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Abstract

We introduce a highly efficient method for panoptic seg-

mentation of large 3D point clouds by redefining this task

as a scalable graph clustering problem. This approach can

be trained using only local auxiliary tasks, thereby elimi-

nating the resource-intensive instance-matching step during

training. Moreover, our formulation can easily be adapted

to the superpoint paradigm, further increasing its efficiency.

This allows our model to process scenes with millions of

points and thousands of objects in a single inference. Our

method, called SuperCluster, achieves a new state-of-the-art

panoptic segmentation performance for two indoor scanning

datasets: 50.1 PQ (+7.8) for S3DIS Area 5, and 58.7 PQ

(+25.2) for ScanNetV2. We also set the first state-of-the-art

for two large-scale mobile mapping benchmarks: KITTI-360

and DALES. With only 209k parameters, our model is over

30 times smaller than the best-competing method and trains

up to 15 times faster. Our code and pretrained models are

available at https://github.com/drprojects/

superpoint_transformer.

1. Introduction

Understanding large-scale 3D environments is pivotal for

numerous high-impact applications such as the creation of

“digital twins” of extensive industrial facilities [24, 47, 53]

or even the digitization of entire cities [29, 48, 73]. Exten-

sive and comprehensive 3D analysis methods also benefit

large-scale geospatial analysis, e.g. for land [59, 74] or for-

est surveys [18, 72], as well as building inventory [66] for

country-scale mapping. These problems call for scalable

models that can process large point clouds with millions of

3D points, accurately predict the semantics of each point,

and recover all instances of specific objects, a task referred

to as 3D panoptic segmentation [26].
Most existing 3D panoptic segmentation methods focus

Figure 1. Large-Scale Panoptic Segmentation. We present the

results of SuperCluster for the entire Area 5 of S3DIS [4] (ceiling re-

moved for visualization) with 9.2M points (78M pre-subsampling)

and 1863 true “things” objects. Our model can process such large

scan in one inference on a single V100-32GB GPU in 3.3 seconds

and reach a state-of-the-art PQ of 50.1.

on sparse LiDAR scans for autonomous navigation [5, 15,

81]. Given the relevance of large-scale analysis for industry

and practitioners, there is surprisingly little work on large-

scale 3D panoptic segmentation [71]. Although they contain

non-overlapping instance labels, S3DIS [3] and ScanNet

[13] only have a few panoptic segmentation entries, and

KITTI-360 [39] and DALES [58] currently have none.
Large-scale 3D panoptic segmentation is particularly chal-

lenging due to the scale of scenes, often featuring millions

of 3D points, and the diversity in objects—ranging from a

few to thousands and with extreme size variability. Current

methods typically rely on large backbone networks with mil-

lions of parameters, restricting their analysis to small scenes

or portions of scenes due to their high memory consump-

tion. Furthermore, training these models requires resource-

intensive procedures, such as non-maximum suppression

and instance matching. These costly operations prevent the
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analysis of large scenes with many points or objects. Most

methods also require a pre-set limit on the number of de-

tectable objects, introducing unnecessary complexity and

the risk of missing objects in large scenes. Although re-

cent mask-based instance segmentation methods [57] have

demonstrated high performance and versatility, they fail to

scale effectively to large scenes, as they predict a binary

mask that covers the entire scene for each proposed instance.
To address these limitations, we present Super-Cluster,

a novel approach for large-scale and efficient 3D panoptic

segmentation. Our model differs from existing methods in

three main ways:

• Scalable graph clustering: We view the panoptic seg-

mentation task as a scalable graph clustering problem,

which can be resolved efficiently at a large scale without

setting the number of predicted objects in advance.

• Local supervision: We use a neural network to predict

the parameters of the graph clustering problem and su-

pervise with auxiliary losses that do not require an actual

segmentation. This allows us to avoid resource-intensive

non-maximum suppression or instance matching steps.

• Superpoint-only segmentation: Our approach can eas-

ily be adapted to a superpoint-based approach. Feature

computation, supervision, and prediction are conducted

entirely at the superpoint level and never individual points,

starkly decreasing their complexity.
These features make SuperCluster particularly resource-

efficient, fast, and scalable, while ensuring high precision, as

shown in Figure 1. Our primary contributions are as follows:

• Large-scale panoptic segmentation: SuperCluster sig-

nificantly improves the panoptic segmentation state-of-the-

art for two indoor scanning datasets: 50.1 PQ (+7.8) on

S3DIS Fold5 [4], and 58.7 PQ (+25.2) on ScanNetV2 [13].

We also set the first panoptic state-of-the-art for S3DIS

6-fold and two large-scale benchmarks (KITTI-360 [39]

and DALES [58]).

• Fast and scalable segmentation: SuperCluster contains

only 209k trainable parameters (205k in the backbone), yet

outperforms networks over 30 times larger. SuperCluster

inference is also as fast as the fastest instance segmentation

methods and trains up to 15 times faster: 4 h for one S3DIS

fold and 6 h for ScanNet.

2. Related Work

The panoptic segmentation of point clouds with millions of

points has received little attention from the 3D computer

vision community. In this paper, we aim to address this gap.

3D Panoptic and Instance Segmentation. Over the last

few years, deep learning approaches for 3D point clouds have

garnered considerable interest [16]. Autonomous driving, in

particular, has been the focus of numerous studies, resulting

in multiple proposed approaches for object detection [2, 76],

as well as semantic [41, 77, 82], instance [79, 80] and panop-

tic segmentation [5, 15, 43, 81]. However, these methods

consider sequences of sparse LiDAR acquisition, and focus

on a small set of classes (pedestrians, cars).
For the panoptic segmentation of dense LiDAR point

clouds, the volume of research is surprisingly small [71]. A

limited number of studies have addressed the panoptic seg-

mentation of indoor spaces using RGB-D images [45, 69].

Dense scans have primarily been used in the context of in-

stance segmentation [19, 23, 46, 57, 64, 75]. However, while

this task is related to panoptic segmentation, these methods

often adopt specific strategies to maximize instance segmen-

tation metrics [11, 71]. Moreover, many methods require

specifying the maximum number of predicted instances in

advance, a constraint that proves inefficient for small scenes

and results in missing objects in large scenes. Additionally,

when implementing a sliding-window strategy, the predicted

instances must be stitched together using either heuristic

techniques or resource-intensive post-processing. Lastly, the

best-performing methods [46, 57] rely on a computation-

ally expensive matching step between the predicted and true

instances [8, 22, 75]. This process often depends on the Hun-

garian algorithm, which has cubic complexity in the number

of objects and, therefore, cannot scale to large scenes.

