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Abstract—Graphics Processing Units (GPUs) are essential in
High Performance Computing (HPC) and safety-critical applica-
tions like autonomous vehicles. This market shift led to significant
improvements in the programming frameworks and evaluation
tools and concerns about their reliability. However, GPUs’ high
complexity poses challenges in evaluating their reliability. We
conducted the first cross-layer GPU reliability evaluation to
unveil and mitigate GPU vulnerabilities. The proposed evaluation
is achieved by comparing and combining extensive neutron
beam experiments, fault simulation campaigns, and application
profiling. Based on this detailed analysis, a novel methodology to
accurately estimate GPUs application FIT rate is proposed. The
cross-layer evaluation enables two novel hardening solutions: (1)
Reduced Precision Duplication With Comparison (RP-DWC) ex-
ecutes a redundant copy in reduced precision. RP-DWC delivers
excellent fault coverage, up to 86%, with minimal execution time
and energy consumption overheads (13% and 24%, respectively).
(2) Dedicated software solutions for hardening Convolutional
Neural Networks (CNNs) can detect up to 98% of errors.

I. MOTIVATION & PROBLEMS ADDRESSED

GPUs have evolved from supporting hardware for user ap-
plications and graphics rendering to general-purpose accelera-
tors extensively employed in HPC and safety-critical applica-
tions such as autonomous vehicles and aerospace markets. The
highly parallel architecture of GPUs, in fact, perfectly fits the
computational characteristic of most HPC codes and is incred-
ibly efficient in executing matrix multiplication, which is the
computing core of CNNs used to detect objects in autonomous
vehicles. The most recent GPU architecture advances, such
as tensor core and mixed-precision functional units, move
toward improving the architecture performances and software
flexibility for HPC and deep learning applications.

The market shift of GPUs, from consumer to HPC and
safety-critical applications, has triggered intensive research
to improve GPUs reliability while maintaining high perfor-
mances. Techniques to improve GPU reliability have been
proposed at different levels of the GPU hardware/software,
such as in the memory cell [1], Error Correction Code
(ECC) [2], [3], and Redundant Multithreading execution [4].
GPU’s reliability has become so essential that GPU vendors
are working on designing platforms compliant with strict
automotive reliability standards such as the ISO26262 [5], [6].

The leading example of GPU usage for safety-critical
applications are CNNs. CNNs can exploit GPU’s ability to

support data and thread-level parallelism while delivering
high-accuracy inference results. However, researchers have
focused on performance while neglecting other critical as-
pects, particularly reliability. While performance is vital in
these applications, reliability needs to be paramount. It is not
possible to tradeoff performance for reliability in safety-critical
applications. Modern GPUs have available Error Correction
Codes (ECCs) to protect single-bit flips on the main memories.
Unfortunately, we have demonstrated that the single-bit flips
in the memories often lead to tolerable errors (i.e., errors
that do not modify the inference results) [7]. Furthermore, as
ECC does not prevent critical errors on CNNs (i.e., errors that
modify the inference result) from happening, and duplication
approaches reduce the CNNs’ performances on GPUs to an un-
acceptable level, they cannot deliver the needed requirements
for safety-critical applications. Thus, this thesis proposes effi-
cient hardening methodologies for CNNs on GPUs.

To be able to evaluate safety-critical and HPC applica-
tions reliability on GPUs, the research community has been
carefully employing both fault-injection [8]–[13] and beam
experiments [3], [14]–[16]. While beam experiments provide a
realistic analysis but lack fault propagation visibility, fault sim-
ulation allows complete observation of the fault propagation,
but it is limited to a subset of the user-accessible resources.
Therefore, combining data from beam experiments and fault
simulation is an essential missing piece in the GPU reliability
evaluation puzzle this thesis intends to find. Additionally, we
take advantage of beam experiments and fault simulations to
thoroughly validate the proposed new hardening techniques. In
the beam and fault simulation experiments, we have considered
many novel architectural and software solutions introduced in
GPUs, such as reduced precision instructions, GPU dynamic
parallelism, high-level machine learning frameworks, and mul-
tiple NVIDIA libraries and tools.

In order to understand and improve the GPU’s reliability
the following topics are covered in this Ph.D. work:

• Combining beam experiments and fault simulation to
deeply understand GPUs’ reliability. This thesis presents
a detailed comparison between the GPU’s Failure In Time
(FIT) rate measured with beam experiments and the FIT
rate estimated using fault simulation and kernel profiling.

• This thesis improves the knowledge of GPU’s reliability
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by performing different levels of fault injections (neu-
tron beams, Register-Transfer Level (RTL), and software
level). Additionally, for the first time for GPUs, a fine
grain RTL fault injection (using FlexGripPlus) is com-
bined with the flexibility and efficiency of software fault
injection in real GPUs.

• This work advances GPU reliability by characterizing
how microarchitecture vulnerabilities in a GPU can un-
dermine a CNN’s reliability. Based on this analysis, we
propose a novel hardening for CNNs. Most previous
works focused only on HPC reliability on GPUs.

• By combining all the knowledge from the previous top-
ics, we propose a new hardening approach for mixed-
precision architectures. This thesis goes a step forward in
the performance efficiency of Duplication With Compari-
son (DWC) by presenting Reduced-Precision DWC (RP-
DWC), an improvement over the traditional DWC, which
consists of executing the replica in a lower precision.

