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The recent advent of powerful generative models has triggered the renewed development of quantitative measures to assess the proximity of two probability distributions. As the scalar Frechet Inception Distance remains popular, several methods have explored computing entire curves, which reveal the trade-off between the fidelity and variability of the first distribution with respect to the second one. Several of such variants have been proposed independently and while intuitively similar, their relationship has not yet been made explicit. In an effort to make the emerging picture of generative evaluation more clear, we propose a unification of four curves known respectively as: the Precision-Recall (PR) curve, the Lorenz curve, the Receiver Operating Characteristic (ROC) curve and a special case of Rényi divergence frontiers. In addition, we discuss possible links between PR / Lorenz curves with the derivation of domain adaptation bounds.

Introduction

Assessing the proximity of two probability distributions is a long standing concern in statistics. It has gained a new impetus with the advent of deep learning techniques to generate random samples from complex data distributions such as natural images. Generative models, particularly Generative Adversarial Networks (GANs), can now synthesize images with unprecedented realism. Indeed, the quality of generation has improved significantly 1 to the point where for certain datasets, human observers have difficulty discerning real and fake [START_REF] Brock | Large scale gan training for high fidelity natural image synthesis[END_REF][START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF]. As these networks see real applications, evaluation of generative networks has become essential and remains challenging. Additionally, such performance raises suspicion about memorizing or overfitting some training images. The amount of training data makes visual comparative evaluation not reliable enough. For instance, the privacy and security of generative models has become paramount, including the largest ever Kaggle competition2 to address deep fakes, or several new works addressing how generative models leak training data [START_REF] Wang | Cnn-generated images are surprisingly easy to spot[END_REF][START_REF] Webster | Detecting overfitting of deep generative networks via latent recovery[END_REF].

Even properly determining sample quality remains challenging [START_REF] Borji | Pros and cons of gan evaluation measures[END_REF]. The Fréchet Inception Distance (FID) [START_REF] Heusel | Gans trained by a two time-scale update rule converge to a local nash equilibrium[END_REF] was shown to correlate decently with human evaluation and remains the most popular evaluation metric, but as a scalar metric is limited when assessing model failure (Sajjadi et al., 2018). A variety of other approaches attempt to give an empirical estimation of sample quality, for instance in [START_REF] Daniel | Quantitatively evaluating gans with divergences proposed for training[END_REF], the original GAN training divergence was re-used for evaluation. Sajjadi et al. (2018) proposed computing an entire Precision-Recall curve (PR) for the generated distribution. Unlike the scalar FID, this curve distinguishes what we will refer to as the fidelity and variability of the model [START_REF] Ferjad Naeem | Reliable fidelity and diversity metrics for generative models[END_REF]. Fidelity evaluates whether the generated distribution produces data that are faithful to the original distribution whereas variability reflects the fact that it covers the entire distribution with the correct importance. For instance, a generator of facial images with poor diversity may only generate one gender, whereas a generator with poor fidelity contains generation artefacts.

Even if the question of estimating the similarity of two distributions has already been intensely studied in the past, it has drawn a renewed interest in recent years. Many probability distribution metrics can be used such as divergences [START_REF] Rubenstein | Practical and consistent estimation of f-divergences[END_REF] or integral probability metrics [START_REF] Müller | Integral probability metrics and their generating classes of functions[END_REF][START_REF] Bharath K Sriperumbudur | On integral probability metrics,\phi-divergences and binary classification[END_REF] to name a few. In this work, we will take special focus on the recent work of Sajjadi et al. (2018) computing a Precision-Recall curve between two distributions3 . Several works explicitly build upon their definition and propose some extensions. For instance, [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF] generalizes the PR curve to arbitrary probabilities (while the work of Sajjadi et al. (2018) was restricted to a discrete settings). More practical works aim at improving empirical evaluation of fidelity and variability [START_REF] Kynkäänniemi | Improved precision and recall metric for assessing generative models[END_REF][START_REF] Ferjad Naeem | Reliable fidelity and diversity metrics for generative models[END_REF]. [START_REF] Djolonga | Evaluating generative models using divergence frontiers[END_REF] proposed the (Rényi) divergence frontiers; this alternate curve coincides with the original PR curve for discrete distributions when the Rényi exponent is infinite. Independently, a handful of alternative curves were defined to compare two distributions. For instance, ROC curves were proposed by [START_REF] Lin | Pacgan: The power of two samples in generative adversarial networks[END_REF][START_REF] Lin | Pacgan: The power of two samples in generative adversarial networks[END_REF] and the Lorenz curves by [START_REF] Harremoës | A new look on majorization[END_REF]; [START_REF] Van Erven | Rényi divergence and majorization[END_REF].

In this work, we demonstrate that, despite their apparently independent definitions, these alternate notions are actually tightly linked with the PR curves which themselves are in fact nearly identical to the notion of DeGroot statistical information. Our main contribution is the theoretical unification between the involved curves, which is summarized in the diagram of Fig. 1. After briefly introducing standard hypotheses and notations, we recall definitions and properties of the aforementioned curves in Section 2. Relations between them are scrutinized in Section 3. In particular, we consider the link found by [START_REF] Djolonga | Evaluating generative models using divergence frontiers[END_REF] between PR curves and divergence frontiers ( § 3.2) for infinite Rényi exponent a, hence extending it from discrete distributions to general ones. More importantly, we show that Lorenz curves and PR curves are related through convex duality ( § 3.3). In addition, in Section 4, we explore several links with φ-divergences. In particular, thanks to integral representations of φ-divergences, we can show a reversed link between PR curves and divergence frontiers. As a side contribution, we end these notes in Section 5 by highlighting links existing between these trade-off curves and performance bounds used in the theory of domain adaptation. In particular, starting from the variational form of φ-divergences we extend the notion of Lorenz curves and use this extension to establish a new generalization bound.

Background on trade-off curves

In this section, we review several curves proposed in the literature to assess the similarity between two distributions P and Q. We simply summarize the principal definitions and useful results. Some notions are subject to minor adaptations in order to simplify the exposition of the links between the considered curves. Anytime such a revision is adopted, it shall be explicitly mentioned.

Let us start by recalling some standard notations, definitions, and results from measure theory. From now on, (Ω, A) represents a common measurable space, and we will denote M(Ω) the set of sigma-finite signed measures, M + (Ω) the set of sigma-finite positive measures and M p (Ω) the set of probability distributions over that measurable space. The extended half real-line is denoted by R + = R + ∪ {∞}.

Definition 1 Let µ, ν two signed measures. We denote by supp(µ) the support 4 of µ, |µ| the total variation measure of µ, dµ dν the Radon-Nikodym derivative of µ w.r.t. ν and µ ∧ ν = min(µ, ν) := 1 2 (µ + ν -|µ -ν|) (a.k.a the measure of largest common mass between µ and ν [START_REF] Piccoli | A wasserstein norm for signed measures, with application to nonlocal transport equation with source term[END_REF]). Besides, as usual, µ ν means that µ is absolutely continuous w.r.t. ν.

Precision-recall curves

The PR curves were first proposed by Sajjadi et al. (2018) for discrete distributions and then extended to the general case by [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF]. We follow the definition of the latter up to a minor fix 5 .

Definition 2 Let P, Q two distributions from M p (Ω). We refer to the Precision-Recall set PRD(P, Q) as the set of Precision-Recall pairs (α,

β) ∈ R + × R + such that ∃ µ ∈ AC(P, Q), P ≥ βµ, Q ≥ αµ , (1) 
where AC(P, Q) := {µ ∈ M p (Ω)/µ P and µ Q}.

The precision value α is related to the proportion of the generated distribution Q that matches the true data P , while conversely the recall value β is the amount of the distribution P that can be reconstructed from Q. Because of the lack of natural order on [0, 1] × [0, 1], [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF] has proposed to focus on the Pareto front of PRD(P, Q) defined as follows.

Definition 3 The precision recall-curve

∂PRD(P, Q) is the set of (α, β) ∈ PRD(P, Q) such that ∀(α , β ) ∈ PRD(P, Q), α ≥ α or β ≥ β .
Note that this curve is clearly the Pareto front of the set:

{(κ * (Q|µ), κ * (P |µ))/µ ∈ AC(P, Q)}
where, following [START_REF] Scott | Classification with asymmetric label noise: Consistency and maximal denoising[END_REF], we define κ * (P |µ)

:= max{β ∈ [0, 1]/∃ν ∈ M p (Ω), P = βµ + (1 -β)ν} = inf A∈A µ(A)>0 P (A)
µ(A) (and similarly for Q).

In fact, this frontier is a curve for which Sajjadi et al. (2018) have exposed a parameterization, later generalized by [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF]. We recall their result now.

