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ABSTRACT:
A nondestructive method (M) for stress characterization in plate-like structures is proposed. In this method, the

acoustoelastic effects (AEEs) on Lamb and shear horizontal guided waves are used to reconstruct a nonuniform mul-

tiaxial stress field. The development of M starts by deriving an analytical acoustoelastic model (An-AEM) to predict

AEEs induced by a triaxial stress tensor as a function of the stress components, its orientation, the wave propagation

direction, and three acoustoelastic coefficients (AECs). The AECs are independent of stress but specific to each

mode. The An-AEM allows one to retrieve the three components of the stress tensor and its orientation from AEEs,

assuming the stress to be uniform in the plane of the plate and through its thickness. To deal with stress that is non-

uniform in the plane, the An-AEM is combined with time-of-flight straight ray tomography to enable stress field

reconstruction. Numerical simulation is used to illustrate how such reconstruction can be performed. It is shown that

in some cases, stress components can be reconstructed with arbitrary accuracy, and in other cases, the tensorial

nature of stress renders the accuracy of its reconstruction dependent on spatial variations of the stress orientation.
VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0010359
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I. INTRODUCTION

Mechanical stress is a second-order tensor that describes

internal forces in a given material.1 It may originate from

thermal, chemical, and/or mechanical loading. It affects

structures in two distinct ways. First, it modifies the mechani-

cal state of the structure. On the one hand, this can be detri-

mental to the structure and may cause its deformation or

premature failure.2,3 On the other hand, it can be intention-

ally induced in a structure to prevent the aforementioned

effects.4,5 Second, it modifies the physical properties of the

structure. Owing to its tensorial nature, stress can induce

anisotropy of physical properties.6–8 It is of great interest to

have methods for stress characterization. Those found in the

literature can be classified into two different categories. The

methods of the first category exploit effects of stress on the

mechanical state. They can be either destructive, semi-

destructive (layer removal,9 sectioning,10 contour method,11

hole drilling,12 deep hole,13 etc.), or nondestructive (diffrac-

tion of x ray14 or neutrons15). The methods of the second cat-

egory exploit effects of stress on the physical properties (all

are nondestructive), such as micromagnetic effects (eddy cur-

rent16 and magnetic Barkhausen noise17), acoustoelastic

effects (AEEs; on bulk18 or surface waves19), and photoelas-

tic20 effects. The domains of applicability of these methods

vary greatly and range from those applicable only to uniform

uniaxial stress to those applicable to nonuniform multiaxial

stress. A closer look at the nondestructive methods shows that

they are often local (e.g., diffraction methods) or otherwise

assume uniform stress (e.g., acoustoelastic methods assuming

stress uniformity along the wave propagation path). These

limitations prevent them from treating efficiently complex

problems.

One of these problems is discussed in the present paper

(denoted p0 subsequently). It consists of determining a mul-

tiaxial nonuniform stress tensor field in metallic plates (but

uniform through the thickness). To the best of our knowl-

edge, there is no practical solution in the literature to deal

with such a problem (whether it is because the problem is

outside the domain of applicability of a method or because

the use of a given method would be too costly). Thence, the

objective of this work is to propose a new method (denoted

M) that overcomes the limitations of those found in the liter-

ature. The method M shall be nondestructive, nonlocal, and

able to characterize multiaxial stress. A method relying on

AEEs as a result of multiaxial stress on Lamb and shear hor-

izontal (SH) guided waves, as described in Ref. 21, can ful-

fill all of these requirements.

This paper is organized as follows. In Sec. II, the prob-

lem p0 and the method of solution M are defined. In Sec. III,

an approximate analytical version of the complete acoustoe-

lastic model (AEM; Ref. 21) is derived. The main goal of

this version is to make it easier to solve p0. In Sec. III A, a

numerical simulation is used to identify the domain of appli-

cability of the approximate analytical model. In Sec. III B, a
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simpler version of p0 (denoted p00) is solved using this ana-

lytical version. It consists of retrieving the three stress com-

ponents and its orientation from the velocity changes when

stress is uniform in the plane and through the thickness of

the plate. In Sec. IV, a tomographic imaging technique is

presented with which M is rendered nonlocal. The problems

that may arise when the object to be characterized is a tensor

are pointed out. In Sec. V, the problem p0 is decomposed

into five problems of increasing difficulty. Numerical simu-

lations are used to delineate the domain of applicability of

M. Throughout the paper, bold notation is used for vectors

and tensors.

II. DEFINITIONS OF p0 AND M

A multiaxial nonuniform stress field r ¼ diag r1; r2; r3ð Þ
is present in a metallic plate and assumed to be uniform through

its thickness (see Fig. 1). R0 e1; e2; e3ð Þ is a Cartesian frame of

reference, and e3 and r3 are normal to the surface of the plate.

The local orientation of the stress tensor is, thus, defined by a

single angle, denoted by a ¼ e1; r1ð Þ. The problem p0 is

defined as characterizing the stress tensor field when all three

components r1; r2; r3ð Þ and orientation að Þ of the stress tensor

are dependent on the position x1; x2ð Þ. Although no work was

found in the literature where p0 was treated by micromagnetic

methods (eddy current and Barkhausen noise), there is a priori
no reason that prevents them from solving p0 in principle. If

such methods existed, they would remain, nonetheless, imprac-

tical because they are local (i.e., allowing for the information to

be retrieved only in a small sensor-sized volume). In addition,

they could only be implemented for conductive and/or mag-

netic materials. The acoustoelastic methods18,19 are less restric-

tive (no need for the material to be conductive and/or

magnetic). However, those found in Refs. 18, 19, 22, and 23

consider the stress to be uniform along the wave propagation

path and its orientation to be uniform and known. These limita-

tions render them impractical for solving p0. The most complex

but still simpler version of p0 treated in the literature is that con-

sidered by Dorfi et al.,22 where the stress tensor field is biaxial

(r1; r2) with known and uniform orientation. The authors used

a grid of transducers (emitting and receiving bulk waves) at the

surface of a plate to determine the stress field. A further investi-

gation into the underlying assumptions of the known residual

stress characterization methods found in the literature shows

that two methods, neutron-diffraction24 and synchrotron x-ray

diffraction,25 are able to solve p0. However, these methods suf-

fer from being local, time-consuming (measurements in six

independent directions are needed to uniquely determine the

local value of the stress tensor), and difficult to implement on

the field because of the expensive and somewhat cumbersome

equipment involved (neutron source or high energy x-ray

source).

Here, a nonlocal, fast, nondestructive, and easy-to-

implement method (M) is proposed, allowing for stress char-

acterization in large regions far from transducers, based on

AEEs on elastic guided waves.21 The nonlocal and fast fea-

tures of M are ensured by making use of the time-of-flight

(TOF) tomography technique, specifically employing long-

distance propagating Lamb and SH guided waves. The con-

figuration of M is shown in Fig. 1, where a set of transducers

encircles a region of interest R. For a guided mode M (Lamb

or SH) of wave vector k, the propagation direction is defined

by the angle b ¼ e1; kð Þ and the TOF between two trans-

ducers Si and Sj is denoted by tM
ij . The goal is, therefore, to

take advantage of the dispersive and multimodal nature of

Lamb and SH guided modes21 to reconstruct the multivari-

able and directional object r from the tMij measurements.

