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Abstract 

Whale populations recovering from historical whaling are particularly vulnerable to incidental 

mortality and disturbance caused by growing ocean industrialization. Several distinct populations of 

rorqual whales (including humpback, blue, and fin whales) migrate and feed off the coast of Oregon, 

USA where spatial overlap with human activities are on the rise. Effective mitigation of conflicts 

requires better foundational understanding of spatial and temporal habitat use patterns to inform 

conservation management. Based on a year-round, multi-platform distance sampling dataset (2016-

2021, 177 survey days, 754 groups observed), this study generated density models to describe and 

predict seasonal distribution of rorqual whales in Oregon. Phenology analysis of sightings revealed a 

peak of humpback whale and blue whale density over the Oregon continental shelf in August and 

September respectively, and higher fin whale density in the winter (December). Additionally, we 

compared rorqual sighting rates across three decades of survey effort (since 1989) and demonstrate 

that rorqual whales are strikingly more prevalent in the current dataset, including distinct increases of 

blue and fin whales. Finally, density surface models relating whale densities to static and dynamic 

environmental variables acquired from data-assimilative ocean models revealed that summer and 

spring rorqual distribution were influenced by dynamic oceanographic features indicative of active 

upwelling and frontal zones (respectively 27 % and 40 % deviance explained). On the continental 

shelf, blue whales were predicted to occur closer to shore than humpback whales and in the more 

southern waters off Oregon. Summer and spring rorqual models, and humpback whale models, 

showed predictive performance suitable for management purposes, assessed through internal cross-

validation and comparison to an external dataset (388 groups observed). Indeed, monthly hotspots of 

high predicted rorqual whale density across multiple years were validated by independent sightings 

(80 % overlap in the summer model). These predictive models lay a robust basis for fine-scale 

dynamic spatial management to reduce impacts of human activities on endangered populations of 

rorqual whales in Oregon. 
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1 Introduction 

The blue economy is a booming sector offering the prospects of economic growth combined with a 

sustainable use of marine resources (Jouffray et al., 2020). However, as commercial interest and 

industrial development in the oceans increase, ecosystems are confronted with the cumulative 

impacts of human activities at an unprecedented pace (Golden et al., 2017). Since the 1970s, trends in 

global maritime traffic have risen (McCauley et al., 2015) and technological advances are enabling 

emergent uses of marine resources through the construction of marine renewable energy facilities and 

prospective seabed mining projects (Levin et al., 2020). The fishing industry has also grown rapidly 

since the 1960s to meet the expanding demand for seafood (Watson et al., 2015). If this ocean 

industrialization is not balanced with ecosystem conservation, habitat degradation and defaunation 

are expected to rapidly intensify at global and local scales (McCauley et al., 2015). 

Dynamic spatial management can be an effective approach to avoid these resource conflicts between 

human activities and marine wildlife (Hyrenbach et al., 2000; Maxwell et al., 2015; Dunn et al., 

2016; Hazen et al., 2018; Hausner et al., 2021). Yet, its success relies on knowledge of species 

distribution at appropriately resolved spatio-temporal scales. Species Distribution Models (SDMs) 

have become an indispensable tool to assess distributions of species in response to ocean dynamics 

(Gilles et al., 2016; Hazen et al., 2018; Abrahms et al., 2019) or in the context of climate change 

(Hazen et al., 2013; Becker et al., 2018; Derville et al., 2019), and thus can estimate vulnerability of 

species to human activities over vast regions (Mannocci et al., 2017; Virgili et al., 2018). These 

statistical correlative approaches fit empirical observations of species occurrence or abundance to 

environmental conditions to describe species ecological relationships and predict distributions over 

multiple spatial and temporal scales (Austin, 2007; Elith and Leathwick, 2009). Considerable 

research has been dedicated in recent years to improve the predictive performance of SDMs within a 

conservation perspective (Elith and Leathwick, 2009; Guisan et al., 2013; Yates et al., 2018). 

Whale populations were decimated by decades of exploitation, resulting in the decline of important 

ecosystem functions (Savoca et al., 2021). Today, recovering populations face the consequences of 

the ocean’s growing anthropization, as whales are threatened by noise disturbance (Rolland et al., 

2012; Pirotta et al., 2018), pollution (Zantis et al., 2021), climate change (Albouy et al., 2020), ship 

strikes (Redfern et al., 2013; Abrahms et al., 2019; Calambokidis et al., 2019; Schoeman et al., 2020) 

and entanglements (Knowlton et al., 2012; Saez et al., 2020). Due to their long life span and low 

reproductive rates, large whale populations are particularly slow to recover after direct or indirect 

impacts by human activities (Keen et al., 2021). To reduce exposure to the numerous threats whales 

face, spatially and temporally explicit regulations on human activities can be informed through 

SDMs generated at appropriate scales, with higher resolution predictions allowing more refined 

conservation measures.  

In the California Current System (CCS) along the US West Coast, ocean industrializing is escalating 

and impacting whales (Carretta et al., 2021). Considerable research effort has been dedicated to 

monitoring whale population trends and understanding their distribution to reduce conflicts with 

increasing human activities in the CCS. Large-scale standardized shipboard surveys conducted in this 

region for three decades (e.g., Barlow et al., 2009; Becker et al., 2012, 2016, 2019, 2020b; Forney et 

al., 2012) and satellite tracking (e.g., Bailey et al., 2009; Hazen et al., 2017; Scales et al., 2017a; 

Abrahms et al., 2019; Palacios et al., 2019) have generated insight into the spatio-temporal patterns 

of habitat use of whales in the CCS. Among the species of concern are the rorqual whales such as 
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humpback whales (Megaptera novaeangliae), blue whales (Balaenoptera musculus musculus), and 

fin whales (Balaenoptera physallus) that migrate along the US West Coast and seasonally forage on 

prey that is supported by high biological productivity generated by the eastern boundary current 

forming the CCS in summer and fall (Bograd et al., 2009). Following the “spring transition”, 

prevailing northwesterly winds drive surface waters offshore, which draws colder, nutrient-rich 

waters up from below and creates an intense upwelling system (Huyer, 1983). Rorqual whale feeding 

groups of blue, fin, and humpback whales found in the California/Oregon region of the CCS have 

been attributed to Distinct Population Segments (DPS) and stocks with different conservation status 

under the US Endangered Species Act. Humpback whales off California and Oregon belong to the 

threatened Mexican DPS and the endangered Central American DPS, while blue and fin whales are 

considered part of the Eastern North Pacific stock and the California/Oregon/Washington stock 

respectively (Carretta et al., 2021).  

Recent studies indicated that habitat use patterns of these whales may change in response to 

variations in environmental conditions and prey availability in the CCS (Fossette et al., 2017; Irvine 

et al., 2019; Rockwood et al., 2020). Moreover, seasonally and annually changing conditions result in 

high temporal variability of whale distribution patterns (Becker et al., 2017, 2020b) leading to 

fluctuating exposure to human activities (Abrahms et al., 2019; Redfern et al., 2020; Santora et al., 

2020). To accurately predict dynamics of whale distribution in specific regions of the CCS that is 

needed for effective management at appropriate scales, distribution models should be trained with 

fine-scale, current and locally acquired occurrence data. Yet, the majority of foundational whale 

species distribution modelling efforts in the CCS region were generated with movement data mostly 

acquired from satellite tags deployed on whales in California (Bailey et al., 2009; Hazen et al., 2017; 

Scales et al., 2017b; Abrahms et al., 2019; Palacios et al., 2019), or with density data acquired during 

broad shipboard surveys covering the entire US West Coast waters in summer-fall with transects 

spaced by 150 to 230 km (Barlow et al., 2009; Forney et al., 2012; Becker et al., 2020b). 

