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The chapter describes two approaches that aim at a semi-empirical description of Lewis structures and their interaction, within the Hückel method framework. They have been embedded in the HuLiS program, which is freely available since 2008. Two methods are described and discussed here. They are based either on a dressed Configuration Interaction (CI) hamiltonian matrix, called Hückel-Lewis-CI (HL-CI), or on an overlap-based approach, called the Hückel-Lewis-Projection method (HL-P).

INTRODUCTION

Electronic structures in chemistry can be described either with delocalized or localized orbitals, in the framework of wave-function theory Delocalized orbitals have gained large popularity with the advent of the Hückel method, Molecular Orbital interaction diagrams, and a nowadays variety of fast quantum chemistry programs and methods. The localized vision is somehow restricted to simplified drawings.

Computed localized electronic structures are still rare, and reputedly more complicated to handle. The HuLiS program aims at reconciling simplicity and localized electrons. It targets at computing the key components of the resonance between resonant structures in (flat) conjugated organic systems. Namely, it provides at the Hückel level coefficients and weights of resonant (Lewis) structures.

Delocalized Molecular Orbitals:

In chemists' toolbox there is a large space for the Molecular Orbital approaches, with two complementary approaches. On the one hand, we use the qualitative MO diagrams with drawings and analyses that can provide an elegant understanding p 2 of chemistry on the back of an envelope, and on the other hand, we perform computations, with Density Functional Theory (DFT), or Hartree-Fock (HF) / post-Hartree-Fock methods, which provide quantitative results. Both the qualitative and the quantitative approaches provide to a deep understanding of chemistry. The Hückel method lies in between these two. It provides easy-to-understand and easy-to-obtain concepts or numbers from the Molecular Orbital theory.

Charges on atoms, HOMO-LUMO gap, etc, can be computed in the Hückel framework. It is in principle taught to all chemists at universities, and it strongly contributes to introduce in our minds how concepts and numerical values from the delocalized Molecular Orbitals are useful both to the understanding of chemistry as well as to gain useful insights into quantum chemistry basics. 1

Localized Descriptions: Chemists however consider a molecule as a construction made of bonds between atoms, and this localized viewpoint is deeply rooted in our minds. As it is discussed along this VB section (see for instance the introductory chapter of this VB section), the Valence Bond (VB) approach describes a bond as a resonance between covalent and ionic configurations (Scheme 1). The equivalent to the MO diagrams can be found in the Valence Bond Configuration Mixing Diagrams (see for instance the chapter on Valence Bond diagrams in this VB section). With a very small amount of numerical knowledge (a few ionisation or electron affinity energies), one connects VB configurations from reactants to products in Valence Bond State Correlation Diagrams, and clear insights about bond breaking / bond forming and transition states are obtained. [2][3][4] Covalent ionics Ab initio VB wave functions can also be computed with efficient programs. [5][6][7] However, their use for large systems is still uncommon. Indeed, in the VB framework, a pair of active electrons gives rise to three structures: a covalent and two ionics (Scheme 1), and the number of structures increases rapidly with the size of the system. [START_REF] Cooper | Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry Part 2[END_REF][START_REF] Shaik | A Chemist's Guide to Valence Bond Theory[END_REF][START_REF] Shaik | [END_REF] The six π-electrons of benzene for instance require 175 VB structures. 11 Apart from the computational cost, this increase in the number of structures makes the VB method lose its main asset: its simplicity and readability.

Other approaches in the family of computational VB methods, such as the Spin Coupled VB, p 3 which uses Overlap Enhanced Orbitals (OEO) 12 help reduce the number of structures.

However, the most natural way of considering a molecule for a chemist is certainly to follow the Lewis intuition that leads to structures involving pairs of bonding electrons, lone pairs, and radicals, which are all localized concepts, and reduce the number of structures compared to the VB wave functions.

Lewis Qualitative Methodology

Many, if not most, chemists think in terms of local bonds and lone pairs. We see molecules (conjugated molecules, for example) as sets of alternating single and double bonds, with (or without) lone pairs. When this picture does not "work", π-electron mobility is evoked, namely resonance. In resonance, a delocalized π-system is described as a superposition of localized resonant Lewis structures. The ratio of the superposition is given (qualitatively) with the labels "major" or "minor" for the contributors, with the idea that a "major" structure weights more (has a larger weight) than a "minor". The weight of a structure is usually qualitatively estimated, and it is larger if:

-a-the structure fulfils the octet rule.

