
HAL Id: hal-04398119
https://hal.science/hal-04398119v1

Preprint submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Formalization and Sharing of Atelier B Proofs
with Dedukti

Claude Stolze, Olivier Hermant, Romain Guillaumé

To cite this version:
Claude Stolze, Olivier Hermant, Romain Guillaumé. Towards Formalization and Sharing of Atelier B
Proofs with Dedukti. 2024. �hal-04398119�

https://hal.science/hal-04398119v1
https://hal.archives-ouvertes.fr

Towards Formalization and Sharing of Atelier B
Proofs with Dedukti

Claude Stolze1, Olivier Hermant2, and Romain Guillaumé1,2

1 Université Paris-Saclay, ENS Paris-Saclay, LMF, Inria, France
2 CRI, Mines Paris, PSL University, Paris, France

Abstract. Atelier B is widely used to develop safe-by-construction pro-
grams. Numerous systems and pieces of software have been designed
and built at the highest level of safety with this framework. But similar
toolsets are used for the same purpose, and we advocate that they would
all benefit from proof-exchange facilities. To this aim, we introduce an
export tool of Atelier B proof obligations to Dedukti, a universal logi-
cal framework based on type theory, and designed for interoperability.
We then describe a preliminary experimentation to reconstruct detailed
demonstrations of those proof obligations, so that they can be double-
checked by Dedukti, and be ready for a later export to the other tools.
We also discuss the methodologies and potential framework architectures
that could be helpful in such a proof-exchange objective.

Keywords: B Method · Type theory · Automated reasoning · Proof
theory · Formal methods · Set theory · Interoperability

1 Introduction

Atelier B [20] is widely used to develop safe-by-construction programs, in partic-
ular in the rail industry [39]. It is currently used by manufacturers for the certifi-
cation of microelectronic components at the EAL6+ level according to Common
Criteria (ISO/IEC 15408), under the supervision of the French National Cyber-
security Agency (ANSSI). During the formalization and development processes,
it generates numerous proof obligations to ensure that the program respects the
given specifications.

However, the formal structure of the proofs of Atelier B is not explicit and
difficult to piece together. The available traces are scripts that can call integrated
automated theorem provers; use thousands of small inference rules that rely on
checking guard conditions which are declared in separate files; or depend on
implicit built-in simplification rules, like variable-free numeric computations,
that are directely embedded in the kernel. Beyond these calls to these large
steps, we have not been able to exhibit a more detailed proof structure or an
explicit notion of proof tree.

As other toolsets exist in this domain, some of which are also set-based,
like Rodin [3] or TLAPS [17], there would be huge benefits in double-checking

2 C. Stolze, O. Hermant, and R. Guillaumé

proof or sharing libraries across systems. This is one of the goals of the ICSPA
French-agency-funded research project, which started in 2022.

Dedukti [4] is a logical framework designed for interoperability [10]. It has
already been used to share proofs across different systems [46]. Our aim is to
express, in Dedukti, the logic of Atelier B, and to translate the proof obligation
statements, in order to reconstruct proofs in Dedukti, allowing us to share the
results with other tools later.

After a short survey of the related work and a nutshell presentation of the
prerequisites about Atelier B, we present both the foundations and the pratical
results of our export tool of Atelier B proof obligations to Dedukti. We then de-
scribe an experiment to construct – using automated theorem provers – Dedukti
proofs of those statements, which will be the starting point for export and shar-
ing. Finally, we discuss the possible tools, methodologies and architectures for
the last two steps of proof reconstruction and sharing, and conclude the paper.

2 Related work

Bolstering the proving strength of Atelier B with external provers is a longstand-
ing effort. In 2012–2016, the BWare project [44] has tackled the question with
numerous tools, some of which we will use in this work and describe below. More
recently, SMT solvers, like VeriT [12], are being investigated to this aim, and a
large benchmark consisting of more than 700, 000 anonymized proof obligations
in two different formats has been made publicly available [19].

At the core of the BWare framework, the B Method [1] axioms and ba-
sic constructs have been expressed in Why3 [27], a platform based on an ML-
polymorphic type theory. A proprietary tool of one of the BWare industrial par-
ticipants has then been used to convert Atelier B proof obligations into Why3
specifications. This platform is then used as a hub to discharge the proofs to
automated theorem provers through specific drivers towards, in particular, Alt-
Ergo [21], and also iProver Modulo and Zenon Modulo [15,16].

The last two provers are based on Deduction modulo theory [24], that com-
bines first-order logic with rewriting. This last feature has proved very useful
to express the computational content of axioms (e.g. arithmetic) and gives rise
to speedups both in time and size [13], begin able to express features that go
beyond the first order [14]. A very similar rewriting feature is at the heart of De-
dukti too. Moreover, Zenon Modulo has been designed to produce proof terms,
that can be directly fed to Dedukti, just like its direct ancestor Zenon [11] is
capable of producing proofs for TLAPS [35], FoCaLiZe [25], or Coq [45].

TPTP [43] is a common format to formally express problems under various
forms. Zenon Modulo uses as input the TFF1 [7] form, which is quite close
to the Why3 polymorphic logic, while iProver Modulo requires formulas to be
monomophised first and thus expressed in the FOF form.