II. SCIENTIFIC AND TECHNOLOGICAL EXCELLENCE

This thesis presents an extensive and accurate reliability
analysis on GPUs. It includes the data of 1,200 hours of
neutron beam in total, more than 400,000 fault simulations
at different levels of abstraction (RTL and software), and
detailed application profiling. The experimental beam data
account for more than 1.3 · 107 years of terrestrial flux
exposure. The neutron-induced error rate is presented for a
set of representative HPC and Deep learning codes. Up to 11
applications are evaluated, including 3 CNNs (YOLO, Faster
R-CNN, and Resnet). Some codes have been executed using
different data types (integer, float-, single-, or half-precision) to
understand the impact of mixed-precision on code’s reliability.
Complementary experiments are presented with ECC ON
and OFF to evaluate the efficacy of GPUs built-in reliability
solutions and distinguish between the contribution of logic
and memory faults to the codes error rate. The FIT rates
of the main functional units (including mixed-precision and
tensor cores), register file, and shared memory are presented
for Kepler and Volta GPUs in order to achieve a fine-grain
study of the GPUs vulnerabilities (Sections II-A and II-B).
The obtained data highlights that memory errors are not the
most critical for GPUs, and thus efficient hardening solutions
should focus on the computing and scheduler resources.

All the data gathered with the extensive beam experi-
ments, detailed GPU codes profiling, and large fault sim-
ulation campaigns at different levels of abstraction (RTL
and software) enabled a precise and cross-layer analysis of
the GPUs vulnerabilities. Then, to merge all the knowledge
obtained in each layer of abstraction, a novel methodology that
combines data from beam experiments, fault simulation,
and profiling has been presented, allowing an accurate GPU
error rate estimation. This new FIT estimation methodology
is validated by comparing the programs’ FIT rates measured
with beam experiments with the failure rates estimated from
fault injections using two NVIDIA fault injectors (SASSIFI [9]
and NVBitFI [11]), evaluating at which level and under which

assumptions fault simulation can provide a realistic reliability
evaluation for GPUs (Section II-B (details at Section II-B).

Based on the knowledge from the multilevel evaluation,
correlated with an algorithm analysis, novel experimentally-
tuned, efficient and effective, hardening solutions are designed.
This thesis advances GPU’s reliability by characterizing how
microarchitecture vulnerabilities in the hardware can under-
mine GPU reliability and proposes novel fault tolerance tech-
niques. For instance, with efficient software-level hardening
techniques, detecting up to 98% of the SDCs on CNNs
executing on a real GPU is possible. In addition, to not be
limited to a specific type of algorithm, a more general fault
tolerance methodology for HPC has been proposed. The novel
hardening takes advantage of mixed-precision GPU hardware
and moves a step forward in the performance efficiency of
DWC by presenting RP-DWC. RP-DWC is an improvement
over the traditional DWC approach, which consists of ex-
ecuting the replica in a lower precision. The results show
that RP-DWC achieves excellent coverage (up to 86%) with
minimal overheads. The time overhead can be as low as 10%,
while the energy consumption overhead can be as low as 24%
(details at Sections II-C and II-D). RP-DWC builds on ideas
from previous works that have proposed approximating the
algorithm or hardware for efficient fault tolerance [17]–[20].

A. GPU reliability evaluation

1) Concept and Approach: This thesis’s first contribution
is evaluating the neutron-induced error rate of two NVIDIA
GPUs, Tesla V100 and Tesla K40, Volta and Kepler ar-
chitectures, respectively. The evaluation of the error rate is
performed through neutron beam experiments. A set of 11
codes running on GPUs are exposed to a flux of neutrons.
Beam experiments are the most effective way to measure the
FIT rate of code running on a computing device. By dividing
the number of observed errors by the received particles fluence
η (neutrons/cm2) it is possible to calculate the cross section
(σ[cm2] = #errors

η ). The cross-section (cm2) represents the
circuit area that will generate an output error if hit by a
particle. The higher the number of computation resources, the
higher the cross-section, and the higher the probability for an
impinging particle to generate an error. All the experiments
performed for this thesis follow the JEDEC standard [21].

When multiplied with the expected neutron flux at which
the device will operate (13 × 109neutrons/(cm2 · h) at
sea level), the cross-section estimates the realistic error rate,
expressed in FIT, i.e., errors per 109 hours of operation. To
not reveal business-sensitive data, all the FIT rates are reported
normalized by a constant factor.

The experiments are performed at the ChipIR facility of
the Rutherford Appleton Laboratory, UK, and at the LANSCE
facility of the Los Alamos National Laboratory, USA. Figure 1
shows the setup mounted in the ChipIR facility. Both facilities
deliver a beam of neutrons with a spectrum of energies that
resembles the atmospheric neutron one [22], the probability of
generating an error of a neutron produced in the experimental
facilities is similar to a terrestrial neutron one.
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Tesla K40Tesla V100

Beam 
source

Fig. 1: Experiment setup at ChipIR. More than 1,000 hours of
beam experiments are performed for Kepler and Volta GPU
architectures. The large beam experiments campaigns allowed
obtaining the error rates for 11 HPC codes and 3 CNNs.

Neither the cross-section nor the FIT rates depend on the
execution time but only on the number of resources used for
computation, their sensitivity (fault probability to occur), and
criticality (probability for the fault in the resource to affect the
calculation). If the same amount of memory is exposed for a
given time t or 2 × t, its FIT rate will not change. In fact,
in 2× t, it is expected twice the error and twice the neutrons
(2× tfluence). Similarly, under the correct assumption that at
most one fault can affect the GPU during code execution (the
natural flux is very low), executing x sequential ADDs or 2×x
sequential ADDs does not change the probability of having
one ADD corrupted by neutrons. However, what can change
is the probability of the error in one of the ADDs propagating
to the output of the sequence of the operations (i.e., the
Architecture Vulnerability Factor (AVF)). If the additional x
ADDs are executed in parallel with the original sequence, the
FIT rate is expected to double (same execution time, same
fluence, but 2 × t error rate). These observations are used in
Section II-B to account for GPU parallelism management in
the FIT rate estimation based on fault injection.

2) Obtained results: Figure 2 shows the measured SDC
and DUE normalized FIT rates for the GPUs executing the
codes with ECC OFF and ON. Values are reported with 95%
confidence intervals considering a Poisson distribution.

