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Graphics Processing Units (GPUs) compilers have evolved in order to support general-purpose programming
languages for multiple architectures. NVIDIA CUDA Compiler (NVCC) has many compilation levels before
generating the machine code and applies complex optimizations to improve performance. These optimizations
modify how the software is mapped in the underlying hardware; thus, as we show in this paper, they can also
affect GPU reliability. We evaluate the effects on the GPU error rate of the optimization flags applied at the
NVCC Parallel Thread Execution (PTX) compiling phase by analyzing two NVIDIA GPU architectures (Kepler
and Volta) and two compiler versions (NVCC 10.2 and 11.3). We compare and combine fault propagation
analysis based on software fault injection, hardware utilization distribution obtained with application-level
profiling, and machine instructions radiation-induced error rate measured with beam experiments. We consider
eight different workloads and 144 combinations of compilation flags, and we show that optimizations can
impact the GPUs’ error rate of up to an order of magnitude. Additionally, through accelerated neutron beam
experiments on a NVIDIA Kepler GPU, we show that the error rate of the unoptimized GEMM (-O0 flag) is
lower than the optimized GEMM’s (-O3 flag) error rate. When the performance is evaluated together with
the error rate, we show that the most optimized versions (-O1 and -O3) always produce a higher amount of
correct data than the unoptimized code (-O0).

CCS Concepts: • Computer systems organization → Reliability; • Hardware → Fault models and test
metrics.

Additional Key Words and Phrases: Graphics Processing Units, reliability, neutron-induced errors, error rate,
reliability
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1 INTRODUCTION
Thanks to the high performance, flop/watt efficiency, and support for general-purpose languages,
GPUs are today adopted in several domains, including High-Performance Computing (HPC) [38],
and to accelerate emerging workloads such as Deep Learning (DL) [28] and High-Performance Data
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2 Fernandes dos Santos et al.

Analytics [5]. The most recent GPU architecture advances, such as tensor core, Multi-Instance GPU
(MIG), which allows multiple users to access the same GPU, and mixed-precision functional units,
move toward improving HPC performance and software flexibility in Deep Learning applications.
In this context, the evolution and the enhancements of the GPU compiler allow tailoring the code
to the new features, transparently improving the performance.

The compilation process maps the complex source code in the underlying and even more complex
hardware, and it is then likely to impact not only the performance but also the code’s reliability.
This latter aspect is crucial for many applications in which GPUs operate, such as autonomous
driving and HPC. The main scope of this paper is to quantify and understand the impact of compiler
optimizations on the error rate of codes executed on GPUs. Unfortunately, modern GPUs have
been demonstrated to be susceptible to transient faults [3, 24, 46, 49, 51].
In this paper, we specifically address the effect of compiler version and compiler optimizations

on GPUs reliability. Developers that aim at using compiler optimizations for safety-critical systems
must ensure that the compiled machine code is still sufficiently reliable. In fact, the compiler changes
the way software is mapped in the available hardware resources with a potentially significant
impact on the device error rate. Since the fault is generated at the hardware level, the error manifests
at the software level, and the compiler maps the latter in the former, an accurate reliability analysis
must consider the whole abstraction stack. Hardware reliability is normally evaluated with beam
experiments [20, 48] while software error propagation is studied with fault injection [39, 52].
Unfortunately, due to high cost, evaluating all optimization combinations for a code with beam
experiments would be unfeasible, and fault injection is commonly performed at an abstraction level
that is too high for considering hardware utilization, thus risking to generate an unrealistic result.

To accurately understand the impact of the NVIDIA compilers on GPUs reliability, considering
both the different hardware units sensitivities and the software propagation, we adopt a cross-layers
analysis combining (1) beam experiments on specific functional units that provide the probability
for a fault to be generated, (2) application profiling, that identifies the distribution of resources
used for computation, and (3) software fault injection, that measures the probability for the error to
propagate to the output. We present an ablation study to identify why and how different compiler
configurations modify the code error rate. We start with random software fault injection, which
considers neither the machine instructions distribution nor the functional unit hardware sensitivity.
Our results show that software fault injection measures a difference between compiler optimizations
of, on average, 15%, indicating that the code modifications induced by the compiler have a negligible
impact on the code reliability. Then, to consider the compiler modifications to the machine code,
we normalize the injection based on the machine instructions distribution. When considering
hardware sensitivity, the predicted error rates between compiler optimizations can differ by more
than 1,000%. Most of the impact of the compiler on the GPU reliability can be attributed to the
different sensitivity of the hardware functional units selected for computation by the flags more
than to the different distribution of machine instructions. This behavior can only be observed by
considering the hardware error rate during analysis.
To have a broad evaluation, we evaluate the reliability of several compiler optimizations on

eight representative codes from different benchmark suites and application domains. We evaluate
the codes’ reliability when compiled with two versions of the NVIDIA CUDA Compiler (NVCC),
i.e., 10.2 and 11.3. For each compiler version, we consider nine unique NVCC flag configurations,
totaling 144 configurations per architecture. The compilermaps the code in the underlying hardware
depending on the available computing resources. Since each new GPU generation has novel features
and disposes of additional resources, we consider two GPU architectures (Kepler and Volta) to
understand if there is a compiler optimization reliability dependence on the hardware. As we show,
the GPU architecture plays a significant role in performance and reliability. Volta architecture
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Assessing the Impact of Compiler Optimizations on GPUs Reliability 3

significantly improves computing power and efficiency over Kepler ( 5.5 GFLOPS/watt for Kepler
and 24 GFLOPS/watt for Volta), with tensor cores for deep learning, support for half-precision
floats, and higher double-precision computing.

We found that, in general, higher optimizations have the drawback of increasing the code error
rate. Nonetheless, as a very promising result, we found that the performance gain brought by the
compiler optimizations is much higher than the increase they impose on the error rate. In other
words, the amount of work that the optimized code can correctly produce before experiencing
a failure is more than double the unoptimized code. In all applications in which the amount of
correctly produced data is the main concearn, then, an optimized code is to be prefered.
All data extracted for our evaluation, including the normalized instruction error rate and

performance-related metrics, are available in an online repository for reproducibility1.
The remainder of the paper is structured as follows. In the next section, we present the past

works related to our research. The experiments and the tools that we used are described in Section 3.
The performance impact of each configuration is presented in Section 4. Section 5 presents the fault
injection results, as well the evaluation of the optimizations using the SDC probability and SDC
rate prediction. Section 6 shows the beam experiments results, and Section 7 concludes de paper.

2 BACKGROUND AND RELATEDWORKS
This section presents the background and related works on radiation effects on GPUs. We highlight
the strengths and limitations of the available reliability evaluation strategies for GPUs.