Dedukti [4] is a language based on λΠ-calculus modulo theory [22], designed
for interoperability [10]. The base type system, also known as LF [30], is enriched
with a rewriting feature, as mentioned above. This yields a highly configurable

Formalization of Atelier B Proofs 3

logic [8], in which it is possible to express the calculus of constructions, Agda [28],
or PVS [31], for instance. The two main dialects of Dedukti are a type-checker
[41] called dk and a proof assistant, called Lambdapi. It boasts a wide range
of helpful tools [23] that support the activity of sharing proofs across systems :
import, reverse mathematics analysis, termination checking [9], export [46], or
automated proof-term filling [26] (like SledgeHammer [38]) tools.

The proof community has made interesting efforts towards the definition
of standards for proof exchange or theory manipulations [37]. ProofCert is a
project which [36] puts the focus on the structure of proofs, that one can divide
in a succession of (clerk) mechanical phases, separated by (expert) choice points,
arguing that only the choice points need to be recorded. It is of particular interest
for first-order reasoning [18]. As of type-theoretic frameworks, the MMT [33] and
Mathematical Knowledge Management [6] efforts give tools to manipulate the
theory and the theorems of a wide range of frameworks, while OpenTheory [32]
is a common proof format for all the HOL-based proof assistants.

Within the Dedukti logical framework, a recent work has introduced a mod-
ular way to define the most common logics, where features, like classical or
intuitionistic connectives, higher-order types, impredicativity, and so on, can be
picked up and composed in a modular way: the Theory U [8]. As we want to go
beyond Atelier B, or even the B Method itself, and also because some of the steps
of BWare were proprietary, we do not directly use the Why3-TPTP intermediate
steps. We rather follow the Theory U to encode the logic and constructions of
Atelier B, and a direct translation of proof obligations in this theory. By using a
similar approach for the other target set-based tools, we will be able to represent
different set-theoretic tools not only within the same language and framework,
but by using a common set of symbols and axioms as far as it is possible.

3 The B method

The B method has been defined by J.-R. Abrial [1] as a framework for safe-by-
construction software design and production. At its heart is a typed set theory,
that consists in first-order logic with equality reasoning rules, basic set con-
structs, an axiomatization of the base axioms of set theory, like the cartesian
product, the powerset, or the comprehension scheme; and derived constructs,
like intersection, union, functions, etc.

The B method also defines a methodology to specify and prove correct a
program, that is implemented by Atelier B. A machine consists of code along
with logical formulas (invariant) which express the desired properties of the code.
Atelier B then automatically derives, by computing a weakest pre-condition, the
proof obligations that have to be shown to hold, within the first-order logic
system describe above, in order for the invariants to be actual properties of the
code.

Machines can be abstract and, if the user wants to generate executable code,
he usually must go through several refinement steps, starting with an abstract
machine and giving more and more precise and concrete versions of it at each

4 C. Stolze, O. Hermant, and R. Guillaumé

step. During the refinement process, Atelier B generates proof obligations, that
must be proved to ensure that the refined machine still satisfies the invariants
of the previous-step machine.

Proof obligations come as PO files, and can be exported to an XML format,
also known as POG files. The user has to prove them through a dedicated inter-
face of Atelier B, by combining the automated, often configurable, tactics and
provers offered by Atelier B. Among the later tools, one can find pp and mp, that
can be called at different levels of heuristics and deepness in proof search (the
“forces”).

Event B [2] is a simplification as well as an extension of the B method which
has a more flexible refinement concept targeted at systems modelling. It allows
for instance a better treatment of loops, that can be introduced at a higher
abstraction level. Event B is implemented in the Rodin tool [3], and it is also
supported by Atelier B, although we are not using this feature in our work.
Differences between B and Event-B are listed in [34].

In the following example, there are three machines: the first one is the spec-
ification, the second one is a refinement, the third one is the implementation.

MACHINE

example

VARIABLES

set

INVARIANT

set : FIN(NAT1)

INITIALISATION

set := {}

OPERATIONS

enter(nn) =

PRE nn : NAT1

THEN

set :=

set \/ {nn}

END;

mm <-- maximum =

PRE set /= {}

THEN

mm := max(set)

END

END

REFINEMENT example_r

REFINES example

VARIABLES

zz

INVARIANT

zz : NAT &

zz =

max(set \/ {0})

INITIALISATION

zz := 0

OPERATIONS

enter(nn) =

PRE nn : NAT1

THEN

zz :=

max({zz,nn})

END;

mm <-- maximum =

PRE zz /= 0

THEN

mm := zz

END

END

IMPLEMENTATION example_i

REFINES example_r

CONCRETE_VARIABLES

zz

INVARIANT

zz : NAT

INITIALISATION

zz := 0

OPERATIONS

enter(nn) =

BEGIN

IF nn >= zz

THEN zz := nn

END

END;

mm <-- maximum =

BEGIN

mm := zz

END

END

Formalization of Atelier B Proofs 5

4 Translating B Proof Obligations

In order to translate B predicates into Dedukti, we need to formalize its type system,
which is quite unusual compared to common type theories [5], because there is no
arrow type. Indeed, it is not inspired by the λ-calculus, but by set theory, so the basic
type constructs are the cartesian product × , the powerset type Set(), and, for
practical reasons, the record type constructor struct(. . .). A function from A to B has
the typical set-theoretic type Set(A×B), the type of relations between A and B, with
extra properties ensuring functionality of the relation. As such, most of the reasoning
on terms is done through an axiomatic semantics.