For Kepler, the average SDC FIT rate with ECC OFF is
up to 21× higher than with ECC ON. Not surprisingly, the
ECC reduces the SDC FIT rate significantly. For Volta, it is
not possible to test the same codes with ECC ON and OFF
due to beam time restrictions. The DUE FIT rate increases by
up to 5× when ECC is ON. The DUE increase is exacerbated
for NW and FGEMM because of the high number of kernel
calls (NW calls multiple kernels concurrently) and access to
the main memory (FGEMM uses lots of global memory and
highly utilizes the memory bandwidth).

Matrix multiplication (naive MxM or optimized GEMM)
is Kepler and Volta’s code with the highest SDC FIT rate.
The SDC FIT rate of matrix multiplication is particularly
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Fig. 2: Normalized FIT rates for Kepler and Volta. It is
clear that ECC can reduce the SDC rate while increasing the
DUE rate. Additionally, for mixed-precision architectures, the
smaller the precision, the lower the overall FIT rate.

significant when ECC is OFF (2 to 3× higher than other
codes). Matrix multiplication heavily relies on FMA operation,
which, according to the data in Section II-B, is among the
most vulnerable functional units. Moreover, as the code is
easily parallelizable, most GPU functional units are used for
computation, exacerbating the fault probability. Additionally,
according to data from fault simulation, matrix multiplication
has the highest AVF. As a result, the higher FIT rate of matrix
multiplication is caused by the use of highly sensitive func-
tional units, the parallel use of most of the available units in
parallel, and the high probability for a fault in one unit to affect
the result. For CNN’s, as YOLOV2 and YOLOV3, more than
75% of the operations are matrix multiplication related [23].
CNN shares with matrix multiplication the problem of using
a high amount of the most sensitive functional units.

For 3 CNNs (YOLO, Faster RCNN, and Resnet), we have
demonstrated that ECC can reduce one order of magnitude the
errors that do not modify the inference result (i.e., Tolerable
errors) [7]. However, ECC has shown poor performance in
correcting errors that modified the inference result in a CNN
(i.e., Critical Errors). Even with ECC ON, the percentages of
critical errors for YOLO, Faster RCNN, and Resnet CNNs are
61%, 25%, and 16%, respectively (details at [7]). We used this
information to improve the reliability of CNNs in Section II-C.

The new GPU hardware dedicated to mixed float preci-
sions in all NVIDIA devices after Volta architecture provides
outstanding performance for various applications. Hence, for
Volta GPU, we focus on comparing the FIT rates of codes exe-
cuted with different precisions (double, single, and half). This
comparison serves as a baseline for future mixed-precision
applications. For all the codes, independently of the ECC
status, increasing the precision increases the code FIT rate.
A higher precision functional unit has a higher area and, thus,
a higher probability of being hit by a neutron (see Figure 3).
When ECC is OFF, the trend is exacerbated by the fact that
higher precision implies a higher number of bits to store data,
which has a linear dependence on the FIT rate.

3) Novelty and foundational character: The FIT rates of 11
codes obtained from beam experiments have been presented
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for HPC and CNNs codes. Thanks to the large amount of
data collected from radiation experiments for NVIDIA
GPUs, we are able to observe different behaviors and
outcomes not reported before in prior works. A significant
advance in GPU testing and fault injection. All the data pre-
sented in this section gives a strong motivation and highlights
peculiar vulnerabilities of the GPU architectures to pave the
analysis that will be considered in the following sections.
Data presented in Figure 2 allowed the observations, such
as the ECC impact on the code’s reliability and the benefits
of using smaller precisions on the error rate. Additionally,
the data extracted from the experiments demonstrated that
for certain types of applications, such as CNNs, the ECC is
not as efficient in preventing critical errors on GPUs. This
indicates that memory errors are not as critical as logic errors
for CNNs. These observations are only possible thanks to
beam experiments performed with real neutron beams.

B. Failure In Time estimation

1) Concept and Approach: We need to consider fault
propagation to understand the impact of hidden GPU resources
and identify the code/architecture characteristics/metrics that
mainly impact the GPU error rate. To fully evaluate the GPU
vulnerabilities, different levels of fault injection are performed,
physical fault injection on beam experiments, RTL, and soft-
ware level injections. Based on these experiments, it is possible
to determine that for specific codes like CNNs, the critical
errors are not generated on the primary memory resources but
can be a product of faults in resources such as functional units,
parallelism management, scheduler, dispatcher, and queues.
Combining the information obtained in the different levels
of evaluation, it is, then, possible to propose a methodology
for FIT rate estimation by combining kernel profiling, fault
injection, and instruction error rate.

A device’s probability of being corrupted by a neutron is
equal to the sum of the probabilities of having a neutron-
induced corruption in one of its resources. Thus, the Cross-
Section of a code (informally the FIT rate) is the sum of
the probabilities of having a neutron-induced fault in each
of the resources used for its computation multiplied by the
fault probability in that resource to propagate and manifest at
the output (the resource AVF). In principle, knowing the AVF
and FIT rate of every resource used for computation would
allow a perfect estimation of a code’s FIT rate. Unfortunately,
even if each GPU resource were accessible by the user, it
would be unfeasible to measure the FIT and AVF of each
resource since the GPU is a very complex device. We decided
to limit this study to the contribution of GPUs’ main functional
units and memories. Beam experiments measured the FIT
rates of most common functional units (arithmetical micro-
instructions), register file, and shared memory. Then, the
probability of a fault in each micro-instruction or used memory
to affect the code output is calculated through fault injection.

We can estimate the FIT rate of a code (†FIT) by adding
the expected error probability contribution of each micro-
instruction
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Fig. 3: Micro-benchmarks experimental FIT rates, normalized
to each device’s lowest measured value: FADD’s DUE on
Kepler, HFMA’s DUE on Volta. Memories values are also nor-
malized by the minimum memory FIT for each architecture.

to the code error rate. The contributions to the code’ FIT
rate, P (EINSTi

) and P (EMEMi
) depend on the number of

resources used for computation, the probability of a fault to be
generated (the resource cross-section), and the probability for
the fault in that resource to affect the computation (AVF). The
P (E) is then calculated by the product of resource usage by
the AVF by the cross-section of the resource. Moreover, as the
percentage of instructions of a given type in the code directly
impacts the probability of the fault propagating through the
code [24], it has been chosen as a resource usage metric.