Superpoint-Based 3D Analysis. The strategy of partition-

ing large 3D point clouds into groups of adjacent and homo-

geneous points, called superpoints, has been used success-

fully for point cloud oversegmentation [32, 40, 49], semantic

segmentation [21, 35, 56], and object detection [14, 17]. Our

approach shares similarities with some superpoint-based

approaches for 3D instance segmentation [38, 60]. How-

ever, these methods are limited in scalability due to their

reliance on point-wise encoders. Furthermore, the work by

Sun et al. [60] employs a Hungarian-type instance match-

ing scheme and allocates a binary mask to each predicted

instance, covering the entire scene and drastically limiting

the number of detected instances. Liang et al. [38] resort

to quadratic-complexity agglomerative clustering to merge

superpoints, and heavy postprocessing to refine and score

superpoints. In contrast, our method employs a fast graph

clustering approach [27, 34], which does not require any

instance matching or post-processing steps.

3. Method

Our objective is to perform panoptic segmentation of a large

3D point cloud P with potentially numerous and broad ob-

jects. For clarity, we first present our graph clustering formu-

lation at the point level. We then explain how our approach

can be supervised solely with per-node and pre-edge targets,

making its training particularly efficient. Finally, we detail

how our method can be easily generalized to superpoints to

further increase its scalability.
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Figure 2. SuperCluster. We illustrate the sequence of operations of SuperCluster for a simplified scene with two objects: a chair and a

sofa. Sub-figure (a) showcases the first stage of our process, where the point cloud is partitioned into connected superpoints with simple

geometric shapes. In Sub-figure (b), we predict a semantic class distribution for each superpoint. In Sub-figure (c), we predict the object

agreement for each pair of adjacent superpoints, indicating the likelihood that they belong to the same object. Finally, Sub-figure (d)

showcases the output of a graph clustering problem which merges superpoints with compatible class distribution and object agreement while

cutting edges at the transition between objects. The resulting superpoint clusters define the instances of a panoptic 3D segmentation.

Problem Statement. Consistently with the image panoptic

segmentation setup [26], each point p ∈ P is associated with

its position, a semantic label cls(p) ∈ [1, C] with C the total

number of classes, and an object index obj(p) ∈ N. Points

identified with a “thing” label (e.g., chair, car) are given an

index that uniquely identifies this object. Conversely, points

with a “stuff” label (e.g., road, wall) are assigned an index

shared by all points with the same class within P . Our goal

is to recover the class and object index of all points in P .

3.1. Panoptic Segmentation as Graph Clustering

We propose viewing the panoptic segmentation task as group-

ing adjacent points with compatible class and object predic-

tions. We formulate this task as an optimization problem

structured by a graph. Specifically, we connect the points of

P to their K-nearest neighbors, forming a graph G = (P, E)
where E ⊂ P × P denotes these connections.

Spatial-Semantic Regularization. We use a neural net-

work to associate each point p with a probabilistic class pre-

diction xclass
p ∈ [0, 1]C . The architecture and supervision of

this network are detailed in Section 3.2. A simple way to ob-

tain a panoptic segmentation would be to group spatially ad-

jacent points with the same class prediction argmaxc x
class
p,c .

However, this approach neglects object structure, potentially

causing two problems: erroneously merging adjacent same-

class objects and unwanted object fragmentation due to the

probabilistic nature of the prediction xclass.
To address this last issue, we aim to enforce the spa-

tial consistency of object prediction. We introduce the

signal x, defined for each point p as the channelwise con-

catenation of its position xpos
p and its semantic prediction:

xp = [xclass
p , xpos

p ]. We propose to compute a piecewise-

constant approximation y⋆ of x with an energy minimization

problem regularized by the graph cut [7] between its constant

components [36]. This approach aligns with well-established

practices in 2D [37, 44] and 3D [28] analyses, and leads to

the following optimization problem:

y⋆ = argmin
y∈R(C+3)×|P|

∑

p∈P

d(xp, yp) + λ
∑

(p,q)∈E

wp,q[yp ̸= yq] , (1)

where [a ̸= b] := 0 if a = b and 1 otherwise, λ > 0 is a

parameter controlling the regularization strength, and wp,q is

a nonnegative weight associated with edge (p, q), see below.
The dissimilarity function d takes into account both the

spatial and semantic nature of x:

d(xp, yp)=H(yclass
p , xclass

p ) + η∥xpos
p − ypos

p ∥2 , (2)

where yclass
p is the first C coordinates of yp and ypos

p the

last 3, and η ≥ 0 a parameter. The term H(x, y) denotes

the cross-entropy between two distributions: H(x, y) =

−
∑C

c=1 yc log(xc).

Object-Guided Edge Weights. The edge weight wp,q de-

termines the cost of predicting an object transition between

p and q. Designing appropriate edge weights is critical to

differentiate between objects of the same class that are spa-

tially adjacent, such as rows of chairs or cars in traffic. Edge

weights should encourage cuts along probable object transi-

tions and prevent cuts within objects.
To facilitate this, we propose to train a neural network

to predict an object agreement ap,q ∈ [0, 1] for each edge

(p, q) in E . This value represents the probability that both

points belong to the same object. We then determine the

edge weight wp,q ∈ [0,∞] as follows:

wp,q = ap,q/(1− ap,q + ϵ) , (3)

with ϵ > 0 a fixed parameter. High values of wp,q discourage

cuts between points p and q that are confidently predicted to

belong to the same object. Conversely, a smaller wp,q means

that cuts between edges with probable transition ap,q are not

heavily penalized.
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Graph Clustering. The constant components of the solu-

tion y⋆ of Eq. (1) define a clustering K of P . Clusters K
contain spatially adjacent points with compatible semantics,

and their contours should follow predicted object transitions.

Converting to a Panoptic Segmentation. We can derive a

panoptic segmentation from the clusters K. For each cluster,

we calculate the average point distribution of its constituent

points and select the class with the highest probability. We

then associate a unique object index to each cluster k pre-

dicted as a “thing” class. Likewise, we assign to each cluster

classified as “stuff” an index shared by all clusters predicted

as the same class. Finally, each individual point is labeled

with the class and object index of its respective cluster.

Optimization. The optimization problem expressed in

Eq. (1) is widely explored in the graph optimization literature.