4.1 Formalizing the B Type System in Dedukti

Basic types of Atelier B, noted b in the syntax, are Z for integers, R and FLOAT for
floats, BOOL for booleans, and STRING for strings, even though we may consider extra
basic types.

We use four categories of terms:

– types T , which type objects

– objects M , which are programs and data (integers, functions, records. . .)

– kinds K, which types predicates

– predicates, which are either 0-ary (of type Prop), or unary (of type T → Prop),
for some type T

The set of basic constructor with their signature type is called Σ. Basic first-
order constructors, noted c(M1, . . . ,Mn) in the syntax, are too numerous to be listed
comprehensively. An n-ary constructor c has a signature type (T1, . . . , Tn) → T (we
can write c : T if n = 0). All integer and float constants are considered as basic
constructors, as well as arithmetic operators.

Many constructors in B are actually expressed in an ML-polymorphic style [29], for
instance operations on sets, relations, functions, sequences, or trees. Unlike construc-
tors, functions or sets themselves are always monomorphic. To keep the presentation
simple, each constructor is introduced as a family of monomorphic constructors, al-
though it is actually represented in Dedukti as a polymorphically encoded single sym-
bol. For instance, the family of cardinal operators CardT has type Set(T) → Z, while in
the actual Dedukti encoding, the operator Card has type (T : type) → τ(Set(T)) → τZ.

There is only a handful of second-order constructors, used for comprehension and
for defining functions as well as generalized versions of sums, products, unions, and
intersections. Comprehension depends on a typed predicate P : T → Prop and defines
the set {P} of all objects that satisfy P . All other second-order constructors have a
signature type of the shape (T1 → T2) → T3 and we factor their presentation and, in the
next section, their typing rules. We collectively refer to these second-order constructors
as h(λx : T1.(P |M)), where P is a predicate that restricts the domain T1. For instance,
the function constructor %T1,T2 has type (T1 → T2) → Set(T1×T2), and the generalized
sum on integers ΣT has type (T → Z) → Z.

Two variadic constructors exist: a constructor for sets by extension {M1, . . . ,Mn}
and a constructor for sequences [M1, . . . ,Mn].

The operator bool() converts predicates to booleans. The binary predicate opera-
tors, noted op, are the usual connectives ∨, ∧, ⇒, and ⇔.

6 C. Stolze, O. Hermant, and R. Guillaumé

The syntax for the four categories is as follows:

T ::= b | T × T | Set(T) | struct(l1 : T1, . . . , ln : Tn)
M ::= x | c(M1, . . . ,Mn) | h(λx : T.(P |M)) | bool(P) | {P} | {M1, . . . ,Mn}

| [M1, . . . ,Mn] | (M1,M2) | pri(M) | rec(l1 : M1, . . . , ln : Mn) | l.M
K ::= Prop | T → Prop
P ::= M1 ∈ M2 | M1 = M2 | P M | ∀x : T, P | ∃x : T, P | P opP | λx : T, P

| ¬P | true

4.2 Typing rules

There are two kinds of judgments: Γ ⊢ M : T for typing objects, and Γ ⊢ P : K for
typing predicates. The environment Γ is a finite set containing declarations of the form
x : T . Rules for typing objects are found in Fig. 1, while rules for typing predicates are
found in Fig. 2.

(x : T) ∈ Γ

Γ ⊢ x : T

(c : (T1, . . . , Tn) → T) ∈ Σ
Γ ⊢ M1 : T1 · · · Γ ⊢ Mn : Tn

Γ ⊢ c(M1, . . . ,Mn) : T

Γ ⊢ P : Prop

Γ ⊢ bool(P) : BOOL

(h : (T1 → T2) → T3) ∈ Σ
Γ, x : T1 ⊢ P : Prop Γ, x : T1 ⊢ M : T2

Γ ⊢ h(λx : T1.(P |M)) : T3

Γ ⊢ P : T → Prop

Γ ⊢ {P} : Set(T)

Γ ⊢ M1 : T · · · Γ ⊢ Mn : T

Γ ⊢ {M1, . . . ,Mn} : Set(T)

Γ ⊢ M : T1 × T2

Γ ⊢ pri(M) : Ti

Γ ⊢ M1 : T · · · Γ ⊢ Mn : T

Γ ⊢ [M1, . . . ,Mn] : Set(Z× T)

Γ ⊢ M1 : T1 Γ ⊢ M2 : T2

Γ ⊢ (M1,M2) : T1 × T2

Γ ⊢ M : struct(l1 : T1, . . . , ln : Tn)

Γ ⊢ li.M : Ti

Γ ⊢ M1 : T1 · · · Γ ⊢ Mn : Tn

Γ ⊢ rec(l1 : M1, . . . , ln : Mn) : struct(l1 : T1, . . . , ln : Tn)

Fig. 1. Rules for typing objects

4.3 Second-Order Encoding

We have written a translator from the POG format to Lambdapi using the constructors
above. This encoding requires a use of the classical many-sorted second-order logic
because of the second-order constructors.

