmetric) the arc v1u2.

If u2 is domination-forced, then v1 and v2 have no additional in-neighbours. Thus, the only in-neighbour
of v2 is u2, which has at least two in-neighbours, and thus, v2 cannot be domination-forced. Thus, v2 is
location-forced, and since f−(u2) = v2, there is a vertex u3 such that N−(u2) \ N−(u3) = {v2}. Thus, u3

must have v1 as an in-neighbour, and in fact we have u1 = u3 and there are no other vertices in D. Now, we
are done since the underlying graph of D is a half-graph of order 4.

Otherwise, u2 is location-forced, and since u2 = f−(v2), there is a vertex v3 such that N−(v2)\N−(v3) =
{u2}. We can continue this process, building disjoint pairs of vertices (ui, vi) forming the forcing 2-cycles of
D, where ui has an outgoing arc and an incoming arc to and from each vertex vj , with j ≤ i. This goes on
until we reach a domination-forced vertex uk. Then, the process stops. The vertex set of th obtained graph
is {u1, . . . , uk}∪ {v1, . . . , vk}, and there are two symmetric arcs between ui and vj if and only if i ≤ j. Thus,
the underlying graph of D is precisely a half-graph of order 2k, which completes the proof.
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4 A recursive and constructive characterization of extremal di-trees
In this section, we characterize extremal di-trees, that is, (connected) extremal digraphs whose underlying
graph is a tree. We are going to give a recursive construction for all of these digraphs. This characterization
is more precise than the one from the more general Theorem 18 that holds for all extremal digraphs, and in
particular, it enables us to easily construct all extremal di-trees of order n from the ones of orders n− 2 and
n− 1 using simple operations.

We start with the following definitions.

Definition 19. For a positive integer n, we define Tn as the set of extremal di-trees, that is, all locatable
di-trees D of order n with γOL(D) = n.

We note that when D is di-tree, then every forcing cycle of D is either of length 2 or of length 1. This
implies that for every vertex v of D, f−(v) = f+(v) and f−(f−(v)) = v.

For an undirected graph G, we say that an induced path with vertices u0, u1, . . . , un of G is a pendant
path of length n of G, if deg(u1) = . . . = deg(un−1) = 2 and deg(un) = 1 (note there is no requirement on
the degree of u0).

Lemma 20. Let D ∈ Tn and T be the underlying tree of D. Then for each vertex v of D, d−(v) ≤ 2.

Proof. Let v be a vertex of D with d−(v) > 1, then f−(v) is not domination-forced, so it is location-forced.
It means that there is a vertex u ∈ V (D) such that N−(v) \N−(u) = {f−(v)}. Now, for contrary suppose
that d−(v) ≥ 3. If u is an in-neighbour of v, then u and v should have at least one common in-neighbour
other than v, hence T contains a cycle of length 3, which is a contradiction. Otherwise, vertices v and u
have at least have two common in-neighbours, so in this case T contains a cycle of length 4, which is again
a contradiction. Hence d−(v) ≤ 2, as desired.

Recall that by Theorem 12, the forcing arcs of an extremal digraph D induce a disjoint union of directed
cycles that spans the entire vertex set of D. If D is a di-tree, then these cycles are either loops or directed
2-cycles. In particular, if a vertex is loop-free, it is incident with a directed 2-cycle.

Lemma 21. Let D ∈ Tn and T be the underlying tree of D. Then for each location-forced vertex v of D,
d+(v) = 1.

Proof. Let v be a location-forced vertex of D. For contrary suppose that there exits a vertex x ̸= f+(v) such
that vx ∈ A(D). By Lemma 20, we have N−(x) = {f−(x), v}. Hence, f−(x) is not domination-forced and
so it is location-forced. Therefore, there exists a vertex y such that N−(x) \N−(y) = {f−(x)}. We conclude
that N−(y) = {v}, this means that v is domination-forced which contradicts Proposition 11.

We next prove two structural lemmas.

Lemma 22. Let D ∈ Tn and T be the underlying tree of D. Suppose that a is a leaf in T with a forcing loop
attached to a. Then there is no cycle of length 2 in D which contains a.