Comparatively less effort has been dedicated to winter-spring months, and to the more northern CCS 

waters on the continental shelf and slope off Oregon, where rapidly expanding human activities are 

also a cause of concern for whale populations, including marine renewable energies (BOEM, 2021a, 

2021b), navy training (US Department of the Navy, 2020), fishing (Feist et al., 2021) and ship traffic 

(Silber et al., 2020). Cetacean surveys conducted in Oregon with the purpose of deriving density 

estimates comprise year-round Minerals Management Survey transects (1989-1992, Brueggeman, 

1992; Green et al., 1992), broad scale NOAA Southwest Fisheries Science Center summer-fall 

surveys (n = 7 years, 1996-2018, Barlow, 2016; Henry et al., 2020), one fine-scale summer survey on 

the shelf in 2000 (Tynan et al., 2005), and a year-round Pacific Continental Shelf Environmental 

Assessment (2011-2012; PaCSEA; Adams et al., 2014, 2016). Considering the spatio-temporal extent 

of these previous efforts, there is a relative paucity of recent and fine-scale whale distribution data in 

Oregon, particularly in nearshore waters during fall, winter and spring months that are a place and 

time of higher whale entanglement risk from fixed fishing gear (Feist et al., 2021). Therefore, as local 

whale populations recover from past exploitation (Carretta et al., 2021) and shift distributions in 

response to climate change (Becker et al., 2018), there is a need for a more modern, shelf-focused 

and finer-scale assessment of rorqual whale habitat use to predict exposure to human activities in 

Oregon. 

In this study, we apply state-of-the-art SDM methods to fill a knowledge gap about the dynamic 

drivers of rorqual spatial distribution off Oregon. Whale densities are modeled from multi-platform 

surveys and assessed in relation to surface and subsurface oceanographic conditions and seabed 

topography. Given the shared ecological and biological traits, as well as similar conservation status 

among humpback, blue and fin whales, all three species are pooled to conjointly assess year-round 
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rorqual whale distribution off Oregon, in addition to investigating potential nuances in foraging 

niches at the species level. Locally trained and current SDMs yield refined spatial predictions that 

will support informed and dynamic management decision-making as ocean use intensifies off the 

coast of Oregon. 

2 Materials and Methods 

2.1 Data collection 

2.1.1 Distance sampling 

A standard distance sampling protocol was employed across multiple platforms to estimate whale 

density while accounting for variable detection and survey effort (Buckland et al., 2015). During all 

surveys, observations and survey conditions were recorded with the SeaScribe program (Seascribe, 

2016) on an iPad tablet or the computer program Seebird-WinCruz prior to 2019 (Pyle, 2007). 

Beaufort sea state (BSS) was consistently recorded as the main indicator of survey conditions and 

was binned a posteriori into three groups (sea states 0-1, 2-3, and ≥4). Tracklines were recorded with 

a handheld GPS device and interpolated to a standard frequency of 1 position every second for 

helicopter surveys and 1 position every 30 seconds for shipboard surveys. 

2.1.2 Helicopter surveys 

Monthly surveys of Oregon continental shelf waters were conducted through a partnership with the 

United States Coast Guard (USCG) starting in February 2019. Four 150 nmi transects (~ 280 km) 

were flown each month out of USCG stations in North Bend (NB), Newport, and Warrenton (Figure 

1), weather permitting. Three of the helicopter transects were covered with Aerospatiale HH/MH-65 

Dolphin helicopters (North-NB, South-NB, Newport), while the Warrenton transect was surveyed 

with the larger Sikorsky HH/MH-60 Jayhawk. One observer surveyed waters on one side of the 

trackline with the helicopter flying at 500 ft altitude and at 90 knots speed. Any major change in 

altitude or deviation from the designed route resulted in an interruption of the survey effort. 

Observations were preferentially made in passing mode (Schwarz et al., 2010), with the helicopter 

breaking track to investigate detected cetacean groups only in a minority of cases to confirm species 

or group size. Upon detection of cetacean groups, perpendicular distance was estimated either 

visually or using a handheld geometer (Pi Technology), species were identified and group size was 

conservatively estimated. 

2.1.3 Shipboard surveys  

Cetacean survey data were acquired from two different sets of cruises conducted in Oregon (Figure 

1). First, observers were placed on the Northern California Current ecosystem survey cruises (NCC, 

NOAA/NWFSC) since February 2018 to collect cetacean sightings during transits between 

oceanographic sampling stations located between La Push (Washington state) and Crescent City, 

Trinidad or San Francisco (California) and offshore as far as 200 nmi (~ 370 km). NCC cruises are 

conducted aboard the R/V Bell M. Shimada each February, May and September. During survey effort, 

the ship traveled at about 10 knots, with occasional sections of effort conducted at 5 knots since 2020 

due to other research needs. Observations were strictly conducted in passing mode. Second, several 

STEM cruises (Science, Technology, Engineering and Mathematics) were conducted in September 

for educational and scientific purposes aboard the R/V Oceanus. Observations were made in closing 

mode, with the ship breaking transect to approach cetaceans to allow photo-identification after 

detection. In general, animals were searched for with naked eye, using binoculars at least 30 % of the 

time. Weather permitting, observations were conducted from the flying bridge located respectively 
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13 m above the waterline aboard the Shimada and 11 m aboard the Oceanus. Poor survey conditions 

(rough sea state, rain, or fog) episodically forced observers to move to the bridge (Shimada: 10.5 m 

high, Oceanus: 8.5 m high). Upon detection of cetacean groups, radial distance was estimated either 

visually or using marine binocular reticles (Fujinon 7x50’s), species were identified and group size 

was conservatively estimated. The angle between the trackline and the cetacean group was recorded 

to later derive perpendicular distance with a simple trigonometric equation. 

2.1.4 Environmental variables 

Whale habitat use was assessed with respect to topographic and dynamic environmental variables 

known to reflect the distribution of whales (Becker et al., 2016, 2018; Abrahms et al., 2019), other 

marine predators (Brodie et al., 2018) or their prey (Cimino et al., 2020; Muhling et al., 2020) in the 

CCS. Bathymetric charts were obtained from the General Bathymetric Chart of the Oceans (GEBCO, 

15 arc-second resolution). Coastlines were obtained from the OpenStreetMap dataset. Distance to the 

closest submarine canyon was calculated from a worldwide geomorphological map (Harris et al., 

2014). Dynamic variables were acquired from daily fields of the near-real time configuration (2011-

present) of the Regional Ocean Modeling System (ROMS, Neveu et al., 2016) covering the CCS 

from 134°W to the coast, and from 30 to 48°N, with a horizontal resolution of 0.1° (see details and 

sources in Table S1). 