The GPU’ FIT rate has the peculiarity of varying signifi-
cantly based on the code degree of parallelism and how the
GPU scheduler can allocate the available functional units.
Consequently, the probability of a neutron corrupting an oper-
ation inside a thread depends on how many threads are active
and how many parallel operations are executed. The higher
the number of instructions a thread is allowed to schedule
or the higher the number of active threads in an SM, the
higher the number of functional units that can be corrupted.
Hence, we profile the codes to measure code parallelism and
to understand how many computing resources are exposed. We
consider two metrics extracted from NVIDIA profiling tools on
the FIT estimation, the GPU kernel Achieved Occupancy (AO)
and the Instruction Per Cycle (IPC). Equation 1 is used to
accurately estimate the †FIT rate on GPUs. High occupancy
and a high IPC indicate that many resources are employed for
computation. The lower the occupancy and the IPC, the lower
the resources used for computation. When ECC is ON, the
P (EMEMi

) can be assumed to be zero.

†FIT = AO · IPC ·
∑

P (EINSTi
) +

∑
P (EMEMi

) (1)

2) Obtained Results: To estimate the FIT rate using Equa-
tion 1, the FITINSTi

(micro-instruction error rate) and
FITMEMi

(memory resources error rate) are needed. We de-
signed seven classes of synthetic microbenchmarks that, 99%
of the time, execute only one type of GPU micro-instruction
to measure the FIT rate of the functional units and main
atomic instructions of Kepler and Volta architectures. The

TTTC-PhD



-40

-30

-20

-10

0

10

20

30

40

FY
O

LO
V

3

FY
O

LO
V

2

FG
EM

M

Q
U

IC
K

SO
R

T

M
ER

G
ES

O
R

T

N
W

FM
X

M

FL
A

V
A

FH
O

TS
P

O
T

A
ve

ra
ge

FY
O

LO
V

3

FY
O

LO
V

2

FG
EM

M

Q
U

IC
K

SO
R

T

M
ER

G
ES

O
R

T

N
W

B
FS

C
C

L

FG
A

U
SS

IA
N

FL
U

D

FM
X

M

FL
A

V
A

FH
O

TS
P

O
T

A
ve

ra
ge

Fa
u

lt
 s

im
u

la
ti

o
n

 v
s 

B
e

am
 r

at
io

ECC OFF ECC ON

SASSIFI NVBITFI 142x
167x

(a) Kepler

-40

-30

-20

-10

0

10

20

30

40

D
M

X
M

FM
X

M

H
M

X
M

D
LA

V
A

FL
A

V
A

H
LA

V
A

D
H

O
TS

P
O

T

FH
O

TS
P

O
T

H
H

O
TS

P
O

T

A
ve

ra
ge

FY
O

LO
V

3

H
Y

O
LO

V
3

D
G

EM
M

FG
EM

M

FG
EM

M
-M

M
A

H
G

EM
M

-M
M

A

A
ve

ra
ge

Fa
u

lt
 s

im
u

la
ti

o
n

 v
s 

B
e

am
 r

at
io

ECC OFF ECC ON

(b) Volta

Fig. 4: Comparison between the SDC FIT rate measured with the beam and predicted with fault injection.

microbenchmarks can also be used to compare the reliability of
the different functional units that compose GPUs architecture.

Figure 3 shows the microbenchmarks SDC and DUE nor-
malized FIT rate measured with beam experiments on Kepler
and Volta. FMA, ADD, MUL, and MAD are tested, both
with ECC ON and OFF and produced similar error rates
(differences lower than 20%). These microbenchmarks use
only a few registers. Results show that for all the tested float
instructions (FADD, FMUL, FFMA) on Kepler, both SDC and
DUE rates are very similar. When the instructions are executed
using INT32, the FIT rate is, on average, 4× higher than FP32.
This is probably because the integer operations are executed in
the same hardware as the FP32 operations with evident lower
efficiency that can increase the vulnerability.

As mixed precision float operation is a crucial novelty on
modern GPUs, we focus Volta’s microbenchmarks analysis on
how radiation can impact different precisions operations. The
differences in the FIT rates between int, double, float, and
half-precision operations in Figure 3 rely on the different Volta
mixed-precision cores’ complexities. Since a multiply requires
more resources than an addition, its FIT rate is expected to be
higher, and FMA (fused multiply and addition) is expected to
have a FIT rate higher than ADD and MUL, which follows
the results. Additionally, the higher the operation precision,
the higher the FIT rate (higher precision implies more resource
utilization). It is worth noting that, dissimilar to Kepler, integer
operations on Volta are executed on dedicated cores. The FIT
rate depends on the complexity of the hardware resources.

For Volta architecture, the FIT rate of Matrix Multiplica-
tion and Addition (MMA) micro-benchmark (Tensor Core)
is also presented. While being more sensitive, the MMA
core performs, in one operation, the equivalent of 4x4 FMAs
and the loop control variables needed to implement MxM in
software. The FIT of each HMMA and FMMA is 9× and
12× higher than a FMA (FMMA uses the HMMA core after
a cast). As 64 MMA instructions are required to multiply two
16 × 16 matrices, and for each warp-wide MMA instruction
that replaces a warp of 32 FMAs, it is possible to deduce
that the use of MMA is 2× (64/32, where 32 is the number
of threads in a warp) more reliable than the combination

of operations needed to execute a software MxM. MMA
eliminates repeated fetches of the multiply-and-add operations
and reduces activity in instruction memory and pipelines.

Beam vs Fault injection: The codes’ FIT rates measured
with beam experiments (Section II-A) are compared with
those predicted with fault simulation and profiling following
Equation 1. This comparison’s main scope is to evaluate at
which level a reliability analysis based on fault simulation
can be considered realistic. Methodology details can be found
at [25]. Two NVIDIA fault injectors are used for this work,
SASSIFI (only supported for Kepler GPU) and NVBitFI.