Proof. Towards a contradiction, suppose that there is a cycle of length 2 containing the arcs ab and ba (by
Theorem12, we know that none of these two arcs are forcing arcs). Since d−(a) = 2, we conclude that
f−(a) = a is not domination-forced, and hence by Proposition 5, it is location-forced. Since aa is a forcing
loop, we conclude that there exists a vertex c such that N−(a)\N−(c) = {a}. Using N−(a) = {a, b}, we have
N−(c) = {b} (note that b ̸= c). Therefore, b is domination-forced, and since all forcing cycles are of length at
most 2, we conclude that bc and cb are both forcing arcs. Since d−(b) ≥ 2 (in fact by Lemma 20, d−(b) = 2), c
cannot be domination-forced, and by Proposition 5, it is location-forced. Since cb is a forcing arc, we conclude
that there is a vertex f such that N−(b) \N−(f) = {c}, which means that N−(f) = {a}. The latter means
that af is also a forcing arc. We note that since d−(a) = 2 and d−(f) = 1, f ̸= a. Therefore, a is contained
in two different forcing-cycles, which contradicts Theorem 12. Thus, the proof is complete.
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Lemma 23. Let D ∈ Tn, T be the underlying tree of D and v be a leaf of T . Then at least one of the
following conditions hold:

1. T contains a pendant path of length 2 whose leaf is contained in a forcing 2-cycle.

2. T contains a leaf which is included in a forcing loop.

Proof. We recall that by Theorem 12, every leaf belongs to a unique forcing cycle in D (of length at most 2).
If T contains a pendant path of length 2, then its leaf is either contained in a forcing cycle of length 2 or
of length one and hence D satisfies at least one of the mentioned conditions. Otherwise, T should not have
any pendant path of length 2. Therefore, T contains two leaves adjacent to the same vertex. Now, using
Theorem 12, at least one of these two leaves must have a forcing loop attached, which concludes the proof.

4.1 The case of a leaf with a forcing loop attached
Next, we give a recursive construction for digraphs D ∈ Tn, which contain a forcing loop on a leaf. To this
aim, we will use digraphs D′ ∈ Tn−1.

Lemma 24. Let n > 2 be an integer, D ∈ Tn and T be the underlying graph of D. Suppose that a is a
leaf in T with a forcing loop attached and b is the unique neighbour of a in T . Letting D′ = D \ {a}, then
D′ ∈ Tn−1. Moreover, if ba ∈ A(D), then b is domination-forced in D and also in D′. If ab ∈ A(D), then
f−
D′(b) is domination-forced in D′, d+D(f−

D (b)) = 1 and b has no loop attached.

Proof. By Proposition 5, a is either location-forced or domination-forced in D. First suppose that a is
location-forced. Hence, a is not the unique neighbour of itself. Using Lemma 21, we conclude that d+(a) = 1,
hence ab ̸∈ A(D). On the other hand, using Lemma 20, we conclude that N−(a) = {a, b}. As a is location-
forced, there is a vertex x such that N−

D (x) = N−
D (a) \ {a} = {b}, and hence b = f−(x), or equivalently b is

domination-forced (in both D and D′).
Now, suppose that a is domination-forced, which implies that ba ̸∈ A(D), so ab ∈ A(D). We show

that there is no loop at b in D. Since otherwise by Lemma 20, d−D(b) = 2 and N−
D (b) = {a, b}, hence,

N−
D (b) \ N−

D (a) = {b} and bb is a forcing arc in D. Therefore, f−
D (b) = b, hence b is location-forced in

D. Since D is connected and has more than two vertices, we conclude that there is a vertex c ̸= b in D′

such that bc ∈ A(D). This contradicts Lemma 21. Therefore, there is no loop at b and f−
D (b) ̸= b. By

Lemma 20, we have d−D(b) = 2, hence d−D′(b) = 1 and so, f−
D′(b) is domination-forced in D′. Now, since f−

D (b)
is location-forced, by Lemma 21 we conclude that d+(f−

D (b)) = 1, as desired.
To complete the proof of the lemma, we must show that if a is domination-forced, then D′ ∈ Tn−1. By

deleting the vertex a and its incident arcs, for every vertex v ̸= b of D′, we have N−
D′(v) = N−

D (v). On the
other hand, by Lemma 20, d−D(b) = 2 and so, d−D′(b) = 1, which shows that x = f−

D (b) is domination-forced
in D′. Hence, all domination-forced (resp. location-forced) vertices of V (D) \ {x} remain domination-forced
(resp. location-forced) in D′, and x is domination-forced. Therefore, all vertices are forced and D′ ∈ Tn−1,
as desired.