-b-the structure avoids charge separations.

-c-the charge separation (if any) in the structure follows the electronegativity of the atoms. 1

The qualitative weights estimation is best illustrated using Scheme 2: Some resonance contributors for the acrolein.

1 The average electronic structure obtained from the resonance between these contributors can also lead to partial charges (q+/q-). p 4

When describing the electronic structure of a molecule with the qualitative resonance of Lewis structures, two questions arise: (i) are my structures wisely chosen, and (ii) have I enough of them? Most of the time, the three aforementioned rules help to wisely chose the Lewis structures and the electronic structure of a molecule can be outlined with a very small number of structures. However, a simple quantitative tool is welcome. It shall define numerical descriptors of the relevance of a Lewis structure for a molecule. It is one of the objectives of the HuLiS family of methods to provide these numerical descriptors that enhance the qualitative label major/minor contributor. Another objective is to introduce the quantum chemistry concept and vocabulary of configuration interaction into organic chemistry, where the mixture between Lewis structures is well-established. Last, it introduces VB concepts about overlapping electronic structures into the archetype of the Molecular Orbital method: the Hückel framework where even atomic orbitals are orthogonal !

Lewis Quantitative

From the perspective of the theoretical chemist, the superposition of resonance structures is understood as a configuration interaction. An example is given in equation 1 for a Lewis wave function ( ).

\Psi_{Lewis}

$ \Psi_{Lewis}= C_I \Psi_I + C_{II} \Psi_{II} + ...\\ \;$ Each resonance structure corresponds to an electronic configuration, built on π bonds and lone pairs. Modern approaches to quantum chemistry, although often based on a delocalized wave function, successfully integrate tools allowing to extract from the wave function (or from its density) those terms related to localized (Lewis) structures. [13][14][15][START_REF] Frenking | The Chemical Bond[END_REF][START_REF] Hiberty | [END_REF][18] Lewis' intuition of electronpair bond between only two atoms often served as a guideline to devise orbitals and wave functions. 19 Bond Distorded Orbitals (BDO), 20 Lewis VB, 21 or the VB BOND (for Bond Orbitals Naturally Delocalized, VBB), 22,23 are examples of approaches that use two-center bonding orbitals to describe bonds, and atomic orbitals for radical centers and lone pairs. They allow to follow Lewis' intuition in quantum chemistry computations. It is also on the footsteps of other approaches like Goddard's GVB methods. 24,25 p 5 Explicit "Lewis-like" approaches must use different orbitals for different configurations: the double bond of a Lewis structure (as 1 in Figure 1 left) is described with a BDO (12) that cannot be reused in the other structure because the resonance has modified the localization of the electron pairs (Figure 1).

HuLiS basics

The "HuLiS" (for Hückel-LewiS) family of methods is grounded on the Hückel Hamiltonian.

As a consequence, it can be applied to molecules that are "Hückel compatible": flat and conjugated. It targets at describing the electronic structure of the delocalized π system as a combination, a resonance, of user-defined localized structures (Lewis structures). 2 In the HuLiS methods we use Lewis structures: a bond corresponds to two electrons in a single BDO, while in VB a bond is a mixture of the covalent and ionic components of purely atomic orbitals (Figure 1 vs Scheme 1). The advantage of BDO's is that it reduces the number of structures, and it preserves the Lewis intuition. Hence, HuLiS uses three types of π-electron pairs:

• The π bond pairs, drawn as standard double bonds. They contain both ionic and covalent components (50% each for symmetrical atom pair).

• The π lone pairs, drawn as two dots on a single atom.

• The π covalent pair, drawn as a green bond. It corresponds to the covalent component of the VB formalism shown in Scheme 1. Only one covalent pair can be defined for a structure.

When such a covalent pair is defined between atoms A and B, only the covalent component of this bond is considered ( ) and no ionics. Such two electrons, coupled as singlet, describe an open shell singlet bi-radicals component. An example for butadiene is shown in Figure 2. By default, the structure generator does not search for these bi-radical covalent pairs.