Figure 4 compares the codes SDC FIT rate measured with
beam experiments and estimated with fault injection. To ease
the comparison visualization, for each code, the highest SDC
FIT rate between the one measured with beam experiments
and the one estimated is divided by the lowest SDC FIT rate
between the two. Whenever the fault injection SDC FIT rate is
higher than the beam one, the value is represented as negative,
positive otherwise. For instance, on the Kepler with ECC OFF,
executing FYOLOv3 fault simulation estimates a FIT rate 7×
higher than the one experimentally measured.

A promising result is that despite the simplifications fault
simulation introduces, in most cases, the SDC FIT prediction
is reasonably close to the SDC FIT measured with the beam.
The absolute average difference between fault simulation and
beam on Kepler is 5× for SASSIFI and 6× for NVBITFI,
with ECC OFF. When ECC is ON, on Kepler, the average
difference is 11× for SASSIFI and 8× for NVBITFI. On Volta,
the average is 5× when ECC is OFF and 10× when ECC is
ON. As we compare completely different evaluation strategies,
we consider these differences to be extremely promising.

For 25 out of 38 configurations, the fault injection underes-
timates the SDC FIT rate. One limitation of the model is that
not all resources are accessible for fault simulation. Only the
most common micro-instructions are contemplated, as testing
all 20 instruction types is unfeasible. The most common micro-
instructions are measured using NVIDIA profiling tools. While
the considered micro-instructions cover more than 70% of
instructions that compose the codes, it is still possible that
some errors in the unconsidered micro-instructions generate
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errors, and this would only count in beam experiments. When
ECC is OFF, the prediction model will consider the memory
error rate, already shown to dominate GPUs’ FIT rate [26]. On
average, when ECC is OFF, fault injection can better predict
the beam SDC FIT rate, as the contribution to the FIT rate
of the not modeled functional units and instructions is much
smaller than the memory contribution.

For some outliers (NW and CCL on Kepler, HHotspot on
Volta), the fault-injection-based estimation is very different
from the beam. The kernels used for NW and CCL are
not well-suitable for GPUs, and they underuse the available
resources and have poor memory access patterns. These inef-
ficiencies may reduce the possibility of having corruptions in
functional units and increase the error rate due to other sources
of errors, like threads and memory management. The proposed
model still needs to consider these sources of errors, resulting
in a poor underestimation of not well-parallelized codes.

We can use the method to derive insights for DUEs as well.
DUEs can be caused by many factors, including interrupts
triggered by ECC, corruption on device-host synchronizations,
illegal memory accesses, hardware scheduler corruption, or
fault-induced deadlocks. We mainly characterize the arithmeti-
cal functional units, memories, and Load/Store instructions
of GPUs with beam experiments. Thus, only a subset of the
causes for DUEs are included in the prediction model, and
a significant underestimation of the code DUE FIT rate is to
be expected. On average, the estimated DUE FIT rate is up
to 629× for Kepler and 46,700× for Volta. This considerable
divergence attests that many DUEs do not come from arith-
metic micro-instructions and that modeling micro-instructions
and memories are insufficient to predict the GPU DUE rate.

3) Novelty and foundation character: This thesis is the
first work that presented reliability analysis for 3 different
levels of abstraction for NVIDIA GPUs. We have considered
physical fault injection with neutron beams, low-level GPU
abstraction with RTL fault simulations, and assembly-level
injections. As a consequence of the cross-layer evaluation,
a methodology to provide a FIT estimation methodology
that allows, for the large majority of the codes, an accurate
SDC rate prediction has been proposed. Even considering the
outliers, the SDC prediction average stayed up to 12×. Also, a
new fault model based on the syndromes observed on physical
and RTL fault injections is proposed (details at [27]). As a
final remark on the SDC estimation, it would be good to
emphasize that once the microarchitectural model is available,
the proposed model could then be applied to predict the fault
rate of codes executed in future GPUs. Despite the model’s
intrinsic limitations, it can successfully provide a good FIT
rate estimation on average, even when ECC is ON.

C. Fault Tolerance for Convolutional Neural Networks

1) Concept an approach: Prior work shows that ECC does
not mask all the faults as an error in computing elements
could propagate to the output [28]. The beam tests provide
the realistic probability of experiencing an SDC when ECC
is ON or OFF, which is the only way to evaluate ECC’s
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Fig. 5: Detected vs. Undetected errors, and Critical vs. Toler-
able of undetected SDCs for YOLOv1

effectiveness. Thus, due to the increasing importance of CNNs
for safety-critical applications, this work shows two hardening
techniques for CNNs and compares them with ECC for GPUs.

GEMM ABFT: This work leverages ABFT to protect
YOLOv1, protecting matrix multiplication operations, as de-
scribed by Huang et al. [29], and extended by Rech et al. [30]
for GPUs. Each convolutional layer of YOLOv1 is protected
using ABFT to detect errors. Using an ABFT to harden a CNN
arises from the observation that 67% of GPU processing in
YOLO, 82% in Faster R-CNN, and 80% in ResNet is spent
in matrix multiplication-related operations.

Reliable Max-pooling: Current CNNs use FP32 or smaller
floating point formats due to the small intrinsic values repre-
sented in a CNN. A preliminary evaluation with two datasets
(Caltech and VOC2012) shows that all the fault-free maximum
absolute values for elements entering the YOLOv1 maxpool
layers are up to 21.15. That is, the profiled values are ex-
tremely small, considering the full range of FP16 or FP32 that
can be represented and that radiation can produce. This work
then proposes a more reliable maxpool layer that evaluates if
the value of the max element is greater than a threshold (to
be conservative, the threshold is set to be 10x the max value
of a fault-free execution) and, if so, halt the processing of
the current frame and move to the next frame. This solution
will detect faults in GPUs that affect multiple elements that
impact the final inference most. As the maxpool layer is
intrinsically imprecise, propagating the second-highest value
does not significantly undermine detection accuracy [31], [32].
The overhead introduced to implement detection/correction is
limited to 4 variables that hold the thresholds for each layer
and a conditional for each thread.