We have benchmarked our encoding on a dataset [19] of more than 700,000 proof
obligations given in 5434 POG files (6.3 GiB). We manage to translate all, but 47
files, into Lambdapi. The remaining failures stem from an ill-typing of the POG files
themselves, that trigger a typing error in Lambdapi during the translation. These errors
are a side effect of the anonymization of the original Atelier B PO files, and the feedback
of our experiment has led to improvements of this latter step.

Formalization of Atelier B Proofs 7

Γ ⊢ M1 : T Γ ⊢ M2 : Set(T)

Γ ⊢ M1 ∈ M2 : Prop

Γ, x : T ⊢ P : Prop

Γ ⊢ ∀x : T, P : Prop

Γ ⊢ M1 : T Γ ⊢ M2 : T

Γ ⊢ M1 = M2 : Prop

Γ, x : T ⊢ P : Prop

Γ ⊢ ∃x : T, P : Prop

Γ ⊢ P1 : Prop Γ ⊢ P2 : Prop

Γ ⊢ P1 opP2 : Prop

Γ ⊢ P : Prop

Γ ⊢ ¬P : Prop

Γ, x : T ⊢ P : Prop

Γ ⊢ λx : T.P : T → Prop Γ ⊢ true : Prop

Γ ⊢ P : T → Prop Γ ⊢ M : T

Γ ⊢ P M : Prop

Fig. 2. Rules for typing predicates

4.4 First-Order Encoding

In order for our system to interoperate with solvers, we are working on an encoding
in classical many-sorted first-order logic, which could be done both in Dedukti and in
Why3. The main difference with the second-order encoding is the treatment of second-
order constructors and set constructors, which requires the use of ad hoc axioms for each
use of these constructors. Sets defined by some second-order operation will be defined
as an atomic set, and an axiom will define its content. For instance, the sequence
[TRUE,FALSE,TRUE] will be defined as a fresh atomic set s, with the accompanying
axiom:

∀x : Z× BOOL.x ∈ s ⇔ x = (1,TRUE) ∨ x = (2,FALSE) ∨ x = (3,TRUE)

instead of the second-order definition by comprehension s = {λx : Z × BOOL.x =
(1,TRUE) ∨ x = (2,FALSE) ∨ x = (3,TRUE)}.

Similarly, the function %T1,T2(λx : T1.(P (x)|f(x)) is encoded by creating a fresh
atomic set s, and, assuming P (x) and f(x) have been encoded properly, we add the
accompanying axiom:

∀z : T1 × T2.z ∈ s ⇔ ∃x : T1.P (x) ∧ z = (x, f(x))

Generalized sums and generalized products are a little bit trickier. To illustrate this
difficulty, let us consider the sum of integers ΣT (λx : T.(P (x)|f(x)). We can consider
a fresh atomic function σ taking a set of type Set(T) as an argument. σ(A) is defined
as the sum of f(A), with the axioms:

σ(∅) = 0
∀(x : T)(A : Set(T)).x ̸∈ A ⇒ σ({x} ∪A) = f(x) + σ(A)

5 Reconstruction of Proofs

5.1 Pipeline

Following the BWare project, we have designed a pipeline for generating proof of Atelier
B proofs obligations in Dedukti. This pipeline (Fig. 3) first consists in translating the

8 C. Stolze, O. Hermant, and R. Guillaumé

proof obligations of Atelier B from the PO or POG formats to the WhyML format of
the Why3 platform. This relies on an implementation of the B theory in the WhyML
language. We then make use of the different Why3 drivers available to convert the
proof obligations from WhyML to the automated theorem provers native format. In
our case, we used the drivers for iProver and Zenon Modulo to respectively produce
problems in TPTP-FOF and TPTP-TFF1 formats. Both provers then attempt to solve
the problem and output a Dedukti proof certificate in case of success, which validity
is verified by the Dedukti proof checker. As a proof obligation is transformed multiple
times and because each TPTP file must contain the theory defining the objects of the
statements to prove, the file sizes increase considerably throughout the pipeline.

Atelier B proof obligation bpo2why preludeWhyML

TPTP (FOF) TPTP (TFF)

Dedukti proof Dedukti proof

Dedukti proof checker

Why3 iProver Why3 Zenon Modulo driver

iProver Modulo Zenon Modulo

Fig. 3. Pipeline for proof reconstruction

5.2 Example

We illustrate the different stages and transformations a proof obligation goes through
while it is traversing the pipeline. In this example, the proof obligation consists in
proving one implication. One can track the predicates f1, f2, f3, f4, f5, and f6, and
the variables _locks, _card, _K0, _HS, _Dmin, _Dmax, _DATE, and _CARD, on which they
depend, as visual anchors to understand the structure. Note that the predicate f6 is
originally defined as the boolean bfalse and f5 as btrue.

The PO file (Fig. 4) gives the goal to prove in the theory ProofList, which states
that the predicates f1 through f5 should imply f6. These predicates are listed in the
theory Formulas.