2.1 Radiation Effect on GPUs
The natural flux of high-energy neutrons at sea level is about 13 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠/((𝑐𝑚2) × ℎ) [26]. A
terrestrial neutron strike may perturb a transistor’s state, generating bit-flips in memory or current
spikes in logic circuits that, if latched, lead to an error [33]. A transient fault that propagates from
the hardware to the software level can lead to the following outcomes: (1)Masked: no effect on the
program output. The corrupted data is not used, or the circuit functionality is not affected. (2) Silent
Data Corruption (SDC): undetected output corruption, that is, the application finishes, but the
output is not correct. (3) Detected Unrecoverable Error (DUE): program or system crash. Since
GPUs execute several processes in parallel, corruption in the scheduler or a single error in shared
resources affects various output elements [3, 20, 22, 29, 46, 51]. The error rate of a code executed
on a device depends on various factors: (i) the sensitivity of the hardware, i.e., the probability for
the impinging particle to modify the transistor’s state, thus inducing a fault. This probability is
normally measured experimentally with beam experiments. (ii) the probability for the transistor
modification to be latched, modifying a software visible state, thus becoming an error. (iii) the
probability for the error to propagate in the executed software and reach the output, inducing a
failure (SDC or DUE). As we show in this paper, different compiler configurations modify how
the functional units are used for computation (thus the hardware sensitivity) and the instruction
distribution (thus the error propagation probability). An accurate reliability evaluation should then
consider both aspects.

Lately, GPU vendors have beenworking onmany architecture modifications to improve the GPUs’
reliability while maintaining high performance [21, 22, 45, 55]. The researchers have proposed
hardening at different levels of the GPU architecture, from the memory cell [45], to Error Correction
Code (ECC) in the memories [21], Redundant Multithreading execution [55], and Algorithm-Based
Fault Tolerance for deep learning applications [19, 22, 31, 34, 49].

1https://github.com/UFRGS-CAROL/taco_2023_data
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4 Fernandes dos Santos et al.

2.2 Reliability Evaluation Methodologies
There are various reliability evaluation methodologies available, from beam experiments to fault
injection, each operating at a different level of abstraction. We highlight the benefits and drawbacks
of each methodology in the assessment of the compiler optimizations’ effect on GPU reliability.

The GPU reliability has already been evaluated through beam experiments in previous works [3,
20, 24, 29, 44, 49, 51]. The accelerated particle beam induces transient faults in the device hardware,
which can manifest as output errors. When a device is exposed to a neutron beam, the whole chip is
irradiated: faults are not limited to a subset of resources. Consequently, beam experiments provide
the realistic error rate of the device running a code. Since errors are observed only when they
reach the output, with beam experiments, we cannot distinguish which level of the hardware or the
software contributes to the device error rate, making it challenging to identify the most vulnerable
parts of the system. Moreover, since there are many possible compiling options to consider, the
cost of a broad evaluation of their effect on GPU reliability using beam experiments is prohibitive.
Fault injection measures the probability for a fault to propagate to the output generating

a failure (Architectural, Program, or Software Vulnerability Factor, AVF, PVF, SVF [35, 41, 50]).
Faults can be injected by the user at different levels of abstractions: from Register-Transfer Level
(RTL) [12, 13, 25] to microarchitecture [9, 14] and software [1, 11, 15, 18, 39, 52, 56]. Fault injection
assumes that the fault has occurred and tracks its propagation without giving any information
about the probability of the fault originating. Fault injection has two main limitations: (1) the fault
model and fault injection probabilities are defined/modeled by the user and/or the simulator, thus,
the obtained results risk being unrealistic. (2) faults can be injected only in that subset of available
and accessible resources.
The abstraction level at which the reliability evaluation is performed is particularly important

when evaluating the impact of the compiler in the GPU reliability, as we do in this paper. In fact,
the compiler can modify both the machine instructions distribution and the functional units used
for computation. Injecting faults in the source code might then not be sufficient to fully understand
the effect of the compiler in the code reliability. In an effort to improve the error rate estimation
using fault injection, the metric SDC probability was introduced [1, 16, 23, 30, 39, 57]. The SDC
probability is the PVF normalized by the instruction probability to be sampled from the code’s
instructions. In other words, the SDC probability combines the PVF with the instruction profiling
of the application and can, in principle, evaluate the impact of the machine instruction distribution
modification imposed by the compiler. However, since a fault is considered to be equally probable
in each instruction, the SDC probability still lacks information on the hardware sensitivity. The
probability for an instruction to be corrupted should actually be correlated with the hardware
functional units it uses. As we show, this limitation makes the SDC probability insufficient to
evaluate the effect of compiler (or other source code modifications) on the device’s reliability.
Other works have proposed to combine the fault propagation probability (i.e., PVF) with the

hardware fault probability (i.e., functional units error rate) to accurately estimate the error rate
of an application running in a device [8, 9, 43, 44, 48]. This multi-level evaluation considers both
the hardware fault probability (with beam experiments) and the software error propagation (with
fault injection). While the combination of beam experiments and fault injection has been shown to
provide insights into device reliability and fault propagation, this methodology has not yet been
adopted to understand the impact of compiler optimizations on the code’s reliability.

ACM Trans. Arch. Code Optim., Vol. XX, No. XX, Article . Publication date: January 2024.



Assessing the Impact of Compiler Optimizations on GPUs Reliability 5

SDC  Probability  - 𝑃(𝑆𝐷𝐶)

SDC FIT Estimation - 𝐹𝐼𝑇𝑆𝐷𝐶

Fault propagation

__global__ kernel(float *vet){
int tid = blockIdx.x + threadIdx.x;
__shared__ float tmp[1024];
float  *ptr = vet[tid];
...
for(int i = 0; i < 1024; i++)

tmp[i] += ptr[i] * ptr[i];
...
vet [tid] = tmp[threadIdx.x];

}

Source code level

error P
ro

b
ab

ili
ty

 o
f 

fa
u

lt
 p

ro
p

ag
at

io
n

Hardware execution

Hardware fault

Hardware fault probability

Compiled code

O0

Approximations: Fast 
math, div, sqrt, etc. 

O3

O2

O1

Failure

Corrupted 
Output

Masked

Correct 
Output

Fig. 1. The CUDA application compiling is performed by NVIDIA CUDA Compiler (NVCC). NVCC translates
the high-level C++ code to Shader Assembly (SASS) code to run in a GPU device. In the compilation phases,
NVCC also applies a range of optimizations that can be disabled or enabled by the user. Two primary error
analyses are considered to evaluate the error propagation: SDC Probability and SDC FIT Estimation. While
SDC Probability considers only the software level SASS fault injection and kernel profiling, the SDC FIT
Estimation also considers the probability of the fault to be generated in the hardware (instruction FIT rate).