III. ANALYTICAL ACOUSTOELASTIC MODEL
(AN-AEM)

A prerequisite for tomography (the technique necessary

to develop M) is a physical law that gives the object to be

imaged (in this case, the stress tensor) as a function of the

measured quantity (tM
ij ). Such laws exist in the literature

(Refs. 18, 19, 22, and 23) for bulk and surface waves, theo-

retically derived from the theory of acoustoelasticity, and

given as mathematical expressions. A similar theoretical

derivation cannot be carried out in the case of Lamb and SH

guided waves. For this reason, the present work is based on

what was performed in Ref. 21, where a numerical AEM

was derived from the theory of acoustoelasticity applied to

Lamb and SH guided waves. The development of the AEM

starts by giving the stiffness tensor of an isotropic material

subjected to multiaxial stress as

ceq
ijkl ¼ cijkl Ei þ Ej þ Ek þ El þ 1ð Þ þ

X3

q¼1

dikcjlqqEq

þ
X3

m

cijklmmEm: (1)

E� are the principal strains. Their expressions as functions

of the principal stresses are cumbersome and can be found

in Ref. 21. cijkl and cijklmn denote the second- and third-order

FIG. 1. (Color online) A schematic representation of a multiaxial nonuni-

form stress r in a plate. The reference frame R0 e1; e2; e3ð Þ is defined with

e3 normal to the plate, and the stress orientation in the e1; e2ð Þ plane is

defined by the angle a ¼ e1; r1ð Þ. The stress components and orientation

are functions of x1; x2ð Þ and constant through the thickness.
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stiffness tensors of the material in its reference state

(assumed to be known) and dik is the Kronecker function.

This stiffness tensor is then used in a specific develop-

ment of the semi-analytical finite element method (SAFE;

Ref. 26) to predict modal propagation of guided waves in

stressed plate. The resulting numerical tool enables one to

solve the forward problem consisting of obtaining Lamb and

SH wave velocity changes induced by a multiaxial stress

tensor. It was shown to accurately predict the experimental

results.21 The AEM has been used to study the forward

problem for various loading configurations but cannot be

straightforwardly used to solve the inverse problem (i.e.,

retrieving the stress tensor components and orientation from

the induced Lamb and SH velocity changes). This inability

stems from two reasons. The first reason is a large number

of unknowns in the inverse problem (four), which prevents

one from resorting to an inversion using graphs. The second

reason is due to the absence of invertible mathematical

expressions relating Lamb and SH velocity changes to stress

(like those used for bulk waves).

Therefore, the main objective of this section is to obtain

such mathematical expressions. For this, the following quan-

tity is defined:

Drv rð Þ ¼ 100� v rð Þ � v0ð Þ
v0

; (2)

which is the relative velocity change (in percent) of a given

mode (Lamb or SH) between two states of the material: a ref-

erence state, which is not necessarily stress-free, but where the

velocity v0 is known, and a current state with unknown stress

r. In what follows, Drv rð Þ is referred to as the AEE.

The three main findings of Ref. 21 are (1) AEE depends

on the mode (Lamb-symmetric, Lamb-antisymmetric, and

SH), the velocity considered (group or phase), and the

orientation of the stress tensor; (2) AEE is, in general, nonli-

nearly dependent on the stress components; and (3) AEE

induced by a multiaxial stress tensor differs from the sum of

AEEs induced by each component considered separately.

These results allow one to describe the AEM using the follow-

ing mathematical expression found by a Taylor series expan-

sion of the multivariable function, Drv r1; r2; r3; b� að Þ:

Drv
M
g=p ¼

Xþ1
l¼1

X3

i

A lð Þ
i f ; b� að Þrl

i

 !

þ
Xþ1

l;m¼1

X3

i;j

B
l;mð Þ

ij f ; b� að Þrl
ir

m
j

0
@

1
A

þ
Xþ1

l;m;n¼1

X3

i;j;k

C
l;m;nð Þ

ijk f ; b� að Þrl
ir

m
j rn

k

0
@

1
A; (3)

where i; j; k 2 1; 2; 3f g and i 6¼ j 6¼ k, Drv
M
g=p is the relative

group/phase velocity change for a given mode M at a fre-

quency f , and a propagation direction b, which is induced

by a multiaxial stress tensor r ¼ diag r1; r2; r3ð Þ of

orientation a. The Taylor series expansion coefficients

A
ðlÞ
i ; B

l;mð Þ
ij , and C

l;m;nð Þ
ijk depend on the mode and nature of the

velocity considered (group or phase). This dependency was

omitted in their notation for conciseness. This expression is

non-invertible (it is impossible to find r1; r2; r3, and a when

Drv
M
g=p are known for all modes). The AEE is, in general,

nonlinearly dependent on stress components. A linear

approximation is, however, valid for certain modes in some

frequency ranges, as shown in Ref. 21. Such an assumption

is henceforward made and its domain of validity will be

sought for. As a result, Eq. (3) yields

Drv
M
g=p � AM

1;g=p f ; b� að Þr1 þ AM
2;g=p f ; b� að Þr2

þ AM
3;g=p f ; b� að Þr3: (4)

By virtue of symmetries, one sees that

(a) AM
3;g=p does not depend on b� a because r3 is normal

to the plate;

(b) Drv
M
g=p f ; b� að Þ ¼ Drv

M
g=p f ; a� bð Þ because the plane

e3; r1ð Þ is a plane of symmetry for the loading;

(c) Drv
M
g=p f ; b� að Þ ¼ Drv

M
g=p f ; b� a 6 pð Þ because both

planes e3; r1ð Þ and e3; r2ð Þ are planes of symmetry for

the loading; and

(d) for all b and a, one has AM
2;g=p f ; b� að Þ ¼ AM

1;g=p f ;ð
b� a� p=2Þ because for Lamb and SH guided waves,

there is no intrinsic difference between r1 and r2 other

than their directions, which are perpendicular.

When r1 ¼ r2, the elastic properties of the material and,

consequently, the AEEs are invariant under rotation of axis e3.

Thus, the quantity AM
1;g=p þ AM

2;g=p is independent of b� a. We

can, therefore, define the quantities AM
g=p ¼ ðAM

1;g=p þ AM
2;g=pÞ=2

and QM
g=p ¼ ðAM

1;g=p � AM
2;g=pÞ=2, where AM

g=p depends only on f

and QM
g=p depends on both f and b� a.

To further simplify the expression of Drv
M
g=p, one

assumes that QM
g=p can be rewritten as the product of two

terms with separated variables BM
g=p and F as QM

g=p f ; b� að Þ
¼ BM

g=p fð ÞF b� að Þ. Finally, Eq. (4) becomes

Drv
M
g=p ¼ AM

g=p fð Þ r1 þ r2ð Þ þ BM
g=p fð ÞF b� að Þ r1 � r2ð Þ

þ AM
3;g=p fð Þr3: (5)

The coefficients AM
g=p;B

M
g=p, and AM

3;g=p are called the acous-

toelastic coefficients (AECs), subsequently. They depend on

the frequency, mode, and velocity considered (group/phase).

From (b), (c), (d), F is an even and periodic function of

period p that satisfies F b� a� p=2ð Þ ¼ �F b� að Þ. Since

there must exist some frequencies where Drv
M
g=p is finite, the

function F must be bounded for all values of b� a. Without

loss of generality, F b� að Þ can be taken in �1; 1½ �. On this

basis, the choice of F b� að Þ ¼ cos 2 b� að Þð Þ is made.