The WhyML translation (Fig. 5) defines all the predicates (omitted in Fig. 5),
which takes all the variables _locks, _card. . . as arguments, and restates the goal in
WhyML.

Formalization of Atelier B Proofs 9

THEORY ProofList IS

_f(1) & _f(2) & _f(3) &

b_close_disk.1, (_f(4) & _f(5) => _f(6))

END

&

THEORY Formulas IS

f1 K0: CARD & HS: CARD & not(K0 = HS) & CARD: FIN(INTEGER) &

not(CARD={}) & Dmin: INTEGER & 0<=Dmin & Dmin<=2147483647 &

Dmax: INTEGER & 0<=Dmax & Dmax<=2147483647 & Dmin+1<=Dmax &

DATE = Dmin..Dmax;

f2 locks: BOOL & card: BOOL & (card = FALSE => locks = FALSE);

f3 card = TRUE;

f4 card = FALSE;

f5 btrue

f6 bfalse

END

Fig. 4. PO file

goal b_close_disk_1 :

forall _locks: bool, _card: bool, _K0: int, _HS: int,

_Dmin: int, _Dmax: int, _DATE: set int, _CARD: set int.

((f1 _locks _card _K0 _HS _Dmin _Dmax _DATE _CARD)

/\ (f2 _locks _card _K0 _HS _Dmin _Dmax _DATE _CARD)

/\ (f3 _locks _card _K0 _HS _Dmin _Dmax _DATE _CARD)

/\ (f4 _locks _card _K0 _HS _Dmin _Dmax _DATE _CARD)

/\ (f5 _locks _card _K0 _HS _Dmin _Dmax _DATE _CARD))

-> (f6 _locks _card _K0 _HS _Dmin _Dmax _DATE _CARD)

Fig. 5. WhyML file

10 C. Stolze, O. Hermant, and R. Guillaumé

Why3 can generate a translation of the goal in the TFF format (Fig. 6) for Zenon
Modulo, or in the FOF format (Fig. 7) for iProver. The goal translated by Zenon
Modulo in Dedukti is given in Fig. 8.

tff(b_close_disk_1, conjecture,

![_locks:bool, _card:bool, _K0: $int, _HS:$int, _Dmin:$int,

_Dmax:$int, _DATE:infix_mngt($int, bool),

_CARD:infix_mngt($int, bool)]:

((f1(_locks, _card, _K0, _HS, _Dmin, _Dmax, _DATE, _CARD) &

(f2(_locks, _card, _K0, _HS, _Dmin, _Dmax, _DATE, _CARD) &

(f3(_locks, _card, _K0, _HS, _Dmin, _Dmax, _DATE, _CARD) &

(f4(_locks, _card, _K0, _HS, _Dmin, _Dmax, _DATE, _CARD) &))))

=> ($false)).

Fig. 6. TPTP-TFF1 file

fof(b_close_disk_1, conjecture,

![_locks, _card, _K0, _HS, _Dmin, _Dmax, _DATE, _CARD]:

((sort(bool, _locks) = _locks) =>

((sort(bool, _card) = _card) =>

((sort(int, _K0) = _K0) =>

((sort(int, _HS) = _HS) =>

((sort(int, _Dmin) = _Dmin) =>

((sort(int, _Dmax) = _Dmax) =>

((sort(infix_mngt(int, bool), _DATE) = _DATE) =>

((sort(infix_mngt(int, bool), _CARD) = _CARD) =>

~ (f1(_locks, _card, _K0, _HS, _Dmin, _Dmax, _DATE, _CARD) & (

f2(_locks, _card, _K0, _HS, _Dmin, _Dmax, _DATE, _CARD) & (

f3(_locks, _card, _K0, _HS, _Dmin, _Dmax, _DATE, _CARD) & (

f4(_locks, _card, _K0, _HS, _Dmin, _Dmax, _DATE, _CARD))

))))))))))).

Fig. 7. TPTP-FOF file

5.3 Benchmark

We have used a test suite of 23 proof obligations coming from Atelier B. These proof
obligations were provided already translated into the WhyML format by the Mitsubishi
Electric. Indeed, their bpo2why translator is proprietary software. The test suite repre-
sents typical proof obligations of a tutorial project utilizing Atelier B. More precisely,
the proof obligations come from the specification of an Automated Teller Machine
software. We compare 4 provers : Zenon Modulo with and without Deduction Modulo

Formalization of Atelier B Proofs 11

def zenon_G : proof (not (

forall bool (a : (El bool) =>

forall bool (b : (El bool) =>

forall Z (c : (El Z) =>

forall Z (d : (El Z) =>

forall Z (e : (El Z) =>

forall Z (f : (El Z) =>

forall (infix_mngt Z bool) (g : (El (infix_mngt Z bool)) =>

forall (infix_mngt Z bool) (h : (El (infix_mngt Z bool)) =>

imp (

and (f1 a b c d e f g h)(

and (f2 a b c d e f g h)(

and (f3 a b c d e f g h)(

and (f4 a b c d e f g h)

))))

False)))))))))) -> seq.