2.3 Main Idea, Contributions, and Limitations
Our idea is to investigate the impact of compiler versions and optimizations on the reliability
of GPUs. To do so, we perform the reliability evaluation at various levels of abstraction (purely
software, SDC probability, hardware-software combination, and beam experiments).

Figure 1 shows the fault propagation, from the generation at the hardware level to the effect at
the application level. The fault originates at hardware level with a probability expressed as cross-
section or Failure In Time. The hardware fault probability depends on the layout and technology of
the transistors, circuit size, operation frequency, and memory cell design [4]. The fault then has a
probability of propagating at source code level that is usually measured through fault injection.
The software source code must be compiled to be deployed and executed in the underlying

hardware. The compilation process often consists of multiple optimization steps that can change
both the hardware resources used to perform computation (i.e., the hardware fault probability) and
the fault propagation in the software (Program Vulnerability Factor (PVF)). A source code compiled
with different optimization flags, then, is likely to have both different hardware fault probability
and different fault propagation models [2].

Recent studies have assessed the impact of compiler optimizations on the reliability of machine
codes [2, 40, 42]. These studies indicate that achieving optimal performance is desirable, as it
leads to more executions before failure. However, they often focus either on fault injection or
beam experiments. We argue that incorporating both hardware and software fault probabilities is
necessary for realistic evaluation. For instance, consider an algorithm performing a float MUL and
ADD operations sequence in a loop. The fault propagation may not change, or slightly change, at
the source code level. Nevertheless, optimizations such as loop unrolling and fusing MUL and ADD
into a single MAC (multiply and accumulate) can improve performance and change the generated
machine code. As a result, the hardware fault probability will change, ultimately impacting the
final code’s FIT rate.

ACM Trans. Arch. Code Optim., Vol. XX, No. XX, Article . Publication date: January 2024.



6 Fernandes dos Santos et al.

To understand the compiler impact on the reliability of GPUs, we separate the contribution of
the fault propagation models and the hardware sensitivity. First, we inject faults randomly in the
machine instructions. Then, we consider the SDC Probability that normalizes the fault injection
result with the probability for the machine instruction to be executed [1, 30]. Finally, we also include
the raw sensitivity of the hardware functional units, gathered from beam experiments, introducing
the SDC FIT estimation. As we will show, most of the compiler optimization impact relies on the
hardware sensitivity, while the instruction distribution has a minor effect.

The accuracy of the SDC FIT prediction we introduce is limited by the complexity of measuring
the error rate of each GPU microinstruction. NVIDIA Instruction Set Architecture (ISA) contains
up to 100 different microinstructions. Measuring the error rate of each microinstruction would
allow detailed and accurate analysis but is, unfortunately, unfeasible due to beam time limitations.
What we propose is to group microinstructions and measure, with beam experiments, the error
rate of only the most used and critical sets. To the best of our knowledge, this is the first paper
that (1) proposes a multi-level analysis for the estimation of the SDC rate for GPUs, combining
application profile, fault injection, and beam experiments to deeply understand the reliability of
GPUs and (2) uses the SDC probability and the error rate estimation to evaluate the impact of the
compiler optimizations on the final machine code for GPUs.
It is worth mentioning that the NVCC compiler, although proprietary, restricts a thorough

reliability analysis of the machine binary executed on the hardware. However, even without full
access to the compiler, we can still perform effective evaluations by using instruction profiling
tools and the assembly (SASS) code generated through NVIDIA cuobjdump. This method helps
us calculate the probability of faults in each microinstruction by combining instruction fault
injection with the instruction error rate. Then, we can establish correlations with the code error
rate, providing valuable insights and enabling comprehensive assessments.

3 RELIABILITY METRICS AND EVALUATION METHODOLOGY
This section describes the devices and codes we characterize, the compilers and optimization flags
we use, the reliability evaluation metrics we adopt, and how they are measured on GPUs.

3.1 Devices
We consider two NVIDIA GPU micro-architectures, Kepler (Tesla K40c) and Volta (Titan V). These
architectures cover almost six years of architecture upgrades, with significant advances in terms
of performance, efficiency, and compiler optimizations. The additional and improved resources
available in Volta will likely modify how the optimization flags impact the code performance and
reliability. As part of our contribution, we aim to understand if the improved architecture impacts
the reliability of compilers.

Tesla K40 is built with the Kepler architecture and fabricated in a 28𝑛𝑚 TSMC standard CMOS
technology. Error Correcting Code (ECC) protects the register file, shared memory, and caches,
while read-only data cache is parity protected. We test K40 both with the ECC enabled and disabled
for the radiation experiments to evaluate the impact of the ECC on the register file/caches in the
error rate. It is worth noting that in our evaluation, we consider errors occurring in the GPU core,
not in the main memory. That is, we do not inject faults in the main memory.

Titan V is designed with the Volta micro-architecture and built with TSMC FinFET 12nm. Volta
GPUs feature hardware acceleration for three IEEE754 float point precisions: double, float, and
half. The Titan V has 80 SMs, where each SM has 64 FP32 cores, 64 INT32 cores, and 32 FP64 cores.
Titan V also has tensor cores that support FP16 operations for applications that require a small
range of float values (e.g., deep neural networks).

ACM Trans. Arch. Code Optim., Vol. XX, No. XX, Article . Publication date: January 2024.
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Table 1. Codes used for reliability evaluation and their main characteristics.

Short name Data type Bound Domain Suite
Breadth-First Search BFS INT32 Memory Graph

Rodinia[10]
Lava MD LVA FP32 Compute Molecular

Dynamics
Hotspot HST FP32 Compute Structured Grid
Gaussian
elimination GSS FP32 Compute Linear Algebra

LU Decomposition LUD FP32 Compute Linear Algebra
CFD Solver CFD FP32 Compute Fluid Dynamics
General Matrix
Multiplication GEMM FP32 Compute Linear Algebra CUDA

ToolkitMerge Sort MST INT32 Memory Sorting

3.2 Codes, compilers, and optimization flags
Table 1 lists the codes used in our reliability evaluation. Each benchmark is tested in the two
architectures, Kepler and Volta. We have selected ten benchmarks from different domains to
increase the statistical significance of this work. We have built each code from Table 1 with two
versions of NVIDIA CUDA Compiler (NVCC), NVCC 10.2 and 11.3. The select versions of NVCC
are the latest ones that simultaneously support Kepler and Volta architectures. Each major update
on NVCC introduces support for newer architectures and compiler optimizations, which can be
beneficial or not to reliability.
Optimization flags: We compile all the GPU kernels with multiple NVCC compilation flags

to measure the impact of each optimization on the final Source and Assembly2 (SASS) code. We
select the flags that generate a SASS code that differs from the default NVCC optimization (O3).
It is expected that two identical codes will have the exact fault propagation probabilities and the
same FIT rate. We evaluated the following optimization flags:
(1) O0, O1, and O3: The optimization levels available on NVCC for the tested benchmarks.