Such a choice is motivated by the fact that the trigonometric

function cosine appears not only in the acoustoelastic laws

for bulk waves23,27 but also for Rayleigh28 and bulk29 waves
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in weakly anisotropic elastic media (independently of the

origin of anisotropy) and was shown to give an accurate fit

for experimental results for Lamb waves.30

The final form of Drv
M
g=p becomes

Drv
M
g=p ¼ AM

g=p fð Þ r1 þ r2ð Þ

þ BM
g=p fð Þcos 2 b� að Þð Þ r1 � r2ð Þ

þ AM
3;g=p fð Þr3: (6)

This expression is referred to as the An-AEM, which gives

AEE (Drv
M
g=p) explicitly as a function of stress. The An-

AEM is the basis on which the solution of p0 is constructed.

To identify its domain of applicability [i.e., for which mode

and at which frequency does this formula accurately predict

results calculated by the AEM, Eq. (3)], the following error

is defined

�M
g=p ¼

1

max ~I; I
� � ð jDrv

M
g=p AEMð Þ

� Drv
M
g=p An� AEMð ÞjdX; (7)

where

~I ¼
ð
jDrv

M
g=p AEMð ÞjdX

and

I ¼
ð
jDrv

M
g=p An� AEMð ÞjdX:

dX is equal to dr1dr2dr3db, and � is calculated at each fre-

quency. � (by construction in ½0; 1�) gives an estimate of the

deviation between the full AEM and analytical AEM. Other

definitions of error were tested: the root mean square error

(RMSE) and normalized RMSE. Both are not suitable: the

former measures an absolute difference, which makes it

dependent on the value of Drv; the latter measures a relative

difference but is unbounded, which makes it inadequate to

define fixed thresholds.

A. Domain of applicability of An-AEM

The example taken to identify the domain of applicabil-

ity of An-AEM is that of a 5-mm-thick plate made of Al

6061-T6 (Ref. 31) of density equal to 2704 kg m�3 and the

elastic properties (in its reference state) given by Table I.

For the adapted SAFE simulation,21 the plate thickness

is discretized using 32, one-dimensional (1D) three-node

isoparametric elements, a number determined by numerical

experiments to ensure accuracy.

Three numerical parametric studies were performed, in

which the three fundamental Lamb (A0 and S0) and shear

horizontal (SH0) guided modes were investigated. In the

first, the plate is subjected to uniform (in-plane and through-

thickness) in-plane uniaxial stress r1, ranging from �200 to

200 by 20 MPa step, and the stress orientation (a) is set—

for simplicity—to zero while the propagation direction (b)

was varied from 0� to 180� with 1.8� step, and the frequency

(f ) varied from 0 to 500 by 5 kHz step. At each (f ; r1) step,

the two AECs involved, AM
g=p and BM

g=p, are fitted on the

results of the AEM using the least mean square method. The

second study is similar to the first, but the plate is now sub-

jected to uniform uniaxial out-of-plane stress r3 and the

third AEC AM
3;g=p is obtained. These AECs [denoted for the

sake of compactness by A; B, and An (for AM
3;g=p)] are fitted

on these two uniaxial cases and used in a third parametric

study to compute the deviation � between AEM and An-

AEM [Eq. (6)]. In this third study, the plate is subjected to

uniform triaxial stress and all three stress components vary

from �200 to 200 MPa.

As the technique to be used for rendering M nonlocal is

the TOF tomography, only group velocities are of interest in

this work. Nevertheless, similar results can be obtained

when using phase velocities if required.

Results are shown in Fig. 2. In the first row, the three

AECs (in %/MPa) are plotted as functions of the frequency

for the three fundamental modes. AECs fitted on uniaxial

cases are presented using solid lines inside shaded areas.

These areas represent the possible values of AECs if they

were fitted on a triaxial case (i.e., the dependence of AECs

on stress). In other words, if the shaded area is large, uniax-

ial loading cannot be used to determine the AEC. Among

the three modes, S0 has the largest shaded area that is at its

largest in the frequency range [350,500] kHz where S0 is the

most dispersive. The S0 mode happens to be, also, the most

sensitive because its AECs are the largest. It is worth noting

that mode sensitivity was studied as function of mode dis-

persion and modal displacement in Ref. 21. No simple rela-

tionship between modal displacement/dispersion and mode

sensitivity was unveiled. However, for any practical case,

the mode sensitivity can be routinely assessed using the

AEM. Globally, AECs are dispersive where the correspond-

ing mode is also, and An has the highest values. In

Fig. 2 (d), the deviations � between AEE calculated by the

AEM in the triaxial case and those calculated by the An-

AEM with the AECs fitted on uniaxial cases are plotted as

functions of frequency. To better understand the meaning of

these deviations for the accuracy of the An-AEM, two fre-

quencies were chosen: f1 ¼ 200 kHz and f2 ¼ 500 kHz. At

the latter frequency, the error is at its highest (0:193); at the

former, the error has an intermediate value (0:017). Since

AEEs are functions of four parameters r1; r2; r3, and b, a

single representation is impossible. We chose to represent

the worst-case scenario when the values of r1; r2, and r3

lead to the highest difference between the An-AEM and

AEM, namely, when r1 ¼ �r2 ¼ �r3 ¼ �200 MPa. The

AEEs (Drv) were plotted as functions of the propagation

TABLE I. Al 6061-T6 elastic constants at 25 �C.

Constant k l l m n

in GPa 56:3 27:5 �281:5 �339 �416
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direction b. Figure 2(e) shows that for the intermediate value of

�, the AEM and its analytical version (An-AEM) are indistin-

guishable. On the other hand, Fig. 2(f) shows that the difference

between them can be substantial (same order of magnitude as

the AEE) for the highest value of �.
From these results, the domain of applicability of the

An-AEM can be defined using the deviation �. For a given

mode, the domain is defined as the frequency range(s) in

which � is lower than a given threshold �t. The value given

to �t is not universal and depends on how precise the stress

measurement needs to be, which is left to the appreciation

of potential end-users. Here, by setting, for example, �t to

0:15, one gets [0,490] kHz as the domain of applicability for

S0, [10,500] kHz for A0, and [0,500] kHz for SH0.

For the sake of generality, no numerical value is given to

�t, and the An-AEM is considered valid at least for S0 and A0

in the frequency range [0,350] kHz (i.e., the range where the

AECs of S0 are the least sensitive to stress). In this range, using

SH0 is still possible if high precision is not a priority.