Eight variables were derived from ROMS to describe surface and subsurface ocean circulation 

dynamics: sea surface temperature (SST in °C) and its spatial standard deviation (SSTSD; calculated 

over 0.3° squares), sea surface height (SSH in m) and its standard deviation (SSHSD; calculated over 

0.3° squares), eddy kinetic energy (EKE; calculated from eastward and northward surface current 

velocities, kg⋅m2⋅s−2), wind stress curl (CURL in Newton⋅m-3), isothermal layer depth (ILD in m) and 

bulk buoyancy frequency (BBV averaged over the upper 200 m, also known as Brunt-Väisälä 

frequency, in s-1, Table S1). Frontal zones and areas of high mesoscale variability showing high 

SSTSD and SSHSD are hypothesized to concentrate prey and drive whale distribution (Scales et al., 

2014; Becker et al., 2016). In addition, low SST combined with low BBV, shallow ILD, and high 

CURL are indicative of strong wind stress and subsequent water column vertical mixing that occurs 

during upwelling events in the CCS in spring and summer (Brodie et al., 2018; Abrahms et al., 2019). 

ROMS daily layers were slightly extrapolated in the most nearshore waters of the study area where 

data gaps of 0.1° wide were filled with the average values from the three nearest neighboring cells. 

EKE layers were log10-transformed following Cimino et al. (2020). All environmental layers were 

projected in a Universal Transverse Mercator coordinate system to ensure accurate spatial 

computations within our study area (UTM 10N) and rescaled to 5-km resolution to match the scale of 

survey effort segmentation. 

2.1.5 Validation sightings 

Opportunistic sightings collected through citizen science and sightings recorded as part of other 

research programs were compiled into an independent sighting dataset destined to validate model 

predictions. Citizen science sightings were mainly recorded with the Whale Alert and Ocean Alert 

Apps, provided by Point Blue Conservation Science. Research sightings were provided by several 

institutions and covered a wide time frame, from 1989 to 2021. Sources and metadata are provided in 

Supplementary Table S2. Position, date, group size and species identification were compiled. 

Offshore sightings made past the 1,500 m isobaths and potential duplicate sightings were excluded. 

Citizen science sightings made from land viewpoints were shifted by 0.01° west to be relocated at 

sea.  
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Given the large time span of this validation data across 3 decades, we conducted a supplementary 

analysis comparing the sighting rates of rorqual species across three time periods with similar survey 

effort: ORWA and DEPLHIN surveys in 1989-1992 (Brueggeman, 1992; Green et al., 1992), 

PaCSea surveys in 2011-2012 (Adams et al., 2016), and the present study in 2016-2021. We 

recognize that these surveys had different designs (Supplementary Table S3). Hence, to compare 

sighting rates across decades we applied two different methods to account for survey effort:,(1) the 

number of individuals observed was divided by the total distance surveyed (whales/km), and (2) the 

number of individuals observed within the strip width surveyed was divided by the approximate area 

surveyed (whales/km2). 

2.2 Data processing 

2.2.1 Species observation and classification 

Upon sightings, group size and cetacean identification at the highest taxonomic level were recorded. 

As commonly experienced in passing mode surveys, many sightings could only be resolved to the 

family or genus level (Schwarz et al., 2010). To utilize valuable detections of unidentified baleen 

whales, we applied a random forest classifier (cforest from R party package version 1.3-7)  following 

Roberts et al., (2016) to classify these sightings into rorquals (humpback, blue or fin) or gray whale 

(Eschrichtius robustus) groups (see details in Supplementary Information; Figure S1), as gray whales 

were also observed but have a distinct ecological niche (nearshore, shallow; Darling et al., 1998). 

2.2.2 Effective Strip Width 

Effective strip width (ESW) was modeled hierarchically across platforms and survey conditions 

using the approach and custom codes designed by Virgili et al., (2018). Based on the similar size and 

behavior of the three rorqual species of interest (humpback, blue or fin whales) that affect mean 

perpendicular distance of detection (Barlow et al., 2001), sightings of these species were pooled to 

increase sample size and more robustly estimate the detection functions from which ESW could be 

derived. Hierarchical modeling of rorqual detection functions was performed in a Bayesian 

framework using JAGS 4.3.0 and the R rjags package (version 4-10). Two separate models were 

produced for helicopter and shipboard surveys. In the helicopter model, transect (Warrenton, 

Newport, North-NB, South-NB) was included as a random effect and BSS was included as a 

covariate (three groups). In the shipboard model, cruise ID was included as a random effect (e.g., 

NCC cruise September 2021, STEM cruise September 2016, etc.), while covariates included BSS 

(three groups) and observation height (four categories: Shimada flying bridge and bridge, Oceanus 

flying bridge and bridge). Detection functions were fit with a hazard key and truncation distances 

equal to the 95 % percentile of the set of perpendicular distances measured from a given platform 

type. 

2.2.3 Survey segments 

To standardize spatial analysis of cetacean sightings relative to environmental variables, survey effort 

must be segmented into equal distances (Miller et al., 2013). First, on-effort sections of the survey 

tracks were split into legs of consistent survey conditions (heading +/- 20° and constant BSS for 

helicopter surveys, constant speed and BSS for shipboard surveys). Short legs of less than 1 minute 

were removed from the analysis. Next, each of these legs was split into smaller segments of constant 

length, using a euclidean division, with any remainder added to the last of the leg’s segment. An 

optimal segment length of 5 km was selected for both helicopter and shipboard surveys based on a 

trade-off between high spatial resolution appropriate for management applications and limiting the 

number of segments with zero detections (Becker et al., 2020a). Sightings were linked to their 
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respective 5-km segments to compute the number of individuals observed per segment (sum of 

individuals across group encountered); measurement error on group size was therefore not accounted 

for in these rorqual counts per segments (e.g., Virgili et al., 2018; Becker et al., 2020b).  

2.3 Species distribution models 

2.3.1 Availability 

Distance sampling of cetaceans typically suffers from undercounting due to visibility biases. Indeed, 

perception bias occurs when animals are at the surface and available for detection, but observers fail 

to detect them for a variety of reasons. On the other hand, availability bias is due to animals being 

missed by observers when they are underwater (Marsh and Sinclair, 1989). This availability bias 

depends on multiple factors (Barlow, 2015), including the animals’ diving pattern, and the platform 

height and speed that determine the ‘time window’ during which the animal is within a detectable 

range. In this study, density estimates were corrected for availability bias but not for perception bias 

(e.g., humpback whale density estimates; Heide-Jørgensen et al., 2008; Bortolotto et al., 2016), as the 

sampling design did not allow for the estimation of the latter (e.g., through mark-recapture distance 

sampling). The probability Pa of a whale being available for detection was calculated for helicopters 

and ships (moving at 10 or 5 knots), per rorqual species, based on (Laake et al., 1997; Salgado Kent 

et al., 2012) and described in Supplementary Information. Availability Pa was averaged across all 

species to estimate overall rorqual availability per platform. 

2.3.2 Rorqual phenology models 

Rorqual counts per segment were modeled in relation to the day of year to estimate migratory 

occurrence in Oregon. Generalized Additive Models (GAM, Hastie & Tibshirani, 1990) were fitted 

to the mean number of individuals per segment with a negative binomial distribution and a 

logarithmic link function, using the mgcv R package (version 1.8-38, Wood, 2011). The models were 

limited to segments of effort occurring over the Oregon shelf and slope, and included year as a 

discrete covariate and day of year as a cyclic spline with basis size limited to 3. For fin whales that 

tend to occur in the winter, the calendar days were shifted to allow a better fit of the cyclic splines 

around new year’s eve, such that day of year was shifted to begin on July 18 instead of January 1st. 