Although O2 is supported for NVCC, the O2 option generates the same code as O3 for the
tested applications. All flags, but O0 and O1, are related to float approximations or register
file usage. The approximation flags are tested on top of the default NVCC configuration (03).

(2) FTZ-ON: The –ftz=true flag on NVCC flushes subnormal numbers (i.e., values smaller than
the smallest possible value) to zero. Faults that generate subnormal numbers will probably
be masked with FTZ-ON.

(3) FMAD-OFF: The default NVCC action is to contract the multiply and accumulate instructions
into HFMA, FFMA, or DFMA. To disable the contraction of the multiply and accumulate
instructions, we have to pass –fmad=false as a parameter. The contracted instruction may
generate a different result due to destructive cancellation, so we expect the impact of a fault
will be different on contracted instructions.

(4) MinRF: Each thread on a CUDA kernel can use up to 255 registers, respecting the limits
of the GPU occupation. With the flag –maxrregcount=N, we can set the maximum number
of registers per thread, where 𝑁 is the limit of registers per thread. We chose to set the
number of registers per thread to the minimum for each architecture, 16 for Kepler, and
24 for Volta. Limiting the number of registers per thread can be used to increase the GPU

2Often denoted as Shader Assembly.
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8 Fernandes dos Santos et al.

occupation. However, it also increases the register spill to the memory, which can decrease
the performance.

(5) PrecSqrt-OFF and PrecDiv-OFF: The flag –prec-sqrt=false and –prec-div=false allow the
NVCC to use a fast approximation for the square root and float divisions, respectively. Float
approximations improve performance but may change the impact of the fault in the final
result.

(6) FAST-MATH: Passing the flag –use_fast_math to NVCC enables all the fast approximations
for arithmetic float operations. That is, all the flags –ftz=true, –prec-div=false, –prec-sqrt=false,
–fmad=true are set in the compilation process.

Recent works have demonstrated that the effectiveness of a particular flag in enhancing code
reliability depends on how it modifies the resources used for computation (more or larger resources
imply a higher error rate) and how performance is improved (faster executions imply a higher
amount of data produced before the fault happens) [40, 42]. To fully assess these two tradeoffs, in
this paper, we correlate the impact on the reliability of different compiler compilation flags by using
software fault injection and the hardware fault probability. In Section 4 we evaluate the impact of
each optimization flag on the code size and execution time. Then, in Section 5, we evaluate how
each optimization flag modifies how the code is mapped in the hardware (resource utilization)
and the implications on the error rate. Finally, we also combine the impacts on error rate and
performance in Section 5.3. Note that we perform characterization at the instruction level based on
profiling. However, optimization flags used by the compiler can have effects beyond the instruction
profile, requiring specific analysis to understand their impact on reliability.

3.3 Fault Injection Framework
We use the NVBitFI [52] fault injector to simulate faults in the software. NVBitFI injects transient
errors in the GPU’s Instruction Set Architecture (ISA) visible states, general-purpose registers,
predicate registers, condition instructions, and arithmetic instructions. NVBitFI perfectly suits the
proposed evaluation since it can instrument the kernels at the SASS level. Other fault injectors
such as GPUQin, CAROL-FI, Kayotee, GPGPU-SIM, SIFI, GUFI [15, 27, 36, 53, 54], neither allow
to inject faults at the SASS level nor offer support for Kepler and Volta architectures at the same
time. We inject up to 1,000 (750 for applications that only have integer operations) single-bit flips
faults per code on NVBitFI, for a total of more than 200,000 faults per ISA, ensuring 95% confidence
intervals to be lower than 5% [52]. With NVBitFI, we measure the probability of a fault propagating
in software leading to a failure (SDC or DUE), i.e., the Program Vulnerability Factor (PVF) [50].
The PVF identifies which instruction or resource, once corrupted, is more likely to affect the GPU
computation.

3.4 Beam experiments setup for validation
Beam experiments are the most accurate method to evaluate and validate a device’s reliability. The
Failure In Time (FIT) can be measured on beam experiments by dividing the numbers of observed
errors by the received particles (𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠/𝑐𝑚2) and multiplying by the terrestrial neutron flux.
When multiplied by the terrestrial flux (13 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠/(𝑐𝑚2 ·ℎ) at sea level), we estimate the realistic
error rate, expressed in FIT, i.e., errors per 109 hours of operation.

Our experiments were performed at the ChipIR facility of the Rutherford Appleton Laboratory,
UK. Figure 2 shows the setup mounted at ChipIR. The facility delivers a beam of neutrons with a
spectrum of energies that resembles the atmospheric neutrons [7]. The available neutron flux was
about 3.5×106𝑛/(𝑐𝑚2/𝑠),∼8 orders of magnitude higher than the terrestrial flux (13𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠/(𝑐𝑚2 ·
ℎ) [26]).

ACM Trans. Arch. Code Optim., Vol. XX, No. XX, Article . Publication date: January 2024.



Assessing the Impact of Compiler Optimizations on GPUs Reliability 9

Since the terrestrial neutron flux is low, in a realistic application, it is unlikely to see more
than one error during a single program execution. Hence the experiments have been designed to
maintain this property (observed error rates were lower than four errors per 1,000 executions).
Experimental data can be scaled to the natural terrestrial environment without introducing artifacts.

The FIT rate is linearly dependent on the amount of resources used for computation, the proba-
bility of the fault to occur (the technology sensitivity), and the probability of a fault propagating
to the computation output (PVF). The FIT rate does not depend on the execution time, though.
For instance, if the same amount of memory is exposed for a time interval 𝑡 or 2𝑡 , its FIT rate
will not change. In fact, in 2𝑡 , we expect twice the errors and twice the neutrons (i.e., twice the
fluence). Similarly, under the assumption that at most one fault can affect the GPU during code
execution (because the natural flux is very low), executing 𝑥 or 2𝑥 sequential MUL instructions
does not change the probability of having one MUL corrupted by neutrons. However, what can
change is the probability that an error in one of the MULs propagates to the output of the sequence
of the operations (i.e., the PVF). If the additional 𝑥 MULs are executed in parallel with the original
sequence, the FIT rate is expected to double (same execution time, same fluence, but doubled the
error rate). We use these premises to comment on how the performance can impact the error
prediction on Section 5.