A fourth parametric study was conducted—whose results

are not given here for conciseness—in which the frequency

ranged from 0 to 2 MHz. This study showed that Eq. (6) can-

not describe accurately the AEEs for some higher modes at

some frequencies. This can be overcome by introducing an

extra term [i.e., C fð Þ cos 4 b� að Þð Þð Þ] in the expression of the

An-AEM. Increasing the accuracy of the An-AEM comes at

the expense of introducing a fourth AEC and a more compli-

cated acoustoelastic law. Simplicity of the An-AEM is impor-

tant because it is possible in principle to obtain these AECs

from experiments in the same way as that to obtain them for

Rayleigh waves in Ref. 32. Two simple experiments can be

conducted to obtain all three AECs. In the first, the plate is

subjected to a known uniaxial stress r1 (for simplicity,

a ¼ 0�), and the AEE (Drv
M) for a given mode M at a given

frequency f is measured in two perpendicular directions (e.g.,

bk ¼ 0� and b? ¼ 90�). After simple algebra [see Eq. (6)],

one obtains

AM fð Þ ¼
Drv

M
k fð Þ þ Drv

M
? fð Þ

2r1

and

BM fð Þ ¼
Drv

M
k fð Þ � Drv

M
? fð Þ

2r1

: (8)

For An, the plate is subjected to uniaxial out-of-plane stress

r3 and the AEE is measured in any direction,

AM
n fð Þ ¼ Drv

M fð Þ
r3

: (9)

Once the domain of applicability of the An-AEM is deter-

mined and the AECs are obtained (numerically or experi-

mentally), solving the problem p00 is possible, as presented

in Sec. III B.

B. Solving p00

The problem p00 (Fig. 3) consists of retrieving the four

quantities r1; r2; r3, and a from the AEE when stress is uni-

form in the plane and through the thickness. The An-AEM

is used in its domain of applicability. Three transducers

S1; S2; S3 form an isosceles right triangle. Since e3; r1ð Þ is a

plane of symmetry for the problem, a measurement in a sin-

gle direction will give two possible stress orientations (one

being the mirror image of the other). The choice of angles

90� and 45� gives the solution with the least number of

measurements.

To solve p00 using this configuration, the transducers

are assumed to be able to radiate and detect S0 and A0

FIG. 2. (Color online) The first row shows the three acoustoelastic coefficients (AECs) for group velocities of the fundamental modes A0, S0, and SH0.

The second row shows (d) the deviation between the AEM and An-AEM. (e) and (f) show the relative group velocity change for a loading of r1 ¼ �r2

¼ �r3 ¼ �200 MPa, calculated by the AEM (dotted line) and An-AEM (solid line) at f1 ¼ 200 kHz (e) and f2 ¼ 500 kHz (f).
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modes. A centre frequency fc is chosen, at which both

modes are generated. Two measurements are made.

In the first measurement, S1 generates both modes,

detected by S2 (b ¼ 0�) and S3 (b ¼ 90�). The different

TOFs are denoted by tS0
12; t

A0
12 ; t

S0
13, and tA0

13 . By substituting

Eq. (2) into Eq. (6), the TOFs are given by

A0 :

l

tA0
12

¼ vA0
0 þ

vA0
0

100

h
AA0 r1 þ r2ð Þ

þBA0 cos 2að Þ r1 � r2ð Þ þ AA0
n r3

i
;

l

tA0
13

¼ vA0
0 þ

vA0
0

100

h
AA0 r1 þ r2ð Þ

�BA0 cos 2að Þ r1 � r2ð Þ þ AA0
n r3

i
;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

S0 :

l

tS0
12

¼ vS0
0 þ

vS0
0

100

h
AS0 r1 þ r2ð Þ

þBS0 cos 2að Þ r1 � r2ð Þ þ AS0
n r3�;

l

tA0
13

¼ vS0
0 þ

vS0
0

100

h
AS0 r1 þ r2ð Þ

�BS0 cos 2að Þ r1 � r2ð Þ þ AS0
n r3�;

8>>>>>>>>>><
>>>>>>>>>>:

(10)

where vS0;A0
0 are the velocities known in the reference state.

The AECs (AS0;A0;BS0;A0; and AS0;A0
n ) and velocities ðvS0;A0

0 Þ
are taken at fc. After some algebra, Eq. (10) becomes

r3¼50

AS0 l

tA0
12

þ l

tA0
13

�2vA0
0

� �� �
�AA0 l

tS0
12

þ l

tS0
13

�2vS0
0

� �� �
vA0

0 AS0AA0
n �vS0

0 AA0AS0
n

� � ;

r1þr2¼

50

vS0
0

l

tS0
12

þ l

tS0
13

�2vS0
0

� �
�AS0

n r3

� �
AS0

; ð11Þ

cos 2að Þ r1�r2ð Þ¼

50

vS0
0

l

tS0
12

� l

tS0
13

� �
BS0

:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

In the second measurement, S3 generates S0 detected by S2

(b ¼ 135�). One has

l
ffiffiffi
2
p

tS0
32

¼ vS0
0 þ

vS0
0

100
AS0 r1 þ r2ð Þ
	

�BS0 sin 2að Þ r1 � r2ð Þ þ AS0
n r3



: (12)

Using Eqs. (11) and (12) and recalling that a 2 ½0�; 180��,
the unique solution is

a ¼ 1

2
atan

l

tS0
12

� l
ffiffiffi
2
p

tS0
32

 !
þ l

tS0
13

� l
ffiffiffi
2
p

tS0
32

 !
l

tS0
12

� l

tS0
13

0
BBBB@

1
CCCCA;

r1 ¼
Sþ D

2
; r2 ¼

S� D

2
;

S ¼

50

vS0
0

l

tS0
12

þ l

tS0
13

� 2vS0
0

� �
� AS0

n r3

� �
AS0

;

D ¼

50

vS0
0

l

tS0
12

� l

tS0
13

� �
BS0 cos 2að Þ

:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(13)

The AECs appear in the denominators of the expressions of

r3 [Eq. (11)], S, and D [Eq. (13)]. Care must be taken when

choosing the centre frequency to avoid null or small-valued

denominators.

It is also possible to solve p00 using a single mode

(instead of two) generated at two different centre frequen-

cies. Solving p00 is a first part of the method M. A second

part consists in solving p0, in which the stress is nonuniform

in the plane (but uniform through the thickness).

IV. TOMOGRAPHY FOR STRESS IMAGING

This section focuses on the technique rendering stress

characterization nonlocal. Let l0 be the shortest length over

which the stress is assumed to be uniform. p0 could be

solved in a similar way to p00, which is by scanning the plate

surface with a cluster of three transducers forming an isosce-

les right triangle whose hypotenuse is shorter than l0. Such a

solution is local and can be time-consuming if l0 is small

relative to the size of the region to image. To overcome this,

the technique of tomography is used. A set of transducers

(emitters and receivers) encircles the region of interest R
(Fig. 1). Depending on the ratio of the wavelength k and

characteristic length of the object l0, two types of tomogra-

phy are usually defined. For a ratio k=l0 � 1, one speaks of

diffraction tomography (DT), where the incident wave

(from an emitter) is scattered in all directions and detected

by the rest of the sensors. DT cannot, in principle, solve p0

because the notions of wave path and propagation direction

are lost as the incident wave is scattered in all directions.

This prevents it from characterizing tensorial objects, which

are defined uniquely, only with respect to some direction (in

FIG. 3. (Color online) The measurement configuration of an unknown uni-

form triaxial stress using three transducers S1; S2 and S3 forming an isosce-

les right triangle.
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our case, that of the wave propagation). In contrast, ray

tomography (RT) is defined when k=l0 	 1. Under this con-

dition, diffraction is negligible, and the wave propagation

obeys the Snell-Descartes refraction laws (see Ref. 33).