2) Obtained results: Figure 5 shows the percentages of the
detection for each fault tolerance tested on YOLOv1 running
on a Kepler GPU. The beam experiments are performed using
the same methodology as in Section II-A. Figure 5 also shows
the percentage of Critical and Tolerable SDCs produced for
each technique. For comparison, in figure 5, the ECC detection
efficacy is extracted using the relative difference between
the execution under beam with ECC ON vs. ECC OFF for
YOLOv1. The ABFT procedure does not significantly affect
YOLOv1’s SDCs or Crash error rate (details at [7]).
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It is clear that ABFT can correct about 60% of the SDCs.
If considering only the critical SDCs, an ABFT-protected
YOLOv1 is more resilient than an ECC-protected version.
This is because ABFT corrects all the detected errors that
affect GEMM computation. As noted earlier, on GPUs, the
ABFT code is run in parallel and executed in linear time.
However, since ABFT performs multiplication/accumulation,
it can be implemented using the same hardware used for
matrix multiplication. Minimal hardware changes are required
to implement the proposed hardening. ECC, on the contrary,
has a logarithmic memory cost.

Additionally, Figure 5 reports the percentage of SDCs
detected and undetected with the proposed max pool layer.
Data was obtained with beam experiments. Smartpool detected
98% of SDCs under the beam. The most promising result is
that the radiation experiments demonstrate that only 2% of the
SDCs remain undetected, which is extremely close to the 99%
detection limit ASIL-D imposes for self-driving vehicles.

3) Novelty and foundation character: This thesis is the
first to evaluate the error rate, criticality, and fault toler-
ance for Convolutional Neural Networks running on GPUs
and to experimentally validate the proposed hardening
solutions. Prior work have also considered how to improve the
reliability of neural networks. Most available solutions rely on
partial or total duplication (or even triplication) of operations,
and some techniques require specific hardware modifications.
Due to processing overhead and added costs, these approaches
are less than ideal for real-time object detection, a task com-
monly performed in automotive applications. The techniques
proposed in this thesis are optimal for CNNs and can be
implemented without much effort on modern GPUs.

D. Reduced Precision Duplication With Comparison

1) Concept and approach: We propose a more generic fault
tolerance method for GPU named RP-DWC. The traditional
DWC is a generic system modular redundancy with a result
comparison at the end. RP-DWC consists of duplicating the
instruction flow for execution with lower precision. Reduced
Precision DWC has three main benefits compared to a tradi-
tional DWC: (1) Smaller overhead, as the redundant copy is
always in a reduced precision (FP64 to FP32 for this work),
the overhead is always smaller when compared with standard
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tional DWC, and RP-DWC versions of the micro-benchmarks.
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redundant techniques; (2) The replica has a lower probabil-
ity of being corrupted, as reducing precision reduces the code
error rate (see Section II-A); (3) Diversity of the copies, since
the replicated operations will execute in a different precision
and use different processing resources, reducing the chances
for a fault to have the same impact in both copies.

To implement RP-DWC, five steps must be taken: Step 1.
Casting the inputs to Reduced Precision, in this work, from
FP64 to FP32; Step 2. Executing the original and reduced-
precision instructions. As modern GPUs have dedicated units
to execute different types of precisions, a block of independent
instructions for different precisions can execute in parallel;
Step 3. Casting the high-precision result to reduced precision.
Once both instructions complete their execution, FP64 is cast
to FP32 for the comparison; Step 4. Performing the error
detection operation. To compare the FP64 cast to FP32 and
FP32, it is possible to consider reinterpreting them as unsigned
integers (UINT32) and subtracting them. By subtracting the
two 32 bits representations interpreted as UINT, we have a
fast (and accurate) valuation of the magnitude of the differ-
ence between the two numbers. The higher the result of the
subtraction, the more significant the difference between the
two representations; Step 5. Comparing and taking action on
the result based on the magnitude of the UINT result.

We can implement the correctness check different granular-
ities, at each instruction or after a block of instructions. In a
coarse-grained RP-DWC, a sequence of FP64 instructions is
duplicated with a series of FP32 instructions. The replicated
sequence receives the FP64 input cast to FP32. The two
sequences are executed in parallel without interacting until the
correctness check is reached. A longer block of instructions
could increase the two copies’ intrinsic difference. A larger
copies difference implies a higher number of undetectable
errors. However, as the error propagates in the sequence
of instruction, it may increase in magnitude, thus becoming
detectable even with a larger copy difference (details at [33]).

2) Obtained results: A software fault injection is performed
to evaluate the efficiency of DWC and RPDWC. Random
single-bit flips are injected in the code execution, and the ap-
plication’s output is compared with a golden version to check
correctness. Figure 6 shows the efficiency and efficacy of RP-
DWC by showing the percentage of detected errors and the
imposed overheads (execution time and energy consumption).
The detection rate and the overheads of a traditional DWC
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are also included to ease the comparison with RP-DWC. Four
codes are shown, MXM, Lava, FWT, and BlackScholes.

The slightly lower detection rate compared to traditional
DWC (over 95%) or state-of-the-art DWC from previous
work [14], [17]–[20], [34], [35] is not surprising, since, as any
faults hitting or propagating to the less-significant bits of an
FP64 number are not detectable. Even though this limitation of
RP-DWC provides an upper bound of erroneous bits coverage
it can achieve, these wrong least significant bits are the ones
that will provide a smaller impact to the application output.

RP-DWC has a higher detection capability than previous
work that approximates the algorithm or proposes approxi-
mated hardware for error detection ( [18], [20], [36]), which
is 55%-76% for RP-DWC and 20%-40% for previous work.
This data attests that approximating the algorithm might not
be as effective as approximating the hardware. The higher
error detection of RP-DWC compared to the use of dedicated
approximated hardware could be caused by the higher approx-
imation chosen in [17], [18] and by intrinsically more reliable
hardware designed by NVIDIA.