To evaluate also the performance impact of each optimization flag and its relation to the error rate,
we use the Mean Work Between Failures (MWBF) [47]. The MWBF allows measuring the amount
of useful work produced before the system experiences a failure. We calculate the MWBF for all
configurations evaluate in the radiation experiments (See Section 6). As we show, the performance
gain brought by the compiler optimization is higher than the increase in the error rate, resulting in
a more reliable execution.
We select GEMM to evaluate the impact of the optimizations on the code error rate under a

realistic environment. We could not test all the configurations from figures 3 and 4 due to beam
time limitations. We evaluated the GEMM compiled with NVCC 10.2 and 11.3 with different levels
of optimizations (O0, O1, O3, and MinRF, see Section 3.2). In fact, even for a simple code like GEMM,
compiler optimizations can considerably impact the execution of the dynamic instructions. In the
next section, we demonstrate this behavior by presenting the instruction profiling.

4 DYNAMIC INSTRUCTIONS PROFILING
This section presents the dynamic instruction profiling on the GPU codes, which is necessary to
understand the compiler impact on the code’s reliability. Dynamic instruction profiling extracts the
code characteristics that can contribute to the final error rate. It has been shown that fault masking
is directly related to the basic block organizations and instruction dependencies of the code [1].
Consequently, a code compiled with the O0 flag can mask more faults than a code compiled with
O3, since the unoptimized code (O0) has more dead code and redundant instructions. A fault in a
redundant instruction output will be masked [2]. However, the unoptimized code will take much
longer to execute than the optimized one, being able to deliver a lower number of correct executions
before experiencing a failure. Thus, it is necessary to consider both the code size and the execution
time in the reliability analysis of different compiler optimizations.
For all the benchmarks listed in table 1 built with all the flags and compilers described in

Section 3.2, we profile the GPU kernels using Nvprof (Kepler) and Nsight-Compute (Volta). Figures 3
and 4 show the code size and the execution time relative to the default NVCC compilation (O3).
The code size is measured by counting the kernels’ SASS lines compared with the default NVCC
configuration. The O3 configuration is marked as a red line in the figure to represent the relative
size for each configuration.
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Fig. 2. Neutron beam experiments setup mounted at ChipIR. All devices are connected to a socket server by
a network switch through an Ethernet connection. The socket server controls the experiments running on the
beam. If the devices stop responding, the server will use the network-controlled power switch to power cycle
the power supplies.

From Figure 3, we can derive some interesting trends. Reducing the hardware core iterations to
execute a floating-point operation, e.g., using the fast math option, is a common type of approxi-
mation. While fast math generally reduces the accuracy of the result, it can reduce the code size
and the execution time, as shown in Figures 3 and 4. From a reliability perspective, approximation
improves performance and can thus reduce the error rate (smaller area and/or fewer operations
executed). However, the impact of the fault in the approximate result can be higher as fewer bits
are used to represent the output [17]. The probability for the fault to propagate (PVF) can then be
change. Our results in Section 5.3 confirm this analysis.
When we limit the compiler optimizations (MinRF, O0, and FMAD-OFF), the generated code

is larger and execution time increases (Figure 4). When we compile the code with limited/no
optimizations, the generated SASS is not reorganized for performance or optimized memory
accesses. Similarly, when we limit the register file usage, the compiler inserts many registers spills
instructions in the code to compensate for the reduced registers per thread. The MinRF code size
has on average 23% more instructions than the only O3 code.

Figure 4 shows the execution time for the considered configurations, relative to the default NVCC
compilation (O3). The execution time follows the same trend as code size. The optimizations that
approximate the float instructions have a lower execution time than O3 compiled code. In fact, the
FAST-MATH flag can reduce 40% of the execution time for some codes.
Contrarily, O0 and MinRF have the longest execution time. The unoptimized code (O0) signifi-

cantly reduces the instruction-level parallelism, and reduces the memory accesses performance,
increasing the latency of the instructions. Equivalently, for the MinRF version, the register spills nec-
essary for reduced register file usage have a high cost in terms of execution time. The instructions
must wait for the operands which are not in the register file.

It is worth noting that an incorrectly applied optimization can be 5× slower than the optimized
one (O3), as shown in Figure 4. In sections 5 and 6, we show how these optimizations can impact
not only the fault propagation and error rate but also the amount of work that the application
process before experiencing a failure (i.e., the Mean Work Between Failures [47]). For instance, an
unoptimized code may have a lower error rate than an optimized one, however, the much longer
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Fig. 3. Code size relative to default NVCC compilation for Nvcc versions 10.2 and 11.3

time needed to complete the execution of the unoptimized version will produce less useful work
than the optimized one (details in Section 6).

5 COMPILER OPTIMIZATIONS IMPACT ON RELIABILITY
This section presents an ablation study on the impact of compiler optimization on the device
error rate. First, we present the fault propagation analysis Program Vulnerability Factor (PVF) to
understand the possible impact of compiler versions and optimizations on the fault propagation
probability. We also consider the machine instruction distribution and the impact of using different
hardware units. Compiler optimization, as it alters the machine code, is likely to modify the
probability of a fault propagating to the output. Furthermore, certain compiler optimizations may
change the choice of hardware functional units for calculations (e.g., MUL and ADD instead of
FMA). Additionally, we investigate how compiler optimizations can alter the probability of a fault
occurring.
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Fig. 4. Execution time relative to default NVCC compilation for versions 10.2 and 11.3

We discuss the baseline PVF for the default configuration of NVCC 10.2 and 11.3, specifically
with the O3 optimization flag, aiming to understand if and how compiler versions impact the
probability of a fault corrupting the output. Subsequently, we explore various NVCC optimizations
for both compiler versions and compare their effects. We utilize both the SDC probability (solely
software-based) and the SDC error rate estimation (which incorporates the hardware fault rate) to
evaluate the impact of each optimization.

5.1 Random Software Fault Injection
We start our analysis by evaluating the PVF for two NVCC versions, namely 10.2 and 11.3, utilizing
the default configuration with O3 optimization. With each major update of NVCC (e.g., from version
10 to 11), the compiler undergoes modifications to accommodate a new Instruction Set Architecture
(ISA) for a new GPU family, including support to new mixed-precision instructions and data types.

ACM Trans. Arch. Code Optim., Vol. XX, No. XX, Article . Publication date: January 2024.



Assessing the Impact of Compiler Optimizations on GPUs Reliability 13

BFS CFD GSS HST LVA LUD GEMM MST
0.0

0.2

0.4

0.6

0.8

1.0

Pr
og

ra
m

 V
ul

ne
ra

bi
lit

y 
Fa

ct
or Kepler

BFS CFD GSS HST LVA LUD GEMM MST

Volta10.2 11.3 SDC DUE Masked

Fig. 5. Program Vulnerability Factor (PVF) comparison for the default NVCC 10.2 and 11.3 configurations
with 𝑂3 flag optimization enabled.