2 HuLiS embeds a structure generator, so Lewis structures can be automatically generated. However, the user can bypass the generator and/or manually add/remove specific Lewis structures. p 6

They are in principle manually specified. However, an option in the preference panel can be set to ask their automatic search (Figure 2b).

\left|a \bar b \right|+\left| b \bar a\right|

Radicals (doublet states) can also be considered for odd electron systems. HuLiS methods aim at describing the superposition of structures in the Lewis framework (mesomery). In the following we shall review the two methods embedded in HuLiS. In a last part we briefly show how the overlap is computed and apply the schemes to some exemplary cases. We particularly focus our attention on the trust factor that can be defined in the context of numerical evaluations.

(a) (b) 

Configuration Interaction with a dressed Hamiltonian: HuLiS -CI

HL-CI is the first method we implemented. 26,27 The basic idea is to build the Hamiltonian matrix of the interaction between Lewis structures on the basis of the Lewis structures. To do so, we define the following approximations and constraints:

-The diagonal terms are the energies of each Lewis structure (labelled , , …). They are computed at the Hückel level with modified Hamiltonian matrices (see Appendices A and B)

-The off-diagonal terms (labelled ) are all negative, and all equal.

-The first eigenvalue of the Hamiltonian between Lewis structures is equal to the energy of the molecule at the Hückel level (eq. ( 2), ).

E_{I} E_{II} $E_{\textit{H\"uckel }}=\Lambda$

The value of the off-diagonal terms , is obtained with these constraints. The expression is straightforward in a 2x2 case, as shown in eq. ( 2). We obtain as the negative root of a polynomial expression of degree 2 ( ).

P_2(B)=0

p 7

(2)

$ B^2=\left(\color{red} E_I \color{black}-\color{black}\Lambda\right) \times \left(\color{red} E_{II} \color{black}-\color{black}\Lambda\right)

$

For larger (n,n) CI matrices, this requires some care, but we proved that we can find an appropriate as a root of the polynomial expression of degree n ( ). 26 We proved that one and only one root is negative, hence our HL-CI procedure has always a solution for B.

With this dressed Hamiltonian, the coefficients of the Lewis wave function (equation 1) can be found. In the implementation of HL-CI, we initially worked with the approximation of nonoverlapping Lewis structures ( ); we label here with a tilde these non-overlapping coefficients ( ). In this context, the non-overlapping weights are ; and .

$B$ $P_n(B)=0$ $ \widetilde{\Psi}_{Lewis}= \widetilde{C}_I \Psi_I + \widetilde{C}_{II} \Psi_{II} + ...\\ \;$ $ \widetilde{C}_I $ $ \widetilde{w}_{I}=(\widetilde{C}_{I})^2 $ $$ \sum_I \widetilde{w}_{I}=1$$
Quite curiously, despite the numerous approximations, and particularly despite the one that postulates that all the off-diagonal terms are equal, the HL-CI method performs well. It gives usually good results, at least comparable to those of the very popular Natural Bond Orbital (NBO) method (actually Natural Resonance Theory -NRT). For the 5-structure resonance of pyrrole for instance (Table 1), the HL-CI calculation gives an off-diagonal term of , and a weight of = for the major structure while NRT gives a value between 42 and 47%, depending on the level of calculation (B3LYP vs HF). Hence, the discrepancies within NRT (5%), have the magnitude of the difference between the HL-CI and the NRT(DFT) results

(+4%).

$ B=0.57 \beta $ $ \widetilde{w}_{I} =38 \%$ p 8 Finally, the weights for the minor structures, at 15.5%, are in the correct range, well situated between the NRT values of 10.5% and 18.5%. This is not bad, particularly considering all the approximations at work. The HL-P method (vide infra) gives results with a similar pattern. There are however notable failures of the HL-CI approach, and the most remarkable are due to in-phase combinations of the Lewis structures, which is requested by the constraint to have a negative off-diagonal term. This leads only to symmetric wave functions. When antisymmetric wave functions are the target, HL-CI can only give a wrong result. The allyl radical (Figure 3) is an emblematic example of an antisymmetric ground state. 23,[28][29][30] We use it as an example for a tutorial in this VB section. It is of course a superb opportunity to develop a tool to detect, and finally correct these well identified failures, which is the objective of the next part.