Fig. 8. Dedukti file

Theory, iProver Modulo (with OCaml 4.02.1) and Alt-Ergo for reference. Alt-Ergo is
not yet capable of outputting proof certificates in Dedukti and is called directly from
the Why3 platform.

The commands used for converting problems from WhyML to the TPTP format
are as follows:

– for Zenon Modulo

why3 prove -D zenon_modulo.drv -L <prelude_dir> <file.why>

– for iProver Modulo

why3 prove -D iProver.drv -L <prelude_dir> <file.why>

– for Zenon Modulo without Deduction Modulo Theory (-odk flag is for outputting
Dedukti)

zenon_modulo -itptp -odk -max-time 5 -max-size 3G <file.tptp>

– for Zenon Modulo with Deduction Modulo Theory

zenon_modulo -itptp -modulo-heuri -max-time 5

-max-size 3G <file.tptp>

– for iProver Modulo

sh /path/to/iprover_modulo_launcher.sh <file.tptp> 120

– for Alt-Ergo

why3 prove -P alt-ergo -L <prelude_dir> <file.why>

We get the following results:
Numbers of proof obligations proved

Zenon Modulo (-odk) 1/23

Zenon Modulo (-modulo-heuri) 11/23

iProver Modulo 1/23

Alt-Ergo 16/23

12 C. Stolze, O. Hermant, and R. Guillaumé

6 Conclusion

In this paper, we have introduced a direct translation schema from Atelier B to De-
dukti, that makes explicit the notion of types, and expresses the basic constructs. This
translation is implemented in a tool, that is effectively able to translate most of the
POG files of the apero suite. Moreover, the benchmarking of the tool has allowed to
discover and correct several errors in Atelier B’s POG file generator.

After that, we have described our investigations in rebuilding, in Dedukti, the
proofs of the translated proof obligations. Reviving the BWare pipeline, through an
intermediate Why3 translation that is no more freely available, and a call to automated
theorem provers that can produce proof terms, has proved more difficult than expected,
but nevertheless allowed us to validate the approach.

We have yet to align the Zenon Modulo produced proofs in Dedukti with the trans-
lation of the proof obligations that we have. More importantly, we have to investigate
other directions for this proof reconstruction step, in particular the ability of ekstrakto
[26] to take Dedukti incomplete proof terms as an input, and to call Zenon Modulo
on it. Likewise, we also plan to use GDV [42], which is a tool allowing us to use a
prover that outputs TSTP proof traces (e.g. Vampire [40]) and uses Zenon Modulo to
transform this trace into a Dedukti proof term. Another direction is to take advantage
of the proof scripts of Atelier B, which we are not exploiting for the moment.

As for proof sharing, it is first and foremost important to make sure to be able
to translate the reconstructed proofs of Atelier B proof obligations to Atelier B itself.
This first essential step already bears its own complexity and already provides an
interesting use case: exporting the proof obligation to Dedukti, building a proof in this
framework through a call to automated theorem provers, and importing the proofs
back. Independently of this work about homomorphic translations, we also have to
align the two dialects of the B method, Atelier B and Rodin, in Dedukti, in order
to be able to effectively share proof between systems. For those two objectives, an
infrastructure working even on a small fraction of the benchmark, e.g. with a restricted
set of constructs or when the proof scripts are simple, would already be a success.

References

1. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University
Press, New York, NY, USA (1996)

2. Abrial, J.R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press (2010)

3. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.:
RODIN: an open toolset for modelling and reasoning in Event-B. International
journal on software tools for technology transfer 12(6), 447–466 (2010)

4. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert,
F., Halmagrand, P., Hermant, O., Saillard, R.: Expressing theories in the λΠ-
calculus modulo theory and in the Dedukti system. In: TYPES. Novi Sad, Serbia
(2016)

5. Barendregt, H., Dekkers, W., Statman, R.: Lambda calculus with types. Cambridge
University Press (2013)

6. Bercic, K., Kohlhase, M., Rabe, F.: Towards a heterogeneous query language for
mathematical knowledge. In: Benzmüller, C., Miller, B.R. (eds.) Intelligent Com-
puter Mathematics - 13th International Conference, CICM 2020, Bertinoro, Italy,

Formalization of Atelier B Proofs 13

July 26-31, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12236, pp.
39–54. Springer (2020)

7. Blanchette, J.C., Paskevich, A.: TFF1: the TPTP typed first-order form with rank-
1 polymorphism. In: Bonacina, M.P. (ed.) Automated Deduction - CADE-24 - 24th
International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-
14, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7898, pp. 414–420.
Springer (2013)

8. Blanqui, F., Dowek, G., Grienenberger, É., Hondet, G., Thiré, F.: Some axioms
for mathematics. In: Kobayashi, N. (ed.) 6th International Conference on Formal
Structures for Computation and Deduction, FSCD 2021, July 17-24, 2021, Buenos
Aires, Argentina (Virtual Conference). LIPIcs, vol. 195, pp. 20:1–20:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2021)

9. Blanqui, F., Genestier, G., Hermant, O.: Dependency pairs termination in depen-
dent type theory modulo rewriting. In: Geuvers, H. (ed.) 4th International Con-
ference on Formal Structures for Computation and Deduction, FSCD 2019, June
24-30, 2019, Dortmund, Germany. LIPIcs, vol. 131, pp. 9:1–9:21. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2019)

10. Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as a uni-
versal proof language. In: Pichardie, D., Weber, T. (eds.) Proceedings of the Sec-
ond International Workshop on Proof Exchange for Theorem Proving, PxTP 2012,
Manchester, UK, June 30, 2012. CEUR Workshop Proceedings, vol. 878, pp. 28–43.
CEUR-WS.org (2012)

11. Bonichon, R., Delahaye, D., Doligez, D.: Zenon : An extensible automated theorem
prover producing checkable proofs. In: Dershowitz, N., Voronkov, A. (eds.) Logic
for Programming, Artificial Intelligence, and Reasoning, 14th International Con-
ference, LPAR 2007, Yerevan, Armenia, October 15-19, 2007, Proceedings. Lecture
Notes in Computer Science, vol. 4790, pp. 151–165. Springer (2007)

12. Bouton, T., Caminha de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient SMT-solver. In: Schmidt, R. (ed.) 22nd Intl. Conf. Au-
tomated Deduction. LNCS, vol. 5663, pp. 151–156. Springer, Montreal, Canada
(2009)

13. Burel, G.: Unbounded proof-length speed-up in deduction modulo. In: Duparc, J.,
Henzinger, T.A. (eds.) Computer Science Logic, 21st International Workshop, CSL
2007, 16th Annual Conference of the EACSL, Lausanne, Switzerland, September
11-15, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4646, pp. 496–
511. Springer (2007)

14. Burel, G.: Efficiently simulating higher-order arithmetic by a first-order theory
modulo. Log. Methods Comput. Sci. 7(1) (2011)

15. Burel, G., Bury, G., Cauderlier, R., Delahaye, D., Halmagrand, P., Hermant, O.:
First-order automated reasoning with theories: When deduction modulo theory
meets practice. J. Autom. Reason. 64(6), 1001–1050 (2020)

16. Bury, G., Delahaye, D., Doligez, D., Halmagrand, P., Hermant, O.: Automated
deduction in the B set theory using typed proof search and deduction modulo.
In: Fehnker, A., McIver, A., Sutcliffe, G., Voronkov, A. (eds.) 20th International
Conferences on Logic for Programming, Artificial Intelligence and Reasoning -
Short Presentations, LPAR 2015, Suva, Fiji, November 24-28, 2015. EPiC Series
in Computing, vol. 35, pp. 42–58. EasyChair (2015)

17. Chaudhuri, K., Doligez, D., Lamport, L., Merz, S.: Verifying safety properties with
the TLA+ proof system. In: Giesl, J., Hähnle, R. (eds.) Automated Reasoning, 5th
International Joint Conference, IJCAR 2010, Edinburgh, UK, July 16-19, 2010.

14 C. Stolze, O. Hermant, and R. Guillaumé

Proceedings. Lecture Notes in Computer Science, vol. 6173, pp. 142–148. Springer
(2010)

18. Chihani, Z., Miller, D., Renaud, F.: A semantic framework for proof evidence. J.
Autom. Reason. 59(3), 287–330 (2017)

19. ClearSy: (2022), https://github.com/CLEARSY/apero/tree/main/DATA
20. ClearSy System Engineering: Atelier B. https://www.atelierb.eu/en/
21. Conchon, S., Iguernelala, M.: Tuning the Alt-Ergo SMT solver for B proof obli-

gations. In: Ameur, Y.A., Schewe, K. (eds.) Abstract State Machines, Alloy, B,
TLA, VDM, and Z - 4th International Conference, ABZ 2014, Toulouse, France,
June 2-6, 2014. Proceedings. Lecture Notes in Computer Science, vol. 8477, pp.
294–297. Springer (2014)

22. Cousineau, D., Dowek, G.: Embedding pure type systems in the lambda-pi-calculus
modulo. In: Rocca, S.R.D. (ed.) Typed Lambda Calculi and Applications, 8th In-
ternational Conference, TLCA 2007. Lecture Notes in Computer Science, vol. 4583,
pp. 102–117. Springer (2007)

23. Deducteam: Dedukti, a logical framework, https://deducteam.github.io/ and
https://github.com/Deducteam

24. Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Auto-
mated Reasoning 31, 33–72 (2003)

25. Dubois, C., Pessaux, F.: Termination proofs for recursive functions in FoCaLiZe. In:
Serrano, M., Hage, J. (eds.) Trends in Functional Programming - 16th International
Symposium, TFP 2015, Sophia Antipolis, France, June 3-5, 2015. Revised Selected
Papers. Lecture Notes in Computer Science, vol. 9547, pp. 136–156. Springer (2015)

26. El Haddad, M.Y., Burel, G., Blanqui, F.: EKSTRAKTO A tool to reconstruct
dedukti proofs from TSTP files (extended abstract). In: Reis, G., Barbosa, H. (eds.)
Proceedings Sixth Workshop on Proof eXchange for Theorem Proving, PxTP 2019,
Natal, Brazil, August 26, 2019. EPTCS, vol. 301, pp. 27–35 (2019)