Additionally, for every upgrade, code generation and optimizations are improved, and compiler
bugs are corrected. The NVCC modifications may impact the fault propagation probabilities and
possibly affect the error rate.

We inject 1,000 faults on codes build with the two latest NVCC versions that support Kepler and
Volta architectures simultaneously (i.e., 10.2 and 11.3). Figure 5 shows, for the evaluated codes, the
PVF, i.e., the probability for an injected fault to propagate to the output.

For the same code build with different NVCC versions, 10.2 and 11.3, the SDC and DUE PVF are
similar for the majority of the benchmarks. On average, the PVF variation for the same code and
a different compiler is only 5%. On average, the SDC PVF difference between Kepler (which has
a much older instruction set) and Volta is 2%. For DUEs, the PVF for Kepler is, on average, 1.36×
higher than Volta.
From the results, we observe that GEMM, LVA, and LUD consistently exhibit higher PVFs

across all GPUs. In contrast, GSS and CFD display the lowest PVFs. The characteristics of the
code directly influence the PVF, as fault propagation varies depending on how the faulty value is
used. For instance, GEMM and LAVA are codes that involve repetitive execution of a limited set
of instruction types (e.g., FMA and FMUL). Thus, a fault causing a slight deviation in the values
will likely propagate throughout the computation. On the other hand, codes like GSS and CFD
encompass a series of diverse instruction types, including the utilization of transcendental units,
which may generate very small values. This inherent behavior can lead to increased rounding and
catastrophic cancellation errors, effectively masking faults that generate small-magnitude errors.
In the following sections, we will discuss if the tendencies observed on the baseline PVF (O3) hold
for the SDC probability and the SDC rate estimation with different optimization configurations.

5.2 Contribution of Instructions Distribution
As discussed in previous works [1, 16, 30, 39, 57], the PVF provides an overview of the reliability of
a code, but it does not consider the distribution of instructions, since faults are randomly injected
during the code execution. To consider also the probability of the instruction to be picked on the
fault injection campaign and generate an SDC, we also consider the instruction distribution on the
fault propagation analysis, measuring the SDC probability [30], as shown in equation 1.

𝑃𝑆𝐷𝐶 =
∑︁

(𝑃𝑉 𝐹𝑖 ∗
𝑁𝑖

𝑁𝑡𝑜𝑡𝑎𝑙

) (1)

Where 𝑃𝑉 𝐹𝑖 represents an PVF for a given instruction 𝑖 , and 𝑁𝑖

𝑁𝑡𝑜𝑡𝑎𝑙
represents the probability of

an instruction 𝑖 in the total instruction count (the ratio of instruction 𝑖).
Figure 6 shows the SDC probability (𝑃𝑆𝐷𝐶 ) distribution (vertical axis) for all the evaluated codes

(horizontal axis). We show the results for two GPUs, Kepler and Volta, with two NVCC versions.
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We test the flags presented in Section 3 for each device and compiler. In most benchmarks, the
SDC probability exhibits only a slight variation. The average Coefficient of variation, indicating
the deviation of SDC probabilities from the mean, is ≈15%. With the exception of BFS (i.e., a graph
search code not well suited for GPUs), most codes demonstrate a SDC probability that aligns
closely with the default configuration (O3) for various optimization flags. This suggests that despite
significant modifications in the executed machine code (see Section 4), the error rate is unlikely to
change significantly. However, we find this result counterintuitive as the SDC probability does not
account for a significant aspect of reliability, namely the hardware fault probability. The subsequent
subsection and the experimental validation proposed in Section 6 provide further analysis and
confirm this observation.

BFS has coefficients of variations of 32% and 43%, for NVCC 10.2 and 11.3, respectively. BFS is a
code with a low PVF compared with the other codes. BFS is also naive and not tuned for performance
implementations. Consequently, the benchmark instruction distribution is very concentrated in
load/store and MISC (i.g., sync and NOP) instructions. The reliability evaluation of load, store, and
MISC instructions is challenging, and it is hard to determine their sensitivity by software fault
injection. Thus, the SDC probability may not reflect a realistic scenario. In the next section, we
discuss the impact on the error rate prediction of the performance of the outliers codes.

The compilation flag that produces the lowest values of SDC probability is the unoptimized code
(O0). This can be justified considering that without optimization, the compiler leaves basic blocks
in the code that do not contribute to the final output or update registers that are overwritten. A
fault in any of these optimized resources is simply masked and does not propagate to the final
output, reducing the code PVF.
On the other hand, the MinRF, FAST-MATH, and FTZ-ON have the highest SDC probabilities.

When the number of registers is limited, the criticality of each register increases, as the compiler
will continuously optimize to use all registers available. As the number of instructions is reduced
for the approximation flags, the fault impact in an approximated instruction is expected to be higher
at the software level. Obviously, SDC probability does not consider the fact that a lower number of
registers and approximation reduces the probability for the hardware fault to be generated, as we
show next.

Each functional unit has a specific probability of being corrupted. Consequently, if an optimization
changes the code instructions distribution, it will change the PVF (evaluated by the SDC probability)
but also the instruction’s contribution to the final error rate. We need to consider both the functional
units’ error rate and the performance of the code to estimate a more accurate error rate. We present
this hardware/software analysis in the following subsection.

5.3 Contribution of the Hardware Sensitivity
The authors in [48] proposed a methodology to enhance the accuracy of error rate estimation by
considering both the fault propagation probability of instructions (PVF) and the probability of
faults originating in the hardware (instruction error rate, FIT). Equation 2 provides an estimation
of the SDC FIT rate (†𝐹𝐼𝑇 ).

† 𝐹𝐼𝑇 = 𝐼𝑃𝐶 ∗𝐴𝑂 ∗
∑︁

(𝑃𝑉 𝐹𝑖 ∗
𝑁𝑖

𝑁𝑡𝑜𝑡𝑎𝑙

∗ 𝐹𝐼𝑇𝑖 ) (2)

Where 𝑃𝑉 𝐹𝑖 represents the PVF for a given instruction 𝑖 , and 𝑁𝑖

𝑁𝑡𝑜𝑡𝑎𝑙
represents the probability

of an instruction 𝑖 in the total application instruction count. The 𝐹𝐼𝑇𝑖 represents the FIT rate of a
given instruction measured through beam experiments. We use the instruction 𝐹𝐼𝑇𝑖 data available
from [48]. The FIT rate of the instructions is measured with microbenchmarks that execute the
same instruction most of the time (99% of the instructions), with the maximum optimization (O3).
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Fig. 6. Silent Data Corruption probability (𝑃 (𝑆𝐷𝐶) ) distribution. Based on [30]. Despite various optimization
flags used for both GPUs and NVCC versions, the SDC probability shows relatively low variations.

