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ABSTRACT. Entangled Relativity is a non-linear reformulation of Einstein’s general theory of
relativity (General Relativity) that is more parsimonious in its formulation. It accurately recovers

the results of General Relativity in many astrophysical situations, particularly in the Solar System,

where the theory currently cannot be distinguished from General Relativity. This paper will explore

how this might change in the near future.

1. INTRODUCTION

Entangled Relativity is essentially a non-linear reformulation of General Relativity. Its name does

not refer to quantum entanglement, but rather to the fact that matter and curvature (gravity) are

intertwined at the foundational level of the theory’s formulation. In this framework, one cannot

define matter and curvature separately; both must be present simultaneously to even define the

theory. This differs from General Relativity, where one can envisage a world with only gravity: an

entire universe in a vacuum. This notably leads to an infinite set of non-trivial solutions to the

vacuum field equations, ranging from black hole solutions to universes entirely filled with black

holes—a kind of potential absolutely dark universe.

However, there is a compelling reason to be dissatisfied with a relativistic theory that permits

vacuum solutions, even if they are not exactly realized in nature due to the presence of matter

fields in our universe. This reason is rooted in the violation of one of the three founding principles

that Einstein used to construct his general theory of relativity: the principle of relativity of inertia,

also known as Mach’s principle. In particular, General Relativity violates this principle, as Einstein

eventually acknowledged several years after de Sitter found a vacuum solution to Einstein’s equation

with a cosmological constant. To better understand this issue, I recommend reading [Hoeffer, 1995]

and [Pais, 1982].

While this might seem anecdotal in comparison to the other merits of the theory, Entangled

Relativity, by forbidding the definition of the theory without matter fields, naturally satisfies this

principle. Therefore, Entangled Relativity is not only more parsimonious than General Relativity

but also more closely aligns with Einstein’s vision of a satisfactory relativistic theory. In his own

words: “In a consistent theory of relativity there cannot be inertia relatively to “space” but only an

inertia of masses relatively to one another” [Einstein, 1917]. This metaphysical demand explains the

introduction of the principle of relativity of inertia, which states that “[the metric]-field is completely

determined by the masses of the bodies”, such that, indeed, “[with this principle], according to

the field equations of gravitation, there can be no [metric]-field without matter. Obviously, [this

principle] is closely connected to the spacetime structure of the world as a whole, because all masses

in the universe will partake in the generation of the [metric]-field”. [Einstein, 1918]
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1.1 Mathematical formulation

The definition of Entangled Relativity is based on its path integral:

ZER =

∫
[Dg]

∏
i

[Dfi ] exp

(
−
i

2ϵ2

∫
d4g x
L2m(f , g)
R(g)

)
, (1)

where
∫
[D] relates to the sum over all possible (non-redundant) field configurations, R is the usual

Ricci scalar that is constructed upon the metric tensor g, d4gx :=
√
−|g|d4x is the spacetime

volume element, with |g| the metric g determinant, and Lm is the Lagrangian density of matter
fields f—which could be the current standard model of particle physics Lagrangian density, but

most likely a completion of it. It also depends on the metric tensor, a priori through to the usual

comma-goes-to-semicolon rule [Misner, Thorne and Wheeler, 1973]. The only parameter of the

theory is the quantum of energy squarred ϵ2. In order to recover standard quantum field theory

in a limit that corresponds to our observable universe, ϵ has to be the (reduced) Planck energy

[Minazzoli, 2023].

1.2 Comparison with standard physics

Eq. (1) should be compared with the path integral of the Core theory1, which is expressed as

ZC =

∫
[Dg]

∏
i

[Dfi ] exp

[
i

ℏc

∫
d4g x

(
R(g)

2κGR
+ LSMm (f , g)

)]
, (2)

where fi are the matter fields of the standard model (SM) of particle physics—such as fermions and

gauge bosons, and the Higgs. There are three universal constants in this formulation: the quantum

constant ℏ (Planck’s), the causal structure constant c and the constant of gravity G = c4κGR/(8π)
(Newton’s). From these constants, one can construct an energy scale, a mass scale, a time scale

and a length scale, known as the Planck energy (EP ), mass (mP ), time (tP ) and length (lP )

respectively:

EP =

√
ℏc5
G
,mP =

EP
c2
, tP =

√
ℏG
c5
, lP = ctP . (3)

The difference between the two theories lies in how curvature (gravity) and matter are coupled

within the quantum phase Θ of the path integral, where Z =
∫
[Dg]

∏
[Dfi ] exp(iΘ). Classical

physics corresponds to the variational paths for which the quantum phase is stationary δΘ = 0. The

reason being that for classical, or “macroscopic”, phenomena, destructive interferences cancel any

contribution from other paths to the path integral, whereas constructive interferences are maximal

for paths that lead to a stationary phase. Usually, one talks about the Principle of Least Action,

because if ℏ is a fundamental constant, then Θ = S/ℏ and δΘ = 0 ⇔ δS = 0, where S has the
dimension of an action. In other words, classical physics is quantum physics in some limit, and the

Principle of Least Action of classical physics simply is a consequence of quantum physics.

1.3 The Parsimonious Nature of Entangled Relativity

In the formulation of Entangled Relativity, as expressed in Eq. (1), there are only two universal

fundamental constants: the squared energy constant ϵ2 and the causal structure constant c . This

represents one less constant than is required in standard physics. Specifically, the coupling constant

κGR between matter and curvature in General Relativity disappears due to the non-linear coupling

of the two in Entangled Relativity. Consequently, the formulation of Entangled Relativity is more

parsimonious in terms of constants than that of standard physics (General Relativity with matter

fields).