4. Although a precise definition of the support requires a topology, we gloss over this issue because the support will not play a central role in the technical derivations. 5. There is an issue with their original definition where (1, 0) and (0, 1) are always in PRD(P, Q), while they should not when part of the mass of P is absent from Q and vice versa. Our fix consists in considering only the distributions µ that are absolutely continuous w.r.t P and Q.

Theorem 4 Let P, Q two distributions from M p (Ω) and (α, β) non negative. Then, denoting

∀λ ∈ R + , α λ := ((λP ) ∧ Q) (Ω) β λ := P ∧ 1 λ Q (Ω) (2) 1. (α, β) ∈ PRD(P, Q) iff α ≤ α λ and β ≤ β λ where λ := α β ∈ R + . 2.
As a result, the PR curve can be parameterized as:

∂PRD(P, Q) = {(α λ , β λ )/λ ∈ R + } .
(3)

In the previous theorem, and in agreement with the standard convention in measure theory, 0 × ∞ = 0 so that α ∞ = Q(supp(P )) and β 0 = P (supp(Q)).

Remark 5 The previous parameterization reveals that the precision-recall curve is intrinsically related to the DeGroot statistical information [START_REF] Morris | Uncertainty, information, and sequential experiments[END_REF] which is defined as ∆B π (P, Q) := B π (P, P ) -B π (P, Q) through the following divergence (that we will refer in short as the DeGroot divergence):

B π (P, Q) := [πP ∧ (1 -π)Q](Ω) (4) 
where π ∈ [0, 1] is an arbitrary prior probability. In simple words, the link with the precisionrecall curve is merely a change of parameterization: π = λ 1+λ . This relationship will play a crucial role in one of the links made with φ-divergences in section 4 (see the integral representation arrow in Figure 1). [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF] linking the frontier to likelihood ratio test is summarized now:

Another useful result of

Theorem 6 Let P, Q two distributions from M p (Ω). Then ∀λ ∈ R + , α λ =λ (1 -P (A λ )) + Q(A λ ) β λ =1 -P (A λ ) + Q(A λ ) λ , (5) 
where the likelihood ratio sets are defined as

A λ := dQ d(P +Q) ≤ λ dP d(P +Q) . ( 6 
)

Divergence frontiers

Divergence frontiers were proposed very recently by [START_REF] Djolonga | Evaluating generative models using divergence frontiers[END_REF] as a generalization of precision-recall curves. Such a notion builds upon the Rényi divergence between two distributions.

Definition 7 Let µ, ν ∈ M p (Ω) two distributions such that µ ν and a ∈ R + \ {1}. The a-Rényi-divergence between µ and ν is defined as:

D a (µ ν) := log dµ dν a-1,dµ (7) 
where the invoked norm is defined as

f a-1,dµ := f a-1 dµ 1 a-1
when a < +∞ and is the essential supremum norm for a = ∞. Besides when a = 1, this definition is extended by continuity and leads to the KL-divergence.

We adapt the definition of divergence frontiers from [START_REF] Djolonga | Evaluating generative models using divergence frontiers[END_REF].

Definition 8 (Divergence frontiers) Let P, Q two distributions and a ∈ R + . Then the exclusive realizable divergence region is defined6 as the set:

R ∩ a (P, Q) := {(D a (µ Q), D a (µ P )) /µ ∈ AC(P, Q)} (8)
And the exclusive divergence frontier is defined as the (weak) Pareto front of this region, that is the set ∂R ∩ a of couples (π, ρ) ∈ R ∩ a such that:

∀(π , ρ ) ∈ R ∩ a , π ≤ π or ρ ≤ ρ . (9) 
In the event that R ∩ a (P, Q) = ∅, the frontier is by convention restricted to the point (+∞, +∞).

Lorenz and ROC curves

Lorenz curves were originally introduced by [START_REF] Lorenz | Methods of measuring the concentration of wealth[END_REF] to delineate income inequalities. In essence they highlight how much a single one dimensional distribution differs from a uniform distribution. This notion was then generalized to characterize the closeness of two arbitrary distributions by [START_REF] Harremoës | A new look on majorization[END_REF]; [START_REF] Van Erven | Rényi divergence and majorization[END_REF].

Definition 9 Let P, Q two distributions from M p (Ω). One defines the Lorenz diagram between P and Q as

LD(P, Q) = f dP, f dQ /0 ≤ f ≤ 1 , (10) 
where the function f is required to be measurable. Then the Lorenz curve between P and Q is defined as the lower envelop of the Lorenz diagram:

F P,Q LD (t) := inf 0≤f ≤1 f dP ≥t f dQ. ( 11 
)
In absence of ambiguity on the involved distributions, we shall denote it simply F (t) rather than F P,Q LD (t). This curve is easily shown to be a monotonic and convex function.

If one considers in (10) only the range of indicator functions, then one recovers a subset of the Lorenz diagram, from which the Lorenz diagram can be extracted by merely taking the closed convex hull. This fact underpins the equivalence between Lorenz diagrams/curves and the seemingly different notions of Mode Collapse Region / ROC curves proposed by [START_REF] Lin | Pacgan: The power of two samples in generative adversarial networks[END_REF]. Indeed, [START_REF] Lin | Pacgan: The power of two samples in generative adversarial networks[END_REF] shows (in Remark 6) that their Mode Collapse Region (MCR) can be obtained as the convex hull of the set of points (P (A), Q(A)) where A is any measurable set such that Q(A) ≥ P (A). As such the MCR is the upper half of the Lorenz diagram when one cuts it along the main diagonal (i.e. the line segment between (0, 0) and (1, 1)). Then the authors proceed to define the ROC curve as the upper envelop of the MCR, which in turns is the symmetric transform of the lower envelop (i.e. the Lorenz curve) along the same diagonal. For the sake of time precedence, we shall thereafter focus solely on the Lorenz curve.

Similarly, restricting (11) to indicator functions requires convexification (more precisely Γ-regularization) to recover the Lorenz curve. In fact, because of the Neyman-Pearson lemma, one can even restrict to the indicator functions of the likelihood ratio sets A λ , which in light of Theorem 6 underlies a subtle link with precision-recall curves that we shall detail later on.

Relationships between trade-off curves

Before going into further details about how the aforementioned curves relate to one another, let us state a few general facts about how they differ. One can first note that each curve is subject to specific "regularity" properties such as monotonicity, convexity and boundedness. For instance, contrary to the Lorenz curve, the PR curve does not enjoy any convexity property. Similarly, both the PR curve and the Lorenz curve are bounded within the domain [0, 1] × [0, 1], while the divergence frontiers are not bounded in general. Last both the divergence frontiers and PR curves are decreasing while the Lorenz curve is increasing.

Despite these disparities, each curve serves a similar purpose and strong links exist between them. In the next paragraph, a few simple situations are first scrutinized to describe the behavior of PR and Lorenz curves (divergence frontiers are voluntarily excluded from this preamble). Then, in § 3.2 and § 3.3, we shall establish the exact links between those curves.

Some intuition on the PR and Lorenz curves

In this preamble, we focus on the principal function of the curves under consideration: namely how they characterize the similarity between P and Q. To make our discussion more concrete, we consider an illustrative case in Fig. 2, where P and Q are two (truncated-)Gaussian mixtures. For a given curve alternative, one may consider two extreme configurations. On one hand, the perfect match between P and Q i.e. P = Q is represented in dashed green. On the other hand, the complete discord between P and Q, denoted by P ⊥ Q corresponds to an empty overlap of their supports (or more formally to two mutually singular distributions) and is represented in red. Then a particular instance of the considered curve will appear as an in-between case. The closer it stands to the green spot (and therefore the farther from the red spot), the more similar P and Q. To illustrate the benefit of a trade-off curve in comparison to scalar metrics, we depict a few examples in Fig. 3. The three examples are obtained by adjusting the locations, widths and weights of the Gaussian mixture models. They corresponds to scenarios of idealistic modes of deviations between the two distributions P and Q, namely (a) pure mode dropping, (b) pure mode invention and (c) pure mode reweighting. In (a) a Gaussian component from P is missing in Q, and this translates in both curves. In the PR curve, it becomes manifest through a drop of recall that is depicted by the horizontal gap separating the curve from the dash green curve. In the Lorenz curve, this is depicted by the horizontal gap between the point where the curve becomes positive and the origin (0, 0). In (b) an extra Gaussian component is present in Q and again this phenomenon is patent in the curves, but this time it is depicted by vertical gaps. In (c) P and Q present both two components centered at the same locations, but they have different mixing factors, and one of the two components is more spread in Q. In that scenario, maximal recall and maximal precision can be achieved but not at the same time. This trade-off is rendered in a way specific to each curve. In both cases, the horizontal and vertical gaps indicative of mode dropping and mode invention are null, but the curve smoothly interpolates from full recall to full precision away from the green curve. The fact that one Gaussian component is identical in P and Q translates clearly in the precision-recall curve: indeed full recall can be obtained for a non-null precision (approximately 0.4 in this plot). Figure 2 is depicting an aggregate of these three extreme scenarios and both trade-off curves reflect the related phenomenons.