The models were fit with an offset equal to segment length multiplied by the number of observers 

and ESW (on a log scale). Following the approach to combine observations from multiple platforms 

developed by Virgili et al., (2018), we weighted the helicopter segments with zero sightings by the 

availability index calculated per rorqual species. This approach effectively allowed the model to 

account for the lower availability of whales to platforms moving at higher speed and with a shorter 

detection range (e.g., helicopters). The mean date of the peak in whale density across years was 

calculated for each species and for all rorquals combined; the date range around the peak that 

includes 50% of the maximum predicted density is also reported, termed the “half density range”.  

2.3.3 Rorqual density models 

Rorqual counts per segment were modeled in relation to a series of environmental variables extracted 

at the centroid of each 5-km segment of survey effort. Contrary to the phenology models, the density 

models included all segments of effort occurring in Oregon waters and beyond (with a small amount 

of shipboard effort in the southern Washington state waters and northern California waters, see 

Figure 1). As collinearity among explanatory variables is known to affect a model's stability 

(Dormann et al., 2013), we calculated the Pearson coefficients between each pair of variables and 

removed variables with coefficients > 0.7. Dynamic variables were computed at a weekly scale, with 

daily values averaged over the 7 days prior to any given survey day included in the data. Three 
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models were fit to the pooled rorqual counts over separate seasons of contrasting whale ecology in 

the region (Mror-spring: April-July, Mror-summer: August-November, Mror-winter: December-

March). These models were fit with 10 explanatory variables: DEPTH, DIS_CANYON, SST, 

SSTSD, SSH, SSHSD, EKE, ILD, CURL, ILD, and BBV. Three species-specific models were also 

produced over the period of higher whale occurrence, respectively targeting humpback whales (Mhb, 

April- November), blue whales (Mbl, April-November) and fin whales (Mfi, August-March). In 

addition to the above-mentioned environmental variables, the Mhb, Mbl, and Mfi models included 

day of year as an explanatory term to account for phenology in the region. GAMs were applied with 

the mgcv R package and parametrized as in the phenology models (offset, weights, Restricted 

Maximum Likelihood). Environmental explanatory variables were modeled with penalized thin‐plate 

regression splines with basis size limited to 5 to prevent overfitting (Wood, 2017). Variable selection 

was conducted with a shrinkage approach implemented in the mgcv R package, which adds an extra 

penalty to each smoother and penalizes non-significant variables to zero (Marra and Wood, 2011). In 

the species-specific models, the day of year variable was not adjusted with a cyclic regression spline 

since these models were not fitted on year-round data. 

2.3.4 Evaluation and predictions 

Models were run with a 10-folds cross-validation (Roberts et al., 2017) grouped over survey days to 

account for the hierarchical structure of the data (i.e., segments from the same survey day were not 

split over multiple folds, Derville et al., 2018). The percentage of deviance explained by each of the 

10-fold runs was calculated over the training fold. In turn, each of the 10 folds was used as a test 

dataset to compute external evaluation of the density models. Model accuracy and discrimination 

power were respectively assessed by calculating the root of mean square error (RMSE) and the 

Spearman correlation coefficient (rho) between observed and predicted densities in the test fold 

(Brodie et al., 2021). The ability of models to accurately predict areas with no whale occurrence was 

assessed with true negative rates (i.e., proportion of segments with no whales that had predicted 

densities ≤ 1 whale within the effective area surveyed). Finally, all evaluation metrics were averaged 

over the 10-folds model runs. Functional response plots were produced for each significant 

environmental predictor-season combination across folds (approximate smooth term significance 

with p-value < 0.05) to visualize the effect of one variable while all others were held constant at their 

mean (Friedman, 2001). Variable importance was estimated as the number of fold runs with 

approximate significance p-values less than 0.05, 0.01 and 0.001.  

Rorqual density was predicted from 2016 to 2021 at monthly scale, on a 5-km resolution grid of 

Oregon waters < 1,500 m. This spatial scale was selected in accordance with survey effort 

segmentation and to evaluate whale distribution at a resolution that would facilitate targeted 

management of human activities on the continental shelf that may interact with whales. For each 

month, predictions were first computed at a weekly scale, from the last week of the previous month 

to the third week of the month of interest (e.g., for May predictions, whale densities were predicted 

over four weeks from April to May 24). Median predicted whale densities were calculated across the 

10 cross-validation runs for each week, and were in turn used to calculate the median monthly 

predicted density layers across 4 weeks. Environmental extrapolation was not limited in the 

predictions per se, but the areas where environmental conditions strayed outside their training ranges 

by season were highlighted in the Supplemental Information, as they should be considered with 

caution (Mannocci et al., 2017; Derville et al., 2018). 
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2.3.5 Independent validation 

Independent sightings recorded through citizen science and other research surveys were used to 

validate model outputs. All sightings were projected over the 5-km resolution grid and were grouped 

per day, per grid cell (i.e., group sizes of sightings occurring within 5 km cells were summed). Since 

the ROMS environmental layers used to produce the rorqual density models were available 

beginning in 2011, predictions could be produced at the time and position of sightings recorded from 

2011 to 2021. The Mhb, Mbl and Mfi models were used to predict species-specific densities where 

and when humpback, blue and fin whales were respectively recorded in the validation dataset. The 

Mror model was used to predict rorqual whale density of all taxa (combined dataset of all rorqual 

sightings and reclassified unidentified whales via random forest analysis) at all the positions where 

they were recorded in the validation dataset. Predicted densities were compared to observed densities, 

allowing for the estimation of discrimination power and true positive rates (i.e., proportion of 

sightings with predicted densities ≥ 1 whale/grid cell). 

Models were further evaluated by calculating the proportion of independent sightings that occurred 

within monthly hotspots derived from 2016-2021 predictions. Hotspots were considered areas 

recurrently predicted with high whale densities across the 5 years over which the models were 

trained. Overall rorqual densities, as well as species-specific densities (humpback, blue, and fin 

whales) were predicted over all months, from January 2016 to September 2021. Monthly predicted 

maps were summed together across years and rescaled to 0-100 relative values of habitat suitability. 

Hotspots were defined as the cells with suitability values within the highest 25 % of the distribution. 

The proportion of independent sightings recorded within these monthly hotspots was calculated as a 

metric of independent model validation. 

All analyses were performed using R statistical computing (R Core Team, 2021). 

3 Results 

3.1 Temporal effort and whale sightings 

Cetacean surveys were conducted across 102 days from helicopters and 75 days from ships, totaling 

22,579 km and 5,738 km of effort, respectively (Table 1). Survey effort was generally greater in 

Aug-Nov, both in terms of distance covered and time on effort. Shipboard survey effort extended 

further offshore than helicopter surveys and outside Oregon waters for a small part (6 % in 

Washington and California state waters, Figure 1). BSS conditions 2-3 were most common (64 % 

overall).  

Most observations were concentrated on the continental shelf, with the exception of a few 

unidentified baleen whales and several fin whales observed offshore (Figure 1 and maps by species in 

Supplementary Figures S2-S4). Humpback whales were observed in greatest numbers (426 groups, 

839 individuals, Table 1), compared to blue and fin whales. A great number of whale groups could 

not be identified to species level (269 groups totaling 351 individuals). Among those, 232 groups (86 

% of groups, totaling 297 individuals) were classified as rorquals a posteriori based on the results of 

the random forest classifier (Supplementary Figure S5).  