Referred to as the generalized minimal partition problem

[34], this problem is related to the Potts models [50] and

image partitioning techniques [37, 44]. We adapt the parallel

ℓ0-cut pursuit algorithm [36, 54] to the dual spatial-semantic

nature of the regularized signal. The resulting algorithm is

particularly scalable and can handle graphs with hundreds

of millions of edges on a standard workstation. This allows

us to process large point clouds in one inference without the

need for tiling and instance stitching post-processing.

3.2. Local Supervision

A major benefit of our approach is that it can be entirely

supervised with local auxiliary tasks: all losses described

in this section are sums of simple functions depending on

one or two points at the time. In particular, we bypass the

computationally expensive step of matching true instances

with their predicted counterparts.
Recall from Section 3.1 that we can obtain a panoptic

segmentation by predicting the parameters of a graph cluster-

ing problem: the semantic predictions xclass
p and the object

agreements ap,q. These quantities are both derived from

a common pointwise embedding {ep}p∈P , computed by a

neural network.

Predicting Semantics. We predict the class distribution

xclass
p = softmax(ϕclass(ep)) with ϕclass a Multi-Layer Per-

ceptron (MLP). This distribution is supervised by its cross-

entropy against the true class cls(p):

Lclass
p = H(xclass

p ,1(cls(p))) , (4)

with 1(c) ∈ {0, 1}C the one-hot embedding of class c.

Predicting Object Agreement. To predict the object

agreement ap,q between two adjacent points (p, q) ∈ E ,

we employ an MLP ϕobject whose input is a symmetric com-

bination of the points’ embedding vectors:

ap,q = sigmoid
(

ϕobject ([(ep + eq)/2, | ep − eq |])
)

, (5)

where | · | refers to the termwise absolute value. The true

object agreement âp,q is assigned the value of 1 if obj(p) =
obj(q) and 0 otherwise. The prediction of as,t can be seen

as a binary edge classification problem as inter- and intra-

object edges [32], and is supervised with the cross-entropy

between true and predicted object agreements:

Lobject
p,q = H(Bern(ap,q),Bern(âp,q)) , (6)

where Bern(a) denote the Bernoulli distribution

parametrized by a ∈ [0, 1].

Loss Function. We combine the two losses above into a

single objective L:

L =
1

| P |

∑

p∈P

Lclass
p +

1

| E |

∑

(p,q)∈E

Lobject
p,q , (7)

with | E | and | P | the total number of edges and 3D points,

respectively.

3.3. Extension to Superpoints

In this section, we discuss the extension of our method to a

superpoint-based approach for enhanced scalability.

Motivation. We aim to design a panoptic segmentation

method that can scale to large 3D point clouds. While the for-

mulation presented in the previous section is advantageous, it

still requires computing embeddings and predictions for each

individual point, which can be memory intensive and limits

the volume of data that can be processed simultaneously. We

propose to group adjacent points with similar local geometry

and color into superpoints, and to only compute embeddings

and predictions for superpoints and not individual points.

By doing so, we drastically reduce the computational and

memory requirements of our method, enabling it to handle

larger 3D point clouds at once.

Computing Superpoints. We partition the point cloud P
into a set of non-overlapping superpoints S. We use the

partition method implemented by Robert et al. in SPT [56],

which defines superpoints as the constant components of a

low-surface piecewise constant approximation of geometric

and radiometric point features.
Although the superpoints S form a high-purity overseg-

mentation of P , some superpoints can span multiple objects.

To account for this, we associate each superpoint s with its

majority-object obj(s) defined as the most common object

index within its points: obj(s) = mode{obj(p) | p ∈ s}.

Likewise, we define cls(s) = mode{cls(p) | p ∈ s}.
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Figure 3. Superpoint Object Agreement. We compute for each

pair of adjacent superpoint (s, t) an object agreement score âs,t.

This value is defined by the average overlap ratio between s and t

and their majority-objects obj(t) and obj(s), see Eq. (8).

Adapting Graph Clustering. Our clustering step can be

directly adapted by substituting the point set P with the

superpoint set S, and defining the graph G by connecting

superpoints with adjacent points following the approach of

SPT [56]. We replace the point position xpos
p by the coor-

dinates of the superpoints’ centroids xpos
s . All other steps

remain unchanged.

Superpoint Embedding. We use a superpoint-embedding

network to compute the superpoint features es for s ∈ S.

We employ the Superpoint Transformer model [56] for its

efficiency and ability to leverage large spatial context. More

details on this design choice are provided in the Appendix.

Superpoint Semantic Supervision. We supervise the se-

mantic superpoint prediction xclass
s with Eq. (4) where we

replace cls(p) with cls(s).

Superpoint Object Agreement Supervision. While the

true object agreement âp,q between two points is binary,

the agreement between superpoints spans a continuum. As

illustrated in Figure 3, we quantify this agreement as:

âs,t =
1

2

(

| s ∩ P|obj(t) |

| s |
+

| t ∩ P|obj(s) |

| t |

)

, (8)

where P|o := {p ∈ P | obj(p) = o} is the set of points of

P with the object index o, and | s | is the count of 3D points

in s. We can now supervise the predicted object agreement

as,t with Eq. (6) unchanged.

4. Experiments

We first present the datasets and metrics used for evaluation

in Section 4.1, then our main results and their analysis in

Section 4.2, and finally an ablation study in Section 4.3.

4.1. Datasets and Metrics

Datasets. We present the four datasets used in this paper.

• S3DIS [4]. This indoor scanning dataset consists of 274
million points distributed across 271 rooms in 6 building

floors—or areas. We do not use the provided room par-

tition, as they require significant manual processing and

may not translate well to other environments such as open

Table 1. S3DIS Area 5. We report the semantic (SS) and panoptic

segmentation results of the top-performing semantic segmentation

methods on the fifth area of S3DIS, as well as panoptic segmen-

tation approaches implemented by Xiang et al. [71]. We provide

two panoptic metrics by considering all classes as “things” (PS -

no “stuff”) and with wall, ceiling and floor as “stuff” (PS).