Overlaps and trust factor

A very simple and efficient way to detect significant failures of Lewis (or VB) wave functions with respect to Hückel's is to compute the overlap between the two wave functions, which we called the trust factor , equation 3.

(3)

\tau=\left< \Psi_{Lewis} | \Psi_{\textit{H\"uckel}} \right> s xz ⇡ 1 ⇡ 2 ⇡ 3 p 9
The use of such an overlap has been seldomly reported in the framework of VB computations, but it proved to be efficient. 18,31 The wave functions involved in  are built on Slater determinants, and the computation of this overlap requests the computation of overlaps between determinants in the Hückel framework.

Overlaps in the Hückel framework, application to Hückel-Lewis

In the Hückel framework all the atomic orbitals overlaps are neglected, but MOs of the Hückel wave function actually overlap with the BDOs, with lone pairs, and more generally with orbitals of the Lewis structures. Such an overlap between orbitals of two different calculations lead to an overlap between the corresponding determinants.

For the overlap between two determinants, one can just follow the "Guide". [START_REF] Shaik | A Chemist's Guide to Valence Bond Theory[END_REF] On the left hand side we use the diagonal product of the determinant, and on the right hand side we use selected transpositions (permutations, noted P) of the diagonal product of the other determinant, as shown in equation 4 for determinants built on the basis of atomic orbitals a, b and c, d. [START_REF] Shaik | A Chemist's Guide to Valence Bond Theory[END_REF] The parity of the transposition is noted t, and it is used to change the sign of the corresponding transposed product. The selected permutations of the right-hand side product are shown in red in equation 5. They are pairwise transpositions between spin orbitals of the same spin, and t=0 for the non-permuted product. The one electron overlap integral between spin orbitals a and b is noted . The Hückel-Lewis overlaps were compared to ab initio values based on "transferable orbitals". 32 The transferable orbitals can be those of a single π atom (for instance a planar CH3•), computed at the HF/6-31+G level, that is without d orbitals to avoid polarization effects. The overlaps obtained with the HuLiS approach show a pattern similar to those ab initio values. 5 The computation of the overlaps lead to substantial updates in HuLiS.

Coefficients and normalization of the wave functions

In the initial HL-CI implementation, the wave function was normalized in the approximation of non-overlapping Lewis structures. With the computation of the overlap, we get the opportunity to make a fair normalization. Hence, the coefficients of the Lewis structures ( in Equation 1, ) were updated. However, for the sake of consistency with the previous version, the "non-overlapping" coefficients ( ) are still displayed when HL-CI is requested.

The coefficients in the overlapping framework are displayed only for the HL-P method (vide infra).

$C_I $ $ C_I \neq\widetilde{C}_{I} $ $\widetilde{C}_{I}$ 2.

Coulson-Chirgwin weights

As it was the case with the coefficients, in the initial implementation of HL-CI, with nonoverlapping Lewis structures, the Lewis structure weights were only approximated ( ). With the overlaps at hand, we had the opportunity to use the Coulson-Chirgwin weights (equation 7), just as any VB program. Again, for the sake consistency with the previous version, for HL-CI only the "non-overlapping" weights are displayed. The Coulson-Chirgwin weights are displayed only for the HL-P method (vide infra).

$ \widetilde{w}_{I} $

$$ w_I=\sum_J^{}(C_IC_J S_{IJ}) $$

Evaluation of a trust factor

With the fair normalization of the Lewis wave function and all the overlaps between Lewis structures and the Hückel wave function, we computed the trust factor (equation 3). It proved to be a useful indicator of the completeness of the Lewis structure basis set, and also of possible p 12

failures. The example of the allyl cation is studied in the tutorial. It shows very clearly that the HL-CI wave function is not suitable, simply because its overlap with the Hückel wave function is too low (actually which is understandable when symmetry is considered). Another case will be shown in the last part of the present chapter.

With the words "trust factor" we made Hückel our reference wave function, assuming that it is correct for a quick description of the ground state of a molecule. It might appear that in some cases such a reference is not appropriate, but for most conjugated cases, the Hückel resolution gives a reasonable description of the electronic structure of the molecule. Somehow on the footpath of Cooper et al, 31 we also used a similar trust factor for the localized description of excited states, using MCSCF reference wave function. 18,33 

HL-P approach

Having the overlaps at hand, we significantly improve HuLiS results with the Hückel-Lewis Projected method (HL-P). 32 The principle is to project the Hückel wave function onto a set of Lewis structures and obtain the coefficient of the Lewis expansion. The improvement was so effective that it relegates the HL-CI approach to the early stages of HuLiS program settings.

