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Abstract

The recent advent of powerful generative models has triggered the renewed development
of quantitative measures to assess the proximity of two probability distributions. As the
scalar Frechet Inception Distance remains popular, several methods have explored comput-
ing entire curves, which reveal the trade-off between the fidelity and variability of the first
distribution with respect to the second one. Several of such variants have been proposed
independently and while intuitively similar, their relationship has not yet been made ex-
plicit. In an effort to make the emerging picture of generative evaluation more clear, we
propose a unification of four curves known respectively as: the Precision-Recall (PR) curve,
the Lorenz curve, the Receiver Operating Characteristic (ROC) curve and a special case
of Rényi divergence frontiers. In addition, we discuss possible links between PR / Lorenz
curves with the derivation of domain adaptation bounds.

Keywords: trade-off curve, distributional closeness, generative modeling, domain adap-
tation

1. Introduction

Assessing the proximity of two probability distributions is a long standing concern in statis-
tics. It has gained a new impetus with the advent of deep learning techniques to generate
random samples from complex data distributions such as natural images. Generative mod-
els, particularly Generative Adversarial Networks (GANs), can now synthesize images with
unprecedented realism. Indeed, the quality of generation has improved significantly1 to the
point where for certain datasets, human observers have difficulty discerning real and fake
(Brock et al., 2018; Karras et al., 2019). As these networks see real applications, evalu-
ation of generative networks has become essential and remains challenging. Additionally,
such performance raises suspicion about memorizing or overfitting some training images.
The amount of training data makes visual comparative evaluation not reliable enough. For

1. see e.g. https://thispersondoesnotexist.com
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Figure 1: Overview of different works and their relationship. Note that PR and ROC curves
refer here to their definition with respect to distributions and not to classifiers.

instance, the privacy and security of generative models has become paramount, including
the largest ever Kaggle competition2 to address deep fakes, or several new works address-
ing how generative models leak training data (Wang et al., 2019; Webster et al., 2019).
Even properly determining sample quality remains challenging (Borji, 2019). The Fréchet
Inception Distance (FID) (Heusel et al., 2017) was shown to correlate decently with human
evaluation and remains the most popular evaluation metric, but as a scalar metric is limited
when assessing model failure (Sajjadi et al., 2018). A variety of other approaches attempt
to give an empirical estimation of sample quality, for instance in (Im et al., 2018), the
original GAN training divergence was re-used for evaluation. Sajjadi et al. (2018) proposed
computing an entire Precision-Recall curve (PR) for the generated distribution. Unlike the
scalar FID, this curve distinguishes what we will refer to as the fidelity and variability of the
model (Naeem et al., 2020). Fidelity evaluates whether the generated distribution produces
data that are faithful to the original distribution whereas variability reflects the fact that
it covers the entire distribution with the correct importance. For instance, a generator of

2. https://www.kaggle.com/c/deepfake-detection-challenge
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Theoretical Equivalence among Trade-Off Curves

facial images with poor diversity may only generate one gender, whereas a generator with
poor fidelity contains generation artefacts.

Even if the question of estimating the similarity of two distributions has already been
intensely studied in the past, it has drawn a renewed interest in recent years. Many prob-
ability distribution metrics can be used such as divergences (Rubenstein et al., 2019) or
integral probability metrics (Müller, 1997; Sriperumbudur et al., 2009) to name a few. In
this work, we will take special focus on the recent work of Sajjadi et al. (2018) computing a
Precision-Recall curve between two distributions3. Several works explicitly build upon their
definition and propose some extensions. For instance, Simon et al. (2019) generalizes the
PR curve to arbitrary probabilities (while the work of Sajjadi et al. (2018) was restricted to
a discrete settings). More practical works aim at improving empirical evaluation of fidelity
and variability (Kynkäänniemi et al., 2019; Naeem et al., 2020). Djolonga et al. (2019)
proposed the (Rényi) divergence frontiers; this alternate curve coincides with the original
PR curve for discrete distributions when the Rényi exponent is infinite. Independently, a
handful of alternative curves were defined to compare two distributions. For instance, ROC
curves were proposed by Lin et al. (2018, 2017) and the Lorenz curves by Harremoës (2004);
van Erven and Harremoës (2010).

In this work, we demonstrate that, despite their apparently independent definitions,
these alternate notions are actually tightly linked with the PR curves which themselves are
in fact nearly identical to the notion of DeGroot statistical information. Our main contribu-
tion is the theoretical unification between the involved curves, which is summarized in the
diagram of Fig. 1. After briefly introducing standard hypotheses and notations, we recall
definitions and properties of the aforementioned curves in Section 2. Relations between
them are scrutinized in Section 3. In particular, we consider the link found by Djolonga
et al. (2019) between PR curves and divergence frontiers (§ 3.2) for infinite Rényi exponent
a, hence extending it from discrete distributions to general ones. More importantly, we show
that Lorenz curves and PR curves are related through convex duality (§ 3.3). In addition,
in Section 4, we explore several links with φ-divergences. In particular, thanks to integral
representations of φ-divergences, we can show a reversed link between PR curves and di-
vergence frontiers. As a side contribution, we end these notes in Section 5 by highlighting
links existing between these trade-off curves and performance bounds used in the theory of
domain adaptation. In particular, starting from the variational form of φ-divergences we
extend the notion of Lorenz curves and use this extension to establish a new generalization
bound.

2. Background on trade-off curves

In this section, we review several curves proposed in the literature to assess the similarity
between two distributions P and Q. We simply summarize the principal definitions and
useful results. Some notions are subject to minor adaptations in order to simplify the
exposition of the links between the considered curves. Anytime such a revision is adopted,
it shall be explicitly mentioned.

3. Note that, as we shall detail later, PR curves between distributions are different from the classical notion
of PR curves in classification.
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Let us start by recalling some standard notations, definitions, and results from measure
theory. From now on, (Ω,A) represents a common measurable space, and we will denote
M(Ω) the set of sigma-finite signed measures, M+(Ω) the set of sigma-finite positive mea-
sures and Mp(Ω) the set of probability distributions over that measurable space. The
extended half real-line is denoted by R+ = R+ ∪ {∞}.

Definition 1 Let µ, ν two signed measures. We denote by supp(µ) the support4 of µ,
|µ| the total variation measure of µ, dµ

dν the Radon-Nikodym derivative of µ w.r.t. ν and
µ∧ν = min(µ, ν) := 1

2(µ+ν−|µ−ν|) (a.k.a the measure of largest common mass between µ
and ν (Piccoli et al., 2019)). Besides, as usual, µ� ν means that µ is absolutely continuous
w.r.t. ν.

2.1 Precision-recall curves

The PR curves were first proposed by Sajjadi et al. (2018) for discrete distributions and
then extended to the general case by Simon et al. (2019). We follow the definition of the
latter up to a minor fix5.

Definition 2 Let P,Q two distributions from Mp(Ω). We refer to the Precision-Recall set
PRD(P,Q) as the set of Precision-Recall pairs (α, β) ∈ R+ × R+ such that

∃µ ∈ AC(P,Q), P ≥ βµ,Q ≥ αµ , (1)

where AC(P,Q) := {µ ∈Mp(Ω)/µ� P and µ� Q}.

The precision value α is related to the proportion of the generated distribution Q that
matches the true data P , while conversely the recall value β is the amount of the distribution
P that can be reconstructed from Q. Because of the lack of natural order on [0, 1]× [0, 1],
Simon et al. (2019) has proposed to focus on the Pareto front of PRD(P,Q) defined as
follows.

Definition 3 The precision recall-curve ∂PRD(P,Q) is the set of (α, β) ∈ PRD(P,Q) such
that

∀(α′, β′) ∈ PRD(P,Q), α ≥ α′ or β ≥ β′.

Note that this curve is clearly the Pareto front of the set:

{(κ∗(Q|µ), κ∗(P |µ))/µ ∈ AC(P,Q)}

where, following Scott et al. (2013), we define κ∗(P |µ) := max{β ∈ [0, 1]/∃ν ∈Mp(Ω), P =

βµ+ (1− β)ν} = inf A∈A
µ(A)>0

P (A)
µ(A) (and similarly for Q).

In fact, this frontier is a curve for which Sajjadi et al. (2018) have exposed a parame-
terization, later generalized by Simon et al. (2019). We recall their result now.

4. Although a precise definition of the support requires a topology, we gloss over this issue because the
support will not play a central role in the technical derivations.

5. There is an issue with their original definition where (1, 0) and (0, 1) are always in PRD(P,Q), while they
should not when part of the mass of P is absent from Q and vice versa. Our fix consists in considering
only the distributions µ that are absolutely continuous w.r.t P and Q.
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Theorem 4 Let P,Q two distributions from Mp(Ω) and (α, β) non negative. Then, de-
noting

∀λ ∈ R+,

{
αλ := ((λP ) ∧Q) (Ω)

βλ :=
(
P ∧ 1

λQ
)

(Ω)
(2)

1. (α, β) ∈ PRD(P,Q) iff α ≤ αλ and β ≤ βλ where λ := α
β ∈ R+.