Size SS PS - no “stuff” PS

×106 mIoU PQ RQ SQ PQ RQ SQ

Semantic segmentation models

SPT [56] 0.21 68.9 - - - - - -

Point Trans.[78] 7.8 70.4 - - - - - -

PointNeXt-XL [52] 41.6 71.1 - - - - - -

Strat. Trans. [31, 68] 8.0 72.0 - - - - - -

Panoptic segmentation models

Xiang et al. [71] 0.13

+ PointNet++ [51] +3.0 58.7 24.6 32.6 68.2 - - -

+ Minkowski [12] +37.9 63.8 39.2 48.0 74.9 - - -

+ KPConv [61] +14.1 65.3 41.8 51.5 74.7 - - -

PointGroup [23] in [71] 7.7 64.9 42.3 52.0 74.7 - - -

SuperCluster (ours) 0.21 68.1 50.1 60.1 76.6 58.4 68.4 77.8

offices, industrial sites, or mobile mapping. Instead, we

merge all rooms in the same area and treat each floor as

one single large-scale acquisition [9, 61].

We follow the standard evaluation protocol, using the area

5 as a test set and implementing 6-fold cross-validation.

In line with Xiang et al.’s [71] proposal, we treat all 13
classes as “thing”. However, certain classes, such as walls,

ceiling, and floors, are susceptible to arbitrary division

due to room splitting, making their evaluation somewhat

inconsistent. As a result, we also present panoptic metrics

in which these three classes are considered as “stuff”.

• ScanNet [13]. This dataset consists of 237M 3D points or-

ganized in 1501 medium-scale indoor scenes. We evaluate

SuperCluster on ScanNet’s open test set, as the hidden test

set is not evaluated for panoptic segmentation. We use for

“things” the class evaluated in the instance segmentation

setting: bathtub, bed, bookshelf, cabinet, chair, counter,

curtain, desk, door, other furniture, picture, refrigerator,

shower curtain, sink, sofa, table, toilet, and window. The

walls and floor class are designated as “stuff”.

• KITTI-360 [39]. Containing over 100k mobile mapping

laser scans from an outdoor urban environment, we utilize

the accumulated point clouds format, which aggregates

multiple sensor rotations to form 300 extensive scenes

with an average of more than 3 million points. We train on

239 scenes and evaluate it on the remaining 61. Building

and cars classes are treated as “thing” while the remaining

13 are classified as “stuff”.

• DALES [63]. This large-scale aerial scan data set spans

10 km2 and contains 500 millions of 3D points organized

along 40 urban and rural scenes, of which we use 12 for

evaluation. The “thing” classes are buildings, cars, trucks,

power lines, fences, and poles. Ground and vegetation

evaluated as “stuff”.
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Table 2. S3DIS 6-Fold. We report the 6-Fold cross-validated

semantic and panoptic segmentation results on S3DIS. No panoptic

methods were evaluated in this setting to the best of our knowledge.

Size SS PS - no “stuff” PS

×106 mIoU PQ RQ SQ PQ RQ SQ

Semantic segmentation models

DeepViewAgg [55] 41.2 74.7 - - - - - -

Strat. Trans. [31, 68] 8.0 74.9 - - - - - -

PointNeXt-XL [52] 41.6 74.9 - - - - - -

SPT [56] 0.21 76.0 - - - - - -

Panoptic segmentation models

SuperCluster (ours) 0.21 75.3 55.9 66.3 83.8 62.7 73.2 84.8

Evaluation Metrics. Recognition Quality (RQ) assesses

object identification and classification. Segmentation Quality

(SQ) evaluates the alignment between target and predicted

object segmentations. Panoptic Quality (PQ) combines both

measures. We also compute the semantic segmentation per-

formance by associating points with their superpoint’s class

and computing the mean Intersection over Union (mIoU).

Model Parameterization. Our backbone for the S3DIS

and DALES datasets is a small SPT-64 model [56] with 205k

parameters. We use a larger SPT-128 (791k parameters) for

KITTI-360 and a slightly modified model for ScanNet (1M)

parameters. SuperCluster adds two small MLP ϕclass and

ϕobject for a total of 4.4k parameters for S3DIS and DALES,

and 8.8k parameters for KITTI-360 and ScanNet.
Our training batches are composed of 4 randomly sam-

pled cylinders with a radius of 7 m for S3DIS, 50 m for

KITTI and DALES, and entire scenes for ScanNet. Parti-

tion parameters are adjusted so that S/P ∼ 30 for S3DIS,

DALES, and KITTI-360, and 20 for ScanNet.
We can tune the graph clustering parameters after training

to optimize the PQ on the training set: λ in Eq. (1), η in

Eq. (2), and ϵ in Eq. (3). As the clustering step is particularly

efficient, we can evaluate tens of values in a few minutes.

More details are provided in the Appendix.

4.2. Results and Analysis

We compare our method quantitatively with state-of-the-art

models in Table 1 to 5. We also report a runtime analysis in

Table 6 and qualitative illustrations in Figure 4.

S3DIS. We report in Table 1 the performance of our algo-

rithm evaluated for Area 5 of the S3DIS dataset. Compared

to several baselines for panoptic segmentation, our model

shows a notable improvement with a PQ boost of +7.8 points

and a mIoU increase of +3.2 points. Remarkably, our model

is more than 33 times smaller than the highest performing

model. Furthermore, we compute panoptic metrics by treat-

ing wall, ceiling, and floor as “stuff” classes to account for

their arbitrary boundaries. To the best of our knowledge, we

are the first to report panoptic results evaluated with 6-Fold

cross-validation on S3DIS, in Table 2.

Table 3. ScanNetv2 Val. We report the Semantic Segmentation (SS)

and Panoptic Segmentation (PS) performance for various methods

on the open test set of ScanNetv2. † code and models unavailable.

Size SS PS

×106 mIoU PQ RQ SQ

Semantic segmentation models

KPConv [61] 14.1 69.2 - - -

Point Trans [78] 7.8 70.6 - -

Point Trans. v2 [70] 11.3 75.4 - - -

OctFormer [67] 44.0 75.7 - - -

Panoptic segmentation models

SceneGraphFusion [65, 69] 2.9 - 31.5 42.2 72.9

PanopticFusion [45] † - 33.5 45.3 73.0

SuperCluster (ours) 1.0 66.1 58.7 69.1 84.1

Table 4. KITTI-360. We report the Semantic Segmentation (SS)

and Panoptic Segmentation (PS) performance for various methods

on the open test set of KITTI-360. No panoptic methods were

evaluated on this dataset to the best of our knowledge.