When the propagation takes place in a homogeneous

medium, the wave trajectory (called “ray”) is straight, and

one speaks of straight ray tomography (SRT).33 Otherwise,

the rays are curved, and the technique is referred to as

curved ray tomography (CRT).33 RT is based on ray theory

(see Ref. 33), where, in addition to the condition k=l0 	 1,

l0 must be smaller than the width of the first Fresnel zone.

For isotropic homogeneous media, this width is equal toffiffiffiffiffiffi
kL
p

, where L is the distance between the emitter and

receiver (the ray length).

Inversion based on RT relies on two fundamental equa-

tions:33 one describes the wave amplitude (transport) and

the other describes its velocity (eikonal). Only the latter is

used here in the development of M as it defines the TOF

tE!R between the emitter (E) and receiver (R). Its integral

form (see Ref. 33 for details) is given by

tE!R ¼
ðR

E

ds

v sð Þ
; (14)

where ds denotes the length element along the ray (E! R)

and v is the group velocity. When the contrast between the

index of refraction of the object to image and that of the

background medium is less than 5%, the ray curvature can

be neglected so that SRT applies.34,35 Here, the object to be

imaged is the stress and its refraction index is given by the

AEE (Drv), which is smaller than 5%, in general, as shown

in Figs. 2(e) and 2(f). Therefore, the TOF SRT is used here-

after to develop M.

To reconstruct an object, SRT can use two algorithms: the

filtered back projection (FBP)35 or the algebraic reconstruction

technique (ART).35 The former is based on the Radon trans-

form36 and Fourier slice theorem.35 The FBP has been shown

to be more accurate and faster than the ART35 and is used in M
for these reasons. The two main configurations to run this algo-

rithm are the parallel-beam and fan-beam, which are shown in

Fig. 4. Given that M uses RT, its resolution is determined by

that of RT, which is equal to the width of the first Fresnel zone

(
ffiffiffiffiffiffi
kL
p

). Therefore, the shortest distance between two adjacent

rays (equal to d for the parallel-beam and rnDb for the fan-
beam) is taken to be less than

ffiffiffiffiffiffi
kL
p

. The region of interest R is

defined by the area where the density of ray-intersections is

high enough for accurate reconstruction. For the parallel-beam
(respectively, the fan-beam), this region is a circle with a diam-

eter n� 1ð Þd [respectively, 2rs sin n� 1ð ÞDb=2
� �

], where n is

the number of sensors.

In fan-beam, there is only one emitter (E) and n
receivers (R). The straight line linking E to Ri (receiver

number i) is the wave trajectory (ray ri). The middle ray

(thick arrow) makes an angle b with e1. Other rays are dis-

tributed on both sides of the middle ray with an angular step

of Db. One projection corresponds to a single value of b,

where the wave(s) radiated by the emitter is(are) received

by all of the receivers. In the fan-beam version, b varies in

the range ½0�; 360��. In parallel-beam, there are n emitters

and n receivers. The rays are parallel and distributed on both

sides of the middle ray (thick arrow) with a step d. The mid-

dle ray makes an angle b with e1. One projection corre-

sponds to a single value of b 2 ½0�; 180��; where the wave(s)

radiated by Ei is(are) received by Ri for all i 2 f1; ng.
Tomography has been used in the literature with different

types of waves to reconstruct various objects. For example,

acoustic34 and elastic bulk37 waves are used to reconstruct the

density, guided waves are used to reconstruct the thickness of

plates,38 and electromagnetic39 waves (x ray) are used to

reconstruct the attenuation/density. In these applications, the

physical law relating the measured quantity (TOF, wave

amplitude, and intensity) to the object contains a single scalar
unknown (e.g., thickness or attenuation/density), which is iso-

tropic (i.e., independent of the direction of wave propagation)

and, more importantly, invertible on a single ray. These char-

acteristics allow tomographic algorithms (FBP or ART) to

reconstruct—in principle—the object with arbitrary precision.

The only errors in the reconstruction stem from ambient

noise, temperature fluctuation, uncertainties in the measure-

ment equipment, or in the values of the physical properties of

the medium. Such sources of error are not discussed in the

present work.

Our main goal is to study how tomography can be used

to reconstruct the stress—a tensor—field, based on a law

[i.e., the An-AEM, Eq. (6)] that contains four unknowns

(r1; r2; r3, and a), is anisotropic (dependent on the propaga-

tion direction b) and, more importantly, is non-invertible on

a single ray. The last characteristic [due to the presence of

the cosine function in Eq. (6)] arises from the fact that the

plane e3; r1ð Þ is a plane of symmetry for the problem. This

led to the necessity of using two different propagation direc-

tions to have a unique solution for p00 (Sec. III B). One can

find works in the literature that deal with similar problems.

In seismology, a law similar to the An-AEM gives bulk40 or

Rayleigh41 waves as functions of the earth’s elastic anisot-

ropy. Photoelastic tomography42 was used to assess the

residual stress in glass. In Refs. 40 and 41, the problem has

more unknowns than equations; as a result, it is treated as an
FIG. 4. (Color online) The two FBP configurations used in M (fan-beam
and parallel-beam).
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optimisation problem. In Ref. 42, the problem is formulated

so that only a scalar quantity is measured, assuming the

stress orientation to be known and uniform, and then reor-

ienting the specimen such that only a single component of

stress is imaged. Here, M takes advantage of the dispersive

and multimodal nature of guided waves to formulate a sys-

tem of equations leading to a unique solution to the problem,

as demonstrated in what follows.

V. PROBLEM p0

The problem p0, for which M is developed, is treated in

five cases of stress distribution of increasing difficulty: uniaxial

out-of-plane stress r ¼ diag 0; 0; r3ð Þ, uniaxial in-plane stress

r ¼ diag r1; 0; 0ð Þ, biaxial in- and out-of-plane stress

r ¼ diag r1; 0; r3ð Þ, biaxial in-plane stress r ¼ diag r1; r2; 0ð Þ
and triaxial stress r ¼ diag r1; r2; r3ð Þ, the last two being

treated simultaneously.

A. Uniaxial out-of-plane stress

The plate contains a uniaxial out-of-plane stress field.

The physical meaning of such stress configuration is ques-

tionable due to the free boundary conditions on both sides of

the plate. However, the case is formally interesting as the

solution is similar to that for thickness or density variations.

Indeed, the acoustoelastic law Drv
M
g=p ¼ AM

n;g=p fð Þr3 deduced

from Eq. (6) by setting r1 ¼ r2 ¼ 0 contains a single scalar
unknown (r3, the direction being known), is isotropic (inde-

pendent of b), and invertible on a single ray

(r3 ¼ Drv
M
g=p=AM

n;g=p). To reconstruct the map of r3, a single

mode generated at a single centre frequency suffices.

Substituting Eq. (2) into Eq. (6) and the result into Eq. (14),

the TOF of that mode (for example, A0) for a given ray ri is

written as

tA0
ri
¼
ð

ri

100ds

100vA0
0 þ vA0

0 AA0
n r3 sð Þ

: (15)

In tomographic inversion, the quantity to be imaged (here,

r3) is considered constant on a given ray, which yields

r3 ¼
100

AA0
n

ri

vA0
0 tA0

ri

� 1

� �
: (16)

This formula can be used to reconstruct the stress field from

the TOF (tA0). AA0
n being nonzero for all frequencies in

]0,500] kHz (see Fig. 2), the previous expression is always

defined, although the centre frequency is better chosen

where � is small. To avoid redundancy, the numerical results

for this case are not given, since conclusions that can be

drawn from them are presented in the next case, which

encompasses it.