Hence, we buried HL-CI in the depths of a preferences menu, so that no one could use it unless they specifically requested it. HL-P was introduced in details as a "weights watcher" for Lewis structures, and this is the occasion of a slightly different description, consistent with the present chapter.

Let us consider that the Lewis wave function is a combination of (overlapping) Lewis 

$ \Psi_{\textit{H\"uckel}}=\Psi_{Lewis}+C_{\epsilon} \Psi_{\epsilon} $ Moreover, we make the assumption that is orthogonal to each of the Lewis structures. This assumption is naively justified by the idea that the missing part of a sum of contributors cannot be a part of the contributors. Even if it is not exact in the context of non-orthogonal CI, it provides a clear understanding of the strategy at work. Besides, is normally small, and in the developments, we will neglect the corresponding contributions: for all Lewis structures. In the end, we calculate the trust factor, which is actually a safeguard. p 13

We can project equation ( 8) on each Lewis structure to obtain a system of equations (equations 9 and 10) that give the coefficients ( ) of the Lewis wave function. 

The results of HL-P are similar to those of HL-CI when HL-CI is correct. For pyrrole for instance (Table 1) the two HuLiS methods provide Lewis wave functions with a good trust factor ( ), the weights are similar, and in the range of the NRT values. This is the case in all the non-pathological cases we studied. 32,34 The real improvement of HL-P over HL-CI comes for cases where HL-CI cannot give the Lewis wave function, because of the assumption of a negative off diagonal term. This is the case notably for the allyl radical which has an antisymmetric ground state due to the mono occupation of its highest occupied orbital (Figure 3). The Lewis wave function must then be an out-of-phase combination of and :

. Scheme 3: Allyl radical Lewis structures When HL-CI is used, HuLiS gives the in-phase combination with a trust factor of , indicating that the results are not representative of the state found by the Hückel method. A contrario, the HL-P method gives the appropriate wave function with a correct trust factor (92%). p 14

3 Conjugated radicals in HuLiS.

We shall present here two cases that show the out-of-phase combination of Lewis structures.

The benzyl radicala symmetric case with out of phase Lewis components

For the benzyl radical, our automatic generation of the Lewis structures finds 53 structures, and the trust factor is 88% for HL-P against only 15% for HL-CI. Reducing the number of structures from 53 to 5, a similar pattern is obtained: the trust factor for HL-P (73%) is still much larger than that of HL-CI (27%). The screenshot in Figure 5 shows the results that are obtained for 5 structures.

The reason for the difference comes from the in-phase/out-of-phase combination of the structures (equations 12 and 13). HL-CI only finds an in-phase combination (eq. 12), while the coefficients in the HL-P expansion are alternatively positive and negative (eq. 13). The pattern of the HL-P coefficients actually follows the one of the coefficients of the Semi Occupied Molecular Orbital (SOMO) displayed in the middle of Figure 5. Whenever the coefficient is positive (red) at a position, the structures that embed the radical at that position have positive coefficients, and a negative value for a negative orbital coefficient. 

Uracil dehydrogenated radical -out of phase Lewis components

This π-radical is delocalized on mainly two atoms, the dehydrogenated nitrogen, N• and its conjugated carbon C•. This radical intermediate is believed to play a role in prebiotic p 15 interconversions of DNA bases. 37,38 In the path that connects uracil to thymine, an important intermediate is the radical species stabilized by the delocalization shown in Figure 6. It is noteworthy that the delocalization is said to mainly concern the dehydrogenated nitrogen and the conjugated carbon (i.e. the part highlighted in red in Figure 6). HuLiS calculation shows indeed the tendency to develop the radical on the two atoms C• and N• proposed by the authors. 

CONCLUSION/SUMMARY/OUTLOOK:

Very much like the MO theory, the resonance theory (VBlike) uses complementary tools.