We now show the converse of Lemma 24.

Lemma 25. Let n > 1 be an integer, D′ ∈ Tn−1 and b ∈ V (D′). Suppose that D is a digraph with
V (D) = V (D′) ∪ {a} and the arc set of D is defined using one of the following rules.

i. If b is domination-forced in D′, then A(D) = A(D′) ∪ {ba, aa}.

ii. If bb ̸∈ A(D), d+D′(f−(b)) = 1 and d−D′(b) = 1 in D′, then A(D) = A(D′) ∪ {ab, aa}.

Then, D ∈ Tn.
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Proof. i. Since b is domination-forced, N−
D (a) \ N−

D (f−(b)) = {a}, therefore, a is location-forced in D.
On the other hand, if a vertex is domination-forced (resp. location-forced) in D′, then it is domination-
forced (resp. location-forced) in D. Hence, D ∈ Tn, as desired.

ii. In this case, since N−
D (a) = {a}, we conclude that a is domination-forced. Since N−

D (b) \ N−
D (a) =

{f−
D′(b)}, f−

D′(b) is location-forced in D. Moreover, it is easy to see that all domination-forced vertices of
D′ except f−

D′(b), remain domination-forced in D, and since d+D′(f−(b)) = 1, all location-forced vertices
in D′ remain location-forced in D. Hence, D ∈ Tn.

4.2 The case of a pendant path of length 2 whose leaf is contained in a forcing
2-cycle

In the following lemma, we give a recursive construction for digraphs D ∈ Tn with underlying tree T , in
which T contains a pendant path of length 2 whose leaf is contained in a forcing 2-cycle. In this recursive
construction, we will use digraphs D′ ∈ Tn−2.

Lemma 26. Let n ≥ 3 be an integer, D ∈ Tn and T be the underlying tree of D. Let P = cba be a pendant
path of length 2 in T . Assume that dT (a) = 1, D′ = D \ {a, b} and vertices a, b are contained in a common
forcing 2-cycle. Then, D′ ∈ Tn−2. Moreover, the following conditions hold:

i. aa ̸∈ A(D);

ii. If bb ∈ A(D), then cb ̸∈ A(D). Moreover, f−(c) is location-forced in D and domination-forced in D′.
Furthermore, if c = f−(c), then the only possibility for D is the digraph shown in Figure 3(a).

iii. If bb ̸∈ A(D) and f−(c) is domination-forced in D, then N−
D (c) = {f−(c)} and f−(c) ̸= b. Hence,

bc ̸∈ A(D) and since D is connected, cb ∈ A(D).

iv. If bb ̸∈ A(D) and c is domination-forced in D and f−(c) is location-forced, then d+D(f−(c)) = 1.

v. If bb ̸∈ A(D) and c and f−(c) are both location-forced in D, then cb ̸∈ A(D) and bc ∈ A(D). Moreover,
if c = f−(c), then the only possibility for D is the digraph shown in Figure 3(b).

a b c

(a)

a b c

(b)

Figure 3: Two extremal di-trees of order 3. Forcing arcs are dashed.

Proof. In the following, we prove that D satisfies the claimed conditions.

i. For a contradiction, suppose that aa ∈ A(D). By Lemma 20, we conclude that d−(a) = 2, and thus
b = f−(a) is location-forced; then there is a vertex x such that N−(a)\N−(x) = {b}, which shows that
N−(x) = {a}. Since a is a leaf in T , we conclude that x = b and cb ̸∈ A(D). Since b is location-forced,
by Lemma 21, d+D(b) = 1 and bc ̸∈ A(D). Since the underlying graph of D is connected we conclude
that a and b are the only vertices of D, which contradicts the assumption that n ≥ 3.
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ii. Since ab ∈ A(D), using Lemma 20, we conclude that cb ̸∈ A(D) and so bc ∈ A(D). Since b ̸= f−(c), by
Lemma 20, d−(c) = 2. Therefore, we conclude that f−(c) is location-forced in D (and domination-forced
in D′) and by Lemma 21, d+D(f−(c)) = 1.

Moreover, if c = f−(c), then d+D(c) = 1 and by Lemma 20, N−
D (c) = {c, b}. Hence, the vertex c does

not have any in-neighbour, other than b and c nor any out-neighbour, other than c, in D. Therefore,
the only possibility for D is the digraph shown in Figure 3(a).

iii. Suppose bb ̸∈ A(D) and f−(c) is domination-forced in D. Then, N−
D (c) = {f−(c)} and f−(c) ̸= b.