P & Q P Q P Q P Q PR curves

Precision-recall vs Divergence frontiers

In [START_REF] Djolonga | Evaluating generative models using divergence frontiers[END_REF], it is shown that in the case of discrete measures, the notion of divergence frontier matches precision-recall curve in the limit case where the Rényi exponent a → ∞. We extend here this result to the case of general distributions. To do so, we will rely on the following technical lemma.

Lemma 10 Let µ ∈ M p (Ω) and ν ∈ M p (Ω) two distributions. 1. If µ ν then sup A∈A µ(A) ν(A) = ess sup dµ dµ dν ; 2. otherwise, sup A∈A µ(A) ν(A) = ess sup dµ dµ d(µ+ν) / dν d(µ+ν) .
Proof For the sake of completeness, we provide a proof of this technical result in Appendix A.

Theorem 11 Let P, Q two distributions. Then,

∂P RD(P, Q) = (e -π , e -ρ )/(π, ρ) ∈ ∂R ∩ ∞ (P, Q) .
Proof From the definition of the Rényi divergence it is clear that

D ∞ (µ Q) = log dµ d(µ+Q) / dQ d(µ+Q) ∞,dµ = log ess sup dµ dµ d(µ+Q) / dQ d(µ+Q)
which in turn can be expressed thanks to Lemma 10 as

D ∞ (µ Q) = log sup A∈A µ(A) Q(A)
.

A similar derivation applies to D ∞ (µ P ).

Besides, as stated at the end of Definition 3 it is clear that the precision-recall curve is obtained as the Pareto-front of the set of pairs (inf

A∈A µ(A)>0 Q(A) µ(A) , inf A∈A µ(A)>0 P (A) µ(A) )
where µ describes all distributions in AC(P, Q). Note that because of the standard measure theory convention 0 0 = 0, we have that

sup A∈A µ(A) Q(A) = sup A∈A µ(A)>0 µ(A) Q(A) = 1/ inf A∈A µ(A)>0 Q(A) µ(A) = e D∞(µ Q) .
The claimed identity easily follows.

Precision-recall vs Lorenz curves

The question of the relation between PR and Lorenz/ROC curves is reminiscent of the comparison of PR and ROC curves for binary classification [START_REF] Davis | The relationship between precision-recall and roc curves[END_REF]. Note however that despite their name, PR-curves for distributions are not the same as the PR-curves of the likelihood ratio classifier as one might be inclined to believe. In fact, they are composed of mixed error rates of the said classifier (see Theorem 6).

In essence, PR and Lorenz curves are two ways of exposing the pairs (P (A λ ), Q(A λ )). Yet, the following questions are not trivial. Given the PR-curve of P and Q, can we compute their Lorenz curve? Reciprocally, can we compute the PR-curve from the Lorenz one? If one had a more complete representation such as (λ, P (A λ ), Q(A λ )), then one could easily compute both the PR-curve and the Lorenz curve, but in each representation, at least one datum is not explicitly known:

1. In the Lorenz curve, λ is not readily available, but we will see that it is in fact hidden in the sub-derivative of the Lorenz curve.

2. In the PR-curve, λ can be easily computed as the ratio α λ β λ but the values of P (A λ ) and Q(A λ ) are mingled within α λ so that one needs to untangle them before recovering the Lorenz curve. Note that, given a fixed λ, the system of equations given by α λ and β λ in Eq. ( 5) is always under-determined (rank 1) and therefore does not suffice on its own to recover the values of P (A λ ) and Q(A λ ).

We will rely on the following Lemma.

Lemma 12 Let P, Q two distributions from M p (Ω). Then ∀λ ∈ R + , α λ = min 0≤f ≤1 λ 1 -f dP + f dQ (12)
where the functions f are measurable.

Proof See Appendix B.

From Lemma 12, one can draw the following link between the PR-curve and the Lorenz curve.

Theorem 13 Let P and Q two distributions. Let λ ∈ R + . Consider the Lorenz Curve F defined in Eq. (11), then,

F * (λ) = λ -α λ ( 13 
)
where

F * (λ) = sup t∈[0,1] λt -F (t) is the Legendre transform of F . Proof Let λ ≥ 0. Let us show that F * (λ) = λ -α λ . Indeed , ∀t ∈ [0, 1] λt -F (t) =λt -inf 0≤f ≤1 f dP ≥t f dQ = sup 0≤f ≤1 f dP ≥t λt -f dQ ≤ sup 0≤f ≤1 f dP ≥t λ f dP -f dQ ≤ sup 0≤f ≤1 λ f dP -f dQ =λ -α λ (thanks to Lemma 12) Which shows that λ -α λ ≥ sup t∈[0,1] λt -F (t). Besides, letting t λ := P (A λ ) λ -α λ =λ -(λ(1 -P (A λ )) + Q(A λ )) =λP (A λ ) -Q(A λ ) = λt λ -F (t λ )
where we have used that if

t λ = P (A λ ) then F (t λ ) = Q(A λ ) (a result induced by the stan- dard Neyman-Pearson lemma). Therefore, λ -α λ = sup t∈[0,1] λt -F (t) = F * (λ).
Remark 14 Theorem 13 brings many valuable prospects concerning the link between the PR and Lorenz curves.

1. First, since the Legendre transform is a one-to-one involution, the PR and Lorenz curves are theoretically equivalent.

2. Besides, letting t λ := P (A λ ) and relying on the Fenchel identity, one gets that λ ∈ ∂F (t λ ), which theoretically provides a means to extract the missing datum as soon as one is capable of computing the subdifferential of the Lorenz curve.

3. More concretely, the theorem provides us a practical way to compute α λ from the Lorenz curve. Indeed, given λ, α λ can be computed by solving the following 1D convex problem:

α λ = λ -F * (λ) = min t∈[0,1] F (t) + λ(1 -t)
One can do so efficiently thanks to the bisection method if the subdifferential of F is available or resort to derivative-free algorithms such as the Golden Section Search method otherwise. Then β λ is obtained as α λ λ .

4. In the other way around, given t ∈ [0, 1], one can solve for F (t) by considering the following 1D concave problem:

F (t) = F * * (t) = sup λ∈R + λt -F * (λ) = sup λ∈R + α λ + λ(t -1).

Several links implying φ-divergences

In this section, we scrutinize the relationship between the trade-off curves and φ-divergences.

To do so, we build on the link between precision and the DeGroot statistical information. In particular, as illustrated in the lower right part of Figure 1, the precision-recall curve can be cast as a parametric family of φ-divergence. Reciprocally, φ-divergences can be expressed as integral representations from the PR-curve. Note, that both facts were rediscovered recently in [START_REF] Verine | Training normalizing flows with the precision-recall divergence[END_REF]. Last, based on the integral representation, we show that the Rényi divergence frontier can be recovered theoretically from the PR-curve.

A short digest on φ-divergences

In what follows, φ : R → R is a l.s.c. convex function verifying the following assumptions:

(A0) dom(φ)∩] -∞, 0[= ∅ and ]0, +∞[⊂ dom(φ) (A1) φ(1) = 0 (A2) 0 ∈ ∂φ(1) and ∂φ(1) is symmetric around 0 (ie φ -(1) = -φ + (1)) (A3) φ is strictly convex at 1
We will denote Φ 1 the set of l.s.c. convex functions that follows these four assumptions. We denote φ (u) = uφ( 1 u ), the so-called Csizár dual of φ. In agreement with [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF], we use the following definition of φ-divergences.

Definition 15 (φ-divergence) Let φ ∈ Φ 1 and µ and ν be two positive measures. Then,

D φ (µ ν) := φ dµ dν dν + φ(0)ν({µ = 0}) + φ (0)µ({ν = 0}) (14)
with φ(0) := lim u→0 φ(u) and φ (0) := lim u→0 uφ( 1 u ).