They range from the simplest quick drawings obtained via Lewis structures and mesomery (back of the envelop strategy), up to high-level Valence Bond numerical computations with efficient and available programs. However, to obtain numerical values requires to use programs that require some skills. Even though online tools that use useful graphical interfaces are p 16

emerging, there is still room for tools that give numerical insight into resonance theory without getting familiar in computational chemistry tools. We like to see the Hückel-Lewis approach, implemented in the HuLiS tools suite, as an "in-between" tool that provides easy-tounderstand, but also numerically appropriate results about the electronic structure of molecules in the resonance framework. It provides coefficients and weights of the Lewis structures with a reasonable accuracy. As far as we tested it by comparing to the NBO-NRT, or actual VB results, 32,[START_REF] Carissan | Applications of Topological Methods in Molecular Chemistry[END_REF] the HL-P strategy gives accurate numbers for the resonance between Lewis structures. The HL-CI method fails in some well identified cases, but it opens an interesting bridge between the world of Lewis resonance, which is widely used by chemists, and the more confidential world of multiconfigurational calculations (MCSCF). So many chemists, and particularly organic chemists, like Monsieur Jourdain speaking prose all his life without knowing it, are experts in non-orthogonal MCSCF concepts without knowing it, just through the resonance between Lewis structures. Complementary to this qualitative approach, the well-known simple Hückel quantum empirical method can be considered to get some numerical insights about the π systems. A Hamiltonian matrix is built on the basis of the atomic orbitals (here {p1, p2}, Figure A-1(b)). The diagonal terms of the Hamiltonian matrix ( α ) correspond to the energy of the isolated AOs (those are carbon AOs for instance). As such, α is a negative quantity. Similarly, the off-diagonal terms (β) represent the interaction between the AOs, and is also a negative quantity. The electronegativity of an atom can be taken into account by adding a parametrized amount of β to the corresponding diagonal term. For instance, the sp2 Oxygen atom that is encountered in ketones is more electronegative than a carbon sp2, and we can use for its diagonal term αO= α+0.97β, so . Similarly, the off-diagonal terms are also parameterized. The parameters in HuLiS come from Van-Catledge's contribution. 41 In the Hückel method only neighboring atoms have a non-zero off-diagonal term. Setting β to zero for non-neighboring atoms usually does not isolate one AOs from the rest of the molecule because conjugation goes through neighbors of neighbors. Simple Hückel theory lays on an initial definition of the σ electron (skeleton), although those electrons are not explicitely considered. The scheme works well for π systems which seem to be parameterized quite easily.

Moreover, the physical/mathematical techniques used are simple and can be used for any interacting system. p 18

Simple Hückel theory uses the identity matrix for the overlap. The interactions between centers rest entirely on the off-diagonal terms of the Hamiltonian matrix. Yet the Simple Hückel scheme gives much information for reactivity, as well as quite a few structural interesting data such as bond indices, partial atomic charges, etc, all those data result from the electronic delocalization that occurs throughout the molecule. In HuLiS we particularly make use of the total energy, which is the sum of the energies of all the π electrons (equation A-1). We also define the Hückel wave function, and define it as the Slater determinant constructed on the occupied spin orbitals (equation A-1).

(A-1) (A-2)

$$ E_{\textit{Hückel}}=\sum_i^{\textit{$\pi$ electrons}}\epsilon_i $$ $ \Psi_{\textit{Hückel}}=\left| \pi_1 \overline{\pi_1} \pi_2 ...\right| $ p 19

Appendice B: Lewis structures in Hückel

Each Lewis structure is grounded on a delocalized π system that is partly localized. Such a localization is obtained by a modified Hamiltonian matrix called here the Lewis Hamiltonian Matrix (LHM) of a defined Lewis structure. This LHM is a copy of the Hückel Hamiltonian matrix with modifications that account for the localization requested by the Lewis structure.

The off-diagonal terms of the LHM obey the Lewis structure drawing as follows: terms that correspond to single bonds are set to zero, the others are taken from the Hückel Hamiltonian Orbital between atoms 1 and 2 (), plus its antibonding orbital (  ), and (the oxygen atomic orbital). To describe the requested Lewis structure, the configuration must be () 2 ( ) 1 . We obtain from such a calculation both the energy of the Lewis structure and its wave function written as a single Slater determinant. 3 Here and . 

  the typical example of the resonance in acrolein (Scheme 2). Structure I fulfils rules a, b and c, and II fails on rules a and b, while III fails on rules a, b and c (because O is more electronegative than C, O should get negatively charged rather than positively). Hence the qualitative weights: I is the major contributor, II is minor, and III can be neglected.