2. As a result, the PR curve can be parameterized as:

∂PRD(P,Q) = {(αλ, βλ)/λ ∈ R+} . (3)

In the previous theorem, and in agreement with the standard convention in measure theory,
0×∞ = 0 so that α∞ = Q(supp(P )) and β0 = P (supp(Q)).

Remark 5 The previous parameterization reveals that the precision-recall curve is intrin-
sically related to the DeGroot statistical information (DeGroot, 1962) which is defined as
∆Bπ(P,Q) := Bπ(P, P ) − Bπ(P,Q) through the following divergence (that we will refer in
short as the DeGroot divergence):

Bπ(P,Q) := [πP ∧ (1− π)Q](Ω) (4)

where π ∈ [0, 1] is an arbitrary prior probability. In simple words, the link with the precision-
recall curve is merely a change of parameterization: π = λ

1+λ . This relationship will play
a crucial role in one of the links made with φ-divergences in section 4 (see the integral
representation arrow in Figure 1).

Another useful result of Simon et al. (2019) linking the frontier to likelihood ratio test
is summarized now:

Theorem 6 Let P,Q two distributions from Mp(Ω). Then

∀λ ∈ R+,

{
αλ =λ (1− P (Aλ)) +Q(Aλ)

βλ =1− P (Aλ) + Q(Aλ)
λ

, (5)

where the likelihood ratio sets are defined as

Aλ :=
{

dQ
d(P+Q) ≤ λ

dP
d(P+Q)

}
. (6)

2.2 Divergence frontiers

Divergence frontiers were proposed very recently by Djolonga et al. (2019) as a generalization
of precision-recall curves. Such a notion builds upon the Rényi divergence between two
distributions.

Definition 7 Let µ, ν ∈ Mp(Ω) two distributions such that µ� ν and a ∈ R+ \ {1}. The
a-Rényi-divergence between µ and ν is defined as:

Da(µ ‖ ν) := log

(∥∥∥dµdν ∥∥∥a−1,dµ

)
(7)

5
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where the invoked norm is defined as

‖f‖a−1,dµ :=

(∫
fa−1dµ

) 1
a−1

when a < +∞ and is the essential supremum norm for a = ∞. Besides when a = 1, this
definition is extended by continuity and leads to the KL-divergence.

We adapt the definition of divergence frontiers from Djolonga et al. (2019).

Definition 8 (Divergence frontiers) Let P,Q two distributions and a ∈ R+. Then the
exclusive realizable divergence region is defined6 as the set:

R∩a (P,Q) := {(Da(µ ‖ Q), Da(µ ‖ P )) /µ ∈ AC(P,Q)} (8)

And the exclusive divergence frontier is defined as the (weak) Pareto front of this region,
that is the set ∂R∩a of couples (π, ρ) ∈ R∩a such that:

∀(π′, ρ′) ∈ R∩a , π ≤ π′ or ρ ≤ ρ′ . (9)

In the event that R∩a (P,Q) = ∅, the frontier is by convention restricted to the point
(+∞,+∞).

2.3 Lorenz and ROC curves

Lorenz curves were originally introduced by Lorenz (1905) to delineate income inequalities.
In essence they highlight how much a single one dimensional distribution differs from a
uniform distribution. This notion was then generalized to characterize the closeness of two
arbitrary distributions by Harremoës (2004); van Erven and Harremoës (2010).

Definition 9 Let P,Q two distributions from Mp(Ω). One defines the Lorenz diagram
between P and Q as

LD(P,Q) =

{(∫
fdP,

∫
fdQ

)
/0 ≤ f ≤ 1

}
, (10)

where the function f is required to be measurable.

Then the Lorenz curve between P and Q is defined as the lower envelop of the Lorenz
diagram:

FP,QLD (t) := inf
0≤f≤1∫
fdP≥t

∫
fdQ. (11)

In absence of ambiguity on the involved distributions, we shall denote it simply F (t) rather
than FP,QLD (t). This curve is easily shown to be a monotonic and convex function.

6. In the original work, the distribution µ may range on a restricted set of distributions such as an ex-
ponential family. Besides, to avoid situations where the divergence is ill-defined, we imposed that µ is
absolutely continuous w.r.t both P and Q.

6
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If one considers in (10) only the range of indicator functions, then one recovers a subset
of the Lorenz diagram, from which the Lorenz diagram can be extracted by merely taking
the closed convex hull. This fact underpins the equivalence between Lorenz diagrams/curves
and the seemingly different notions of Mode Collapse Region / ROC curves proposed by
Lin et al. (2018). Indeed, Lin et al. (2017) shows (in Remark 6) that their Mode Collapse
Region (MCR) can be obtained as the convex hull of the set of points (P (A), Q(A)) where
A is any measurable set such that Q(A) ≥ P (A). As such the MCR is the upper half of the
Lorenz diagram when one cuts it along the main diagonal (i.e. the line segment between
(0, 0) and (1, 1)). Then the authors proceed to define the ROC curve as the upper envelop
of the MCR, which in turns is the symmetric transform of the lower envelop (i.e. the Lorenz
curve) along the same diagonal. For the sake of time precedence, we shall thereafter focus
solely on the Lorenz curve.

Similarly, restricting (11) to indicator functions requires convexification (more precisely
Γ-regularization) to recover the Lorenz curve. In fact, because of the Neyman-Pearson
lemma, one can even restrict to the indicator functions of the likelihood ratio sets Aλ,
which in light of Theorem 6 underlies a subtle link with precision-recall curves that we shall
detail later on.

3. Relationships between trade-off curves

Before going into further details about how the aforementioned curves relate to one another,
let us state a few general facts about how they differ. One can first note that each curve is
subject to specific “regularity” properties such as monotonicity, convexity and boundedness.
For instance, contrary to the Lorenz curve, the PR curve does not enjoy any convexity
property. Similarly, both the PR curve and the Lorenz curve are bounded within the
domain [0, 1]× [0, 1], while the divergence frontiers are not bounded in general. Last both
the divergence frontiers and PR curves are decreasing while the Lorenz curve is increasing.

Despite these disparities, each curve serves a similar purpose and strong links exist
between them. In the next paragraph, a few simple situations are first scrutinized to describe
the behavior of PR and Lorenz curves (divergence frontiers are voluntarily excluded from
this preamble). Then, in § 3.2 and § 3.3, we shall establish the exact links between those
curves.

3.1 Some intuition on the PR and Lorenz curves

In this preamble, we focus on the principal function of the curves under consideration:
namely how they characterize the similarity between P and Q. To make our discussion
more concrete, we consider an illustrative case in Fig. 2, where P and Q are two (truncated-
)Gaussian mixtures. For a given curve alternative, one may consider two extreme config-
urations. On one hand, the perfect match between P and Q i.e. P = Q is represented
in dashed green. On the other hand, the complete discord between P and Q, denoted by
P ⊥ Q corresponds to an empty overlap of their supports (or more formally to two mu-
tually singular distributions) and is represented in red. Then a particular instance of the
considered curve will appear as an in-between case. The closer it stands to the green spot
(and therefore the farther from the red spot), the more similar P and Q.

7
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Figure 2: (top): graphical representations of two mixtures of (truncated-)Gaussians P and
Q. (bottom): the corresponding alternate similarity curves. For each alternative,
the green dashed curve exposes the extreme case where P = Q and the red
spot/curve when P ⊥ Q.

To illustrate the benefit of a trade-off curve in comparison to scalar metrics, we depict
a few examples in Fig. 3. The three examples are obtained by adjusting the locations,
widths and weights of the Gaussian mixture models. They corresponds to scenarios of
idealistic modes of deviations between the two distributions P and Q, namely (a) pure
mode dropping, (b) pure mode invention and (c) pure mode reweighting. In (a) a Gaussian
component from P is missing in Q, and this translates in both curves. In the PR curve, it
becomes manifest through a drop of recall that is depicted by the horizontal gap separating
the curve from the dash green curve. In the Lorenz curve, this is depicted by the horizontal
gap between the point where the curve becomes positive and the origin (0, 0). In (b) an extra
Gaussian component is present in Q and again this phenomenon is patent in the curves,
but this time it is depicted by vertical gaps. In (c) P and Q present both two components
centered at the same locations, but they have different mixing factors, and one of the two
components is more spread in Q. In that scenario, maximal recall and maximal precision
can be achieved but not at the same time. This trade-off is rendered in a way specific to
each curve. In both cases, the horizontal and vertical gaps indicative of mode dropping
and mode invention are null, but the curve smoothly interpolates from full recall to full
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Figure 3: PR and Lorenz Curves in different scenarios: (a) pure mode dropping – (b) pure
mode invention – (c) mode reweighting. Top row: the two distributions P (in
black) and Q (in blue). Middle row: PR curves. Bottom row: Lorenz curves.

precision away from the green curve. The fact that one Gaussian component is identical in
P and Q translates clearly in the precision-recall curve: indeed full recall can be obtained
for a non-null precision (approximately 0.4 in this plot). Figure 2 is depicting an aggregate
of these three extreme scenarios and both trade-off curves reflect the related phenomenons.