Size SS PS

×106 mIoU PQ RQ SQ

Semantic segmentation models

Minkowski [12] 37.9 58.3 - - -

DeepViewAgg [78] 41.2 62.1 - - -

SPT [56] 0.78 63.5 - - -

Panoptic segmentation models

SuperCluster (ours) 0.79 62.1 48.3 58.4 75.1

Despite its smaller size, our model achieves high semantic

segmentation performance, reaching near state-of-the-art

performance on the Area 5 and 6-fold evaluations.

ScanNet. As shown in Table 3, SuperCluster significantly

improves the state-of-the-art of panoptic segmentation by

25.2 PQ points. Our model does not perform as well as large

networks designed for semantic segmentation but provides

decent results with a small backbone of only 1M parameters.

DALES and KITTI-360. SuperCluster is the first capable

of processing the large tiles of the DALES and KITTI-360

datasets, thus establishing the first panoptic state-of-the-art

for these datasets given in Table 4 and Table 5.

Inference and Training Speed. In Table 6, we compare

the inference speed of our approach with state-of-the-art

instance and panoptic segmentation algorithms. As we use

a 1080Ti GPU to replicate the setting used to measure most

of the approaches’ speed (a Titan-X), the values are not

entirely comparable. Still, our model is on par with the

fastest methods and offers superior scalability.
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Table 5. DALES. We report the Semantic Segmentation (SS) and

Panoptic Segmentation (PS) performance for various methods on

the open test set of DALES. No panoptic methods were evaluated

on this dataset to the best of our knowledge.

Size SS PS

×106 mIoU PQ RQ SQ

Semantic segmentation models

ConvPoint [6] 4.7 67.4 - - -

PointNet++ [51] 3.0 68.3 - - -

SPT [56] 0.21 79.6 - - -

KPConv [61] 14.1 81.1 - - -

Panoptic segmentation models

SuperCluster (ours) 0.21 77.3 61.2 68.6 87.1

Table 6. Runtime. We compare the speed of our model to var-

ious instance and panoptic segmentation models. We report the

time spent in the backbone network (first number) and performing

panoptic segmentation (second number) on ScanNet Val. scans. ⋆

optional CRF post-processing.

Hardware Runtime in ms

Instance segmentation methods average per scan on Val

PointGroup [23] Titan X 452 = 128 + 324

SoftGroup [64] Titan X 345 = 152 + 148

HAIS [10] Titan X 339 = 154 + 185

Mask3D [57] Titan X 339

ISBNet [46] Titan X 237 = 152 + 85

SuperCluster (ours) 1080Ti 238 = 193 + 45

Panoptic segmentation methods for scene0645 01

PanopticFusion [45] 2×1080Ti 485 = 317 + 168 (+ 4500⋆)

SuperCluster (ours) 1080Ti 482 = 376 + 106

None of the reported runtimes include the method’s pre-

processing times. Thanks to SPT’s efficiency, our entire

pre-processing, including the superpoint partition, is faster

or equivalent to all existing 3D segmentation methods [56].
Our model can be trained in an amount of time compara-

ble to its backbone SPT for semantic segmentation [55]. One

fold of S3DIS takes just under 4 hours, which is substantially

quicker than most existing semantic, instance, or panoptic

segmentation models. For example, PointTransformer [78]

trains for 63 h and Stratified Transformer [31] 216 GPU-h.

SuperCluster trains on 6 h on ScanNet, compared to 78 h for

Mask3D [57] and 20 h for ISBNet [46].

4.3. Ablation Study

We evaluate the impact of our design choice by performing

several experiments whose results are given in Table 7. More

experiments are provided in the Appendix.

Constant Edge Weights. Replacing all edge weights with

a constant value of 1 yields a drop of 4.2 PQ points. This

experiment shows the benefit of learning object transitions.

Table 7. Ablation Study. We report the performance of different

experiments on S3DIS Area 5 with wall, ceiling and floor as “stuff”.

Experiment
PS

PQ RQ SQ

Best Model 58.4 68.4 77.8

Constant Edge Weights 54.2 64.2 76.6

Offset Prediction 57.1 65.2 77.1

Smaller Superpoints 56.6 64.6 78.6

Superpoint Oracle 93.4 99.7 93.7

Clustering Oracle 83.6 91.7 90.8

Offset Prediction. Several bottom-up [20] segmentation

approaches [17, 23, 30, 71] propose clustering points by

shifting their positions towards the predicted position of the

object centroid. To reproduce this strategy, we adjust the

position of xpos
s in x along a vector that predicts the center of

the majority object. We supervise this prediction with the L1

loss, as it produced the best results among several alterna-

tives that we examined. Despite our efforts, this approach did

not improve the results: −1.3 PQ points. We attribute this to

the size diversity of objects observed in large-scale scenes

(corridors, buildings), resulting in an unstable prediction.

Smaller Superpoints. To demonstrate the benefits of us-

ing superpoints, we consider a finer partition with S/P ∼ 15
instead of 30. This requires training with smaller 3 m cylin-

ders instead of 7, decreasing the performance by −1.8 PQ

points. This result illustrates that the superpoint paradigm is

central to our approach.

Superpoint Oracle. Using superpoints greatly improves

the efficiency and scalability of SuperCluster. However,

since the predictions are made at the superpoint level and

never for individual 3D points, the semantic and object purity

of the superpoints can restrict the model’s performance. To

evaluate this impact, we define the superpoint oracle, which

assigns to each superpoint s the class and index of its ma-

jority object obj(s). The resulting performance provides an

upper bound of what our model could potentially achieve.

The high performance of this oracle (93.4 PQ) indicates that

very little precision is lost by working with superpoints.

Clustering Oracle. In a similar vein, we calculate the

upper bound of our model by computing the results of the

graph clustering with perfect network predictions: xclass

is set as the one-hot-encoding of the class of the majority

object, and the object agreement is set to its true value:

ap,q = âp,q . The performance of this oracle (83.6 PQ) shows

that our scalable clustering formulation does not significantly

compromise the model’s precision in its current regime.

Limitations. Our approach, while efficient, is not devoid

of constraints. The functional minimized in Eq. (1) is non-

continuous and nondifferentiable, which hinders the compu-
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Figure 4. Qualitative Results. We present the panoptic predictions of our model for the four considered datasets. The scenes’ size

corresponds to a single batch item during training. “Stuff” classes are represented with a lower opacity.

tation of gradients and the possibility of learning the partition.