The goal of the microbenchmarks is only to evaluate the functional units’ error rate and not the
criticality of the errors introduced by approximations or compilation flags.
Additionally, as the code’s FIT rate is directly related to the device parallelism management,

the authors proposed a normalization factor. The normalization is obtained by multiplying the
application Instruction Per Cycle (IPC) by the Achieved Occupancy (AO). It is worth noting that, for
this work, the SDC probability and SDC rate estimation consider only faults in the functional units
and the output registers. The caches and shared memories error rate are not considered for SDC
probability or the SDC rate estimation. This scenario would be comparable to the ECC ON on a
real device.

Figure 7 displays the SDC rate estimation for the codes listed in Table 1. The results include all
configurations obtained from the SDC probability experiments. To facilitate comparison, the data in
Figure 7 is normalized by the highest estimated SDC rate for each board, namely HST FAST-MATH
10.2 for Kepler and GEMM O0 11.3 for Volta.

The average Coefficient of Variation for the SDC rate estimation is 33.6% across all configurations
shown in Figure 7. The highest variations are observed in LVA, with 98% for Kepler and 103% for
Volta. From the selected codes, LVA is the most computationally intensive code, with 75% of the
instructions involving float arithmetic. The error rate of LVA is directly influenced by the error rate
of the functional units and how they are utilized. Any changes in the IPC or instruction distribution
caused by flag configurations or the compiler will directly impact the SDC rate.

BFS and GSS exhibit the lowest estimated SDC rates. The low SDC estimation for GSS is attributed
to its low PVF, which is influenced by the instructions used in the code. Similarly, GSS also has the
lowest SDC probability. On the other hand, BFS has a low SDC estimation due to its low IPCs and
GPU occupancy. This aspect may pose a limitation in the methodology as the error rate estimation
is normalized based on performance metrics. Still, for codes that demonstrate poor performance
metrics, it is necessary to assess other instruction types on the GPU, such as branch instructions,
synchronization instructions, and load/store operations from various cache levels. In other words,
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Fig. 7. SDC rate estimation (†𝐹𝐼𝑇 ) distribution. Based on [48]. Contrary to the SDC probability, the SDC FIT
estimation shows considerable variation for the same code with different compiler versions and optimizations,
highlighting the importance of considering hardware in fault propagation analysis.

the analysis must also consider instructions that impact the kernel’s performance (e.g., instructions
causing pipeline stalls) to enhance the accuracy of the estimation.

The differences between the SDC probabilities for the two compilersNVCC 10.2 and 11.3 follow
the trend shown in Figure 5. The SDC probability ratio between NVCC 10.2 and 11.3 is, on average,
1.03×. Contrarily, for the SDC rate estimation, the ratio between the NVCC 10.2 and 11.3 is, on
average, 8× higher for version 10.2. In fact, the SDC rate estimation ratio between NVCC 10.2 and
11.3 is not homogeneous as the SDC probability. That is, some benchmarks have much higher
differences than the mean. Considering the SDC rate estimation ratio between the NVCC 10.2 and
11.3 in the 75% quartile of values, the average difference between the two compilers is 22% higher
for NVCC 10.2. This discrepancy could not be observed using only software fault injection and the
instruction distribution as it directly depends on the hardware fault probability and the usage of
the resources. A subset of configurations evaluated with beam experiments will be analyzed in the
next section to help to demonstrate this observation.
It is worth noting that the ideal compiler optimization depends on the application’s priorities.

In cases where the primary concern is the amount of data processed, such as in HPC, opting for
a more aggressive optimization strategy is advisable. This choice, while potentially leading to
higher PVF and SDC rates, allows more executions to be completed before the error (i.e., higher
MWBF). Contrarily, the reliability focus shifts to minimizing the error rate in safety-critical real-
time applications. For instance, if a camera must deliver 40 frames per second, an optimization flag
that allows the GPU to process more frames is unnecessary. A less aggressive optimization strategy
is preferable in such cases, as it effectively reduces the SDC rate.

6 NEUTRON BEAM EXPERIMENTS RESULTS
In this section, we validate the analysis proposed in Section 5 by leveraging beam experiments on
real GPUs. We begin by examining the error rate of GEMM (i.e., Failure In Time, FIT), measured
through neutron beam experiments, to evaluate the influence of each optimization on the code’s
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Fig. 8. Normalized SDC and DUE FIT rates and MWBF for CUDA 10.2 and 11.3. The FIT rate for GEMM
compiled with O0 ECC ON is used as a normalization factor.

reliability. Additionally, we combine the performance of each configuration with the error rate to
present the results of Mean Work Between Failures (MWBF).
Figure 8a shows the Silent Data Corruption (SDC) and Detected Unrecoverable Errors (DUEs)

FIT rates for GEMM executed on a Kepler GPU exposed to a neutron beam. To ensure a meaningful
comparison of error rates across different configurations while safeguarding business-sensitive
data, the FIT rate is normalized using the smallest value as the reference (i.e., GEMM compiled with
O0 on NVCC 11.3 when ECC is ON). Due to limitations in beam time, our analysis primarily focuses
on configurations with ECC ON while displaying the most optimized code when ECC is OFF (O3).
Previous studies have established that disabling ECC on GPUs makes memories the primary source
of errors [32, 37, 48, 51]. Consequently, the FIT rate is predominantly influenced by memory-related
errors. However, this analysis is less intriguing and less representative of real-world scenarios
compared to examining the impact of compiler optimizations on code, where the focus is on errors
arising from arithmetical and thread/warp synchronization instructions.

When ECC is OFF, the SDC FIT rate for the most optimized configurations (O3) is more than one
order of magnitude higher compared to when ECC is ON (17.8× higher for NVCC 10.2), and 6.5×
higher for NVCC 11.3. The register file and the caches are unprotected when ECC is OFF, leading
to an increased SDC rate. An interesting observation is that the SDC FIT rate is consistently higher
than the DUE FIT rate when ECC is OFF, whereas, with ECC enabled, the DUE rate is similar to or
higher than the SDC rate. A double-bit flip detected by the ECC triggers an exception that leads to
a crash. The increase in the DUE rate when ECC is ON aligns with previous research findings [32].
Figure 8a shows significant differences in the FIT rate for the same code occur when ECC

is ON, and the code is compiled with different compilers. Surprisingly, the FIT rate obtained
with NVCC 10.2 is the opposite of the FIT rate obtained with NVCC 11.3. This behavior can be
attributed to the variations in the code generated by the two compilers. For instance, the NVCC
10.2 compiler generates code with a difference in the number of MISC instructions across all four
configurations (on average, NVCC 10.2 has 106 more MISC instructions, i.e., ≈3% more MISC
instructions). These findings align with the observations discussed in Section 5 and highlight
the importance of considering factors beyond software fault injection alone to ensure accurate
estimations. The GEMM build compiled with NVCC 10.2 using the O3 optimization leverages GPU
resources more effectively, including register usage, resulting in better overall performance than
the O3 version compiled with NVCC 11.3. Consequently, the FIT rate is lower for the NVCC 10.2
O3 configuration.