The overall independent rorqual sightings dataset was composed of 388 sightings (Supplementary 

Table S2, Figure S6) representing 886 individual whales aggregated over 273 grid cells of 5 km 

resolution. Alike the present study, sightings were dominated by humpback whales (190 sightings 

including 701 individuals), with only a small proportion of blue (38 sightings including 89 
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individuals) and fin whales (18 sightings including 43 individuals, Table 2). The majority of these 

observations were collected between April and November (Table 2). They covered a wide time 

frame, from 1989 to 2021. For the periods 1989-1992 and 2011-2012, independent sightings were all 

sourced from systematic research surveys comparable in spatio-temporal extent to the present study 

(Supplementary Figure S7). A temporal comparison of the crude sighting rate calculated over these 

two periods and the present study revealed a major change in rorqual numbers and species 

proportions (whales/km in Figure 2), even when effective strip width was accounted for (whales/km2 

in Supplementary Figure S8). Sighting rates over the Oregon continental shelf and slope multiplied 

by 17 between the 1989-1992 surveys and the present study. Moreover, the number of blue and fin 

whales dramatically increased, specifically blue whales that composed only 1 % of individuals 

observed in 1989-1992 (only 1 individual observed), compared to 7 % recently. 

3.2 Multi-platform detection 

Helicopter and shipboard detection functions were modeled based on 250 and 407 rorqual 

perpendicular detection distances, respectively (Supplementary Figure S9). The truncation distance 

was set to 4,690 m for helicopter detections and 9,904 m for shipboard detections based on the 95th 

percentile of the sighting perpendicular distances. Detection distances were generally greater for 

shipboard surveys compared to helicopter surveys. In helicopter surveys, the mean ESW showed 

little difference across BSS groups, as it only varied from 914 m ± SE 372 m to 1,093 m ± SE 431 

depending on BSS conditions (Supplementary Figure S10). In shipboard surveys, the mean ESW 

varied from 2,073 m ± SE 912 m to 3,217 m ± SE 1,020 m depending on BSS conditions and 

platform height. As expected, ESW was slightly greater when BSS was lower and when observation 

height was greater (i.e. from the flying bridge of both ships). 

Availability during shipboard surveys was equal to 1 for all three rorqual species and for both vessel 

speeds experienced during shipboard surveys (10 or 5 knots). On the other hand, availability during 

helicopter surveys was < 1 and varied between species, between 0.76 for humpback whales, 0.64 for 

fin whales, and 0.52 for blue whales, as expected from their respective mean dive cycles. The overall 

rorqual availability during helicopter surveys was estimated at 0.72. 

3.3 Whale phenology in Oregon 

Most observations were concentrated in May and September (Figure 3a), due to NCC cruise 

schedules. Humpback, blue, and fin whales were observed in all three seasons of interest, but in 

disparate numbers. No fin whales were observed in June, July, nor August, while these months 

comprised the majority of blue whale sightings. Humpback whales were observed in all months 

except for January and were most frequent from May to November (Table 1, Figure 3a). The 

phenology models identified the peak of density over the Oregon continental shelf and slope as Sep 

26 (half density range: Aug 16 to Nov 12) for blue whales, December 18 (half density range: Oct 24 

to Feb 18) for fin whales, and August 24 (half density range: Jun 20 to Oct 19) for humpback whales 

(with deviance explained = 31%, 26 % and 15 % respectively). Overall the peak of rorqual density 

was estimated to occur around September 2 (half-strip range: Jun 21 to Nov 13, deviance explained = 

9 %, Figure 3b). 

3.4 Whale habitat relationships 

Seasonal rorqual models were based on 10 environmental variables extracted over 5,082 standardized 

5 km segments of effort (Table 1). They revealed different ecological relationships, varying in 

strength and complexity across seasons (Table S4). From December to March (Mror-winter), few 
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environmental variables were able to explain and predict rorqual occurrence (Figure 4a). The 

prevalence of survey segments with zero observations was reflected in a relatively high deviance 

explained (37 %, Table 2), but weak environmental relationships resulted in poor predictive power 

across the test folds and when compared to the independent validation dataset (true positive rate was 

equal to 0). On the other hand, the Mror-spring and Mror-summer models had moderate to high 

descriptive and predictive power, as reflected in the significant discrimination scores obtained both 

across the test folds and during independent validation (Table 2). Variable importance (Figure 4a) 

and functional response plots (Figure 3b) revealed some common habitat selection patterns between 

these two seasons. ILD was one of the most influential variables in both the Mror-spring and Mror-

summer models. Shallow ILD (< 30 m) was associated with higher whale densities. Conversely, 

SSHSD also strongly influenced rorqual whale densities in both models but with marked seasonal 

differences, as intermediate values (~ 0.01) were favored in summer vs high values (> 0.03) in spring. 

Other important variables included DEPTH, SST, SSTSD and CURL in Mror-spring, and SST and 

BBV in Mror-summer. Low BBV was favored in both models and high SSTSD was preferred in the 

spring (Figure 4b). 

The Mhb, Mbl and Mfi models provided insights into the species-specific ecological relationships of 

rorquals in Oregon (Table S5). Although the Mfi model had a relatively high deviance explained, it 

performed poorly in the test evaluation and the independent validation (Table 2). On the other hand, 

the Mhb model had a lower deviance explained but predicted independent sightings better than 

average (61 % true positive rate and discrimination coefficient 0.18, p-value < 0.05). The Mbl model 

had intermediate performance as it showed significant discrimination power over the test evaluation 

(coefficient 0.07, p-value < 0.001) but mixed performance in the independent validation.  

In line with the rorqual models, ILD was a relatively important contributor to all three of the species-

specific habitat models (Figure 5a), highlighting a general preference for waters with shallow ILD 

(Figure 5b). SST also contributed to humpback, blue, and fin whale models, with higher densities 

associated with colder waters (< 13°C). Furthermore, blue whales were predicted to occur in greater 

numbers when BBV was low and when SSHSD was intermediate (~0.01). Fin whale densities were 

predicted to be particularly higher in proximity to canyons. The Mfi relationship to DEPTH was 

sensitive to the cross-validation as the different fold runs showed different functional responses that 

highlighted the importance of deep and offshore waters up to 2,500 m deep.  

Finally, the Mhb model was relatively similar to the Mror-spring and Mror-summer models, as 

expected from the dominance of humpback whales in rorqual species observed off the Oregon coast 

(Figure 3a). SSHSD, SST, day of year, DEPTH, CURL, BBV, distance to canyons and ILD had a 

significant effect on humpback whale densities in almost all of the cross-validation runs (Figure 5a). 

The Mhb model generally showed a preference of humpback whales for high SSHSD, low BBV and 

low CURL. The relationship with distance to canyon was bimodal, with a marked preference for 

waters closer to canyons (< 50 km). Humpback whales densities increased with decreasing seabed 

depth, with a faint inflexion around 1,000 m deep corresponding to the limit of the continental shelf. 