B. Uniaxial in-plane stress

For this case, the acoustoelastic law is deduced from

Eq. (6) by setting r2 ¼ r3 ¼ 0. One obtains

Drv
M
g=p ¼ AM

g=p fð Þr1 þ BM
g=p fð Þcos 2 b� að Þð Þr1: (17)

The classical tomographic approach cannot be used

anymore because Eq. (17) contains two unknowns (r1 and

a) and is anisotropic (dependency on b). Furthermore, the

law is non-invertible on a single ray: for each position

x1; x2ð Þ on a given ray ri, the stress direction can be clock-

wise or anticlockwise with respect to that of ri and, in

both cases, the TOFs are identical. This last point is one

of the shortcomings of M. To reconstruct r1 and, if

possible, a, one needs to form a system of two equations

on each ray. Such a system can be formed using two

modes (A0 and S0) generated at a single centre frequency

or one single mode generated at two centre frequencies.

The former choice is made here leading to the TOF

given by

tA0
i ¼

ð
ri

100ds

100vA0
0 þ vA0

0 AA0þBA0 cos 2 b�a sð Þð Þð Þ
	 


r1 sð Þ
;

tS0
i ¼

ð
ri

100ds

100vS0
0 þ vS0

0 AS0þBS0 cos 2 b�a sð Þð Þð Þ
	 


r1 sð Þ
:

8>>>><
>>>>:

(18)

The quantities r1 and a are considered constant on ri, which

yields

r1 ¼ 100

riB
S0

vA0
0 tA0

i

� riB
A0

vS0
0 tS0

i

 !
� BS0�BA0ð Þ

 !
BS0AA0�BA0AS0ð Þ ;

a¼

bþ 1

2
acos

100

vA0
0 BA0r�1

ri

tA0
i

� vA0
0

� �
�AA0

BA0

 !
;

b� 1

2
acos

100

vA0
0 BA0r�1

ri

tA0
i

� vA0
0

� �
�AA0

BA0

 !
;

8>>>>><
>>>>>:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(19)

where r�1 is the integral of r1 along a given ray ri divided by

its length (ri). The expression of r1 is independent of a. If

the centre frequency is chosen such that the denominator is

not small/null, then r1 can be reconstructed, in principle,

with arbitrary precision.

On the other hand, the reconstruction of stress orienta-

tion a suffers from three problems. First, it depends on r1 so

that any error in the reconstruction of r1 will affect that of

a. Second, while the centre frequency can be chosen so that

BA0 is not small/null, the presence of r�1 in the denominator

is problematic. This is because if along a given ray, r1 is not

largely positive (tension) or largely negative (compression),

r�1 can be small or even null, leading to indefinite expres-

sion. When it is the case, such a ray cannot be used in the

reconstruction, which leads to loss of information. Third,

the major issue with stress orientation is that for each ray,

two values are possible, giving the same TOF. Without a
priori information, there is no reason to favour one over the

other.

To better understand these remarks, a numerical study

was conducted. Two random distributions (of r1 and a)
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were generated using a random generator function, applied

on two-dimensional (2D) Gaussian functions. Equation

(19) can be used in fan-beam and parallel-beam configura-

tions. The results shown in Fig. 5 were found using the lat-

ter. In the first row of Fig. 5, Fig. 5(a) contains the original

(object) distribution of r1 2 �100; 100½ �MPa, Fig. 5(b)

contains its reconstruction using 33 rays and 18 projec-

tions, and Fig. 5(c) contains the error (the difference

between the two). Figure 5(d) compares them along a sin-

gle ray [the black line in Fig. 5(a) and red line in Fig. 5(b)].

In Fig. 5(c), the error is practically null within R but is

maximum out of R. Indeed, out of R and close to the trans-

ducers, there are not enough ray-intersections to get suffi-

cient information. The comparison on a single ray [Fig.

5(d)] shows that the object and its reconstruction superim-

pose (with a small deviation outside R). These results con-

firm that the amplitude r1 can be reconstructed, in
principle, with arbitrary precision as for the uniaxial out-

of-plane case treated in Sec. V A but not shown. The

second row shows the original distribution of the stress

orientation a 2 ½30�; 170�� [Fig. 5(e)], its reconstruction

[Fig. 5(f)], the error [Fig. 5(g)], and the comparison along

a single ray [Fig. 5(h)]. Figures 5(g) and 5(h) show that

although the distribution is not well reconstructed, it still

contains useful information: the overall spatial distribution

of the stress orientation is reconstructed but not in detail.

In Fig. 5(i), a second simulation was conducted for the

same spatial distribution of a in Fig. 5(h), but a smaller

range of variation (i.e., [70�; 120�� instead of ½30�; 170��)

was assumed. Moreover, the amplitude r1 was chosen such

that r�1 is not null for most rays. From this simulation, only

the comparison along one ray is given [Fig. 5(i)], which

shows drastic improvement in the reconstruction of the

stress orientation.

C. Biaxial in- and out-of-plane stress

This case combines the two previous cases. Here, the

acoustoelastic law to be inverted on a given ray is deduced

from Eq. (6) by setting r2 ¼ 0. One has

Drv
M
g=p ¼ AM

g=p fð Þr1 þ BM
g=p fð Þcos 2 b� að Þð Þr1 x; yð Þ

þ AM
n;g=p fð Þr3: (20)

It is anisotropic and non-invertible on a single ray and con-

tains three unknowns (r1; r3, and a). As for the first case,

the physical meaning of the present case is also question-

able because of the free boundary conditions on both sides

of the plate. Nonetheless, the case offers a theoretical

framework in which the consequence of a relatively large

error � on the reconstruction can be studied. To obtain

r1; r3, and a, a system of three equations is formed. One

can use (a) one dispersive mode generated at three different

centre frequencies; (b) two modes, where one mode is gen-

erated at two different centre frequencies; and (c) three

modes generated at a single frequency. The latter choice is

made, and all three fundamental modes are used. The TOF

expressions become

FIG. 5. (Color online) The first row shows (a) the original r1 distribution, (b) its reconstruction using 33 rays (emitter-receiver) and 18 projections, (c) the

difference between (a) and (b), and (d) the comparison along a single direction [black line in (a) and red line in (b)]. Second row: (e)–(h) same as (a)–(d) but

for the distribution of stress orientation a with a 2 ½30�; 170��, (i) is the same as (h) but for a different simulation assuming a reduced range a 2 [70�; 120��.
dR is the diameter of the region of interest R.
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tA0
i ¼

ð
ri

100ds

vA0
0 AA0 þ BA0 cos 2 b� a sð Þð Þð Þ
	 


r1 sð Þ þ AA0
n r3 sð Þ

� �
þ 100vA0

0

;

tS0
i ¼

ð
ri

100ds

vS0
0 AS0 þ BS0 cos 2 b� a sð Þð Þð Þ
	 


r1 sð Þ þ AS0
n r3 sð Þ

� �
þ 100vS0

0

;

tSH0
i ¼

ð
ri

100ds

vSH0
0 ASH0 þ BSH0 cos 2 b� a sð Þð Þð Þ

	 

r1 sð Þ þ ASH0

n r3 sð Þ
� �

þ 100vSH0
0

:

8>>>>>>>><
>>>>>>>>:

(21)

Again, the quantities r1; r3; and a are considered constant on ri and an invertible system of two equations, whose unknowns

are r1 and r3, is deduced from Eq. (21). Once this system is solved, the stress orientation is obtained from r1. After some

algebra, one obtains

r1 ¼
Q SH0;A0ð Þ BS0fA0 � BA0fS0

� �
� Q S0;A0ð Þ BSH0fA0 � BA0fSH0

� �
Q SH0;A0ð ÞP S0;A0ð Þ � Q S0;A0ð ÞP SH0;A0ð Þ ;

r3 ¼
P SH0;A0ð Þ BS0fA0 � BA0fS0

� �
� P S0;A0ð Þ BSH0fA0 � BA0fSH0

� �
Q S0;A0ð ÞP SH0;A0ð Þ � Q SH0;A0ð ÞP S0;A0ð Þ ;

Q a; bð Þ ¼ BaAb
n � BbAa

n; P a; bð Þ ¼ BaAb � BbAa; fa ¼
100

va
0

ri

ta
i

� va
0

� �
;

a ¼

bþ 1

2
acos

AS0
n fA0 � AA0

n fS0 � AS0
n AA0 � AA0

n AS0
� �

r�1
AS0

n BA0 � AA0
n BS0

� �
r�1

 !
;

b� 1

2
acos

AS0
n fA0 � AA0

n fS0 � AS0
n AA0 � AA0

n AS0
� �

r�1
AS0

n BA0 � AA0
n BS0

� �
r�1

 !
:

8>>>>>><
>>>>>>:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(22)

The expression of a shows that its reconstruction still suffers

from the same three problems that were mentioned for the

previous case. r1 and r3 are independent of each other and

of a and could be reconstructed with arbitrary precision as

in the previous cases.

However, it appeared in Fig. 2(d) that the deviation �
for SH0 is larger than those for A0 and S0. As a conse-

quence, using SH0 can introduce a small error on the TOF

tSH0. To study the effect of using SH0, the maximum devia-

tion between the AEM and An-AEM for SH0 was estimated

at 10%. Random errors of this magnitude were added to tSH0

for each ray in every projection. A numerical simulation

was conducted. To avoid redundancy and focus on the error

introduced by the use of SH0, only results for r1 are given.

The conclusions drawn from them readily apply to the

results for r3. The conclusions drawn for a are identical to

those of the previous case. Equation (22) is valid for the fan-
beam and parallel-beam. The results appearing in Fig. 6 are

obtained using the fan-beam with 36 projections and 45 rays

in each projection.

Figure 6(c) shows a small error in R but not as small as

that in the case appearing in Fig. 5(c). The error in the

reconstruction (in R) is around 10%, which is similar to that

intentionally added to tSH0. This is not a coincidence and

can be easily proven (using Taylor series expansion) from

the expression of r1 in Eq. (21). The reconstruction of r1, as

shown in Figs. 6(c) and 6(d), is affected by the choice of

SH0. Similar results for r3 are obtained but not shown.

FIG. 6. (Color online) (a) The original r1 distribution, (b) its reconstruction using the fan-beam (36 projections, 45 rays), (c) the difference between the two,

and (d) the comparison along a single ray [black line in (a) and (b)].

2872 J. Acoust. Soc. Am. 151 (5), May 2022 Abderahmane et al.

https://doi.org/10.1121/10.0010359

https://doi.org/10.1121/10.0010359


To overcome this, it is possible to use A0 and S0, where the lat-

ter is generated at two centre frequencies. In this case, r1 and

r3 can, in principle, be reconstructed with arbitrary precision.

D. Biaxial in-plane and triaxial cases

The acoustoelastic law to be inverted on a given ray for

the in-plane biaxial case is deduced from Eq. (6) by setting

r3 ¼ 0. It is written as

Drv
M
g=p ¼ AM

g=p fð Þ r1 þ r2ð Þ

þ BM
g=p fð Þcos 2 b� að Þð Þ r1 � r2ð Þ: (23)

Equation (23) contains three unknowns; it is anisotropic and

non-invertible on a single ray. However, contrary to the previ-

ous case, which allows an invertible system of two equations

of unknowns r1 and r3 on each ray to be formed, here, such a

system of unknowns r1 and r2 cannot be formed anymore.

Indeed, both components are affected by the same two coeffi-

cients A and Bcos 2 b� að Þð Þ. It is, therefore, impossible to

obtain r1 and r2 using only the information from a single ray,

independent of the number of modes used on that ray. Only

the quantity S ¼ r1 þ r2 can be reconstructed with arbitrary

precision using the single ray-approach used so far.

Suppose the two modes A0 and S0 generated at a single

centre frequency are used. One can write [after some algebra

on Eq. (23)]

S ¼ r1 þ r2

¼ 100

riB
S0

vA0
0 tA0

i

� riB
A0

vS0
0 tS0

i

 !
� BS0 � BA0ð Þ

 !
BS0AA0 � BA0AS0ð Þ : (24)

This formula is similar to the formula for r1 in Eq. (19)

and can be used by either fan-beam or parallel-beam. To

obtain r1; r2, and a, the information must be retrieved from

a collection of rays that share a common property. In what

follows, two cases are treated: (1) when the stress orienta-

tion is uniform and (2) when it is not. Only the treatment of

the first case is detailed, as the second case is a variant of

the first.

1. Uniform stress orientation

Here, the stress orientation a is independent of the posi-

tion and denoted by a0. The case is treated in two steps. In

the first step, the quantity Db is defined from Eq. (23),

Db 
 Drv
M
g=p � AM

g=p fð Þ r1 þ r2ð Þ

¼ BM
g=p fð Þcos 2 b� a0ð Þð Þ r1 � r2ð Þ: (25)

For a given mode M, Db is known because S ¼ r1 þ r2 can

be reconstructed with arbitrary precision, and Drv
M
g=p is the

measured AEE (deduced from the TOF).

Db has the property of being null for particular values

of b that are independent of the mode, the frequency but,

more importantly, the ray. These values are bk ¼ a0

þ 2k þ 1ð Þp=4; k 2 Z. As a0 and b can be taken in

½0�; 180�½, two possible values of b are in that interval and

are perpendicular to each other. Without loss of generality,

one can choose b0;�1 ¼ a0 6 p=4. The second step is to

identify b0;�1. To this end, the parallel-beam version is the

most adequate: for a given projection (b constant), all rays

are parallel. Therefore, it is easy to identify the values of b
for which Db is null. Once b0;�1 have been obtained, a0 can

be deduced, and r1 � r2 is further given by

r1 � r2 ¼
Db

BA0 cos 2 b� a0ð Þð Þ ; (26)

where the mode A0 was chosen as an example. With the use

of Eq. (24), this yields

r1 ¼
1

2
Sþ Db

BA0 cos 2 b� a0ð Þð Þ

� �
;

r2 ¼
1

2
S� Db

BA0 cos 2 b� a0ð Þð Þ

� �
:

8>>><
>>>: (27)

To retrieve a0, we define Dm
b as

Dm
b 


Xnrays

r¼1

jDbj

max|{z}
p2 1;nprojf g

Xnrays

r¼1

jDbj
 ! ; (28)

which is the sum of the absolute value of Db (for all rays in a

given projection), divided by the largest sum among all pro-

jections. By definition, Dm
b 2 ½0; 1� and has the property of

Db of being null for particular values of b. The black square

markers (Dm
b as function of b) in Fig. 7 show the results for a

case where r1 and r2 vary with position while a0 was held

constant (a0 ¼ 55�). In this example, 18 projections were

used (the angular step equals 10�). For this particular value

of a0, both b0;�1 are among the set of projection angles,

FIG. 7. (Color online) Dm
b as a function of b for uniform stress orientation.