3.2 Precision-recall vs Divergence frontiers

In Djolonga et al. (2019), it is shown that in the case of discrete measures, the notion of
divergence frontier matches precision-recall curve in the limit case where the Rényi exponent
a → ∞. We extend here this result to the case of general distributions. To do so, we will
rely on the following technical lemma.

Lemma 10 Let µ ∈Mp(Ω) and ν ∈Mp(Ω) two distributions.

1. If µ� ν then supA∈A
µ(A)
ν(A) = ess supdµ

dµ
dν ;

9
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2. otherwise,
sup
A∈A

µ(A)
ν(A) = ess sup

dµ

dµ
d(µ+ν)/

dν
d(µ+ν) .

Proof For the sake of completeness, we provide a proof of this technical result in Ap-
pendix A.

Theorem 11 Let P,Q two distributions. Then,

∂PRD(P,Q) =
{

(e−π, e−ρ)/(π, ρ) ∈ ∂R∩∞(P,Q)
}
.

Proof From the definition of the Rényi divergence it is clear that

D∞(µ ‖ Q) = log
(
‖ dµ
d(µ+Q)/

dQ
d(µ+Q)‖∞,dµ

)
= log

(
ess sup

dµ

dµ
d(µ+Q)/

dQ
d(µ+Q)

)
which in turn can be expressed thanks to Lemma 10 as

D∞(µ ‖ Q) = log

(
sup
A∈A

µ(A)
Q(A)

)
.

A similar derivation applies to D∞(µ ‖ P ).
Besides, as stated at the end of Definition 3 it is clear that the precision-recall curve

is obtained as the Pareto-front of the set of pairs (inf A∈A
µ(A)>0

Q(A)
µ(A) , inf A∈A

µ(A)>0

P (A)
µ(A) ) where µ

describes all distributions in AC(P,Q). Note that because of the standard measure theory
convention 0

0 = 0, we have that

sup
A∈A

µ(A)
Q(A) = sup

A∈A
µ(A)>0

µ(A)
Q(A) = 1/ inf

A∈A
µ(A)>0

Q(A)
µ(A) = eD∞(µ‖Q) .

The claimed identity easily follows.

3.3 Precision-recall vs Lorenz curves

The question of the relation between PR and Lorenz/ROC curves is reminiscent of the
comparison of PR and ROC curves for binary classification (Davis and Goadrich, 2006).
Note however that despite their name, PR-curves for distributions are not the same as the
PR-curves of the likelihood ratio classifier as one might be inclined to believe. In fact, they
are composed of mixed error rates of the said classifier (see Theorem 6).

In essence, PR and Lorenz curves are two ways of exposing the pairs (P (Aλ), Q(Aλ)).
Yet, the following questions are not trivial. Given the PR-curve of P and Q, can we compute
their Lorenz curve? Reciprocally, can we compute the PR-curve from the Lorenz one? If
one had a more complete representation such as (λ, P (Aλ), Q(Aλ)), then one could easily
compute both the PR-curve and the Lorenz curve, but in each representation, at least one
datum is not explicitly known:

10
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1. In the Lorenz curve, λ is not readily available, but we will see that it is in fact hidden
in the sub-derivative of the Lorenz curve.

2. In the PR-curve, λ can be easily computed as the ratio αλ
βλ

but the values of P (Aλ) and
Q(Aλ) are mingled within αλ so that one needs to untangle them before recovering
the Lorenz curve. Note that, given a fixed λ, the system of equations given by αλ and
βλ in Eq. (5) is always under-determined (rank 1) and therefore does not suffice on
its own to recover the values of P (Aλ) and Q(Aλ).

We will rely on the following Lemma.

Lemma 12 Let P,Q two distributions from Mp(Ω). Then ∀λ ∈ R+,

αλ = min
0≤f≤1

λ

(
1−

∫
fdP

)
+

∫
fdQ (12)

where the functions f are measurable.

Proof See Appendix B.

From Lemma 12, one can draw the following link between the PR-curve and the Lorenz
curve.

Theorem 13 Let P and Q two distributions. Let λ ∈ R+. Consider the Lorenz Curve F
defined in Eq. (11), then,

F ∗(λ) = λ− αλ (13)

where F ∗(λ) = supt∈[0,1] λt− F (t) is the Legendre transform of F .

Proof Let λ ≥ 0. Let us show that F ∗(λ) = λ− αλ. Indeed , ∀t ∈ [0, 1]

λt− F (t) =λt− inf
0≤f≤1∫
fdP≥t

∫
fdQ = sup

0≤f≤1∫
fdP≥t

λt−
∫
fdQ

≤ sup
0≤f≤1∫
fdP≥t

λ

∫
fdP −

∫
fdQ

≤ sup
0≤f≤1

λ

∫
fdP −

∫
fdQ

=λ− αλ (thanks to Lemma 12)

Which shows that λ− αλ ≥ supt∈[0,1] λt− F (t). Besides, letting tλ := P (Aλ)

λ− αλ =λ− (λ(1− P (Aλ)) +Q(Aλ))

=λP (Aλ)−Q(Aλ) = λtλ − F (tλ)

where we have used that if tλ = P (Aλ) then F (tλ) = Q(Aλ) (a result induced by the stan-
dard Neyman-Pearson lemma). Therefore, λ− αλ = supt∈[0,1] λt− F (t) = F ∗(λ).

11
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Remark 14 Theorem 13 brings many valuable prospects concerning the link between the
PR and Lorenz curves.

1. First, since the Legendre transform is a one-to-one involution, the PR and Lorenz
curves are theoretically equivalent.

2. Besides, letting tλ := P (Aλ) and relying on the Fenchel identity, one gets that λ ∈
∂F (tλ), which theoretically provides a means to extract the missing datum as soon as
one is capable of computing the subdifferential of the Lorenz curve.

3. More concretely, the theorem provides us a practical way to compute αλ from the
Lorenz curve. Indeed, given λ, αλ can be computed by solving the following 1D convex
problem:

αλ = λ− F ∗(λ) = min
t∈[0,1]

F (t) + λ(1− t)

One can do so efficiently thanks to the bisection method if the subdifferential of F
is available or resort to derivative-free algorithms such as the Golden Section Search
method otherwise. Then βλ is obtained as αλ

λ .

4. In the other way around, given t ∈ [0, 1], one can solve for F (t) by considering the
following 1D concave problem:

F (t) = F ∗∗(t) = sup
λ∈R+

λt− F ∗(λ)

= sup
λ∈R+

αλ + λ(t− 1).

4. Several links implying φ-divergences

In this section, we scrutinize the relationship between the trade-off curves and φ-divergences.
To do so, we build on the link between precision and the DeGroot statistical information. In
particular, as illustrated in the lower right part of Figure 1, the precision-recall curve can be
cast as a parametric family of φ-divergence. Reciprocally, φ-divergences can be expressed
as integral representations from the PR-curve. Note, that both facts were rediscovered
recently in Verine et al. (2023). Last, based on the integral representation, we show that
the Rényi divergence frontier can be recovered theoretically from the PR-curve.

4.1 A short digest on φ-divergences

In what follows, φ : R→ R is a l.s.c. convex function verifying the following assumptions:

(A0) dom(φ)∩]−∞, 0[= ∅ and ]0,+∞[⊂ dom(φ)

(A1) φ(1) = 0

(A2) 0 ∈ ∂φ(1) and ∂φ(1) is symmetric around 0 (ie φ′−(1) = −φ′+(1))

(A3) φ is strictly convex at 1

12
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We will denote Φ1 the set of l.s.c. convex functions that follows these four assumptions. We
denote φ�(u) = uφ( 1

u), the so-called Csizár dual of φ. In agreement with Liese and Vajda
(2006), we use the following definition of φ-divergences.

Definition 15 (φ-divergence) Let φ ∈ Φ1 and µ and ν be two positive measures. Then,

Dφ(µ‖ν) :=

∫
φ

(
dµ

dν

)
dν + φ(0)ν({µ = 0}) + φ�(0)µ({ν = 0}) (14)

with φ(0) := limu→0 φ(u) and φ�(0) := limu→0 uφ( 1
u).

Remark 16 Let us give some rationale behind the four assumptions defining Φ1. The
first part of Assumption (A0) restrict the φ divergence to positive measures (or same sign
measures) and hence removes any subjective choice for the value of φ(dµdν ) when dµ

dν < 0.
Taken together, the three other assumptions defining Φ1 enforce that Dφ(µ‖ν) ≥ 0 with
equality iff µ = ν. Indeed, using assumptions (A1) and (A2), one sees that ∀u ∈ R,
φ(u) ≥ φ(1) = 0, and the last assumption implies that φ(u) = 1 iff u = 1. Assumption (A2)
is not always required in the literature when dealing with probability (because in this case,
µ = P, ν = Q are distributions and Dφ(P‖Q) is invariant to changes of the form φ̃(u) =

φ(u) − φ′+(1)+φ′−(1)

2 (u − 1)). Besides, notice that φ ∈ Φ1 iff φ� ∈ Φ1 and the following
symmetry relation holds: Dφ(µ‖ν) = Dφ�(ν‖µ).