Data presented in Figure 6 shows that the execution time
overhead of RP-DWC (35% in the worst case of a fine-grain
RP-DWC) is much lower than traditional DWC (70%-90%)
and of recent efficient DWC (39% in [35]). Our version of
conventional DWC has a lower overhead compared to some
previous studies that showed an overhead of 2x [14], as it
duplicates operations inside a thread rather than threads or
blocks of threads. If FP64 cores are available, the GPU could
then schedule some of the two FP64 copies in parallel.

Figure 6 shows that the energy overhead of RP-DWC is
significantly reduced. The overhead can be as low as 24% to
32%. BlackScholes reaches an even lower energy overhead
(13.8%). Such a low overhead is not solely justified by RP-
DWC but also by the simplicity of the code (few global
memory access, no shared memory utilization, and executes
only simple operations) [37]. For the same reasons, the energy
overhead of the traditional DWC is lower for BlackScholes
than the other codes. The energy consumption overhead of
RP-DWC is comparable to the traditional DWC only for the
fine-grain implementation (1 check every operation for RP-
DWC vs. 1 check at the end of the application for traditional
DWC). The energy consumption overhead of a fine grain RP-
DWC is, then, higher than 100%. This is justified because it is
actually executing 3x the instructions of the unhardened ver-
sion (FP64 and FP32 copies plus the error detection operation).
Traditional DWC has, even with the check only at the end
of the computation, a higher energy consumption overhead,
which ranges from 111% to 124%. This favorable energy
consumption result of RP-DWC is achieved by leveraging the
FP32 cores to execute the redundant copy in parallel.

Neutron Beam Experiments: To have an even more real-
istic evaluation of the effectiveness of RP-DWC and a direct
comparison with traditional DWC, the GPUs were exposed
to accelerated neutron beams running microbenchmarks im-
plemented in the same fashion as the ones discussed in Sec-
tion II-B. Figure 7 reports the beam experiment results for the

microbenchmark in the unhardened version (no duplication)
and protected with a traditional DWC and with RP-DWC, in
three different granularity (correctness check after 1, 100, or
1,000 operations). The detection rates of DWC and RP-DWC
are explicit in the Figure to ease comparing the effectiveness
of the two techniques. The dashed columns differentiate the
RP-DWC results from the traditional DWC ones.

Figure 7 shows that the SDC FIT rate for the unhardened
version is lower than the FIT rate of the protected ver-
sions (considering the combination of detected and undetected
SDCs). This is expected, as the check operation introduces
a computation and memory overhead that can increase the
protected versions error rate. The increased FIT rate is higher
when the check is performed at each instruction (more instruc-
tions executed in parallel). RP-DWC has a higher increase in
the SDC rate for all configurations but FMA. This is because
the cast and error detection operations are computationally
more costly than ADD and MUL, but not of FMA. Never-
theless, DWC and RP-DWC detect most SDCs, resulting in a
much lower undetected SDC rate than unhardened versions.
As observed with fault injection, and for the same reason, the
detection rate of the traditional DWC is always higher than the
RP-DWC. On average, under the beam, the detection rate of
RP-DWC is 9% lower than DWC. The use of RP-DWC results
in a slightly lower error detection but makes both overheads
much smaller than traditional DWCs, as reported in [4], [35].

3) Novelty and foundation character: RP-DWC is the only
approach that is, at the same time, generic, software-
implemented (no hardware changes), and leverages the
existing redundant mixed-precision hardware for reduced
performance and energy overheads. RP-DWC requires no prior
knowledge of the algorithm and can be automatically inserted
by the compilation toolchain. Previous to other software-
implemented instruction replication, RP-DWC exploits the
dedicated mixed-precision functional units available in modern
GPUs to execute the replicated dataflow, leveraging these units
that would otherwise be idle to increase the parallelism and
reducing the execution time of the hardened software.

Compared to approaches that propose approximate hard-
ware for fault detection, the RP-DWC approach is imple-
mented entirely in software and targeted towards already exist-
ing and future architectures. A key advantage of RP-DWC is
that the extra hardware can be used for performance improve-
ments (when reliability is not an issue) and for approximate
fault detection. Moreover, software implementations can be
parameterized for different trade-offs between error detection
and overheads for INT64, INT32, INT16, INT8, and floating-
point computations FP64, FP32, FP16, and BF16/TF32.

III. IMPACT

In this thesis, I presented a detailed reliability analysis of a
broad domain of applications from HPC to machine learning.
With a multi-level evaluation, I proposed fault tolerance for
HPC and safety-critical domains that significantly beat, in
terms of efficiency and efficacy, existing techniques such as
ECC and DWC. The data and discussions presented in this
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work are helpful for future research and industry innovation
as they pave a path for detailed reliability evaluation of next-
generation GPUs and showcase how to design efficient and
effective hardening solutions.

I conducted the most complete and extensive study on GPU
reliability, focusing on attacking one of the leading issues on
HPC and autonomous vehicles nowadays, single event effects
on computing devices, i.e., SDCs and DUEs. It is estimated
that a large supercomputer like Oak Ridge National Laboratory
Titan has a functional stop every ≈ 40 hours due to faults
caused by terrestrial neutrons [38]. As GPUs are the heart of
the main supercomputers today, the results presented in this
thesis can strengthen industrial competitiveness, growth, and
sustainability in HPC research and industry.

Thanks to the extensive beam experiments performed for
this thesis, we can accurately understand DUEs occurrences
since fault simulation acts at a higher level of abstraction.
Our detailed evaluation of DUEs on GPUs, which includes
measuring the error rate and the error sources, has a direct
market and societal impact. This knowledge can help re-
searchers and engineers solve the problem of the high rate
of supercomputer nodes crashing due to faults caused by
terrestrial neutrons. Avoiding supercomputer interruptions can
save time and energy, and increase productivity, as the cost of
having a supercomputer rebooting is exceptionally high.