3.5 Predicted density patterns 

Predictive maps of rorqual densities (Figure 6) were produced for the months of interest (January, 

May and September) corresponding to each seasonal model (Mror-winter, Mror-spring and Mror-

summer respectively). The seasonal migratory behavior of rorquals was clearly reflected in these 

predictions, whereby densities across the majority of the study area were generally predicted to be 

low in January, increase through May, and be the highest in September. In comparison to other 
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months, predicted densities in January were very low across the Oregon shelf and slope. Densities 

increased in May, specifically over a few discrete hotspots located on the continental slope and 

varying across years. In September, densities peaked and were predicted to be the highest on the 

continental shelf, off Cape Blanco, North Bend and Newport. Over all seasons, densities were 

predicted to be low in nearshore, shallow waters (< 50 m deep), with the exception of the nearshore 

waters south of Cape Blanco where rorquals are predicted to occur in relatively high numbers in 

September. 

Species-specific maps of predicted densities provided further insights into the spatio-temporal 

patterns of occurrence of rorqual species (Supplementary Figures S11-S13). On average across years, 

humpback whale hotspots were mostly predicted to be over the continental shelf and slope waters 

deeper than 50-100 m, whereas blue whale distribution extended more inshore and was limited to the 

southern part of the study region (Figure 7, Supplementary Figures S14-S17). The percent of overlap 

between monthly hotspots and sightings recorded independently since 1989 was higher for humpback 

(51 %) than blue whales (32 %, Table 2). Overall, hotspots derived from the rorqual Mror-summer 

model predictions had the best overlap with independent sightings (77 %), as illustrated in the 

September hotspot map (Figure 7). 

4 Discussion 

Balancing expanding human activities in the ocean and protection of biodiversity is a challenge. 

Informed spatial management through a highly resolved understanding of biodiversity distribution 

patterns can alleviate some conflicts. In this study, we collected and analyzed year-round whale 

occurrence data across Oregon shelf waters, demonstrating (1) an increase in rorqual whale numbers 

over the last three decades, (2) differences in timing of migration and habitat preferences across 

humpback, blue, and fin whales, and (3) predictable relationships between rorqual whale distribution 

and dynamic ocean conditions indicative of upwellings and frontal zones. These findings illustrate 

that more rorqual whales now occur in Oregon waters than previously, requiring modern data 

assessed within a dynamic ocean framework to support conservation efforts. This study provides up-

to-date predictions of rorqual whale densities at a fine spatio-temporal scale that is relevant to the 

spatial management of human activities in Oregon. 

Historical comparison of sighting rates across the last three decades revealed an overall increase in 

rorqual numbers in Oregon. Compared to aerial surveys conducted in 1989-1992 (Brueggeman, 

1992; Green et al., 1992), humpback, blue, and fin whales are now more abundant, with humpback 

whales being by far the most common rorqual species observed in Oregon overall. These trends align 

with population increases of humpback and fin whales at the scale of the US West Coast described 

through mark-recapture and aerial surveys respectively (Barlow et al., 2011; Nadeem et al., 2016; 

Calambokidis et al., 2017; Calambokidis and Barlow, 2020). Blue whales in the CCS, however, only 

showed slight signs of increase since the 1990s (Calambokidis and Barlow, 2020), as the eastern 

North Pacific stock that migrates and feeds off the US West Coast is believed to have reached 

carrying capacity (Monnahan et al., 2015). Yet, it has been suggested that the distribution of this blue 

whale population has shifted northward or undergone a range expansion during the same period 

(Calambokidis et al., 2009). We provide more evidence of an increased use of northern CCS waters 

by blue whales over the last three decades. The nature, drivers and time frame of this distribution 

change are unclear, although blue whales are hypothesized to migrate further north in response to 

environmental changes influencing prey availability (Bailey et al., 2009; Calambokidis et al., 2009).  
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Our density models indicate that rorqual whales off Oregon prefer habitat with low BBV, shallow 

ILD, and low SST conditions, characteristics typical of highly mixed and cold nearshore upwelled 

waters (Brodie et al., 2018; Anglès et al., 2019; Nampoothiri et al., 2020). Moreover, the selection for 

high SSTSD and SSHSD indicates a preference for frontal oceanographic areas and areas of high 

mesoscale variability (Scales et al., 2014; Becker et al., 2016). These physical conditions are assumed 

to provide suitable biological conditions for increased prey abundance and correspond to results of 

blue whale habitat use models derived from satellite tracking at the scale of the US West Coast 

(Abrahms et al., 2019). Yet, the exact timing between upwellings to enhanced biological productivity 

and whale abundance is not exactly known. Unlike previous studies of whale distribution in the CCS 

that modeled whale response to daily changes of ocean physical variables (Hazen et al., 2017; Becker 

et al., 2018, 2020b; Abrahms et al., 2019), we modeled environmental conditions at a weekly scale 

before the day of surveys. In this way, we assume that whales do not respond instantaneously to 

ocean physical changes, especially in wind-driven upwelling systems. Blue whales occurrence in an 

upwelling system in New Zealand have a 3 week lag from wind events that drive productivity on that 

foraging ground (Barlow et al., 2021), allowing forecasts of blue whale distribution for conservation 

management applications (Barlow and Torres, 2021). In the CCS, forage species also respond to 

weekly scale wind variations whereby their aggregation patterns become more discrete and 

concentrated during periodic upwelling events (Benoit-Bird et al., 2019). In addition to the general 

seasonal pattern of upwelling that lead to the occurrence of foraging whales months after the peak in 

primary productivity has occurred (Croll et al., 2005), the within-season variability of upwelling 

conditions and prey availability also appears to play an important role in driving rorqual whale 

distribution in the CCS. Moreover, seabed topography is known to interact and locally influence 

ocean productivity. In this study, the proximity to submarine canyons generally contributed to higher 

habitat suitability, likely due to the role of canyons as krill hotspots in the CCS (Santora et al., 2018), 

including in canyons off Cape Blanco that overlap with predicted suitable habitat for blue whales, 

humpback whales, and rorquals in general (Figures 6 & 7). The Heceta and Stonewall banks were 

also recurrently predicted as a hotspot of rorqual occurrence in summer and fall. These topographic 

features generate a known retention area with high surface primary productivity (Barth et al., 2005; 

Gan and Allen, 2005; Hickey and Banas, 2008) that is both an important fishing location (Tissot et 

al., 2008) and a zone where humpback whales were frequently observed in previous transect surveys 

over the Oregon continental shelf (Tynan et al., 2005), currently  identified as a ‘Biologically 

Important Area’ for humpback whales (Calambokidis et al., 2015). 

Our investigation of species-specific phenology and habitat use highlighted temporal, environmental, 

and spatial segregation across rorqual species in Oregon. The habitat selection patterns predicted by 

our locally trained density models aligned well with previous work at broader scales in the CCS 

(Barlow et al., 2009; Forney et al., 2012; Becker et al., 2020b). Humpback whales were the most 

spatially and temporally widespread, likely due to their generalist and flexible diet (Pauly and Trites, 

1998; Fleming et al., 2016). They showed a preference for the continental shelf and slope, as 

predicted by US coast-wide (Becker et al., 2018, 2020b) and southern California (Becker et al., 2017) 

density models derived from ship-based surveys. Their presence was tightly associated with the 

seasonal upwelling, as reflected in their preference for turbulent, mixed, and surface-cold waters. 