Hence, bc ̸∈ A(D).

iv. We have d+(f−(c)) = 1 by Lemma 21.

v. By contradiction, suppose that cb ∈ A(D). Since b ̸= f+(c), we have d+(c) ≥ 2 which contradicts
Lemma 21. Thus, cb ̸∈ A(D) and since D is connected, bc ∈ A(D).

Now suppose that c = f−(c), then by Lemma 21, d+D(c) = 1 and by Lemma 20, N−
D (c) = {c, b}. Hence

the vertex c does not have any in-neighbour other than b and c or out-neighbour other than c, and the
only possibility for D is the digraph shown in Figure 3(b).

We now show the converse of Lemma 26.

Lemma 27. Let D′ ∈ Tn−2 and c be an arbitrary vertex of D′. Suppose that D is a digraph with V (D) =
V (D′) ∪ {a, b} and the arc set of D is defined using one of the following rules:

i. If c and f−(c) are both domination-forced in D′ and d+D′(f−(c)) = 1, then A(D) = A(D′)∪{ab, ba}∪A,
where A ∈ {{bb, bc}, {cb, bc}, {bc}, {cb}}.

ii. If c is location-forced in D′, f−(c) is domination-forced in D′ and d+D′(f−(c)) = 1, then A(D) =
A(D′) ∪ {bb, bc, ab, ba} or A(D) = A(D′) ∪ {bc, ab, ba}.

iii. If c and f−(c) are both domination-forced in D′, and d+D′(f−(c)) > 1 then A(D) = A(D′)∪{cb, ab, ba}.

iv. If c is domination-forced in D′ and f−(c) is location-forced in D′, then A(D) = A(D′) ∪ {cb, ab, ba}.

Then D ∈ Tn.

Proof. First we note that if d+D′(f−(c)) = 1 (cases i and ii), then N+
D′(f−(c)) = {c}. So in these cases there

is no vertex y such that N−(y) \ N−(c) = {f−(y)}. Hence, if the new digraph D is constructed by adding
some new in-neighbours to c, this does not affect the forcing vertices of D′, other than f−(c). Thus, to prove
that D is extremal in cases i and ii, it suffices to show that by adding the set of new arcs, each vertex from
the set {a, b, c, f−(c)} is a forced vertex in D.

Moreover, in cases iii and iv, we do not add any in-neighbours to c, so in these cases as well it suffices to
show that after adding the new arcs, each vertex from {a, b, c, f−(c)} is a forced vertex in D.

i. As the vertices c and f−(c) are both domination-forced in D′, using Definitions 13 and 19, we conclude
that N−

D′(f−(c)) = {c} and N−
D′(c) = {f−(c)}. We claim that if D′ has more than one vertex, then

f−(c) ̸= c. By contradiction, suppose that f−(c) = c, this means that there is a forcing loop at c.
Since d−(c) = 1 and d+(f−(c)) = d+(c) = 1 and using the fact that D′ is connected, we conclude that
V (D′) = {c}, which is a contradiction. Hence, the claim is true and f−(c) ̸= c. Now, we prove that
in this case, c remains domination-forced in D. To prove this, we note that N−

D′(f−(c)) = {c} and
c ̸= f−(c). Therefore N−

D (f−(c)) = {c}, which shows that c is domination-forced in D.

Therefore, if A(D) = A(D′) ∪ {bb, bc, ab, ba}, then N−
D (a) = {b}, N−

D (b) = {a, b} and N−
D (c) =

{f−(c), b}. Hence, b is domination-forced in D, a and f−(c) are both location-forced in D.
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If A(D) = A(D′) ∪ {cb, bc, ab, ba}, then N−
D (a) = {b}, N−

D (b) = {a, c} and N−
D (c) = {f−(c), b}. Hence,

b is domination-forced in D, f−(c) and a are both location-forced in D (the latter because there is a
vertex in D only dominated by c).
If A(D) = A(D′)∪{bc, ab, ba}, N−

D (a) = {b}, then N−
D (b) = {a} and N−

D (c) = {f−(c), b}. Hence, b and
a are both domination-forced in D and f−(c) is location-forced in D.
Finally, If A(D) = A(D′) ∪ {cb, ab, ba}, then N−