Remark 17 In addition to the Csizár dual, the Legendre-Fenchel dual of φ will play a key
role in variational forms of Dφ (Nguyen et al., 2010). It is therefore interesting to comment
on the impact of the assumptions φ ∈ Φ1 on φ∗. In fact, φ(1) = minu φ(u) means exactly
that φ∗(0) = −φ(1). Besides, since φ(1) = 0, it means that φ∗(0) = 0. Symmetrically,
when 0 ∈ dom(φ), let v0 ∈ ∂φ(0), then φ∗(v0) = minv φ

∗(v). Besides, since φ is minimized
at u = 1, then it is decreasing wherever u < 1 and increasing otherwise (by convexity).
In particular, ∂φ(0) ⊂ [−∞, 0] and therefore the minimum of φ∗ can only be reached at a
point v0 ≤ 0 (it is also possible that the infimum is not reached if ∂φ(0) = {−∞} or if
0 6∈ dom(φ)).

To conclude this remark, let us notice that the definition of φ on ]−∞, 0] is irrelevant
for Dφ(µ‖ν) (indeed, since µ and ν are assumed positive, then dµ

dν ≥ 0). As a result, Dφ

is also not impacted by the values taken by φ∗(v) for v < v0 := sup{v ∈ arg min(φ∗)}. In
any case, since assumption (A0) imposes φ(dµdν ) = +∞ when dµ

dν < 0 then φ∗(v) = φ∗(v0)
whenever v < v0. To simplify concrete formulae, e.g. in Table 1, we will focus on φ∗(v) on
the following restriction of its domain domv0→(φ∗) := ∪u≥0∂φ(u) = dom(φ∗) ∩ [v0,+∞[.
It includes at least ]v0, φ

′
+(+∞)[, and since φ is strictly convex at 1, φ′+(∞) > 0 (indeed

φ′+(∞) ≥ φ′(1) ≥ 0 and if by the symmetry assumption of (A2) φ′+(1) = −φ′−(1) = 0 and
then strict convexity implies that φ′+(∞) > φ′+(1). Therefore dom(φ∗) ⊃]v0, 0].

4.2 Integral representation of an φ-divergence using the precision-recall curve

Considering two distributions P and Q, the very definition of Dφ(P‖Q) involves P ({Q =
0}) = 1 − β0 and Q({P = 0}) = 1 − α∞ that is to say the gap between the best possible

13
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Divergence φ(u) φ′(u) domv0→(φ∗) φ∗′(v) φ∗(v)

KL u log(u)− (u− 1) log(u) R ev ev − 1
rKL − log(u) + (u− 1) 1− 1

u ]−∞, 1[ 1
1−v − log(1− v)

JS
−(u+ 1) log 1+u

2
+u log u

log( 2u
1+u) ]−∞, log(2)[ ev

2−ev − log(2− ev)

χ2
Pearson (u− 1)2 2(u− 1) [−2,+∞[ v

2 + 1 v2

4 + v
Hellinger (

√
u− 1)2 1− 1√

u
]−∞, 1[ 1

(1−v)2
v

1−v
TV |u− 1| sign(u− 1) [−1, 1] 1 v

Table 1: A few standard φ-divergences. For each choice of φ we provide the entries in
the natural derivation order, namely we compute first φ′(u) then we derive the
“meaningful” domain of φ∗, that is domv0→(φ∗), then φ∗′(v) is determined as the
inverse function of φ′(u) and φ∗(v) is determined as the anti-derivative that verifies
φ∗(0) = 0. Note that φ∗ and its derivative are only given on their meaningful
domain.

precision/recall and their actual values. In fact, building upon known integral representa-
tions of φ-divergences (Liese and Vajda, 2006), the entire divergence can be expressed as
an integral of weighted precision-recall gaps. Let us first reformulate the link highlighted
in Remark 5 between DeGroot’s statistical information and the precision-recall curve.

Proposition 18 Let P,Q be two distributions, π ∈ [0, 1] and denoting by F 1
π (P,Q) :=

2
1
αλ

+
1
βλ

the F 1-score associated with the precision-recall pair (αλ, βλ) where λ = π
1−π . Then:

F 1
π (P,Q) = 2Bπ(P,Q)

As a result, the DeGroot’s statistical information is related to the gaps of F 1 scores as
follows:

∆Bπ(P,Q) =
1

2
∆F 1

π (P,Q) (15)

with ∆F 1
π (P,Q) := F 1

π (P, P )− F 1
π (P,Q).

Proof Let us first recall the definition of Bπ(P,Q) := (πP ∧ (1− π)Q)(Ω) (see Remark 5)
The proposition derives from a simple computation and the fact that αλ = λβλ:

F 1
π :=

2α π
1−π

β π
1−π

α π
1−π

+ β π
1−π

=
2α π

1−π
π

1−π + 1
= 2(1− π)α π

1−π

=2(1− π)[
π

1− π
P ∧Q](Ω) = 2Bπ(P,Q)

14
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From the previous result, one can restate the Theorem 11 of Liese and Vajda (2006) in
terms of precision-recall F 1 scores.

Corollary 19 Let P,Q two distributions and φ ∈ Φ1. Then,

Dφ(P‖Q) =
1

2

∫ 1

0
∆F 1

π (P,Q)dΓφ(π) (16)

where dΓφ(π) := 1
πdφ

′
+(1−π

π ) intrinsically represents the distribution of curvature of the
convex function φ.

Proof This is a mere restatement of the result of (Liese and Vajda, 2006, Theorem 11),
based on Equation 15 (in comparison, (Liese and Vajda, 2006, Theorem 11) was formulated
in terms of ∆Bπ(P,Q)).

Remark 20 Therefore, depending on the curvature distribution of φ, minimizing the φ-
divergence between P and Q (as done in f-GAN (Nowozin et al., 2016)) is equivalent to
minimizing a weighted version of the gap between the best F 1

π score and the actual score.
For instance, one can consider the following family of functions φa and their associated
φ-divergence, that we will refer to as Tsallis7 a-divergence (Tsallis, 1988):

φa(u) :=
1

a(a− 1)
(ua − a(u− 1)− 1) (17)

In that case, the curvature is given by φ′′a(u) = ua−2 and dΓφa(π) = 1
π3φ

′′
a

(
1−π
π

)
dπ =

1
π3

(
1−π
π

)a−2
dπ. As a result, one gets

Dφa(P‖Q) =
1

2

∫ 1

0
∆F 1

π (P,Q)

(
1− π
π

)a 1

π(1− π)2
dπ

One can see that depending on the value of a, this objective will focus rather on regions
where precision is more important π → 1 or on those where recall is paramount π → 0.

4.3 Divergence frontiers parameterization with φ-divergences

In this section, we consider again the Rényi divergence frontiers introduced by Djolonga
et al. (2020). We recall that the Rényi divergence of exponent a between µ and P is de-
noted by Da(µ ‖ P ). Following Djolonga et al. (2020) with a minor correction, one can
consider the following monotone transform of the Rényi divergence8 and recover the pre-
viously introduced Tsallis a-divergence: D̂a(µ‖P ) := 1

a(a−1) (exp ((a− 1)Da(µ‖P ))− 1) =

1
a(a−1)

∫ ( dµ
dP

)a
− 1dP = Dφa(µ‖P ). Since this is a φ-divergence, it might be expected

7. Note that the normalizing constant is usually set as 1
a−1

for Tsallis divergences instead of 1
a(a−1)

. Yet the
normalization chosen here presents several advantages : in particular the obtained family of divergence
is well defined for all a ∈ R (instead of only a ≥ 0) and besides the Csizár dual is given by φ�a = φ1−a.
The obtained divergence was simply called α-divergence in Póczos and Schneider (2011).

8. Actually we had to amend slightly the transform used in Djolonga et al. (2020) because of a minor flaw
in their exposition as well as out of personal convenience.
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through the link developed in section 4.2 that this divergence frontier is determined by
the precision-recall curve. Making this statement concrete requires a bit of work though,
because the divergence involved here is not directly expressed between P and Q but implies
an auxiliary distribution µ (in this context, µ is meant to interpolate between P and Q).
The following proposition materializes the anticipated link.

Proposition 21 Let P,Q two distributions. The above defined Tsallis divergence frontier
can be obtained as the pairs: (D̂a(µθ‖P ), D̂a(µθ‖Q)) with θ ∈ [0, 1] and

dµθ,a
dP

=

(
θ + (1− θ)

(
dQ
dP

)1−a
) 1

1−a

∫
(θ + (1− θ)

(
dQ
dP

)1−a
)

1
1−adP

(18)

As a result,

D̂a(µθ,a‖P ) =
1

a(a− 1)


∫

(θ + (1− θ)
(
dQ
dP

)1−a
)

a
1−adP(∫

(θ + (1− θ)
(
dQ
dP

)1−a
)

1
1−adP

)a − 1

 . (19)

Proof Note that this proposition was already presented in (Djolonga et al., 2020, Propo-
sition 1, Proposition 3). We still provide a proof because the one presented in Djolonga
et al. (2020) lacks details. The first point noted in Djolonga et al. (2020), is that contrary
to the Rényi divergence, the Tsallis version is convex in both arguments, and in particular
in µ. As a result, denoting by ∂R̂(P,Q) the Tsallis divergence frontier (defined similarly
to Definition 8 using D̂a instead of Da), the bi-objective optimization associated with the
Pareto-frontier ∂R̂(P,Q) can be solved through linear scalarization. This means that the
divergence frontier for the Tsallis divergence is parametrized as

∂R̂(P,Q) = {(D̂a(µθ,a‖P ), D̂a(µθ,a‖Q)), θ ∈ [0, 1]}

where

µθ,a = arg min
µ∈AC(P,Q)

θD̂a(µ‖P ) + (1− θ)Da(µ‖Q) .