Nevertheless, this aspect lends itself to the speed and sim-

plicity of our training process. Although our approach can

run on diverse acquisition setups, the superpoint partition is

sensitive to low point density and may fail for sparse scans

as visible on the edge of some KITTI-360 acquisitions.
We use a lightweight SPT network to ensure maximum

scalability. This network, while expressive, is not the most

powerful existing architecture. There is a potential for im-

proved results using more resource-intensive networks.
Since our model does not improve the semantic segmenta-

tion performance of the backbone model (SPT) in any of our

experiments, we conclude that our local panoptic supervision

scheme does not help semantic segmentation.

5. Conclusion

In this paper, we introduced SuperCluster, a novel approach

for 3D panoptic segmentation of large-scale point clouds.

We propose a new formulation of this task as a scalable graph

clustering problem, bypassing some of the most compute-

intensive steps of current panoptic segmentation methods.

Our results across multiple benchmarks, including S3DIS,

ScanNet, KITTI-360, and DALES, demonstrate that our

model achieves state-of-the-art performance while being

significantly smaller, scalable, and easier to train.
Despite the considerable industrial applications, large-

scale panoptic segmentation has been relatively unexplored

by the 3D computer vision community. We hope that our

positive results and the state-of-the-art we established on

new datasets and settings will encourage the development of

future panoptic approaches for large-scale 3D scans.
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Appendix
In this appendix, we introduce our interactive visualization

tool in Section A-1, our source code in Section A-2. We

provide details about the superpoint encoder backbone SPT

in Section A-3 and implementation details in Section A-4.

In Section A-5, we discuss the evaluation of SuperCluster on

instance segmentation, before comparing in Section A-6 the

scalability of the Hungarian algorithm with our graph clus-

tering formulation. We then provide an illustration of how

many points can be segmented at once with SuperCluster in

Section A-7. Finally, we provide detailed class-wise results

and illustrate the colormaps of each dataset in Section A-8.

A-1. Interactive Visualization

Our project page https://drprojects.github.

io/supercluster offers interactive visualizations of

our method. As shown in Figure A-1, we can visualize

samples from the datasets with different point attributes and

from any angle. These visualizations were instrumental in

designing and validating our model; we hope that they will

also facilitate the reader’s understanding.

A-2. Source Code

We make our source code publicly available

at https : / / github . com / drprojects /

superpoint_transformer. Our method is de-

veloped in PyTorch and relies on PyTorch Geometric,

PyTorch Lightning, and Hydra.

A-3. Superpoint-Based Backbone

As mentioned in Section 3.3, our panoptic segmentation

method conveniently extends to superpoint-based methods.

In particular, we discuss here our choice of using Superpoint

Transfomer [56] for both computing superpoint partitions

and learning superpoint features.

Superpoint Transformer. Superpoint Transformer (SPT)

is a superpoint-based transformer architecture for the effi-

cient semantic segmentation of large-scale 3D point clouds.

The authors propose a fast algorithm to build a hierarchi-

cal superpoint partition, whose implementation runs 7 times

faster than previous superpoint-based approaches. Addition-

ally, SPT relies on a self-attention mechanism to capture the

relationships between superpoints at multiple scales, achiev-

ing state-of-the-art performance on S3DIS, KITTI-360, and

DALES.
As a memory- and compute-efficient approach capable of

producing superpoint representations for very large scenes,

we found Superpoint Transformer to be the ideal backbone

for scalable 3D panoptic segmentation endeavor.
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a) Position b) RGB c) Level-1 d) Level-2

e) Semantic Annotations f) Semantic Predictions g) Panoptic Annotations h) Panoptic Predictions

Figure A-1. Interactive Visualization. Our interactive viewing tool allows for the manipulation and visualization of point cloud samples

colorized according to their position (a), radiometry (b), partition level (c,d), semantic annotations (e) and predictions (f), and panoptic

annotations (g) and predictions (h).

Alternative Partitions. Alternative methods could be con-

sidered for computing the superpoint partition. Clustering-

based methods such as VCCS [49] draw inspiration from

SLIC [1] and use k-means on point features, under local

adjacency constraints. However, these k-means-based meth-

ods rely on a fixed number of randomly initialized clusters,

proscribing the processing of point clouds of arbitrary size

and geometric complexity.
On the other hand, we use the implementation proposed

in SPT, which itself derives from Landrieu et al. [35]. These

papers cast point cloud oversegmentation as a structured

optimization problem and use the cut-pursuit [33] algorithm

to generate superpoints. This scalable approach does not

make any assumption on the number of superpoints and

produces a partition whose granularity adapts to the 3D

geometry.

Alternative Backbones. One may consider different ar-

chitectures to produce superpoint-wise or point-wise repre-

sentations. Other methods for embedding superpoints ex-

ist [21, 25, 32, 35, 62], but Robert et al. [56] demonstrates

superior performance and efficiency.
Alternatively, one may choose to adopt a per-point

paradigm and rely on established models such as KP-

Conv [61], MinkowskiNet [12], Stratified Transformer [31],

or PointNeXt [52]. Although expressive, these models are

memory and compute-intensive and can only handle small

point clouds at once. For example, in an indoor setting such

as S3DIS or ScanNet, SPT can process entire buildings as a

whole, while these methods can only handle a few rooms si-

Table A-1. Graph Clustering Parameters. We provide the graph

clustering parameters used for each dataset.

Dataset λ η ϵ

S3DIS 10 5.10−2 10−4

S3DIS - no “stuff” 20 5.10−2 10−4

ScanNet 20 5.10−2 10−4

KITTI-360 10 5.10−2 10−4

DALES 20 5.10−2 10−4

multaneously, which limits their applicability for large-scale

panoptic segmentation.

A-4. Implementation Details

In this section, we provide the exact parameterization of

the SuperCluster architecture used for our experiments. For

simplicity, we represent an MLP by the list of its layer widths:

[in channels, hidden channels, out channels].

Backbone. Our backbone model is Superpoint Trans-

former [56] with minor modifications, described below.

We use SPT-64 for S3DIS and DALES and SPT-128 for

KITTI360 and ScanNet.
For all datasets, we reduce the output dimension of the

point encoder ϕ0
enc from 128 to 64 [56]. We find that this

does not affect SPT performance while reducing its memory

requirements. For ScanNet, we find that using 32 heads

instead of 16 and setting Dadj = 64 instead of 32 [56] im-

proves the performance.
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Object Agreement Head. The object agreement pre-

diction head ϕobject is a normalization-free MLP with

LeakyReLU activations [42] and layers [2D, 32, 16, 1],
where D is the output feature dimension of the backbone

(i.e. 64 for S3DIS and DALES, and 128 for ScanNet and

KITTI-360).