Blue whales also appeared in Oregon in relation to upwelling, although their presence peaked later in 

the season compared to humpback whales, which is a temporal pattern similar to that identified in 

Monterey Bay, California (Fossette et al., 2017). Interestingly, blue whales used shallower waters 

than humpback whales, as they were constrained to the continental shelf, which corresponds  with 

other blue whale habitat predictions (Barlow et al., 2009; Forney et al., 2012; Becker et al., 2018, 

2020b; Abrahms et al., 2019) and with area restricted search identified in blue whale satellite tracks 

(Bailey et al., 2009; Palacios et al., 2019) in nearshore southern Oregon. However, US west coast-
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wide models by Abrahms et al., (2019) also predicted relatively high habitat suitability for blue 

whales in deeper waters just off the continental slope in central Oregon, which our models did not 

predict. Given that most of the blue whales included in Abrahms et al., (2019) were tagged and 

tracked in California, we hypothesize that the resulting model predictions are biased towards 

California habitat drivers that may not apply as well to the northern CCS. Indeed, the nearshore 

habitat selection pattern we predicted off the coast of Oregon further contrasts with blue whale 

distribution off southern California where predicted suitable habitats extend far offshore (Barlow et 

al., 2009; Forney et al., 2012; Becker et al., 2018, 2020b; Abrahms et al., 2019). These dissimilarities 

emphasize the value of acquiring refined and local whale data to specifically understand distribution 

patterns and ecological relationships in Oregon waters in support of a more resolved state-wide 

spatial management. In California, blue whales are known to feed on krill Thyssanoessa spinifera in 

shallow environments (<100 m water depth) and Euphausia pacifica in shelf-edge and open-ocean 

environments (Fiedler et al., 1998; Becker et al., 2018). Given that Thysanoessa spinifera has the 

highest potential energetic content, we hypothesize that blue whales specifically target this krill 

species in inshore waters of the Oregon shelf (Nickels et al., 2018), particularly in late summer / early 

fall when the carbon and lipid content of this krill species is at its peak (Fisher et al., 2020). Indeed, 

blue whales’ preferences for low SST and shallow ILD mirrored the habitat use patterns of 

Thysanoessa spinifera in the CCS (Cimino et al., 2020). 

Despite models including comparable numbers of individual observations, the fin whale model’s 

predictive performance was lower than that of blue whales. This difference may be explained by the 

relatively smaller and more restricted niche occupied by blue whales as krill specialists (Fossette et 

al., 2017). In comparison, the broad-scale movements of fin whales across the North Pacific diverges 

from the typical baleen whale migration connecting low-latitude breeding areas and high-latitude 

feeding areas (Mizroch et al., 2009). Fin whales tracked in the CCS showed great individual 

variability in space use, high residency to localized areas, and when modeled suggested that in 

summer, Oregon offshore waters are more favorable to fin whales than waters of the continental 

shelf, while this pattern reverses in winter (Scales et al., 2017b). These predictions align with the 

phenology and space use by fin whales highlighted in our study, including observations up to 200 

nmi offshore in May and large concentrations (max group size = 25 individuals) over the shelf 

between October and February. These complex patterns may be related to the diverse and flexible 

diet of fin whales, which feed on both euphausiids and small fish, such as northern anchovy 

Engraulis mordax and Pacific sardines Sardinops sagax in the CCS (Pauly and Trites, 1998; Mizroch 

et al., 2009). Overall, the wide depth range that fin whales are predicted to use aligns with predicted 

occurrence patterns from previous coast-wide models derived from satellite tracking (Scales et al., 

2017b) and shipboard surveys that more consistently and intensively surveyed offshore waters 

(Barlow et al., 2009; Forney et al., 2012; Becker et al., 2018, 2020b). 

Our habitat models were designed to scientifically inform management, hence warranting robust 

predictive performance. The blue whale and fin whale models were ecologically informative and 

offered promising insights into the phenology and habitat preferences of these rare species. However, 

these species-specific models showed low predictive performance due to a small sample size, as 

measured by cross-validation and independent validation with an external observation dataset. As 

observation data continues to be consistently collected off the Oregon coast through sustained 

partnerships and local collaborations, we hope that fine-scale habitat use models of these endangered 

and threatened populations can be improved in the long-term. On the other hand, we consider that the 

rorqual summer and spring models, and the humpback whale models have reached a level of 

robustness sufficient to improve predictions of spatio-temporal habitat use in Oregon waters.  

Although these models were not specifically generated for abundance estimation (due to lack of 



Frontiers in marine science  doi: 10.3389/fmars.2022.868566 

 
15 

correction for measurement error in group size and perception bias that will lead to underestimated 

abundance), these models can be used to predict relative spatio-temporal variations in whale densities 

to underpin spatial planning and risk assessment. For instance, models were used to locate average 

hotspots of higher suitability over multiple years (Figure 7 and S13-16), hence providing static 

spatial products to support conservation plans in Oregon (e.g., PrediWhales, Virgili et al., 2018). 

Additionally, because models were generated using predictor data over the previous seven day 

period, the outputs can derive near real-time predictions of whale densities to assess daily risks of 

interactions with human activities. A similar approach is successfully implemented to minimize 

bycatch of sea turtles in the central North Pacific Ocean (i.e. TurtleWatch, Howell et al., 2015). 

Finally, models can hindcast whale distribution over multiple years and seasons to retrospectively 

understand the factors influencing the risks of deleterious interactions with anthropogenic activities. 

Indeed, cross-correlating time series of whale distribution with fishing activity and with local (e.g., 

SST, Upwelling Index) and basin-scale climate factors influencing prey availability (e.g., Southern 

Oscillation Index, Pacific Decadal Oscillation), proved insightful to understanding the increase in 

whale entanglement rates over the US West Coast  (Santora et al., 2020; Feist et al., 2021; Ingman et 

al., 2021). Therefore, SDMs produced in this study are not considered an end point, but rather a 

stepping stone to multi-faceted ecological knowledge and operational outputs that will support 

informed and dynamic management of whales in a changing environment off the Oregon coast.  
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11 Tables 

Table 1. Research effort and whale observations from helicopter and shipboard surveys, September 

2016 to September 2021. Numbers (#) of groups and individuals correspond to observations retained 

within 5-km segments used to produce the rorqual density models. BL: blue whales, FI: fin whales, 

HB: humpback whales, UN: Unidentified rorquals. BSS: Beaufort Sea State 

 Survey effort 
BSS conditions 

(% of km) 

Whale observations 

(#groups / #individuals) 

 Days Hours Km Segments 0-1 2-3 >4 HB BL FI UN Rorquals* 

Dec-
Mar 

34 54 6,520 1,171 9 69 22 
9 / 

14 

1 / 

 1 

9 / 
19 

0 / 

0 

19 / 

 34 

Apr-
Jul 

59 157 8764 1,573 17 60 23 
177 / 
295 

7 / 

 8 

11 / 
18 

119 / 
146 

314 / 

 467 

Aug-
Nov 

84 235 13,034 2,338 15 65 20 
250 / 
530 

37 / 
70 

21 / 
62 

113 / 
151 

421 / 

 813 

Total 177 446 28,318 5,082 14 64 21 
436 / 
839 

45 / 
79 

41 / 
88 

232 / 
297 

754 / 
1314 

*including unidentified baleen whales reclassified as putative rorquals with the random forest classifier 
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Table 2: Summary of the species density models for rorquals (ROR), humpback whales (HB), blue whales (BL) and fin whales (FI). 