This is a generalized centroid problem that has been first solved in Amari (2007), as follows.

Denoting, with a slight abuse of notation, mθ =
dµθ,a
dP , the optmization problem becomes:

mθ = arg min
µ=mdP s.t.

∫
mdP=1

θD̂a(µ‖P ) + (1− θ)Da(µ‖Q) .

Using a Lagrange multiplier, the first order optimality condition is:∫
ma−1
θ (θ + (1− θ)

(
dP

dQ

)a−1

)δmθdP + λ

∫
δmθdP = 0

16



Theoretical Equivalence among Trade-Off Curves

where δmθ is an arbitrary measurable function. This yields m1−a
θ ∝ (θ+ (1− θ)

(
dP
dQ

)a−1
).

Using the normalization constraint, one gets:

mθ =
dµθ,a
dP

=
(θ + (1− θ)

(
dP
dQ

)a−1
)

1
1−a∫

(θ + (1− θ)
(
dP
dQ

)a−1
)

1
1−adP

=
(θ + (1− θ)

(
dQ
dP

)1−a
)

1
1−a∫

(θ + (1− θ)
(
dQ
dP

)1−a
)

1
1−adP

.

As a result,

D̂a(µθ,a‖P ) =
1

a(a− 1)

∫ (
dµθ,a
dP

)a
− 1dP

=
1

a(a− 1)


∫

(θ + (1− θ)
(
dQ
dP

)1−a
)

a
1−adP(∫

(θ + (1− θ)
(
dQ
dP

)1−a
)

1
1−adP

)a − 1

 .

Remark 22 The previous parameterization of the divergence frontier was given in (Djo-
longa et al., 2020, Proposition 3). It is expressed entirely in terms of φ-divergences between
P and Q. As a result, the divergence-frontier is completely determined by the DeGroot sta-
tistical information ∆Bπ(P,Q) which in turn are in bijection with the precision-recall curve
between P and Q. From this observation, one can state that for any exponent a, the Rényi
divergence frontier is entirely determined by the precision-recall curve. In other words, the
precision-recall curve is always more complete a description than any Rényi divergence fron-
tier. The same remark holds for the interpolated φ-divergence curves proposed in Liu et al.
(2021) which, by design, are parameterized with φ-divergences between P and Q. That being
said, the estimation from a finite sample of the precision-recall curve in a non-parametric
settings might reveal more complicated than divergence frontiers. This question deserves
further scrutiny, and although it is out of the scope of this article, the interesting reader can
refer to (Rubenstein et al., 2019; Liu et al., 2021) and references therein.

Remark 23 The reader can verify that taking the limit case a → ∞ for the parameteri-
zation µθ,a tends to a single point of the precision recall curve, precisely µθ,∞ = P∧Q

(P∧Q)(Ω) .
In order to recover the full curve, one should use a parameterization that depends on the
Rényi exponent a, by setting: (θa, 1 − θa) ∝ (π1−a, (1 − π)1−a) where π ∈ [0, 1] is the new
parameter. In that case,

dµθa,a
dP

=
(π1−a +

(
(1− π)dQdP

)1−a
)

1
1−a∫

(π1−a +
(

(1− π)dQdP

)1−a
)

1
1−adP

Then µθa,a →
πP∧(1−π)Q

(πP∧(1−π)Q)(Ω) as a→∞. With such a parameterization, the numerator and

denominator in the expression of D̂a(µθa,a‖P ) are reminiscent of Arimoto divergences (see
e.g. (Liese and Vajda, 2006)).
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5. Application to generalization bounds for domain adaptation

In this part we revisit a standard bound from domain adaptation. In this setting, P and
Q stand for the source and target distributions over a joint space Ω = X × Y where X is
called the sample space and Y is a finite set of classes referred as the label space. Given
a classifier h (a.k.a an hypothesis) one would like to control the error RQ(h) in the target
domain which is not directly observable (for lack of supervision) with a bound relying on
the corresponding error RP (h) in the source domain (where supervision is available). The
simplest bound proposed in the literature is the following (Ben-David et al., 2010):

RQ(h) :=

∫
1h(x) 6=ydQ(x, y) ≤ RP (h) + ‖P −Q‖TV . (20)

In the common covariate-shift assumption (where the conditional distribution of labels
given samples is the same in both domains), the bound can be expressed in terms of the
marginal distribution over X . It was noted directly by Ben-David et al. (2010) that the
previous bound suffers from two major issues in practice. The first one is that the bound
cannot be estimated efficiently from finite i.i.d samples because of its reliance on the TV
norm (which involves a class of measurable sets that is not restricted enough for such pur-
pose). The second issue lies in the fact that the bound does not imply the class of hypothesis
functions where h lives (e.g. a class of small VC dimension or of small Rademacher capac-
ity). As such, the bound in question is over-pessimistic, because it takes for granted that
error set {h(x) 6= y} may be spread as an arbitrary measurable set, which may be far from
the case depending on restrictions applying to h. The authors then derived a more adapted
bound based on the so-called H∆H-divergence, answering the previous two points, and
many other bounds were later proposed. The interested reader may refer to Redko et al.
(2020) for a very up-to-date and comprehensive review of such works.

5.1 A refined TV bound

Despite its shortcomings, we would like to revisit Eq. (20) and provide an optimized version
of it which has an intuitive interpretation. We will first derive a bound, based on the Lorenz
curve between P and Q and then express it in a form closer to Eq. (20) by relying on the
duality between Lorenz and PR curves.

Proposition 24 The Lorenz curve provides a lower bound for domain adaptation.

RQ(h) ≤ 1− F (1−RP (h)) (21)

Proof
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F (1−RP (h)) = inf
g measurable

0≤g≤1∫
gdP≥1−

∫
1h6=fdP

∫
gdQ

= inf
g measurable

0≤1−g≤1∫
(1−g)dP≤

∫
1h 6=fdP

∫
1− (1− g)dQ

= 1− sup
g′ measurable

0≤g′≤1∫
g′dP≤

∫
1h 6=fdP

∫
g′dQ .

Considering the particular case: g′ = 1h6=f one gets

F (1−RP (h)) ≤ 1−
∫
1h6=fdQ = 1−RQ(h) .

The exact same bound can be expressed with the PR-curve parametrization thanks to
Theorem 13.

Proposition 25 We have the following bound:

RQ(h) ≤ λ∗RP (h) + (1− αλ∗) (22)

with λ∗ = arg max
λ∈R+

{αλ − λRP (h)}.

Proof This result follows from Theorem 13.

The first part of our upper-bound corresponds to the errors occurring in the common
support of P and Q. There, the error rate is controlled in the source domain, and is therefore
also controlled in the target domain. The amplification factor λ∗ accounts for the fact that
the common mass between P and Q is present in different ratios in the two domains. The
second part corresponds to errors occurring in the target domain, within mass that is not
present in the source domain. We do not have control over this error, and must account for
it by considering the worst case where h is always wrong. As a result, the only way to keep
this term under control is to make some assumptions on the class of admissible functions
for h and the distribution of labels, that is to say the hypothesis class and the concept class.

5.2 Discussion

The latter form of our bound (Eq. (22)) highlights a strong tie with Eq. (20). In particular,
if λ∗ = 1 then, noting that α1 = 1− 1

2‖P −Q‖TV , then the two bounds are almost identical.
The only difference resides in a factor 1

2 in our favor, which stems from the fact that we
explicitly leverage the non-negativity of the error. Besides in general, 1 is not the optimal
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λ∗ and our bound is even tighter. This is where the reliance on a trade-off curve comes
in handy: we obtain virtually one bound for each value of λ and we can pick the sharpest
one. Let us consider the simple example of Fig. 2 where we can read the value of αλ on
the y-axis at the location where the PR-curve meets the line of equation α = λβ. In this
example α1 ≈ 0.38 which means that ‖P −Q‖TV = 2(1− α1) ≈ 1.24. Therefore the bound
of Eq. (20) is larger than 1 and is hence non informative. On the other hand, Eq. (5) with
λ = 1 gives RQ(h) ≤ RP (h) + (1 − α1) ≈ RP (h) + 0.62 which is informative as soon as
RP (h) < 0.38. This condition is easily met in concrete cases because RP (h) is the error in
the source domain, which is under control thanks to supervision. More importantly, we can
examine how the optimal trade-off between the two terms of the error bound can yield a
much sharper bound. In fact, given the convexity of 1− αλ, the optimal λ is characterized
by the first-order critical point condition, that is RP (h) ∈ ∂λαλ. Note that it is not trivial
to read the derivative of αλ from the PR curve directly, but in this example this derivative
is much larger than 1 and then larger than RP (h). This means that the optimal λ is far
from 1.