Graph Clustering. As mentioned in Section 4.1, since our

supervision framework does not require solving the cluster-

ing problem of Equation 1 during training, we tune the graph

clustering parameters on the train set only after training. In

Table A-1 we detail the tuned parameters for each dataset.

A-5. Instance Segmentation Evaluation

While methods predicting a panoptic segmentation could

also provide an instance segmentation, we argue that their

instance segmentation metrics are not directly comparable

to the ones of methods dedicated to instance segmentation.
Firstly, instance segmentation metrics allow overlap be-

tween proposals, and not all points need to be in a predicted

instance. Thus, instance segmentation methods can pre-

dict multiple instances per true object and avoid predicting

in ambiguous or complex areas. In contrast, panoptic seg-

mentation methods assign exactly one object label to each

point [26].
Secondly, instance segmentation metrics require a con-

fidence score for each proposal, which has a substantial

influence on performance [23, 4.2.2]. Typically, instance

segmentation methods learn this score with a dedicated net-

work [23]. While Mask3D [57] derives this score from the

semantic and mask confidences of the prediction, these are

supervised by an explicit matching between the true and

proposed instances. SuperCluster is precisely designed to

avoid this matching step and never explicitly builds instances

during training.
In summary, while it is technically possible to evaluate

the predictions of SuperCluster with instance segmentation

metrics, their comparison with dedicated methods would

not be fair. A more equitable evaluation of SuperCluster

on instance segmentation would require a dedicated post-

processing step and an instance scoring mechanism, which

falls outside the scope of this paper.

A-6. Scalability of Matching Step

In this section, we provide an experimental evaluation of the

cost of the matching step using the Hungarian algorithm.

Experimental Protocol. We measure the time it takes our

method to perform the panoptic segmentation step (Equa-

tion 1) for scenes of various sizes. Our goal is to compare

this processing time with the matching step of conventional

approaches. Given that we deal with scenes containing a

large number of objects, far beyond what the encoders of
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SuperCluster

Hungarian, n pred = 500
Hungarian, n pred = 1000
Hungarian, n pred = 2000
Hungarian, n pred = 5000

Hungarian, n pred = n true

Figure A-2. Cost of Matching Step. We plot the time taken by

our method to perform the panoptic segmentation step for scenes

with various numbers of true objects. We also show the time

necessary for the Hungarian algorithm to perform the matching

for different numbers of maximum instance proposals n pred and

true instances n true.

these methods can handle in inference, we generate synthetic

cost matrices to simulate the matching process. We com-

pute these matrices for different combinations of the number

of true objects n true and of proposals n pred. To gen-

erate realistic cost matrices, each proposed instance has a

nonzero random cost for at most 3 true objects. We then

measure the time taken by the Hungarian algorithm to solve

the assignment.

Analysis. We report the results of this experiment in Fig-

ure A-2. One significant advantage of our approach, denoted

SuperCluster, is that it does not require a predefined maxi-

mum number of detected objects. In contrast, the processing

time of the Hungarian algorithm is strongly affected by this

parameter. Attempting to predict too many instances can

lead to significantly prolonged training times, regardless

of the number of true objects. Even in the idealized set-

ting of n pred equals to n true, the Hungarian algorithm

becomes much slower than our method when the number

of true objects exceeds 1000. We also remind the reader

that approaches relying on matching-based supervision must

perform this step at each training iteration, while SuperClus-

ter only solves Equation 1 once during inference and never

during training.

13



A-7. Large-scale Inference

Our method can process large 3D point clouds with just one

inference. In this section, we represent the largest portion of

each dataset that SuperCluster can handle in one inference

with an A40 GPU (48G of VRAM). Results for each dataset

are presented in Figure A-3, Figure A-4, Figure A-5, and

Figure A-6.

A-8. Detailed Results

We report in Table A-2, Table A-3, Table A-4, and Table A-5

the average and per-class performances of SuperCluster on

each dataset.

14



Area 1 Area 2 Area 3 Area 4
Area 6
(65%)

Figure A-3. Large-Scale Inference on S3DIS. Largest scan that SuperCluster can segment in one inference on an A40 GPU:

4.6 areas, 21.3M points, 646k superpoints, 5298 target objects, and 4565 predicted objects. Inference takes 7.4 seconds.

Figure A-4. Large-Scale Inference on ScanNet. Largest number of scans that SuperCluster can segment in one inference on an A40 GPU:

105 scans , 10.9M points, 398k superpoints , 1683 target objects, and 2148 predicted objects. The inference takes 6.8 seconds.
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Figure A-5. Large-Scale Inference on DALES. Largest scan that SuperCluster can segment in one inference on an A40 GPU:

15.3 tiles, 7.8 km2, 18.0M points, 589k superpoints, 1727 target objects, and 1559 predicted objects. Inference takes 10.1 seconds.

16



Figure A-6. Large-Scale Inference on KITTI-360. Largest scan that SuperCluster can segment in one inference on an A40 GPU:

7.5 tiles, 11.0M points, 414k superpoints, 602 target objects, and 1947 predicted objects. Inference takes 6.6 seconds.
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Table A-2. S3DIS Class-wise Performance. We report the average and per-class panoptic quality (PQ), recognition quality (RQ),

segmentation quality (SQ), precision (Prec), and recall (Rec) performance of SuperCluster on S3DIS. We indicate “stuff” classes with †.