D (a) = {b}, N−
D (b) = {a, c} and N−

D (c) = {f−(c)}.
Hence, b and f−(c) are both domination-forced in D and a is location-forced in D (because there is a
vertex in D only dominated by c).
In all cases, c remains domination-forced.
Therefore, we conclude that each vertex of D is either domination-forced or location-forced which
implies that D ∈ Tn, as desired.

ii. Since f−(c) is domination-forced in D′, N−
D′(c) = {f−(c)}. First suppose that A(D) = A(D′) ∪

{bb, bc, ab, ba}. Since N−
D (b) = {a} ∪ N−

D (a) and N−
D (a) = {b}, we conclude that a is location-forced

and b is domination-forced in D. Since N−
D (c) = {f−(c)} ∪ N−

D (a), f−(c) is location-forced in D and
one can see that c remains location-forced in D. Therefore, in this case D ∈ Tn.
Now, suppose that A(D) = A(D′) ∪ {bc, ab, ba}. Since N−

D (b) = {a} and N−
D (a) = {b}, we have that

a and b are both domination-forced in D. On the other hand, N−
D (c) = {f−(c)} ∪N−

D (a), so f−(c) is
location-forced in D and again one can see that c remains location-forced in D. Hence, D ∈ Tn.

iii. Since c and f−(c) are both domination-forced in D′, using Definitions 13 and 19, we have N−
D′(f−(c)) =

{c} and N−
D′(c) = {f−(c)}. Considering N−

D (a) = {b}, N−
D (b) = {a, c}, N−

D (f−(c)) = {c} and N−
D (c) =

{f−(c)}, it is easy to see that b, c and f−(c) are all domination-forced in D and a is location-forced.
Hence, D ∈ Tn as desired.

iv. It is easy to see that b and c are domination-forced and f−(c) remains location-forced in D. Since c is
domination-forced in D′, N−

D (f−(c)) = N−
D′(f−(c)) = {c}, hence N−

D (b) = {a} ∪ N−
D (f−(c)) and a is

location-forced in D. Therefore, D ∈ Tn.

4.3 The characterization
As a conclusion of this section, we give our characterization theorem which shows how digraphs in Tn can be
constructed recursively, using extremal digraphs of smaller order.

Definition 28. Let C1(Tn) be the set of all digraphs D ∈ Tn+1 which are constructed from a digraph D′ ∈ Tn
using one of the rules given in Lemma 25, and C2(Tn) be the set of all digraphs D ∈ Tn+2 which are constructed
from a digraph D′ ∈ Tn using one of the rules given in Lemma 27.

Theorem 29. Let n be a positive integer. If n ≤ 2, then all extremal digraphs of T1 ∪ T2 are shown in
Figure 1. If n > 2, then, we have Tn = C1(Tn−1) ∪ C2(Tn−2).

Proof. For n ≤ 2, all connected locatable digraphs of these orders are those of Figure 1 and they are all
extremal. Thus, assume next that n > 2.

By Lemma 25, we have C1(Tn−1) ⊆ Tn and by Lemma 27, we have C2(Tn−2) ⊆ Tn.
Conversely, to see that Tn ⊆ C1(Tn−1)∪C2(Tn−2), assume that we have a digraph D in Tn whose underlying

tree is T . If D contains a forcing loop at a leaf of T , then Lemma 24 shows that D can be constructed from
a digraph of Tn−1 by one of the rules in Lemma 25 and thus D ∈ C1(Tn−1). Otherwise, using Lemma 23, T
contains a pendant path of length 2 whose leaf is contained in a forcing 2-cycle in D. Hence, by Lemma 26,
D can be constructed from a digraph of Tn−2 by one of the rules in Lemma 27 and thus D ∈ C2(Tn−2).

We depict in Figure 4 all extremal digraphs of order at most 4, that were constructed using Theorem 29.
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Figure 4: All extremal di-trees with order at most 4. Forcing arcs are dashed.
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5 Conclusion
By studying structural properties of extremal digraphs with respect to OLD sets, we have been able to give
new proofs of several existing results about both digraphs and undirected graphs, for both identifying codes
and OLD sets. Indeed, OLD sets of general digraphs generalize all these problems. Thus, we believe that
our results shed new light on this type of extremal problems.

We have also given a characterization of all such extremal digraphs, which, it appears, form a very rich
class of digraphs. Even our recursive characterization for extremal di-trees, although of course more restricted
than the general case, shows that there are many such extremal trees.
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