Besides, as discussed earlier, our bound can be easily understood in terms of shared vs.
separate mass between P and Q. Despite those advantages, one must keep in mind that it
suffers from the same limitations when considering its practical estimation from finite i.i.d.
samples and its pessimistic nature with regard to the actual regularity of the error set. That
being said, Lorenz and PR curves draw several similarities with tools developed in domain
adaptation, which calls for further scrutiny. For instance, the proof of Theorem 11 allows
to express PR-curves as trade-off curves computed from weight ratios as defined in Ben-
David and Urner (2012). Inspired by their work, it would be natural to restrict the class of
“admissible” measurable sets in the PR-curves and get more useful bounds while retaining
the notion of an optimal trade-off. A similar step could be taken on the dual representation
by restricting the class of functions in the Lorenz diagram. In that way, one would leverage
the restrictions on the hypothesis class and get similar bounds as many of those derived
from Integral Probability Metrics (Redko et al., 2020). Nonetheless, given the proven ability
of deep neural nets to overfit random labels (Zhang et al., 2016), leveraging classical notions
of complexity is probably not sufficient to get bounds that are representative of the current
domain adaptation problems. It seems inevitable to leverage some kind of “implicit bias”
related to the optimization procedure. Doing so while relying on trade-off curves is an
exciting research avenue: it is on-going and will certainly yield more practical bounds for
domain adaptation. In the next section, we do derive a new bound going in that direction:
more precisely we propose a generalization of Lorenz diagrams related to a variational form
of φ-divergences and build upon this new notion to formulate a domain adaptation bound.

5.3 A bound based on generalized Lorenz diagrams associated with a
φ-divergence

Nguyen et al. (2010) show that given a class of bounded measurable functions F ,

Dφ(P‖Q) =

∫
φ

(
dP

dQ

)
dQ =

∫
sup
v∈R

v
dP

dQ
− φ∗(v)dQ

≥ sup
f∈F

∫
fdP −

∫
φ∗(f)dQ

(23)
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with equality iff ∂φ(dPdQ) ∩ F 6= ∅, which means that there exists f ∈ F s.t f ∈ ∂φ(dPdQ)

(or equivalently thanks to duality dP
dQ ∈ ∂φ∗(f)). Note that with standard conventions,

0 ∈ ∂φ(1) and since convexity implies that subdifferential of φ are increasing, then the
condition f ∈ ∂φ(dPdQ) imposes that f ≤ 0 when dP

dQ ≤ 1 and f ≥ 0 otherwise.

This variational form can be used to create a kind of Lorenz diagram, associated with
Dφ, as the set of pairs {(

∫
φ∗(f)dP,

∫
fdQ)}. Then, the upper frontier of this region is

characterizing the closeness of P and Q, and in particular Dφ(Q‖P ) is the maximal vertical
distance between the curve and the diagonal. For technical reasons (mainly ensuring a
convex diagram), the definition of the Lorenz diagram is slightly more convoluted (see
Figure 4 for an illustration of its construction9).
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Figure 4: Generalized Lorenz diagram construction.

Definition 26 (extended Lorenz diagram) Let φ ∈ Φ1 and P,Q two distributions. The
φ-Lorenz diagram between P and Q is defined as:

LDφ(P,Q) =

{
(t, y) ∈ R2/∃f : Ω→ R, t ≥

∫
φ∗(f)dP, y ≤

∫
fdQ

}
, (24)

and the extended Lorenz curve is defined as its upper envelope:

F̄φ(t) := sup{y/(t, y) ∈ LDφ(P,Q)} . (25)

Remark 27 An attempt to derive a generalization bound for domain adaptation based on
the variational form of φ-divergences has been recently published in Acuna et al. (2021).
They indeed proposed a bound similar to Equation (20) in (Acuna et al., 2021, Lemma 1)

9. Note that this construction can be adapted to the tighter variational formulation of DΦ proposed in
Ruderman et al. (2012) and Agrawal and Horel (2020)
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for a cost function `(ŷ; y) ∈ dom(φ∗). Denoting,

R`Q(h) :=

∫
`(h(x); y)dQ(x, y) (26)

their bound reads as,

Rφ
∗◦`
Q (h) :=

∫
φ∗(`(h(x); y))dQ(x, y) ≤ R`P (h) +Dφ(P‖Q) (27)

and noting that under the standard assumption φ(1) = 0 then φ∗(v) ≥ v, the previous bound
implies that:

R`Q(h) ≤ Rφ
∗◦`
Q (h) ≤ R`P (h) +Dφ(P‖Q) . (28)

Unfortunately, this bound is erroneous in general as can be seen by considering the family
of φ-divergence associated with φs = sφ where s > 0. Indeed if the bound was true, since
Dφs(P‖Q) = sDφ(P‖Q), letting s→ 0, the bound would imply that R`Q(h) ≤ R`P (h), which

is obviously wrong in general10.

Similarly to Proposition 24, one can actually amend this bound, by using the Lorenz
diagram associated to the φ-divergence.

Proposition 28 Let φ ∈ Φ1, `(ŷ; y) ∈ dom(φ∗). The Lorenz curve provides the following
lower bound for domain adaptation:

R`Q(h) ≤ Rφ
∗◦`
λP (h) +Dφ(Q‖λP ) . (29)

Proof Let us first produce a bound for the upper envelop of the Lorenz diagram. For
t ∈ dom(φ∗)

F̄φ(t) = sup{y ∈ R/∃f ∈ dom(φ∗), y ≤
∫
fdQ, t ≥

∫
φ∗(f)dP}

= sup
f s.t.

∫
φ∗(f)dP≤t

∫
fdQ = sup

f
inf
λ≥0

∫
fdQ− λ(

∫
φ∗(f)dP − t)

≤ inf
λ≥0

sup
f

∫
fdQ− λ

(∫
φ∗(f)dP − t

)
= inf
λ≥0

λt+ sup
f

∫
fdQ−

∫
φ∗(f)d(λP )

= inf
λ≥0

λt+Dφ(Q‖λP )

(30)

where the inequality in the third line is trivial11. Note also that in the last identity, one
needs to extend the variational form of Dφ from Nguyen et al. (2010) when applied to Q

10. The origin of the flaw is a fallacious switching between absolute values and a suppremum: Dφ(P‖Q) =
supf∈dom(φ∗)

∫
fdP −

∫
φ∗(f)dQ = | supf∈dom(φ∗)

∫
fdP −

∫
φ∗(f)dQ| ≤ supf∈dom(φ∗) |

∫
fdP −∫

φ∗(f)dQ| : the last inequality is strict in general (and in fact the RHS is often infinite), while Acuna
et al. (2021) used an equality.

11. It can be interpreted in terms of primal-dual gap. And since when t > tmin := minφ∗(v) = −φ(0),
Slater’s condition are easily verified (as the constant function f = arg minv φ

∗(v) is in the relative
interior of the constraints) it is in fact an equality most of the time.
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and λP (which is a positive measure but not a probability distribution in general). The
demonstration of Nguyen et al. (2010) extends easily to this situation. As a result,

R`Q(h) :=

∫
`(h(x); y)dQ(x, y)

≤F̄φ(Rφ
∗◦`
P (h))

≤ inf
λ>0

λRφ
∗◦`
P (h) +Dφ(Q‖λP ) .

(31)

Remark 29 As for the standard Lorenz diagram, this bound allows to trade the error made
in the source domain for a better coverage between the target distribution Q and the non-
normalized source distribution λP . When using the suboptimal choice λ = 1, one recovers
a bound similar to the erroneous Equation (28) derived from Acuna et al. (2021):

R`Q(h) ≤ Rφ
∗◦`
P (h) +Dφ(Q‖P ) (32)

In this corrected bound, the source loss ` is replaced by φ∗ ◦ ` which is always larger. That
being said, in typical domain adaptation scenarios, ` would be small in average in the
source domain (distribution P ). Since ` is also positive in concrete cases, being small in
average means being small with high probability under P (for instance using the Markov’s
inequality). Besides, since φ ∈ Φ1, 0 ∈ ∂φ(1) which by duality implies that 1 ∈ ∂φ∗(0)
and in turn shows that φ∗(0) = −φ(1) = 0 (provided 0 ∈ dom(φ∗) of course). Moreover,
φ∗ is often differentiable at 0, so its Taylor expansion is φ∗(v) = v + o(v), which implies

essentially that Rφ
∗◦`
P (h) and R`P (h) are similar (again if R`P (h) is small).

To make such a statement more accurate, let us rely on a Taylor expansion with integral
remainder. If φ∗′(0) = 1 then one has the following Taylor expansion (see (Liese and Vajda,
2006, Theorem 1)):

φ∗(v) = v +

∫ v

0
(v − s)dφ∗+

′(s) .