Remark 16 Let us give some rationale behind the four assumptions defining Φ 1 . The first part of Assumption (A0) restrict the φ divergence to positive measures (or same sign measures) and hence removes any subjective choice for the value of φ( dµ dν ) when dµ dν < 0. Taken together, the three other assumptions defining Φ 1 enforce that D φ (µ ν) ≥ 0 with equality iff µ = ν. Indeed, using assumptions (A1) and (A2), one sees that ∀u ∈ R, φ(u) ≥ φ(1) = 0, and the last assumption implies that φ(u) = 1 iff u = 1. Assumption (A2) is not always required in the literature when dealing with probability (because in this case,

µ = P, ν = Q are distributions and D φ (P Q) is invariant to changes of the form φ(u) = φ(u) - φ + (1)+φ -(1) 2 (u -1)). Besides, notice that φ ∈ Φ 1 iff φ ∈ Φ 1 and the following symmetry relation holds: D φ (µ ν) = D φ (ν µ).
Remark 17 In addition to the Csizár dual, the Legendre-Fenchel dual of φ will play a key role in variational forms of D φ [START_REF] Nguyen | Estimating divergence functionals and the likelihood ratio by convex risk minimization[END_REF]. It is therefore interesting to comment on the impact of the assumptions φ ∈ Φ 1 on φ * . In fact, φ(1) = min u φ(u) means exactly that φ * (0) = -φ(1). Besides, since φ(1) = 0, it means that φ * (0) = 0. Symmetrically, when 0 ∈ dom(φ), let v 0 ∈ ∂φ(0), then φ * (v 0 ) = min v φ * (v). Besides, since φ is minimized at u = 1, then it is decreasing wherever u < 1 and increasing otherwise (by convexity). In particular, ∂φ(0) ⊂ [-∞, 0] and therefore the minimum of φ * can only be reached at a point v 0 ≤ 0 (it is also possible that the infimum is not reached if ∂φ(0) = {-∞} or if 0 ∈ dom(φ)).

To conclude this remark, let us notice that the definition of φ on ] -∞, 0] is irrelevant for D φ (µ ν) (indeed, since µ and ν are assumed positive, then dµ dν ≥ 0). As a result, D φ is also not impacted by the values taken by φ * (v) for v < v 0 := sup{v ∈ arg min(φ * )}. In any case, since assumption (A0) imposes φ( dµ dν ) = +∞ when dµ dν < 0 then φ * (v) = φ * (v 0 ) whenever v < v 0 . To simplify concrete formulae, e.g. in Table 1, we will focus on φ * (v) on the following restriction of its domain

dom v 0 → (φ * ) := ∪ u≥0 ∂φ(u) = dom(φ * ) ∩ [v 0 , +∞[. It includes at least ]v 0 , φ + (+∞)[, and since φ is strictly convex at 1, φ + (∞) > 0 (indeed φ + (∞) ≥ φ (1)
≥ 0 and if by the symmetry assumption of (A2) φ + (1) = -φ -(1) = 0 and then strict convexity implies that φ + (∞) > φ + (1). Therefore dom(φ * ) ⊃]v 0 , 0].

Integral representation of an φ-divergence using the precision-recall curve

Considering two distributions P and Q, the very definition of D φ (P Q) involves P ({Q = 0}) = 1 -β 0 and Q({P = 0}) = 1 -α ∞ that is to say the gap between the best possible Divergence

φ(u) φ (u) dom v 0 → (φ * ) φ * (v) φ * (v) KL u log(u) -(u -1) log(u) R e v e v -1 rKL -log(u) + (u -1) 1 -1 u ] -∞, 1[ 1 1-v -log(1 -v) JS -(u + 1) log 1+u 2 +u log u log( 2u 1+u ) ] -∞, log(2)[ e v 2-e v -log(2 -e v ) χ 2 Pearson (u -1) 2 2(u -1) [-2, +∞[ v 2 + 1 v 2 4 + v Hellinger ( √ u -1) 2 1 -1 √ u ] -∞, 1[ 1 (1-v) 2 v 1-v TV |u -1| sign(u -1) [-1, 1] 1 v Table 1: A few standard φ-divergences.
For each choice of φ we provide the entries in the natural derivation order, namely we compute first φ (u) then we derive the "meaningful" domain of φ * , that is dom v 0 → (φ * ), then φ * (v) is determined as the inverse function of φ (u) and φ * (v) is determined as the anti-derivative that verifies φ * (0) = 0. Note that φ * and its derivative are only given on their meaningful domain.

precision/recall and their actual values. In fact, building upon known integral representations of φ-divergences [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF], the entire divergence can be expressed as an integral of weighted precision-recall gaps. Let us first reformulate the link highlighted in Remark 5 between DeGroot's statistical information and the precision-recall curve.

Proposition 18 Let P, Q be two distributions, π ∈ [0, 1] and denoting by

F 1 π (P, Q) := 2 1 α λ + 1 β λ
the F 1 -score associated with the precision-recall pair (α λ , β λ ) where λ = π 1-π . Then:

F 1 π (P, Q) = 2B π (P, Q)
As a result, the DeGroot's statistical information is related to the gaps of F 1 scores as follows:

∆B π (P, Q) = 1 2 ∆F 1 π (P, Q) (15) with ∆F 1 π (P, Q) := F 1 π (P, P ) -F 1 π (P, Q).
Proof Let us first recall the definition of B π (P,

Q) := (πP ∧ (1 -π)Q)(Ω) (see Remark 5)
The proposition derives from a simple computation and the fact that α λ = λβ λ :

F 1 π := 2α π 1-π β π 1-π α π 1-π + β π 1-π = 2α π 1-π π 1-π + 1 = 2(1 -π)α π 1-π =2(1 -π)[ π 1 -π P ∧ Q](Ω) = 2B π (P, Q)
From the previous result, one can restate the Theorem 11 of [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF] in terms of precision-recall F 1 scores.

Corollary 19 Let P, Q two distributions and φ ∈ Φ 1 . Then,

D φ (P Q) = 1 2 1 0 ∆F 1 π (P, Q)dΓ φ (π) ( 16 
)
where dΓ φ (π) := 1 π dφ + ( 1-π π ) intrinsically represents the distribution of curvature of the convex function φ.

Proof This is a mere restatement of the result of (Liese and Vajda, 2006, Theorem 11), based on Equation 15 (in comparison, (Liese and Vajda, 2006, Theorem 11) was formulated in terms of ∆B π (P, Q)).

Remark 20 Therefore, depending on the curvature distribution of φ, minimizing the φdivergence between P and Q (as done in f-GAN [START_REF] Nowozin | f-gan: Training generative neural samplers using variational divergence minimization[END_REF]) is equivalent to minimizing a weighted version of the gap between the best F 1 π score and the actual score. For instance, one can consider the following family of functions φ a and their associated φ-divergence, that we will refer to as Tsallis 7 a-divergence [START_REF] Tsallis | Possible generalization of boltzmann-gibbs statistics[END_REF]:

φ a (u) := 1 a(a -1) (u a -a(u -1) -1) (17) 
In that case, the curvature is given by φ a (u) = u a-2 and dΓ φa (π) = 1

π 3 φ a 1-π π dπ = 1 π 3 1-π π a-2 dπ.
As a result, one gets

D φa (P Q) = 1 2 1 0 ∆F 1 π (P, Q) 1 -π π a 1 π(1 -π) 2 dπ
One can see that depending on the value of a, this objective will focus rather on regions where precision is more important π → 1 or on those where recall is paramount π → 0.

Divergence frontiers parameterization with φ-divergences

In this section, we consider again the Rényi divergence frontiers introduced by [START_REF] Djolonga | Precision-recall curves using information divergence frontiers[END_REF]. We recall that the Rényi divergence of exponent a between µ and P is denoted by D a (µ P ). Following [START_REF] Djolonga | Precision-recall curves using information divergence frontiers[END_REF] with a minor correction, one can consider the following monotone transform of the Rényi divergence 8 and recover the previously introduced Tsallis a-divergence: Da (µ P ) := 1 a(a-1) (exp ((a -1)D a (µ P )) -1) = 1 a(a-1) dµ dP a -1dP = D φa (µ P ). Since this is a φ-divergence, it might be expected 7. Note that the normalizing constant is usually set as 1 a-1 for Tsallis divergences instead of 1 a(a-1) . Yet the normalization chosen here presents several advantages : in particular the obtained family of divergence is well defined for all a ∈ R (instead of only a ≥ 0) and besides the Csizár dual is given by φ a = φ1-a. The obtained divergence was simply called α-divergence in [START_REF] Póczos | On the estimation of alpha-divergences[END_REF]. 8. Actually we had to amend slightly the transform used in [START_REF] Djolonga | Precision-recall curves using information divergence frontiers[END_REF] because of a minor flaw in their exposition as well as out of personal convenience.

through the link developed in section 4.2 that this divergence frontier is determined by the precision-recall curve. Making this statement concrete requires a bit of work though, because the divergence involved here is not directly expressed between P and Q but implies an auxiliary distribution µ (in this context, µ is meant to interpolate between P and Q).

The following proposition materializes the anticipated link.