The study presented in this thesis is not limited to HPC.
With the proposed cross-layer analysis, we can also tackle
other problems that arise from radiation effects on GPUs,
such as the fault tolerance of Machine Learning (ML) applied
to safety-critical applications. GPUs are today the standard
hardware for ML, allowing developers to create and deploy
new algorithms without relying on hardware changes. How-
ever, autonomous vehicles driven by embedded GPUs can only
be employed on a large scale if the reliability of current and

future machine learning algorithms is improved.
The software-level techniques proposed for CNNs enable

the development of reliable commercial systems with a much
faster approach. For example, it is possible to cite the new
NVIDIA Drive Thor platform for self-driving cars composed
of multiple embedded GPUs. Our hardening method allows
future developers to improve the final system’s reliability with-
out changing the hardware platform, leading to a more reliable
system without compromising productivity and budget.

It is worth noting that a plethora of open questions arise
from this thesis. We can cite at least two that will have a
high impact in the future: (1) The impact of compilers and
micro-instructions on the fault probability must be deeply stud-
ied. Simpler architectures commonly used on safety-critical
applications have a well-developed ecosystem that provides
compilers and evaluation tools for engineers to estimate the
reliability of an application before deploying the system. Such
tools and methods are not yet available for complex hardware
like GPUs; (2) Take advantage of the machine learning nature
by projecting ML algorithms that ”learn” to be reliable against
errors at the training phase. By understanding the architecture
fault model, as we did for GPUs, the researchers may develop
ML algorithms that ”know” how to keep the accuracy at the
inference phase even in the presence of faults.

During my Ph.D. studies, I have collaborated with many
research institutions and industries. I participated in two intern-
ships in the largest radiation test facilities in the world, at the
Rutherford Appleton Laboratory in 2018 and the Los Alamos
National Laboratory Radiation Effects Summer School in
2019. As a result, we have published papers in collaboration
with many researchers from different institutions, including
NVIDIA, Los Alamos National Laboratory, Rutherford Apple-
ton Laboratory, Politecnico di Torino, Northeastern University
College of Engineering, and Ecole Centrale de Lyon.

TABLE I: Scientific production through the years of the Ph.D. study

International journal papers published as main author
Analyzing and increasing the reliability of convolutional neural networks on GPUs Transactions on Reliability 2018

Kernel and layer vulnerability factor to evaluate object detection reliability in GPUs IET Computers &
Digital Techniques 2019

Reduced precision DWC: an efficient hardening strategy for mixed-precision architectures Transactions on Computers 2021
Experimental Findings on the Sources of Detected Unrecoverable Errors in GPUs Transactions on Nuclear Science 2022

International journal papers published as a co-author
Impact of tensor cores and mixed precision on the reliability of matrix multiplication in GPUs Transactions on Nuclear Science 2020
Thermal neutrons: a possible threat for supercomputer reliability The Journal of Supercomputing 2021
Physical stress, Book chapter: Cross-Layer Reliability of Computing Systems IET Digital Library 2020

Conference papers
Analyzing the criticality of transient faults-induced SDCS on GPU applications ScalA 2017
Evaluation and mitigation of soft-errors in neural network-based object detection in three GPU architectures DSN-W 2017
Radiation-induced error criticality in modern HPC parallel accelerators HPCA 2017
Code-dependent and architecture-dependent reliability behaviors DSN 2018
Reliability evaluation of mixed-precision architectures HPCA 2019
Impact of reduced precision in the reliability of deep neural networks for object detection ETS 2019
Reduced-Precision DWC for Mixed-Precision GPUs IOLTS 2020
An Overview of the Risk Posed by Thermal Neutrons to the Reliability of Computing Devices DSN-S 2020
Demystifying gpu reliability: comparing and combining beam experiments, fault simulation, and profiling IPDPS 2021
Revealing GPUs Vulnerabilities by Combining Register-Transfer and Software-Level Fault Injection DSN 2021
Protecting GPU’s Microarchitectural Vulnerabilities via Effective Selective Hardening IOLTS 2021
Combining Architectural Simulation and Software Fault Injection for a Fast and Accurate CNNs Reliability
Evaluation on GPUs VTS 2021
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As a Ph.D. student, I was invited to become a reviewer
of different journals, transactions, and conferences, such as
Microelectronics Reliability, IEEE Transactions on Nuclear
Science, Journal of Systems Architecture, SELSE Workshop,
and IEEE IOLTS conference. Also, while a Ph.D. student,
I was a co-advisor on a bachelor’s final work and guided
undergrad and master students on everyday research tasks.

Based on the effort and importance of this thesis, the
reliability, testing, and radiation effects communities have
extensively recognized our work. The impact of the work
performed in my Ph.D. is demonstrated by the number of
international journal publications (7 journals published) and
by the number of citations (409 in total, with an h-index of 9,
according to Google Scholar). Additionally, I am very honored
for the awards this thesis was recognized:
1) CAPES award: Best 2021 thesis on Computer Science

of the whole country by CAPES. CAPES is the Brazilian
government agency for research funding.

2) Paul Phelps Award: In 2021, I was awarded the Paul
Phelps Continuing Education Award from the IEEE Nu-
clear & Plasma Sciences society.

3) Cum Laude: My thesis was evaluated with Cum Laude
by a board of reviewers composed of Dr. Timothy
Tsai (NVIDIA), Dr. Dimitris Gizopoulos (National and
Kapodistrian University of Athens), and Dr. Evgenia
Smirni (College of William & Mary).

4) Best paper runner up: In the 2018 IEEE/IFIP DSN, a
paper I co-authored was runner-up for the best paper award.

5) Best of SELSE: In the 2018 edition of SELSE, a paper
that I have co-authored won the best paper award.

IV. LIST OF SCIENTIFIC OUTPUT

Table I presents all scientific output generated in the Ph.D.
I have authored and co-authored 19 papers during my Ph.D.
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