In particular, if the curvature of φ∗(v) is bounded : ∀v ∈ [0, 1], φ∗′′(v) ∈ [κ, κ̄], then one has
the following estimates:

1

2
κσ2 ≤ Rφ

∗◦`
P (h)−R`P (h) ≤ 1

2
κ̄σ2

where σ2 :=
∫
`(h(x), y)2dP is usually quite small in concrete scenarios. Note that the

previous reasoning is valid only if the curvature of φ∗ is controlled. For instance, the counter-
example based on replacing φ by a rescaled version φs = sφ would break that assumption if
s→ 0. Indeed, φ∗s(v) = sφ∗(vs ), and then φ∗s

′′(v) = 1
sφ
∗′′(vs ).

As advocated in the domain adaptation literature Ben-David et al. (2010), to be useful,
a generalization bound should :

• rely on notions that can be estimated from finite samples (this is not specific to domain
adaptation)
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• minimize their dependence on the distribution of labels in the target domain QY |X
(especially if one aims at deriving a learning algorithm from the bound)

To do so we will rely on triangle inequalities.

Definition 30 Let ` : Y × Y → R a loss function. We say that

• ` ∈ TI iff ∀ya, yb, yc ∈ Y, `(ya; yc) ≤ `(ya; yb) + `(yb; yc),

• ` ∈ TI ′ iff ∀ya, yb, yc ∈ Y, `(ya; yc) ≤ `(ya; yb) + `(yc; yb).

Remark 31 Both triangle inequalities are valid for the margin loss of Zhang et al. (2019):

`(ŷ; y) =

[
1− 1

ρ
[δ(ŷ; y)]+

]
+

=

{
1 if arg max(ŷ) 6= arg max(y)

max(0, 1− δ(ŷ;y)
ρ ) otherwise

(33)

where [x]+ := max(0, x) and δ(ŷ; y) = 1
2 mink 6=ky ŷky− ŷk is a multi-class margin between the

score ŷky attributed to the largest component of y (ky = arg maxk yk) and the best challenger
score maxk 6=ky ŷk.

The following lemma is representative of the typical ways to turn a bound such as
Equation (29) into one that suits the practical purposes mentioned earlier.

Lemma 32 Let h, h′ ∈ H two hypotheses, ` a loss function and µ a positive measure12 over
pairs (x, y). Then, noting µX the marginal of µ w.r.t x,

• if ` ∈ TI
R`µ(h) ≤ R`µ(h′) +R`µX (h;h′) (34)

where R`µX (h;h′) =
∫
`(h(x);h′(x))dµX .

• Similarly, if ` ∈ TI ′
R`µX (h;h′) ≤ R`µ(h) +R`µ(h′) . (35)

Proof Indeed, if ` ∈ TI

R`µ(h) =

∫
`(h(x); y)dµ(x, y) ≤

∫
`(h(x);h′(x)) + `(h′(x); y)dµ(x, y)

=R`µ(h′) +R`µX (h;h′)

(36)

Similarly, if ` ∈ TI ′

R`µX (h;h′) =

∫
`(h(x);h′(x))dµX(x) =

∫
`(h(x);h′(x))dµ(x, y)

≤
∫
`(h(x); y) + `(h′(x); y)dµ(x, y)

=R`µ(h) +R`µ(h′) .

(37)

12. µ could be P or Q or even λP .
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Following Acuna et al. (2021), and taking into account our correction to their bound
based on φ divergences, we propose the following notion of discrepancy.

Definition 33 (Dφ,`
h,H(PX , QX)) Let PX , QX two distributions over x and λ > 0. Let φ ∈

Φ1, and ` a loss function. Let also H a class of hypotheses and h ∈ H. Then we define,

Dφ,`
h,H(QX‖λPX) := sup

h′∈H
R`QX (h;h′)−Rφ

∗◦`
λPX

(h;h′) (38)

where by extension Rφ
∗◦`
λPX

(h;h′) :=
∫
φ∗(`(h;h′))dλPX = λRφ

∗◦`
PX

(h;h′).

Corollary 34 Let φ ∈ Φ1. Let also ` ∈ TI and `φ ∈ TI ′ such that φ∗ ◦ ` ≤ `φ. Given an
hypothesis h ∈ H, we have the following generalization bound:

R`Q(h) ≤ inf
λ>0

R
`φ
λP (h) +Dφ,`

h,H(QX‖λPX) + γ∗λ (39)

where γ∗λ := infh′∈H R
`
Q(h′)+R

`φ
λP (h′) quantifies the adaptibility of the task between domains

P and Q.

Proof From Lemma 32 and Definition 33, for any h′ ∈ H

R`Q(h) ≤R`Q(h′) +R`QX (h;h′)︸ ︷︷ ︸
≤Rφ

∗◦`
λPX

(h;h′)+Dφ,`h,H(QX‖λPX)

≤R`Q(h′) +Rφ
∗◦`
λPX

(h;h′)︸ ︷︷ ︸
≤R

`φ
λPX

(h;h′)≤R
`φ
λP (h)+R

`φ
λP (h′)

+Dφ,`
h,H(QX‖λPX)

≤R`φP (h) +Dφ,`
h,H(QX‖λPX) + (R`Q(h′) +R

`φ
λP (h′)) .

Given that h′ was chosen arbitrarily in H to begin with, the last term can be replaced by
its infimum over h′ ∈ H, yielding γ∗λ.

Remark 35 The careful reader could legitimately wonder why we introduce an alternate
loss `φ instead of using φ∗ ◦ ` which appears as a natural choice. This is done to provide
more flexibility on the choice of ` and φ as, when φ ∈ Φ1 and ` ∈ TI, then in general
φ∗ ◦ ` 6∈ TI ′. This can be verified for example for the KL-divergence and the margin loss
defined in Equation (33). On the contrary, since in this case `(ŷ; y) ∈ [0, 1], then one can
see that φ∗ ◦ ` ≤ `φ := φ∗(1)`, which meets the hypothesis of the theorem.

Remark 36 A part from the trade-off controlled by λ, the previous bound is representative
of typical reasoning in domain adaptation works following the approach of Ben-David et al.
(2010), as for example Ganin et al. (2016); Zhang et al. (2019); Acuna et al. (2021). Let
us simplify the following argument by setting λ = 1 and note γ∗ = γ∗1 the adaptability term.
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This kind of bounds are in fact slightly misleading. Indeed the common algorithmic use of
such bounds is the following. In the bound (and the similar ones in the literature), all terms
can be efficiently evaluated from finite samples apart from γ∗. Therefore, one can consider
an adversarial training scheme, where h and h′ are two concurrent networks playing the
following game:

min
h∈H

max
h′∈H

R
`φ
P (h) +R`QX (h;h′)−Rφ

∗◦`
PX

(h;h′) .

This game does not lead anything useful in practical deep learning adaptation problems
because usually the distributions PX and QX are easily discriminated by the adversary h′

whatever the choice of h. To amend this failure, previous works actually replace the game
by the following one:

min
g∈G,h∈H

max
h′∈H

R
`φ
P (h ◦ g) +R`QX (h ◦ g;h′ ◦ g)−Rφ

∗◦`
PX

(h ◦ g;h′ ◦ g)

In other words, the two adversaries share a common feature extractor g which actually plays
in collaboration with h and thus against h′. The rationale behind this design choice, is that
one needs the ability to embed the distributions PX and QX in a shared latent space Z,
where their discrimination becomes more challenging. Intuitively this embedding comes at
a cost, the distributions PY |Z and QY |Z can become:

• more stochastic than their original counterpart PY |X and QY |X

• worse, they can become more inconsistent in the sense of the adaptability constant γ∗

Although this aspect was considered in Johansson et al. (2019); Zhao et al. (2019); Siry
et al. (2021), to the best of our knowledge the impact of this modification was not analyzed
carefully in terms of generalization bounds. In fact, to do so, one needs to amend the
generalization bound as follows: ∀g ∈ G,∀h ∈ H

R`Q(h ◦ g) ≤ R`φP (h ◦ g) +Dφ,`
h◦g,H◦g(QX , PX) + γ∗g (40)

where we have noted H ◦ g = {h ◦ g/h ∈ H} and γ∗g = infh′∈HR
`
Q(h′ ◦ g) +R

`φ
P (h′ ◦ g). The

main issue is that γ∗g , besides not being computable in practice, depends on the specific choice
of the feature extractor g. It is not anymore an intrinsic measure of the adaptability of the
transfer. This issue can be amplified by the fact that g is playing with h and as a result, it
may tend to be biased towards performing a correct embedding of high probability areas of
the source distribution and performing in an uncontrolled way on the target distribution high
likelihood areas. A similar argument could of course be held against the trade-off parameter
λ, but there is one subtle difference: it merely impacts the weight granted to the source
distribution P . It is therefore easier to appraise its impact as well as to control it through
regularization (e.g. favoring a smaller λ). Note that our λ variable acts in a similar fashion
to the margin parameter13 of Zhang et al. (2019) in the sense that it impacts the weight
of the source risk. On the other hand, the margin parameter of Zhang et al. (2019) is
introduced artificially and does not act on the discrepancy term.