Proposition 21 Let P, Q two distributions. The above defined Tsallis divergence frontier can be obtained as the pairs: ( Da (µ θ P ), Da (µ θ Q)) with θ ∈ [0, 1] and

dµ θ,a dP = θ + (1 -θ) dQ dP 1-a 1 1-a (θ + (1 -θ) dQ dP 1-a ) 1 1-a dP (18)
As a result,

Da (µ θ,a P ) = 1 a(a -1)     (θ + (1 -θ) dQ dP 1-a ) a 1-a dP (θ + (1 -θ) dQ dP 1-a ) 1 1-a dP a -1     . (19)
Proof Note that this proposition was already presented in [START_REF] Djolonga | Precision-recall curves using information divergence frontiers[END_REF], Proposition 1, Proposition 3). We still provide a proof because the one presented in [START_REF] Djolonga | Precision-recall curves using information divergence frontiers[END_REF] lacks details. The first point noted in [START_REF] Djolonga | Precision-recall curves using information divergence frontiers[END_REF], is that contrary to the Rényi divergence, the Tsallis version is convex in both arguments, and in particular in µ. As a result, denoting by ∂ R(P, Q) the Tsallis divergence frontier (defined similarly to Definition 8 using Da instead of D a ), the bi-objective optimization associated with the Pareto-frontier ∂ R(P, Q) can be solved through linear scalarization. This means that the divergence frontier for the Tsallis divergence is parametrized as

∂ R(P, Q) = {( Da (µ θ,a P ), Da (µ θ,a Q)), θ ∈ [0, 1]} where µ θ,a = arg min µ∈AC(P,Q) θ Da (µ P ) + (1 -θ)D a (µ Q) .
This is a generalized centroid problem that has been first solved in Amari ( 2007), as follows.

Denoting, with a slight abuse of notation, m θ = dµ θ,a dP , the optmization problem becomes:

m θ = arg min µ=mdP s.t. mdP =1 θ Da (µ P ) + (1 -θ)D a (µ Q) .
Using a Lagrange multiplier, the first order optimality condition is:

m a-1 θ (θ + (1 -θ) dP dQ a-1
)δm θ dP + λ δm θ dP = 0 where δm θ is an arbitrary measurable function. This yields m 1-a θ ∝ (θ + (1 -θ) dP dQ a-1

). Using the normalization constraint, one gets:

m θ = dµ θ,a dP = (θ + (1 -θ) dP dQ a-1 ) 1 1-a (θ + (1 -θ) dP dQ a-1 ) 1 1-a dP = (θ + (1 -θ) dQ dP 1-a ) 1 1-a (θ + (1 -θ) dQ dP 1-a ) 1 1-a dP . As a result, Da (µ θ,a P ) = 1 a(a -1) dµ θ,a dP a -1dP = 1 a(a -1)     (θ + (1 -θ) dQ dP 1-a ) a 1-a dP (θ + (1 -θ) dQ dP 1-a ) 1 1-a dP a -1     .
Remark 22 The previous parameterization of the divergence frontier was given in (Djolonga et al., 2020, Proposition 3). It is expressed entirely in terms of φ-divergences between P and Q. As a result, the divergence-frontier is completely determined by the DeGroot statistical information ∆B π (P, Q) which in turn are in bijection with the precision-recall curve between P and Q. From this observation, one can state that for any exponent a, the Rényi divergence frontier is entirely determined by the precision-recall curve. In other words, the precision-recall curve is always more complete a description than any Rényi divergence frontier. The same remark holds for the interpolated φ-divergence curves proposed in [START_REF] Liu | Divergence frontiers for generative models: Sample complexity, quantization effects, and frontier integrals[END_REF] which, by design, are parameterized with φ-divergences between P and Q. That being said, the estimation from a finite sample of the precision-recall curve in a non-parametric settings might reveal more complicated than divergence frontiers. This question deserves further scrutiny, and although it is out of the scope of this article, the interesting reader can refer to [START_REF] Rubenstein | Practical and consistent estimation of f-divergences[END_REF][START_REF] Liu | Divergence frontiers for generative models: Sample complexity, quantization effects, and frontier integrals[END_REF] and references therein.

Remark 23

The reader can verify that taking the limit case a → ∞ for the parameterization µ θ,a tends to a single point of the precision recall curve, precisely µ θ,∞ = P ∧Q (P ∧Q)(Ω) . In order to recover the full curve, one should use a parameterization that depends on the Rényi exponent a, by setting:

(θ a , 1 -θ a ) ∝ (π 1-a , (1 -π) 1-a ) where π ∈ [0, 1] is the new parameter. In that case, dµ θa,a dP = (π 1-a + (1 -π) dQ dP 1-a ) 1 1-a (π 1-a + (1 -π) dQ dP 1-a ) 1 1-a dP Then µ θa,a → πP ∧(1-π)Q (πP ∧(1-π)Q)(Ω) as a → ∞.
With such a parameterization, the numerator and denominator in the expression of Da (µ θa,a P ) are reminiscent of Arimoto divergences (see e.g. [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF]).

Application to generalization bounds for domain adaptation

In this part we revisit a standard bound from domain adaptation. In this setting, P and Q stand for the source and target distributions over a joint space Ω = X × Y where X is called the sample space and Y is a finite set of classes referred as the label space. Given a classifier h (a.k.a an hypothesis) one would like to control the error R Q (h) in the target domain which is not directly observable (for lack of supervision) with a bound relying on the corresponding error R P (h) in the source domain (where supervision is available). The simplest bound proposed in the literature is the following [START_REF] Ben-David | A theory of learning from different domains[END_REF]:

R Q (h) := 1 h(x) =y dQ(x, y) ≤ R P (h) + P -Q T V . ( 20 
)
In the common covariate-shift assumption (where the conditional distribution of labels given samples is the same in both domains), the bound can be expressed in terms of the marginal distribution over X . It was noted directly by [START_REF] Ben-David | A theory of learning from different domains[END_REF] that the previous bound suffers from two major issues in practice. The first one is that the bound cannot be estimated efficiently from finite i.i.d samples because of its reliance on the TV norm (which involves a class of measurable sets that is not restricted enough for such purpose). The second issue lies in the fact that the bound does not imply the class of hypothesis functions where h lives (e.g. a class of small VC dimension or of small Rademacher capacity). As such, the bound in question is over-pessimistic, because it takes for granted that error set {h(x) = y} may be spread as an arbitrary measurable set, which may be far from the case depending on restrictions applying to h. The authors then derived a more adapted bound based on the so-called H∆H-divergence, answering the previous two points, and many other bounds were later proposed. The interested reader may refer to [START_REF] Redko | A survey on domain adaptation theory[END_REF] for a very up-to-date and comprehensive review of such works.

A refined TV bound

Despite its shortcomings, we would like to revisit Eq. ( 20) and provide an optimized version of it which has an intuitive interpretation. We will first derive a bound, based on the Lorenz curve between P and Q and then express it in a form closer to Eq. ( 20) by relying on the duality between Lorenz and PR curves.

Proposition 24 The Lorenz curve provides a lower bound for domain adaptation.

R Q (h) ≤ 1 -F (1 -R P (h)) (21) Proof F (1 -R P (h)) = inf g measurable 0≤g≤1 gdP ≥1-1 h =f dP gdQ = inf g measurable 0≤1-g≤1 (1-g)dP ≤ 1 h =f dP 1 -(1 -g)dQ = 1 - sup g measurable 0≤g ≤1 g dP ≤ 1 h =f dP g dQ .
Considering the particular case: g = 1 h =f one gets

F (1 -R P (h)) ≤ 1 -1 h =f dQ = 1 -R Q (h) .
The exact same bound can be expressed with the PR-curve parametrization thanks to Theorem 13.

Proposition 25 We have the following bound:

R Q (h) ≤ λ * R P (h) + (1 -α λ * ) ( 22 
)
with λ * = arg max

λ∈R + {α λ -λR P (h)}.
Proof This result follows from Theorem 13.

The first part of our upper-bound corresponds to the errors occurring in the common support of P and Q. There, the error rate is controlled in the source domain, and is therefore also controlled in the target domain. The amplification factor λ * accounts for the fact that the common mass between P and Q is present in different ratios in the two domains. The second part corresponds to errors occurring in the target domain, within mass that is not present in the source domain. We do not have control over this error, and must account for it by considering the worst case where h is always wrong. As a result, the only way to keep this term under control is to make some assumptions on the class of admissible functions for h and the distribution of labels, that is to say the hypothesis class and the concept class.

Discussion

The latter form of our bound (Eq. ( 22)) highlights a strong tie with Eq. ( 20). In particular, if λ * = 1 then, noting that α 1 = 1 -1 2 P -Q T V , then the two bounds are almost identical. The only difference resides in a factor 1 2 in our favor, which stems from the fact that we explicitly leverage the non-negativity of the error. Besides in general, 1 is not the optimal λ * and our bound is even tighter. This is where the reliance on a trade-off curve comes in handy: we obtain virtually one bound for each value of λ and we can pick the sharpest one. Let us consider the simple example of Fig. 2 where we can read the value of α λ on the y-axis at the location where the PR-curve meets the line of equation α = λβ. In this example α 1 ≈ 0.38 which means that P -Q T V = 2(1 -α 1 ) ≈ 1.24. Therefore the bound of Eq. ( 20) is larger than 1 and is hence non informative. On the other hand, Eq. ( 5) with λ = 1 gives R Q (h) ≤ R P (h) + (1 -α 1 ) ≈ R P (h) + 0.62 which is informative as soon as R P (h) < 0.38. This condition is easily met in concrete cases because R P (h) is the error in the source domain, which is under control thanks to supervision. More importantly, we can examine how the optimal trade-off between the two terms of the error bound can yield a much sharper bound. In fact, given the convexity of 1 -α λ , the optimal λ is characterized by the first-order critical point condition, that is R P (h) ∈ ∂ λ α λ . Note that it is not trivial to read the derivative of α λ from the PR curve directly, but in this example this derivative is much larger than 1 and then larger than R P (h). This means that the optimal λ is far from 1.