Dev.exp = deviance explained, Accuracy (RMSE), Discrimination (Spearman correlation coefficient), True negative rate = percent of 

segments with no whales predicted with densities ≤ 1 whales/km2, True positive rate = percent of sightings predicted with densities ≥ 1 

whales/km2). Values correspond to average evaluation metrics calculated over 10-folds cross-validation. Bold font indicates significant 

relationships (p-value < 0.05). Number (#) of validation sightings represent the number of 5-km grid cells including whale observations used 

for the independent model validation. 

Model training  Evaluation on test fold    Independent validation 

Taxonomic 
level 

Model 
name 

 
Dev.exp 

 
Accuracy Discrimination 

True 
negative 

rate 

 # Validation 
sightings 2011-

2021 

True 
positive 

rate 
Discrimination 

# Validation 
sightings 1989-

2021 

In monthly 
hotspots 

ROR 

Mror-
spring 

 
40 % 

 
0.459 

0.26 

P < 0.001 
97 % 

 
61 25 % 

0.37 

P = 0.004 
101 26 % 

Mror-
summer 

 
27 % 

 
3.880 

0.23 

P < 0.001 
94 % 

 
152 68 % 

0.22 

P = 0.006 
155 80 % 

Mror-
winter 

 
37 % 

 
0.079 

-0.01 

P = 0.78 
100 % 

 
16 0 % 

0.08 

P = 0.771 
17 18 % 

HB Mhb 
 

29 % 
 

0.482 
0.23 

P < 0.001 
97 % 

 
154 61 % 

0.18 

p = 0.033 
190 53 % 

BL Mbl 
 

70% 
 

0.163 
0.07 

P < 0.001 
100 % 

 
37 17 % 

0.12 

P = 0.473 
38 34 % 

FI Mfi 
 

56% 
 

0.211 
0.01 

p = 0.65 
100 % 

 
11 0 % 

0.21 

P = 0.529 
18 0 % 
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12 Figures 

 

Figure 1: Map of shipboard (A) and helicopter (B) survey effort and observations of rorquals (BL: 

blue whales, FI: fin whales, HB: humpback whales, UN: Unidentified rorquals) from 2016 to 2021 in 

Oregon waters (OR), USA. Dark grey lines represent surveyed transect lines in Oregon (OR), 

California (CA) and Washington (WA) states. Land is shown in black. Isobaths (50, 100, 500, 1,000 

and 1,500 m deep) are represented with grey lines. Maps are limited to 41°N but shipboard effort 

extends south to 37°N. Credits for whale illustrations: Frédérique Lucas, NOAA Fisheries. 
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Figure 2: Comparison of the number of individual whales observed per km of effort across 

systematic research surveys conducted in 1989-1992 (DELPHIN and ORWA marine mammal and 

seabird surveys), 2011-2012 (PaCSEA surveys) and 2016-2021 (present study). The numbers on top 

of each bar indicate kilometers surveyed in each period. See Supplementary Tables S2-S3 for more 

details about systematic research survey data included in the comparison and Figure S8 for 

alternative approach to the sighting rate comparison. 
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Figure 3: Temporal distribution in (A) observed number of individual whales per month, and (B) 

predicted whale density estimated over the study region per day of year. BL: blue whales, FI: fin 

whales, HB: humpback whales, UN: Unidentified rorquals, ROR: all rorquals species pooled 

together. Season delimitations are represented at the bottom of panel (A). Solid lines represent the 

marginal effect of day of year on whale density (with year fixed to 2020) and shaded areas represent 

approximate 95 % confidence intervals) in panel (B). Half-density ranges representing the peak of 

occurrence for each species are shown at the bottom of panel (B). 



Frontiers in marine science  doi: 10.3389/fmars.2022.868566 

 
31 

 

Figure 4: Rorqual ecological relationships modelled over three seasons: April-July (Mror-spring, in 

yellow), August-November (Mror-summer, in pink) and December-March (Mror-winter, in blue). 

Variable contributions to rorqual models illustrated as radar plots (A) are measured by the number of 

cross-validation folds in which the approximate smooth significance p-values were below 0.05, 0.01 

or 0.001 (shown with increasingly dark color shades). Functional response curves (B) represent the 

effect of the smooth function of a selected set of predictor variables (BBV, ILD, SSHSD and SSTSD) 

upon the trend in rorqual density, with higher values indicating higher predicted densities. Solid lines 

represent the marginal effect of each variable relative to rorqual density per season and per cross-

validation fold. Only the contributors with approximate smooth significance p-value < 0.05 are 

shown per model fold. Environmental variables:  distance to canyons (CANYON in km), seabed 

depth (DEPTH in m), sea surface temperature (SST in °C) and its spatial standard deviation (SSTSD 

calculated over 0.3° squares), sea surface height (SSH in m) and its standard deviation (SSHSD 

calculated over 0.3° squares), eddy kinetic energy (EKE calculated from eastward and northward 

surface current velocities, kg⋅m2⋅s−2), wind stress curl (CURL in Newton.m-3), isothermal layer depth 

(ILD in m) and bulk buoyancy frequency (BBV in s-1). 
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Figure 5: Blue, fin and humpback whale ecological relationships modelled with Mbl (in blue), Mfi (in 

purple) and Mhb (in orange) respectively. Variable contributions to species-specific models 

illustrated as radar plots (A) are measured by the number of cross-validation folds in which the 

approximate smooth significance p-values were below 0.05, 0.01 or 0.001 (shown with increasingly 

dark color shades).  Functional response curves (B) represent the effect of the smooth function of 

environmental variables upon the trend in rorqual density, with higher values indicating higher 

predicted densities. Solid lines represent the marginal effect of each variable relative to whale density 

per cross-validation fold. Only the contributors with approximate smooth significance p-value < 0.05 

are shown per model fold. Environmental variables: day of year (yday), distance to canyons 

(CANYON in km), seabed depth (DEPTH in m), sea surface temperature (SST in °C) and its spatial 

standard deviation (SSTSD calculated over 0.3° squares), sea surface height (SSH in m) and its 

standard deviation (SSHSD calculated over 0.3° squares), eddy kinetic energy (EKE calculated from 

eastward and northward surface current velocities, kg⋅m2⋅s−2), wind stress curl (CURL in Newton.m-

3), isothermal layer depth (ILD in m) and bulk buoyancy frequency (BBV in s-1).  
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Figure 6: Predicted seasonal densities of rorqual whales for the months of January, May and 

September, 2016 to 2021. Densities are represented on a colored scale (square-root transformed 

gradient). Land is shown in black. Isobaths (50, 100, 500, 1,000 and 1,500 m deep) are represented 

with grey lines. Grey circles mark the position of observed rorqual groups during each month x year 

from shipboard and helicopter surveys used to train the models. The absence of observations may be 

due to an absence of survey effort. This figure is also available in a color-blind-friendly palette in 

Supplementary Figure S18). 
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Figure 7: Monthly hotspots predicted over 2016-2021 for rorquals (left), blue (center) and humpback 

whales (right) in May and September. The best 75 % of the summed and rescaled densities are 

represented on species-specific colored scales. Land is shown in black. Isobaths (50, 100, 500 and 

1,000 m deep) are represented with grey lines. Colored circles mark the position of independent 

validation sightings of rorquals, blue, or humpback whales recorded in May or September, of 1989 to 

2021 (see Supplementary Table S2 for data sources and details). The absence of observations may be 

due to an absence of survey effort. 