Compiler optimizations significantly impact the code’s error rate. Furthermore, these optimiza-
tions also improve the performance of the code. When the code executes faster, it has the potential to
generate a higher amount of correct data before encountering a failure. We measure the MWBF for
each configuration tested to establish a correlation between reliability and performance. MWBF is
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Table 2. Comparison of GEMM SDC FIT rates obtained using the approach described in Section 5.3 and
those obtained from Neutron Beam experiments. The SDC FIT rates are normalized using the smallest FIT
rate, which corresponds to NVCC 11.3 compiled with the O0 flag.

NVCC Optimization flag SDC FIT rate Beam/PredictedPredicted Beam

10.2

MinRF 2.41 3.24 1.35
O0 3.37 3.97 1.18
O1 2.32 4.09 1.76
O3 2.39 1.48 0.62

11.3

MinRF 2.47 3.13 1.27
O0 3.33 1.00 0.30
O1 2.30 2.11 0.92
O3 2.43 2.99 1.23

defined as the amount of correct data produced by the system before a failure occurs, encompassing
both SDCs and DUEs [47]. The calculation of MWBF is obtained by multiplying the number of
executions between failures by the workload of the application. A higher MWBF rate indicates the
system can process a larger workload before encountering an error.

Figure 8b shows the MWBF for the float matrix multiplication (GEMM) across all configurations
tested in the neutron beam experiments. Despite the increase in error rates in some configurations,
optimizations that enhance performance also lead to higher MWBF values for the application. In
other words, the performance improvements achieved through optimization outweigh the increase
in error rate. As expected, when ECC is OFF, the MWBF values for both compiler versions are
lower than when ECC is ON (8.7× lower for NVCC 10.2 and 4.1× lower for NVCC 11.3, for the
O3 configuration). Despite increased DUEs with ECC ON, this version remains more reliable and
generates more correct data than the ECC OFF version.
When ECC is ON, the O3 configuration for NVCC 11.3 increases the total FIT rate by 69%

without improving performance. Consequently, the NVCC 10.2 compiled with O3 when ECC is
ON exhibits the highest MWBF among all configurations. It is worth noting that even with the
lower improvement in NVCC 11.3 compared to NVCC 10.2, the MWBF values for the O1 and O3
configurations of NVCC 11.3 are consistently higher than the less optimized MinRF and O0 codes.
Specifically, the MWBF of O1 is 41.2% higher than O0 and 25.2% higher than MinRF, while the
MWBF of O3 is 17.11% higher than O0 and 4% higher than MinRF. This indicates that, even with
higher FIT rates, the most optimized versions of the code, O1 and O3, can still produce more correct
results before experiencing a failure.

In order to provide a comprehensive overview of the results shown in Figure 8, we compare the
SDC FIT obtained from beam experiments with the predicted SDC FIT (Section 5.3). Table 2 presents
both SDC FIT rates (Predicted and Beam) and the ratio between both (Beam divided by Predicted).
Predicted and Beam SDC FITs are normalized by the lowest value in the table, corresponding to
the SDC FIT obtained with NVCC 11.3 O0 from the beam experiments. On average, the predicted
SDC FIT for NVCC 10.2 is underestimated, as it is 1.23× lower than the beam SDC FIT. Conversely,
the beam SDC FIT for NVCC 11.3 is 0.93× lower than the predicted SDC FIT. It is worth noting
that, in Table 2 , we are comparing a measurement based on physical stress (beam) and a prediction
based on simulation. An intrinsic difference between the two methodologies is then to be expected.
The reported beam/predicted ratio is actually more accurate than a similar comparison made on
simpler computing devices, such as the ARM A5 and A9, in [6]. Additionally, without considering
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the hardware sensitivity, as we do in the SDC FIT rate prediction, the differences would diverge
and be higher than one order of magnitude. This discrepancy directly relates to the instruction
types used in the SDC FIT prediction, which are all related to arithmetic instructions (i.g., FMA,
ADD, and MUL). Even a slight variation in the code’s instructions can significantly impact the final
FIT rate, as observed in Figure 8. Nonetheless, using a small set of instruction types still allows for
estimation within the same order of magnitude as the measured beam FIT.

Our results show that modifications in the compilation process, such as a slight increase in register
file usage, can impact the application’s reliability. Code generation can influence the probability
of fault propagation, hardware usage (e.g., IPC), and the stress placed on specific functional units,
thereby altering the code’s error rate. While software-level analysis provides a reasonable estimate
of code fault propagation, it does not account for hardware factors such as instruction latency,
GPU occupancy, and IPC, which have been shown to influence the final error rate. Therefore, it
is essential to consider all these factors in the overall analysis. Overall, the results indicate that
increasing performance, even if it leads to a linear increase in the FIT rate, outweighs the increase
in the FIT rate. The MWBF for the most optimized configurations increases more than those less
optimized configurations. This suggests that for GPUs, it is preferable to push the device to its
maximum capacity to obtain more correct results before encountering a failure.

7 CONCLUSIONS
In this paper, we have evaluated the impact of compiler versions and compiler optimizations on
the reliability of codes executed on GPUs. We have considered eight representative codes and two
NVIDIA GPU architectures. A pure software reliability evaluation is not sufficient for an accurate
reliability evaluation. Even if the SASS code generated with different optimization flags differs
significantly, the resulting SDC probability changes only slightly, which is highly unrealistic. As
we have shown, also considering the hardware fault probability is necessary to estimate the SDC
error rate better.

To validate our observations and have a realistic evaluation, we have experimentally measured
the impact of optimization flags and compiler version on the Kepler GPU FIT rate using an accel-
erated neutron beam. The compiler optimizations significantly impact the code error rate, thus
demonstrating the need to consider the hardware fault probability. Moreover, we have shown that
while a more optimized code has a higher PVF and even a higher FIT rate, in general, optimization
increases the MWBF. In other words, the performance gain increases more than the error rate.
Optimizing the code, then, has the benefit of increasing the device’s reliability.
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