Besides, as discussed earlier, our bound can be easily understood in terms of shared vs. separate mass between P and Q. Despite those advantages, one must keep in mind that it suffers from the same limitations when considering its practical estimation from finite i.i.d. samples and its pessimistic nature with regard to the actual regularity of the error set. That being said, Lorenz and PR curves draw several similarities with tools developed in domain adaptation, which calls for further scrutiny. For instance, the proof of Theorem 11 allows to express PR-curves as trade-off curves computed from weight ratios as defined in [START_REF] Ben | On the hardness of domain adaptation and the utility of unlabeled target samples[END_REF]. Inspired by their work, it would be natural to restrict the class of "admissible" measurable sets in the PR-curves and get more useful bounds while retaining the notion of an optimal trade-off. A similar step could be taken on the dual representation by restricting the class of functions in the Lorenz diagram. In that way, one would leverage the restrictions on the hypothesis class and get similar bounds as many of those derived from Integral Probability Metrics [START_REF] Redko | A survey on domain adaptation theory[END_REF]. Nonetheless, given the proven ability of deep neural nets to overfit random labels [START_REF] Zhang | Understanding deep learning requires rethinking generalization[END_REF], leveraging classical notions of complexity is probably not sufficient to get bounds that are representative of the current domain adaptation problems. It seems inevitable to leverage some kind of "implicit bias" related to the optimization procedure. Doing so while relying on trade-off curves is an exciting research avenue: it is on-going and will certainly yield more practical bounds for domain adaptation. In the next section, we do derive a new bound going in that direction: more precisely we propose a generalization of Lorenz diagrams related to a variational form of φ-divergences and build upon this new notion to formulate a domain adaptation bound.

A bound based on generalized Lorenz diagrams associated with a

φ-divergence [START_REF] Nguyen | Estimating divergence functionals and the likelihood ratio by convex risk minimization[END_REF] show that given a class of bounded measurable functions F,

D φ (P Q) = φ dP dQ dQ = sup v∈R v dP dQ -φ * (v)dQ ≥ sup f ∈F f dP -φ * (f )dQ (23) 
with equality iff ∂φ( dP dQ ) ∩ F = ∅, which means that there exists f ∈ F s.t f ∈ ∂φ( dP dQ ) (or equivalently thanks to duality dP dQ ∈ ∂φ * (f )). Note that with standard conventions, 0 ∈ ∂φ(1) and since convexity implies that subdifferential of φ are increasing, then the condition f ∈ ∂φ( dP dQ ) imposes that f ≤ 0 when dP dQ ≤ 1 and f ≥ 0 otherwise. This variational form can be used to create a kind of Lorenz diagram, associated with D φ , as the set of pairs {( φ * (f )dP, f dQ)}. Then, the upper frontier of this region is characterizing the closeness of P and Q, and in particular D φ (Q P ) is the maximal vertical distance between the curve and the diagonal. For technical reasons (mainly ensuring a convex diagram), the definition of the Lorenz diagram is slightly more convoluted (see Figure 4 for an illustration of its construction9 ).
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PR curves

LD φ (P, Q) = (t, y) ∈ R 2 /∃f : Ω → R, t ≥ φ * (f )dP, y ≤ f dQ , (24) 
and the extended Lorenz curve is defined as its upper envelope:

Fφ (t) := sup{y/(t, y) ∈ LD φ (P, Q)} . (25) 
Remark 27 An attempt to derive a generalization bound for domain adaptation based on the variational form of φ-divergences has been recently published in [START_REF] Acuna | f-domain adversarial learning: Theory and algorithms[END_REF]. They indeed proposed a bound similar to Equation (20) in (Acuna et al., 2021, Lemma 1) for a cost function (ŷ; y) ∈ dom(φ * ). Denoting,

R Q (h) := (h(x); y)dQ(x, y) (26) 
their bound reads as,

R φ * • Q (h) := φ * ( (h(x); y))dQ(x, y) ≤ R P (h) + D φ (P Q) (27)
and noting that under the standard assumption φ(1) = 0 then φ * (v) ≥ v, the previous bound implies that:

R Q (h) ≤ R φ * • Q (h) ≤ R P (h) + D φ (P Q) . (28) 
Unfortunately, this bound is erroneous in general as can be seen by considering the family of φ-divergence associated with φ s = sφ where s > 0. Indeed if the bound was true, since D φs (P Q) = sD φ (P Q), letting s → 0, the bound would imply that R Q (h) ≤ R P (h), which is obviously wrong in general10 .

Similarly to Proposition 24, one can actually amend this bound, by using the Lorenz diagram associated to the φ-divergence.

Proposition 28 Let φ ∈ Φ 1 , (ŷ; y) ∈ dom(φ * ). The Lorenz curve provides the following lower bound for domain adaptation:

R Q (h) ≤ R φ * • λP (h) + D φ (Q λP ) . (29) 
Proof Let us first produce a bound for the upper envelop of the Lorenz diagram. For t ∈ dom(φ * )

Fφ (t) = sup{y ∈ R/∃f ∈ dom(φ * ), y ≤ f dQ, t ≥ φ * (f )dP } = sup f s.t. φ * (f )dP ≤t f dQ = sup f inf λ≥0 f dQ -λ( φ * (f )dP -t) ≤ inf λ≥0 sup f f dQ -λ φ * (f )dP -t = inf λ≥0 λt + sup f f dQ -φ * (f )d(λP ) = inf λ≥0 λt + D φ (Q λP ) (30) 
where the inequality in the third line is trivial11 . Note also that in the last identity, one needs to extend the variational form of D φ from [START_REF] Nguyen | Estimating divergence functionals and the likelihood ratio by convex risk minimization[END_REF] when applied to Q and λP (which is a positive measure but not a probability distribution in general). The demonstration of [START_REF] Nguyen | Estimating divergence functionals and the likelihood ratio by convex risk minimization[END_REF] extends easily to this situation. As a result,

R Q (h) := (h(x); y)dQ(x, y) ≤ Fφ (R φ * • P (h)) ≤ inf λ>0 λR φ * • P (h) + D φ (Q λP ) . (31) 
Remark 29 As for the standard Lorenz diagram, this bound allows to trade the error made in the source domain for a better coverage between the target distribution Q and the nonnormalized source distribution λP . When using the suboptimal choice λ = 1, one recovers a bound similar to the erroneous Equation (28) derived from [START_REF] Acuna | f-domain adversarial learning: Theory and algorithms[END_REF]:

R Q (h) ≤ R φ * • P (h) + D φ (Q P ) (32) 
In this corrected bound, the source loss is replaced by φ * • which is always larger. That being said, in typical domain adaptation scenarios, would be small in average in the source domain (distribution P ). Since is also positive in concrete cases, being small in average means being small with high probability under P (for instance using the Markov's inequality). Besides, since φ ∈ Φ 1 , 0 ∈ ∂φ(1) which by duality implies that 1 ∈ ∂φ * (0) and in turn shows that φ * (0) = -φ(1) = 0 (provided 0 ∈ dom(φ * ) of course). Moreover, φ * is often differentiable at 0, so its Taylor expansion is φ * (v) = v + o(v), which implies essentially that R φ * • P (h) and R P (h) are similar (again if R P (h) is small). To make such a statement more accurate, let us rely on a Taylor expansion with integral remainder. If φ * (0) = 1 then one has the following Taylor expansion (see [START_REF] Liese | On divergences and informations in statistics and information theory[END_REF], Theorem 1)):

φ * (v) = v + v 0 (v -s)dφ * + (s) .
In particular, if the curvature of φ * (v) is bounded : ∀v ∈ [0, 1], φ * (v) ∈ [κ, κ], then one has the following estimates:

1 2 κσ 2 ≤ R φ * • P (h) -R P (h) ≤ 1 2 κσ 2
where σ 2 := (h(x), y) 2 dP is usually quite small in concrete scenarios. Note that the previous reasoning is valid only if the curvature of φ * is controlled. For instance, the counterexample based on replacing φ by a rescaled version φ s = sφ would break that assumption if s → 0. Indeed, φ * s (v) = sφ * ( v s ), and then

φ * s (v) = 1 s φ * ( v s ).
As advocated in the domain adaptation literature [START_REF] Ben-David | A theory of learning from different domains[END_REF], to be useful, a generalization bound should :

• rely on notions that can be estimated from finite samples (this is not specific to domain adaptation)

Following [START_REF] Acuna | f-domain adversarial learning: Theory and algorithms[END_REF], and taking into account our correction to their bound based on φ divergences, we propose the following notion of discrepancy.