13. Beware, in Zhang et al. (2019), this parameter is denoted by γ and the adaptability term by λ which
could bring confusion.
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5.3.1 Practical considerations

The result presented in Corollary 34 leaves quite some room for the choice of φ, ` and `φ.
We believe that the combined φ, `, `φ configuration should follow (or remain close to) the
following design principles.

(P1) ` ∈ TI, `φ ∈ TI ′ and φ∗ ◦ ` ≤ `φ (to ensure that our bound is valid).

(P2) ` should be Bayes consistent (see Steinwart (2007); Tewari and Bartlett (2007)).

(P3) `φ is convex and bounded below (useful from the optimization perspective).

For example, if one follows in the steps of Zhang et al. (2019) and choose for ` the margin
loss from Equation (33) (with e.g. ρ = 1), since range(`) = [0, 1], using `φ = φ∗(1)`, then
(P1) is valid. In addition, one can show that (P2) is checked in the binary classification case,
because then `(ŷ; y) = (1− (ŷy)+)+ is a piecewise linear function of the margin ŷy and one
can compute its ψ-transform as defined in Bartlett et al. (2006) and show14 that ψ`(ε) = ε
which being invertible ensures that ` is Bayes consistent. Unfortunately, the extension to
multi-category classification breaks the Bayes consistency (see (Tewari and Bartlett, 2007,
example 1) with respect to the Crammer and Singer methodology). That being said, ` is
an upper-bound of the 0 − 1 loss15, and one still enjoy the fact that controlling the `-risk
ensures a small 0 − 1-risk. Last, `φ is bounded below but not convex. That is not a real
issue given that one can replace it by a larger convex loss such as the hinge loss.

In contrast to the previous list of guiding principles, Acuna et al. (2021) merely requires
that range(`) ⊂ [0, 1] ⊂ dom(φ∗). One may fail to see how this assumption is relevant, but
it surely comes with some drawbacks. Mainly, [0, 1] ∩ dom(φ∗) always misses important
parts of the domain of φ∗. To illustrate this point, let us consider (Acuna et al., 2021,
Proposition 1), where to deepen the link between the adversarial game and the φ-divergence,
it is required that ∃h′ s.t. ∀x, `(h(x), h′(x)) ∈ ∂φ(dPdQ(x)). Meeting this condition is infeasible

if range(`) ⊂ [0, 1] because ∂φ(dPdQ(x)) ⊂]−∞, 0] whenever dP
dQ(x) < 1. In other words, the

assumption is only met when P ≥ Q which actually implies P = Q and is of no interest
since it corresponds to the absence of domain shift. Note however that despite our general
principles, the only practical settings that we consider, that is to say the margin loss, suffers
the same limitation since in this particular configuration, range(`) ⊂ [0, 1]. We foresee, that
this issue can be solved by refining our definition of the generalized Lorenz diagrams, using
the tighter variational representation proposed in Ruderman et al. (2012) and Agrawal and
Horel (2020). This representation takes the following form:

Dφ(Q‖λP ) = sup
f

sup
ρ∈R

∫
fdQ−

∫
(φ∗(f + ρ)− ρ)d(λP ) .

As can be seen, in this formulation the scalar ρ ∈ R allows to align the range of f + ρ and
the domain of φ∗ that is to say the subdifferentials of φ. Besides, in the advent of deriving
an adversarial algorithm from this refined variant, the variable ρ would naturally play a

14. In fact, using the notations of Bartlett et al. (2006), one can show that H`(η) = min(1 − η, η) and
H−` (η) = max(1 − η, η). This yields ψ̃`(η) = H−` − H` = |2η − 1| > 0∀η 6= 1

2
, yielding the Bayes

consistency.
15. More precisely `(ŷ; y) ≥ 1arg max(ŷk)6=arg max(yk)
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balancing role with respect to the variable λ. This extension has already been adopted for
GANs (Terjék, 2021) which suggests that it is appropriate for domain adaptation adversarial
approaches. It is however left for future work.

6. Conclusion

In this work, we have studied the interconnections among several trade-off curves designed
to evaluate the similarity between two probability distributions, namely precision-recall
curves, divergence frontiers, ROC and Lorenz curves. If one connection was known to
the authors of divergence frontiers, others appear to have eluded even the authors of the
implied notions. This is particularly striking for Lorenz and ROC curves which differ
by mere symmetries. The interrelation between precision-recall and Lorenz curves is less
direct, as it involves convex duality. That being said, it remains that the two notions are
theoretically equivalent, and can be computed in practice from one another. We hope that
the exposed link will foster new research avenues for evaluation curves. To begin with,
while the theoretical equivalence of Lorenz and PR curves has been demonstrated, the
question of their empirical estimation has yet to be examined. For instance, investigations
on potentially consistent estimators need consideration, especially in the non parametric
case (although this will require refining the definitions to render the estimation from finite
sample feasible). In particular, exposing rates of convergence of the estimators should be
a worthwhile endeavor. Similar analysis has already been carried out for scalar metrics
Rubenstein et al. (2019); Sriperumbudur et al. (2009). We foresee that exploring links with
divergences or integral probability metrics shall help in pursuing this undertaking for PR
and Lorenz curves. Instead of considering links with IPM, we have considered the case of
φ-divergence which have provided a fertile ground to extend the already exposed links. As a
result, we have demonstrated that a general link exists between Rényi divergence frontiers of
arbitrary exponent a and PR curves. Last, we have explored applications of trade-off curves
to domain adaptation. More notably, we have extended the notion of Lorenz diagram, and
built upon this notion to derive a novel generalization bound for domain adaptation. Several
research avenues are plausible to deepen this aspect of our work.
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Appendix A. Proof of lemma 10

Proof The proof is technical and can be skipped on first reading. The second result is
a simple corollary of the first since when µ is not absolutely continuous w.r.t ν then the
identity is trivial: ∞ =∞. Let us demonstrate the first point, that is to say when µ� ν.
We shall proceed by proving two opposite inequalities, starting from the following.

sup
A∈A

µ(A)
ν(A) ≤ ess sup

dµ

dµ
dν .

Indeed, let A ∈ A, then,

µ(A)
ν(A) =

∫
A
dµ
dν dν

ν(A)
=

∫
1A

dµ
dν dν

ν(A)

≤ ess sup
dν

dµ
dν

ν(A)
ν(A) = ess sup

dν

dµ
dν .

Note that the essential sup is w.r.t ν instead of µ. Let us then show that ess supdν
dµ
dν ≤

ess supdµ
dµ
dν . To do so we need to show that any upper-bound M of dµ

dν µ-a.e. is also an

upper-bound ν-a.e. Let M ≥ dµ
dν µ-a.e. be such an upperbound and let N the associated

µ-nullset (where M may be lesser than dµ
dν ). If ν(N) = 0 it settles it (as M is henceforth

an upper-bound ν-a.e.). Otherwise, N is such that µ(N) = 0 but ν(N) > 0 and then
necessarily dµ

dν1N = 0 ν-a.e. (or else it would contradict µ(N) = 0). As a result,

dµ
dν

ν-a.e.
= dµ

dν1Ω\N ≤M1Ω\N ≤M ν-a.e.

Which again settles the fact that M is also an upperbound ν-a.e.. Therefore we obtain
that ess supdν

dµ
dν ≤ ess supdµ

dµ
dν and µ(A)

ν(A) ≤ ess supdµ
dµ
dν .

For the reverse inequality, we only need to show that dµ
dν ≤ supA∈A

µ(A)
ν(A) µ-a.e.. Indeed,

let C := supA∈A
µ(A)
ν(A) . If C =∞, the inequality is trivial. Let us then suppose that C <∞.

Let E := {ω ∈ Ω/dµdν > C} and let us show that µ(E) = 0. One can rewrite E = ∪n∈NEn,

with En := {ω ∈ Ω/dµdν ≥ C + 1
n}, and it suffices to show that µ(En) = 0. We have that,

Cν(En) ≥µ(En) =

∫
En

dµ
dν dν ≥ (C + 1

n)

∫
En

dν

≥(C + 1
n)ν(En) .

For this not to be absurd, it is necessary that ν(En) = 0 and hence µ(En) = 0 as well.

Appendix B. Proof of Lemma 12

We will use the following result from Theorem 5 in Simon et al. (2019) which stipulates
that the precision αλ is optimal in the following sense:

Theorem 37 Let P,Q two distributions from Mp(Ω). Then ∀λ ∈ R+,

αλ = min
A∈A

λ(1− P (A)) +Q(A) . (41)
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From this theorem the lemma is an easy corollary:

Proof It suffices to show that for all measurable functions 0 ≤ f ≤ 1,

αλ ≤ λ(1−
∫
fdP ) +

∫
fdQ.

According to Theorem 37, this inequality holds for indicator functions. Besides it is sta-
ble under convex combinations and L∞ limits. As a result, we can extend the inequality
first to convex combinations of indicators, which is to say to all simple functions ranging
in [0, 1]. Note that even though at first glance, simple functions ranging in [0, 1] take the
form of sub-convex combinations of indicators, one can leverage 1∅ = 0 to express them
as convex combinations. Then, taking the limit w.r.t to L∞ convergence and using stan-
dard density results we can further extend the inequality to L∞ functions ranging in [0, 1].
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