Black square markers correspond to the case when the projection angles

contain b0;�1, and red square markers correspond to the case when they

do not.
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which implies Dm
b ¼ 0 for two directions (100� and 10�).

Consequently, a0 can be easily retrieved (a0 ¼ b0 � 45�).
In practice, due to the discrete nature of the variation of

the projection angles (b), it is unlikely that some of these

values coincide with the angles b0;�1. Therefore, Db cannot

be exactly null but is still at its smallest when b � b0;�1. A

simple algorithm can be designed to find values minimizing

Dm
b , allowing a good approximation of a0 to be found. In

essence, the algorithm starts by using the four angles corre-

sponding to the four smallest values of Dm
b to obtain the

lower and upper bounds of a0, and then it tests for different

values within these bounds. The red circular markers in Fig.

7 show the case where a0 ¼ 52� (r1 and r2 maps remained

the same) for which b0;�1 are not among the tested projec-

tion angles. The directions of the minimal values of Dm
b are

easily identified, allowing one to obtain a0. The results for

the uniform stress orientation are not given to avoid redun-

dancy as r1 and r2 can be reconstructed with the same pre-

cision as that of r1 in the uniaxial case (Fig. 5).

2. Nonuniform stress orientation

Let us now treat the general case where the stress

orientation a depends on the position. Without loss of

generality, one can write a x1; x2ð Þ ¼ a0 þ ca1 x1; x2ð Þ, where

a0—called, here, the background value—is independent of

the position and may be zero, a1 has a random spatial distri-

bution [in the present example, such a distribution is identi-

cal to that in Fig. 5(e)] of magnitude in �1�; 1�½ �, and c is a

constant. To study the consequence of having a nonuniform

stress orientation on the reconstruction of r1 and r2, two

simulations were conducted. The different maps of r1; r2,

and a1 are identical in both simulations and a0 ¼ 63�. In the

first simulation, c ¼ 20 and in the second simulation,

c ¼ 50.

The reconstruction of r1 and r2 starts with the identifi-

cation of a0. For this, the approach introduced in the previ-

ous paragraph is followed. Once a0 is found, r1 and r2 are

reconstructed in the same manner as used previously [using

Eq. (27)]. In both simulations, the accuracies of the recon-

struction of r1 and r2 are the same so that only the results

for r1 are given [Figs. 8(a)–8(c)] for c ¼ 20. Figure 8(d)

compares along a single ray the original distribution (black

solid line) with its reconstruction for c ¼ 20 (red solid line)

and c ¼ 50 (red dotted line). The error [Fig. 8(c)] can reach

25% in R and exhibits geometric patterns stemming from

the use of the parallel-beam reconstruction algorithm. The

reconstructed map gives the overall spatial distribution. In

Fig. 8(d), the effect of deviating from a0 is clear: for c ¼ 50,

the difference between the object and its reconstruction can

reach 70%. Additional simulations were conducted for

lower values c ¼ 5 (respectively, c ¼ 10Þ for which the

overall error between the object (r1 and r2) and its recon-

struction is less than 6% (respectively, 13%). All of these

results demonstrate that the present procedure gives accurate

results provided that the stress orientation does not vary

greatly. It is worth noting that the map of a could not be

reconstructed from r1 and r2. This is a subject for future

work.

Finally, the triaxial case is solved in a manner similar to

that for the in-plane biaxial case, the acoustoelastic law is

given by Eq. (6). The only difference consists in using an

extra measurement (three modes instead of two in the

biaxial case or two modes with one being generated at two

different centre frequencies). This allows reconstructing

r3—in principle, with arbitrary precision—using an expres-

sion identical to that in Eq. (22). Once r3 is known, the

problem is brought down to the in-plane biaxial case.

VI. CONCLUSION

A method for stress characterization by means of elastic

guided waves has been proposed. The method (M) is nonde-

structive and takes advantage of the dispersive and multi-

modal nature of Lamb and SH guided waves to characterize

the stress tensor, a multivariable object. Its development

was carried out in two steps. In the first step, an An-AEM

was derived from previous work by the present authors

(Ref. 21). Such model predicts the AEE induced by triaxial

stress for a given mode as a function of stress components

(r1; r2; and r3), its orientation (a), wave propagation direc-

tion (b), and three parameters, the so-called AECs.

FIG. 8. (Color online) (a) The original r1 distribution, (b) its reconstruction using the parallel-beam (30 projections and 35 rays), (c) the error between the

two for c ¼ 20 and (d) their comparison along a single direction [black line in (a) and red line in (b)] of the object and its reconstruction for c ¼ 20 (red solid

line) and c ¼ 50 (red dotted line) are shown.
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The AECs are independent of stress and are specific to each

mode. Once the domain of validity (frequency range) of the

An-AEM has been identified, the inverse problem of charac-

terizing triaxial stress uniform in the plane and through the

plate thickness can be solved. Its solution is found using

three transducers forming an isosceles right triangle. In the

second step, the inverse problem where the stress is nonuni-

form in the plane but uniform through the thickness is

treated. To solve it, the method M uses the TOF SRT. The

An-AEM constitutes the physical law to be inverted on each

ray to allow for stress reconstruction from TOFs. To define

the domain of applicability of M, five cases of increasing

complexity were studied. In the first case of uniaxial out-of-

plane stress, the scalar unknown r3 can be reconstructed

with arbitrary precision using the classical tomographic

approach. In the second case of uniaxial in-plane stress, the

use of two modes on every ray permits the reconstruction of

r1 with arbitrary precision, whereas the precision for the

local stress orientation a depends on how much it varies on

a given ray. In the third case of biaxial in- and out-of-plane

stress, r1 and r3 can be reconstructed with arbitrary preci-

sion using two modes with one being generated at two dif-

ferent frequencies. The reconstruction of a remains

dependent on how much it varies on a given ray. In the

fourth case of in-plane biaxial stress and if a is constant, the

parallel-beam algorithm can be used to reconstruct r1 and

r2 with arbitrary precision. If a varies, only r1 þ r2 can be

reconstructed with arbitrary precision, whereas the recon-

structions of r1 and r2 depend on spatial variations of a: the

more it varies, the less accurately r1 and r2 are recon-

structed. The last case of triaxial stress is solved in a way

similar to that of the in-plane biaxial case, where r3 is first

reconstructed with arbitrary precision.

The method M represents a necessary step in the solu-

tion of the complete problem (p) in which the stress tensor

is nonuniform in the plane and through the thickness.

In practice, implementing the method described herein

requires the use of transducers that allow efficient mode

selection. The modes considered are either Lamb or SH

guided waves, and electromagnetic acoustic transducers

(EMATs) that can selectively radiate and sense guided

waves without mechanical contact43 constitute a rational

choice to implement the tomographic inversion.
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