Definition 33 (D φ, h,H (P X , Q X )) Let P X , Q X two distributions over x and λ > 0. Let φ ∈ Φ 1 , and a loss function. Let also H a class of hypotheses and h ∈ H. Then we define,

D φ, h,H (Q X λP X ) := sup h ∈H R Q X (h; h ) -R φ * • λP X (h; h ) ( 38 
)
where by extension R

φ * • λP X (h; h ) := φ * ( (h; h ))dλP X = λR φ * • P X (h; h ).
Corollary 34 Let φ ∈ Φ 1 . Let also ∈ T I and φ ∈ T I such that φ * • ≤ φ . Given an hypothesis h ∈ H, we have the following generalization bound:

R Q (h) ≤ inf λ>0 R φ λP (h) + D φ, h,H (Q X λP X ) + γ * λ ( 39 
)
where γ * λ := inf h ∈H R Q (h )+R φ λP (h ) quantifies the adaptibility of the task between domains P and Q.

Proof From Lemma 32 and Definition 33, for any h ∈ H

R Q (h) ≤R Q (h ) + R Q X (h; h ) ≤R φ * • λP X (h;h )+D φ, h,H (Q X λP X ) ≤R Q (h ) + R φ * • λP X (h; h ) ≤R φ λP X (h;h )≤R φ λP (h)+R φ λP (h ) +D φ, h,H (Q X λP X ) ≤R φ P (h) + D φ, h,H (Q X λP X ) + (R Q (h ) + R φ λP (h )) .
Given that h was chosen arbitrarily in H to begin with, the last term can be replaced by its infimum over h ∈ H, yielding γ * λ .

Remark 35 The careful reader could legitimately wonder why we introduce an alternate loss φ instead of using φ * • which appears as a natural choice. This is done to provide more flexibility on the choice of and φ as, when φ ∈ Φ 1 and ∈ T I, then in general φ * • ∈ T I . This can be verified for example for the KL-divergence and the margin loss defined in Equation (33). On the contrary, since in this case (ŷ; y) ∈ [0, 1], then one can see that φ * • ≤ φ := φ * (1) , which meets the hypothesis of the theorem.

Remark 36 A part from the trade-off controlled by λ, the previous bound is representative of typical reasoning in domain adaptation works following the approach of [START_REF] Ben-David | A theory of learning from different domains[END_REF], as for example [START_REF] Ganin | Domain-adversarial training of neural networks[END_REF]; [START_REF] Zhang | Bridging theory and algorithm for domain adaptation[END_REF]; [START_REF] Acuna | f-domain adversarial learning: Theory and algorithms[END_REF]. Let us simplify the following argument by setting λ = 1 and note γ * = γ * 1 the adaptability term.

This kind of bounds are in fact slightly misleading. Indeed the common algorithmic use of such bounds is the following. In the bound (and the similar ones in the literature), all terms can be efficiently evaluated from finite samples apart from γ * . Therefore, one can consider an adversarial training scheme, where h and h are two concurrent networks playing the following game:

min h∈H max h ∈H R φ P (h) + R Q X (h; h ) -R φ * • P X (h; h ) .
This game does not lead anything useful in practical deep learning adaptation problems because usually the distributions P X and Q X are easily discriminated by the adversary h whatever the choice of h. To amend this failure, previous works actually replace the game by the following one:

min g∈G,h∈H max h ∈H R φ P (h • g) + R Q X (h • g; h • g) -R φ * • P X (h • g; h • g)
In other words, the two adversaries share a common feature extractor g which actually plays in collaboration with h and thus against h . The rationale behind this design choice, is that one needs the ability to embed the distributions P X and Q X in a shared latent space Z, where their discrimination becomes more challenging. Intuitively this embedding comes at a cost, the distributions P Y |Z and Q Y |Z can become:

• et al. (2021), to the best of our knowledge the impact of this modification was not analyzed carefully in terms of generalization bounds. In fact, to do so, one needs to amend the generalization bound as follows: ∀g ∈ G, ∀h ∈ H

R Q (h • g) ≤ R φ P (h • g) + D φ, h•g,H•g (Q X , P X ) + γ * g ( 40 
)
where we have noted H

• g = {h • g/h ∈ H} and γ * g = inf h ∈H R Q (h • g) + R φ P (h • g).
The main issue is that γ * g , besides not being computable in practice, depends on the specific choice of the feature extractor g. It is not anymore an intrinsic measure of the adaptability of the transfer. This issue can be amplified by the fact that g is playing with h and as a result, it may tend to be biased towards performing a correct embedding of high probability areas of the source distribution and performing in an uncontrolled way on the target distribution high likelihood areas. A similar argument could of course be held against the trade-off parameter λ, but there is one subtle difference: it merely impacts the weight granted to the source distribution P . It is therefore easier to appraise its impact as well as to control it through regularization (e.g. favoring a smaller λ). Note that our λ variable acts in a similar fashion to the margin parameter13 of [START_REF] Zhang | Bridging theory and algorithm for domain adaptation[END_REF] in the sense that it impacts the weight of the source risk. On the other hand, the margin parameter of [START_REF] Zhang | Bridging theory and algorithm for domain adaptation[END_REF] is introduced artificially and does not act on the discrepancy term.

Practical considerations

The result presented in Corollary 34 leaves quite some room for the choice of φ, and φ . We believe that the combined φ, , φ configuration should follow (or remain close to) the following design principles.

(P1) ∈ T I, φ ∈ T I and φ * • ≤ φ (to ensure that our bound is valid).

(P2) should be Bayes consistent (see [START_REF] Steinwart | How to compare different loss functions and their risks[END_REF]; [START_REF] Tewari | On the consistency of multiclass classification methods[END_REF]).

(P3) φ is convex and bounded below (useful from the optimization perspective).

For example, if one follows in the steps of [START_REF] Zhang | Bridging theory and algorithm for domain adaptation[END_REF] and choose for the margin loss from Equation (33) (with e.g. ρ = 1), since range( ) = [0, 1], using φ = φ * (1) , then (P1) is valid. In addition, one can show that (P2) is checked in the binary classification case, because then (ŷ; y) = (1 -(ŷy) + ) + is a piecewise linear function of the margin ŷy and one can compute its ψ-transform as defined in [START_REF] Peter L Bartlett | Convexity, classification, and risk bounds[END_REF] and show14 that ψ ( ) = which being invertible ensures that is Bayes consistent. Unfortunately, the extension to multi-category classification breaks the Bayes consistency (see [START_REF] Tewari | On the consistency of multiclass classification methods[END_REF], example 1) with respect to the Crammer and Singer methodology). That being said, is an upper-bound of the 0 -1 loss15 , and one still enjoy the fact that controlling the -risk ensures a small 0 -1-risk. Last, φ is bounded below but not convex. That is not a real issue given that one can replace it by a larger convex loss such as the hinge loss.

In contrast to the previous list of guiding principles, [START_REF] Acuna | f-domain adversarial learning: Theory and algorithms[END_REF] merely requires that range( ) ⊂ [0, 1] ⊂ dom(φ * ). One may fail to see how this assumption is relevant, but it surely comes with some drawbacks. Mainly, [0, 1] ∩ dom(φ * ) always misses important parts of the domain of φ * . To illustrate this point, let us consider (Acuna et al., 2021, Proposition 1), where to deepen the link between the adversarial game and the φ-divergence, it is required that ∃h s.t. ∀x, (h(x), h (x)) ∈ ∂φ( dP dQ (x)). Meeting this condition is infeasible if range( ) ⊂ [0, 1] because ∂φ( dP dQ (x)) ⊂] -∞, 0] whenever dP dQ (x) < 1. In other words, the assumption is only met when P ≥ Q which actually implies P = Q and is of no interest since it corresponds to the absence of domain shift. Note however that despite our general principles, the only practical settings that we consider, that is to say the margin loss, suffers the same limitation since in this particular configuration, range( ) ⊂ [0, 1]. We foresee, that this issue can be solved by refining our definition of the generalized Lorenz diagrams, using the tighter variational representation proposed in [START_REF] Ruderman | Tighter variational representations of f-divergences via restriction to probability measures[END_REF] and [START_REF] Agrawal | Optimal bounds between f-divergences and integral probability metrics[END_REF]. This representation takes the following form:

D φ (Q λP ) = sup f sup ρ∈R f dQ -(φ * (f + ρ) -ρ)d(λP ) .
As can be seen, in this formulation the scalar ρ ∈ R allows to align the range of f + ρ and the domain of φ * that is to say the subdifferentials of φ. Besides, in the advent of deriving an adversarial algorithm from this refined variant, the variable ρ would naturally play a balancing role with respect to the variable λ. This extension has already been adopted for GANs [START_REF] Terjék | Moreau-yosida f -divergences[END_REF] which suggests that it is appropriate for domain adaptation adversarial approaches. It is however left for future work.