Figure 1 :

 1 Figure 1: Resonance between two Lewis structures for the allyl radical. The orbitals are drawn in red. They are either bond distorded orbitals (BDO) {12, 23} or atomic centered orbitals {p1, p3}. In principle, structures do not share the same orbital set.

Figure 2 :

 2 Figure 2 : Covalent (bi-radical) component. (a) The biradical coupling for atoms 1 and 4 in butadiene is highlighted by a green "bond", (b) preference panel for the automatic search (red arrows).

  (b) (a) from 26 (b) this work .

Figure 3 :

 3 Figure 3: With respect to the xz plane, the allyl cation has an antisymmetric ground state, due to the mono-occupied π2 orbital.

Figure 4 :

 4 Figure 4: Two-structure resonance for the allyl cation.

  The orbitals are then expressed on the orthonormal basis set of the atomic orbitals , as approximated in the Hückel framework. With , we get for instance , . Finally, we obtain the overlap of the Hückel wave function with a Lewis structure: Using the same technique, many useful overlaps can be computed, such as the overlap between the two Lewis structures .

  the (vertical) vector that describes the overlap of each Lewis structure with the Hückel wave function, and the (vertical) vector of the coefficients of the Lewis wave function on the Lewis structure basis set. Last, is the overlap matrix between Lewis structures. The normalized vector of the Lewis wave function is obtained by the resolution of equation 11, and the weights ( ) are obtained with the Coulson-Chirgwin formula (7).

Figure 5 :

 5 Figure 5: Screen copy of the HuLiS computation of the benzyl radical in HuLiS (mobile version).

Furthermore, it shows

  that the rest of the cycle does not really participate to the radical delocalization. Finally, HuLiS shows a slightly larger participation of the C• compared to N•: in structures 1, 3 and 4 the radical is on the carbon (C•), and the sp3 nitrogen lone pair is delocalized toward the two carbonyls. Those three have positive coefficients (C1=+0.33, C3=+0.28, C4=+0.24). The structures with a radical character on the sp2 nitrogen N• have a bit smaller (and negative) coefficients (C2=-0.29, C5=-0.22, C6=-0.19). Weights follow the tendency of the SOMO's coefficients. In the next step of this specific reaction, the radical C• reacts with formaldehyde, and, in fine, builds the methyl group of the thymine.

37

 37 

Figure 6 :

 6 Figure 6: Main π-radical delocalization in the dehydrogenated uracil: (a) drawings (b) HuLiS results (only the 6 first structures were used (c) SOMO orbital at the Hückel level (left) and B3LYP/6-31G(d) (right).

Finally

  Figure A-1: π orbitals in ethylene. (a) qualitative orbital interaction diagram to obtain π and π* orbitals. (b) Hückel method: α and β are negative energetic quantities.

  matrix. An example is given bellow (FigureB-1).The diagonalization of the LHM gives block-localized orbitals that have to be filled with the appropriate number of electrons to fully correspond to the Lewis structure. In the example bellow (Figure B-1), we obtain three localized orbitals (not shown): one Bond Distorded

Figure B- 1 :EE

 1 Figure B-1: Modification of the Hückel Hamiltonian matrix (a) → to (b) to describe a Lewis structure. Eigenvalues of the Hamiltonian matrices, occupation number of the orbitals for the corresponding cases and energies of the electronic configurations.

Table 1 :

 1 HuLiS and NRT weights (in %) obtained for the pyrrole. The trust factor  is defined in the following section

p 22 Optional Elements GLOSSARY: A dictionary-style definition of any unusual or key terms used in your article HuLiS: acronym of the Hückel-LewiS family of method HL-CI : Hückel-Lewis Configuration Interaction method for calculating resonance using a dressed Hückel Hamiltonian matrix HL-P : Hückel-Lewis Projected method for calculating resonance using overlaps between the Hückel and the Lewis wave functions RELEVANT WEBSITES: A list of websites relevant to the chapter Main HuLiS web site : http://www.hulis.free.fr HuLiS mobile web site : http://m.hulis.free.fr