27. Filliâtre, J., Paskevich, A.: Why3 - where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) Programming Languages and Systems - 22nd European
Symposium on Programming, ESOP 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings. Lecture Notes in Computer Science, vol. 7792, pp. 125–
128. Springer (2013)

28. Genestier, G.: Encoding Agda programs using rewriting. In: Ariola, Z.M. (ed.) 5th
International Conference on Formal Structures for Computation and Deduction,
FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Conference). LIPIcs,
vol. 167, pp. 31:1–31:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

29. Halmagrand, P.: Automated deduction and proof certification for the B method.
Theses, Conservatoire national des arts et metiers - CNAM (2016)

30. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. J. ACM
40(1), 143–184 (1993)

31. Hondet, G., Blanqui, F.: Encoding of predicate subtyping with proof irrelevance
in the λΠ-calculus modulo theory. In: de’Liguoro, U., Berardi, S., Altenkirch, T.
(eds.) 26th International Conference on Types for Proofs and Programs, TYPES
2020, March 2-5, 2020, University of Turin, Italy. LIPIcs, vol. 188, pp. 6:1–6:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

32. Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K.,
Holzmann, G.J., Joshi, R. (eds.) NASA Formal Methods. pp. 177–191. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

33. Kohlhase, M., Rabe, F.: Experiences from exporting major proof assistant libraries.
J. Autom. Reason. 65(8), 1265–1298 (2021)

https://github.com/CLEARSY/apero/tree/main/DATA
https://www.atelierb.eu/en/
https://deducteam.github.io/
https://github.com/Deducteam

Formalization of Atelier B Proofs 15

34. Leuschel, M.: Spot the difference: a detailed comparison between B and Event-B.
Logic, Computation and Rigorous Methods: Essays Dedicated to Egon Börger on
the Occasion of His 75th Birthday pp. 147–172 (2021)

35. Merz, S.: Proofs and proof certification in the TLA+ proof system. In: Pichardie,
D., Weber, T. (eds.) Proceedings of the Second International Workshop on Proof
Exchange for Theorem Proving, PxTP 2012, Manchester, UK, June 30, 2012.
CEUR Workshop Proceedings, vol. 878, pp. 16–20. CEUR-WS.org (2012)

36. Miller, D.: ProofCert: Broad Spectrum Proof Certificates (Feb 2011),
an ERC Advanced Grant funded for the five years 2012–2016,
http://www.lix.polytechnique.fr/Labo/Dale.Miller/ProofCert/

37. Miller, D.: A distributed and trusted web of formal proofs. In: Hung, D.V., D’Souza,
M. (eds.) Distributed Computing and Internet Technology - 16th International
Conference, ICDCIT 2020, Bhubaneswar, India, January 9-12, 2020, Proceedings.
Lecture Notes in Computer Science, vol. 11969, pp. 21–40. Springer (2020)

38. Paulson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliffe, G.,
Schulz, S., Ternovska, E. (eds.) The 8th International Workshop on the Implemen-
tation of Logics, IWIL 2010, Yogyakarta, Indonesia, October 9, 2011. EPiC Series
in Computing, vol. 2, pp. 1–11. EasyChair (2010)

39. Peleska, J., Haxthausen, A.E., Lecomte, T.: Standardisation considerations for au-
tonomous train control. In: Margaria, T., Steffen, B. (eds.) Leveraging Applications
of Formal Methods, Verification and Validation. Practice - 11th International Sym-
posium, ISoLA 2022, Rhodes, Greece, October 22-30, 2022, Proceedings, Part IV.
Lecture Notes in Computer Science, vol. 13704, pp. 286–307. Springer (2022)

40. Riazanov, A., Voronkov, A.: The design and implementation of vampire. AI com-
munications 15(2-3), 91–110 (2002)

41. Saillard, R.: Rewriting modulo β in the λΠ-calculus modulo. In: Cervesato, I.,
Chaudhuri, K. (eds.) Proceedings Tenth International Workshop on Logical Frame-
works and Meta Languages: Theory and Practice, LFMTP 2015, Berlin, Germany,
1 August 2015. EPTCS, vol. 185, pp. 87–101 (2015)

42. Sutcliffe, G.: Semantic derivation verification: Techniques and implementation. In-
ternational Journal on Artificial Intelligence Tools 15(06), 1053–1070 (2006)

43. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reason. 43(4), 337–362 (2009)

44. The BWare ANR Project: (2012 – 2016), ANR-12-INSE-0010, http://bware.lri.
fr/

45. The Coq Development Team: The Coq proof assistant (Sep 2022). https://doi.
org/10.5281/zenodo.7313584

46. Thiré, F.: Sharing a library between proof assistants: Reaching out to the HOL
family. In: Blanqui, F., Reis, G. (eds.) Proceedings of the 13th International
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice,
LFMTP@FSCD 2018, Oxford, UK, 7th July 2018. EPTCS, vol. 274, pp. 57–71
(2018)

http://www.lix.polytechnique.fr/Labo/Dale.Miller/ProofCert/
http://bware.lri.fr/
http://bware.lri.fr/
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584

	Towards Formalization and Sharing of Atelier B Proofs with Dedukti

