Lipschitz Stabilised Autoencoders in Parameter Identification of Dynamical Systems - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Lipschitz Stabilised Autoencoders in Parameter Identification of Dynamical Systems

Résumé

The present work deals with data-driven modelling. Given a set of partial noisy observations of a dynamical system, we investigate using the Lipschitz stable auto-encoder to perform an intrinsic dimension estimation to understand how many parameters are responsible for the observed variability. By incorporating the information of the intrinsic dimensionality, we investigate a data-driven model improve the classical parameter identification method.
Fichier non déposé

Dates et versions

hal-04398536 , version 1 (16-01-2024)

Identifiants

  • HAL Id : hal-04398536 , version 1

Citer

Haibo Liu, Damiano Lombardi, Muriel Boulakia. Lipschitz Stabilised Autoencoders in Parameter Identification of Dynamical Systems. 10th International Congress on Industrial and Applied Mathematics (ICIAM 2023), Aug 2023, Tokyo, Japan. ⟨hal-04398536⟩
39 Consultations
0 Téléchargements

Partager

More