Conclusion

In this work, we have studied the interconnections among several trade-off curves designed to evaluate the similarity between two probability distributions, namely precision-recall curves, divergence frontiers, ROC and Lorenz curves. If one connection was known to the authors of divergence frontiers, others appear to have eluded even the authors of the implied notions. This is particularly striking for Lorenz and ROC curves which differ by mere symmetries. The interrelation between precision-recall and Lorenz curves is less direct, as it involves convex duality. That being said, it remains that the two notions are theoretically equivalent, and can be computed in practice from one another. We hope that the exposed link will foster new research avenues for evaluation curves. To begin with, while the theoretical equivalence of Lorenz and PR curves has been demonstrated, the question of their empirical estimation has yet to be examined. For instance, investigations on potentially consistent estimators need consideration, especially in the non parametric case (although this will require refining the definitions to render the estimation from finite sample feasible). In particular, exposing rates of convergence of the estimators should be a worthwhile endeavor. Similar analysis has already been carried out for scalar metrics [START_REF] Rubenstein | Practical and consistent estimation of f-divergences[END_REF][START_REF] Bharath K Sriperumbudur | On integral probability metrics,\phi-divergences and binary classification[END_REF]. We foresee that exploring links with divergences or integral probability metrics shall help in pursuing this undertaking for PR and Lorenz curves. Instead of considering links with IPM, we have considered the case of φ-divergence which have provided a fertile ground to extend the already exposed links. As a result, we have demonstrated that a general link exists between Rényi divergence frontiers of arbitrary exponent a and PR curves. Last, we have explored applications of trade-off curves to domain adaptation. More notably, we have extended the notion of Lorenz diagram, and built upon this notion to derive a novel generalization bound for domain adaptation. Several research avenues are plausible to deepen this aspect of our work.

Appendix A. Proof of lemma 10

Proof The proof is technical and can be skipped on first reading. The second result is a simple corollary of the first since when µ is not absolutely continuous w.r.t ν then the identity is trivial: ∞ = ∞. Let us demonstrate the first point, that is to say when µ ν. We shall proceed by proving two opposite inequalities, starting from the following. n }, and it suffices to show that µ(E n ) = 0. We have that,

Cν(E n ) ≥µ(E n ) = En dµ dν dν ≥ (C + 1 n ) En dν ≥(C + 1 n )ν(E n ) .
For this not to be absurd, it is necessary that ν(E n ) = 0 and hence µ(E n ) = 0 as well.

Figure 1 :

 1 Figure 1: Overview of different works and their relationship. Note that PR and ROC curves refer here to their definition with respect to distributions and not to classifiers.

  Figure 2: (top): graphical representations of two mixtures of (truncated-)Gaussians P and Q. (bottom): the corresponding alternate similarity curves. For each alternative, the green dashed curve exposes the extreme case where P = Q and the red spot/curve when P ⊥ Q.

Figure 3 :

 3 Figure 3: PR and Lorenz Curves in different scenarios: (a) pure mode dropping -(b) pure mode invention -(c) mode reweighting. Top row: the two distributions P (in black) and Q (in blue). Middle row: PR curves. Bottom row: Lorenz curves.

Figure 4 :

 4 Figure 4: Generalized Lorenz diagram construction.

  more stochastic than their original counterpart P Y |X and Q Y |X • worse, they can become more inconsistent in the sense of the adaptability constant γ * Although this aspect was considered in Johansson et al. (2019); Zhao et al. (2019); Siry

  Note that the essential sup is w.r.t ν instead of µ. Let us then show that ess sup dν dµ dν ≤ ess sup dµ dµ dν . To do so we need to show that any upper-bound M of dµ dν µ-a.e. is also an upper-bound ν-a.e. Let M ≥ dµ dν µ-a.e. be such an upperbound and let N the associated µ-nullset (where M may be lesser than dµ dν ). If ν(N ) = 0 it settles it (as M is henceforth an upper-bound ν-a.e.). Otherwise, N is such that µ(N ) = 0 but ν(N ) > 0 and then necessarily dµ dν 1 N = 0 ν-a.e. (or else it would contradict µ(N ) = 0). As a result, dµ dν ν-a.e. = dµ dν 1 Ω\N ≤ M 1 Ω\N ≤ M ν-a.e. Which again settles the fact that M is also an upperbound ν-a.e.. Therefore we obtain that ess sup dν dµ dν ≤ ess sup dµ dµ dν and µ(A) ν(A) ≤ ess sup dµ dµ dν . For the reverse inequality, we only need to show that dµ dν ≤ sup A∈A µ(A) ν(A) µ-a.e.. Indeed, let C := sup A∈A µ(A) ν(A) . If C = ∞, the inequality is trivial. Let us then suppose that C < ∞. Let E := {ω ∈ Ω/ dµ dν > C} and let us show that µ(E) = 0. One can rewrite E = ∪ n∈N E n , with E n := {ω ∈ Ω/ dµ dν ≥ C + 1

https://www.kaggle.com/c/deepfake-detection-challenge

Note that, as we shall detail later, PR curves between distributions are different from the classical notion of PR curves in classification.

In the original work, the distribution µ may range on a restricted set of distributions such as an exponential family. Besides, to avoid situations where the divergence is ill-defined, we imposed that µ is absolutely continuous w.r.t both P and Q.

Note that this construction can be adapted to the tighter variational formulation of DΦ proposed in[START_REF] Ruderman | Tighter variational representations of f-divergences via restriction to probability measures[END_REF] and[START_REF] Agrawal | Optimal bounds between f-divergences and integral probability metrics[END_REF] 

The origin of the flaw is a fallacious switching between absolute values and a suppremum:D φ (P Q) = sup f ∈dom(φ * ) f dP -φ * (f )dQ = | sup f ∈dom(φ * ) f dP -φ * (f )dQ| ≤ sup f ∈dom(φ * ) | f dPφ * (f)dQ| : the last inequality is strict in general (and in fact the RHS is often infinite), while Acuna et al. (2021) used an equality

. 11. It can be interpreted in terms of primal-dual gap. And since when t > tmin := min φ * (v) = -φ(0), Slater's condition are easily verified (as the constant function f = arg min v φ * (v) is in the relative interior of the constraints) it is in fact an equality most of the time.

Beware, in Zhang et al. (2019), this parameter is denoted by γ and the adaptability term by λ which could bring confusion.

In fact, using the notations of[START_REF] Peter L Bartlett | Convexity, classification, and risk bounds[END_REF], one can show that H (η) = min(1 -η, η) andH -(η) = max(1 -η, η). This yields ψ (η) = H --H = |2η -1| > 0∀η = 12 , yielding the Bayes consistency.

More precisely (ŷ; y) ≥ 1 arg max(ŷ k ) =arg max(y k )
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• minimize their dependence on the distribution of labels in the target domain Q Y |X (especially if one aims at deriving a learning algorithm from the bound)

To do so we will rely on triangle inequalities.

Definition 30 Let : Y × Y → R a loss function. We say that Remark 31 Both triangle inequalities are valid for the margin loss of [START_REF] Zhang | Bridging theory and algorithm for domain adaptation[END_REF]:

where [x] + := max(0, x) and δ(ŷ; y) = 1 2 min k =ky ŷky -ŷk is a multi-class margin between the score ŷky attributed to the largest component of y (k y = arg max k y k ) and the best challenger score max k =ky ŷk .

The following lemma is representative of the typical ways to turn a bound such as Equation ( 29) into one that suits the practical purposes mentioned earlier.

Lemma 32 Let h, h ∈ H two hypotheses, a loss function and µ a positive measure 12 over pairs (x, y). Then, noting µ X the marginal of µ w.r.t x,

12. µ could be P or Q or even λP .

Appendix B. Proof of Lemma 12

We will use the following result from Theorem 5 in [START_REF] Simon | Revisiting precision recall definition for generative modeling[END_REF] which stipulates that the precision α λ is optimal in the following sense:

From this theorem the lemma is an easy corollary: Proof It suffices to show that for all measurable functions 0 ≤ f ≤ 1,

According to Theorem 37, this inequality holds for indicator functions. Besides it is stable under convex combinations and L ∞ limits. As a result, we can extend the inequality first to convex combinations of indicators, which is to say to all simple functions ranging in [0, 1]. Note that even though at first glance, simple functions ranging in [0, 1] take the form of sub-convex combinations of indicators, one can leverage 1 ∅ = 0 to express them as convex combinations. Then, taking the limit w.r.t to L ∞ convergence and using standard density results we can further extend the inequality to L ∞ functions ranging in [0, 1].
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