S3DIS Area 5

Metric Avg. ceiling † floor † wall † beam column window door chair table bookcase sofa board clutter

PQ 58.4 93.8 96.2 84.0 0.0 48.5 64.7 45.3 64.3 40.1 47.7 62.9 70.5 40.6

RQ 68.4 100.0 100.0 100.0 0.0 61.0 77.2 57.4 76.4 52.6 55.8 78.3 81.1 49.7

SQ 77.8 93.8 96.2 84.0 0.0 79.5 83.9 78.9 84.1 76.2 85.4 80.4 86.9 81.7

Prec. 71.4 100.0 100.0 100.0 0.0 64.2 79.6 59.8 75.7 53.3 66.0 75.0 93.8 60.5

Rec. 66.2 100.0 100.0 100.0 0.0 58.1 75.0 55.1 77.1 52.0 48.4 81.8 71.4 42.2

S3DIS 6-FOLD

PQ 62.7 93.8 95.2 84.1 58.9 64.7 70.2 41.1 48.0 45.5 45.8 55.7 64.3 47.2

RQ 73.2 100.0 100.0 100.0 67.9 78.2 81.8 55.3 57.6 58.6 54.9 65.3 74.7 56.8

SQ 84.7 93.8 95.2 84.1 86.8 82.7 85.8 74.4 83.4 77.7 83.4 85.3 86.0 83.2

Prec. 77.8 100.0 100.0 100.0 67.9 80.2 84.7 61.7 69.0 55.9 66.2 74.4 80.0 71.1

Rec. 69.8 100.0 100.0 100.0 67.9 76.4 79.2 50.1 49.4 61.5 46.9 58.2 70.1 47.2

S3DIS Area 5 - no “stuff”

Metric Avg. ceiling floor wall beam column window door chair table bookcase sofa board clutter

PQ 50.1 46.9 69.5 39.0 0.0 45.7 68.1 47.9 64.2 41.1 48.6 66.2 74.8 39.1

RQ 60.1 52.0 78.4 49.3 0.0 58.6 80.8 60.2 75.9 53.5 57.6 81.8 85.7 47.8

SQ 76.6 90.3 88.6 79.1 0.0 78.0 84.2 79.6 84.5 76.8 84.3 80.9 87.3 81.8

Prec. 63.6 45.5 70.6 43.7 0.0 62.1 90.5 68.7 76.7 58.5 74.4 81.8 94.3 59.9

Rec. 58.4 60.5 88.2 56.6 0.0 55.4 73.1 53.5 75.2 49.3 47.0 81.8 78.6 39.8

S3DIS 6-FOLD - no “stuff”

PQ 55.9 68.6 64.1 40.0 65.6 64.0 70.1 42.7 48.0 48.3 43.7 55.4 69.4 46.7

RQ 66.3 74.8 72.6 50.8 74.3 76.7 81.8 57.1 57.3 62.8 52.5 64.6 80.5 56.0

SQ 83.8 91.8 88.2 78.6 88.3 83.4 85.8 74.7 83.7 76.9 83.2 85.7 86.2 83.4

Prec. 72.8 76.4 69.8 50.2 77.9 78.3 86.7 68.8 70.7 63.9 67.0 72.7 90.8 73.1

Rec. 61.7 73.3 75.7 51.4 71.1 75.2 77.4 48.8 48.2 61.8 43.1 58.2 72.3 45.4

Table A-3. ScanNetv2 Val. Class-wise Performance. We report the average and per-class panoptic quality (PQ), recognition quality (RQ),

segmentation quality (SQ), precision (Prec), and recall (Rec) performance of SuperCluster on ScanNet. We indicate “stuff” classes with †.
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PQ 58.7 73.3 91.8 50.5 70.3 61.3 69.0 58.9 42.5 44.5 65.9 27.7 42.9 49.6 40.9 64.1 72.0 88.6 51.0 61.7 46.7

RQ 69.1 88.7 99.3 61.9 77.9 70.7 79.2 68.9 52.9 54.6 72.1 34.7 58.4 62.6 49.6 71.7 84.2 99.2 64.5 75.4 56.0

SQ 84.1 82.6 92.4 81.6 90.2 86.8 87.2 85.5 80.3 81.5 91.4 79.7 73.5 79.1 82.6 89.4 85.5 89.3 79.1 81.8 83.4

Prec. 76.7 93.1 100.0 69.7 81.1 79.0 80.0 68.0 65.9 63.4 75.7 64.9 68.4 60.1 58.0 94.3 82.8 98.3 86.0 76.7 69.5

Rec. 64.3 84.6 98.7 55.7 75.0 63.9 78.4 69.9 44.2 48.0 68.8 23.7 51.0 65.4 43.3 57.9 85.7 100.0 51.6 74.2 46.8
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Table A-4. KITTI-360 Val. Class-wise Performance. We report the average and per-class panoptic quality (PQ), recognition quality (RQ),

segmentation quality (SQ), precision (Prec), and recall (Rec) performance of SuperCluster on the KITTI-360 Validation set. We indicate

“stuff” classes with †.
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PQ 48.3 94.3 75.6 44.8 31.5 20.0 43.4 0.0 30.5 89.5 49.5 19.4 84.2 81.5 55.5 5.4

RQ 58.4 100.0 95.3 53.4 51.4 33.3 65.6 0.0 40.8 100.0 68.5 20.7 89.1 83.3 66.7 7.1

SQ 75.1 94.3 79.3 83.9 61.2 60.0 66.2 0.0 74.6 89.5 72.3 93.6 94.4 97.8 83.3 75.5

Prec. 60.3 100.0 96.2 48.4 51.9 33.3 65.6 0.0 43.5 100.0 76.0 23.1 92.4 90.9 73.3 10.0

Rec. 56.9 100.0 94.4 59.5 50.9 33.3 65.6 0.0 38.5 100.0 62.3 18.8 86.1 76.9 61.1 5.6

Table A-5. DALES Class-wise Performance. We report the average and per-class panoptic quality (PQ), recognition quality (RQ),

segmentation quality (SQ), precision (Prec), and recall (Rec) performance of SuperCluster on DALES. We indicate “stuff” classes with †.

Metric Avg. ground † vegetation † car truck power line fence pole building

PQ 61.2 95.6 90.3 70.9 45.0 18.8 23.5 64.3 81.5

RQ 68.6 100.0 99.0 78.4 51.1 23.1 31.3 79.6 86.6

SQ 87.1 95.6 91.2 90.4 88.2 81.3 75.0 80.8 94.1

Prec. 68.5 100.0 99.0 87.3 55.1 16.3 24.2 81.5 84.7

Rec. 71.0 100.0 99.0 71.1 47.5 39.7 44.3 77.8 88.5

S3DIS

ceiling floor wall beam column

window door chair table bookcase

sofa board clutter unlabeled

ScanNet

wall floor cabinet bed chair

sofa table door window bookshelf

picture counter desk curtain refrigerator

shower toilet sink bathtub otherfurniture

ignored

KITTI-360

road sidewalk building wall fence

pole traffic light traffic sign vegetation terrain

person car truck motorcycle bicycle

ignored

DALES

ground vegetation car truck power line

fence pole building unknown

Figure A-7. Colormaps. Throughout all visualization in the main paper, the appendix, and the interactive visualization, we use this

colormaps to represent the semantic of each point.
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