1That is, the current standard model of physics, as named by [Wilczek 2016].
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However, this leads to two significant implications. Firstly, there is no quantum of action in

the formulation of Entangled Relativity, meaning that ℏ cannot be a fundamental constant in this
framework. Instead, it must emerge as a limit of the theory—see Sec. 2.3 for details. More

crucially, the absence of a quantum of action means one cannot construct a notion of elementary

length or time scales using only these two dimensionful constants. This is particularly relevant

as many of the challenging issues in quantum general relativity are linked to the concept that a

smooth and continuous spacetime may cease to exist at the Planck length and time scale (lP and

tP in Eq. (3)). This dilemma led to various hypothesis, such as the concept of spacetime foam or

the existence of a fundamental discrete structure composed of elementary spacetime atoms [Loll,

Fabiano, Frattulillo, Wagner, 2022].

1.4 Field equations

Classical physics correponds to the paths in the path integral that lead to a stationary quantum

phase δΘ = 0. Therefore, extremizing the quantum phase with respect to the various fields lead

to the classical field equations that follow [Ludwig, Minazzoli and Capozziello, 2015]:

Gµν = κTµν + f
−1
R [∇µ∇ν − gµν□] fR, (4)

where

Tµν := −
2√
−g
δ (
√
−gLm)
δgµν

. (5)

and Gµν := Rµν − 1/2Rgµν is the usual Einstein tensor, with

κ = −
R

Lm
,

(
f := −

1

2ϵ2
L2m
R
, fR :=

∂f

∂R
=
1

2ϵ2
L2m
R2
=

1

2ϵ2κ2

)
. (6)

Let us note that κGR = −R/T in General Relativity instead. The stress-energy tensor is not
conserved in general, as one has

∇σ
(
Lm
R
Tασ

)
= Lm∇α

(
Lm
R

)
. (7)

The matter field equation, for any tensorial matter field χ, gets modified due to the non-linear

coupling between matter and curvature as follows

∂Lm
∂χ
−

1√
−|g|

∂σ

(
∂
√
−|g|Lm
∂ (∂σχ)

)
=
∂Lm
∂ (∂σχ)

R

Lm
∂σ

(
Lm
R

)
. (8)

It has been shown already that these equations lead to a classical phenomenology that is very close

(or even indistinguishable) to the one of general relativity in many cases, while it also (supprisingly)

have standard quantum field theory as a limit. It all boils down to the intrinsic decoupling that

was originally found for scalar-tensor theories in [Minazzoli and Hees, 2013]. Indeed, as usual in

f (R) theories, the trace of the metric field equation produces the differential equation for the extra

scalar degree-of-freedom κ, which is

3κ2□κ−2 = κ (T − Lm) . (9)

Therefore, whenever Lm = T on-shell, the extra degree-of-freedom is not sourced and become
constant in many occurrences, and one recovers general relativity minimally coupled to matter, and

without a cosmological constant, to a very good accuracy. Let us recall that Lm = T for a universe
that would entirely be made of dust and electromagnetic radiation for instance, which turns out
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to be a very good approximation of the current content of our universe. As a side note, whenever

Lm = T , one recovers the relation κ = −R/T of General Relativity.

1.5 Equivalent classical formulation

The whole set of equations can be recovered by the following phase instead

Θ ∝
∫
d4gx

1

κ

(
R

2κ
+ Lm

)
, (10)

where κ is a dimensionful scalar-field. Equivalently, if one wants to deal with a dimensionless

scalar-field that looks more usual instead, the phase can be written as follows

Θ ∝
∫
d4gx

(
ϕ2R

2κ̄
+ ϕLm

)
, (11)

where κ̄ is a normalisation dimensionful constant. Or, alternatively again,2 in order to look more

like an usual Brans-Dicke theory, or like the more general theory explored in [Minazzoli and Hees,

2013], from the following phase:

Θ ∝
∫
d4gx

(
ΦR

2κ̄
+
√
ΦLm

)
. (12)

In particular, one has Φ ∝ fR, and the scalar field diffential equation reads

3Φ−1□Φ =
κ̄√
Φ
(T − Lm) , (13)

where κ̄ is a dimensionful normalisation constant, and with

√
Φ = −κ̄

Lm
R
. (14)

This alternative formulation of the theory looks much more familiar, and therefore allows one

to get a better intuition about how it may work. But ultimately, there are no difference between

the two formulations—f (R,Lm)-like or Einstein-dilaton-like.

2. SOLAR SYSTEM PHENOMENOLOGY

2.1 Post-Newtonian metric

Modeling Solar System bodies by perfect fluids with conserved rest-mass energy densities

∇σ(ρ0Uσ) = 0, where Uα is the proper four-velocity of the fluid, the on-shell value for the matter
Lagrangian is Lm = −ρ, where ρ is the total energy density defined by [Minazzoli and Harko, 2013]

ρ = ρ0

(
1 +

∫
P (ρ0)

c2ρ20
dρ0

)
. (15)

From there, one can see that the source term of the scalar-field equation (13) only is pressure, which

is a O(c−2) term with respect to ρ0 in post-Newtonian regimes. Therefore, at the post-Newtonian
level, the scalar-field is weakly sourced by matter. In particular, one has

Φ−1□Φ =
κ̄√
Φ
P. (16)

2Provided that ϕ > 0 everywhere, which should be the case in the entire observable universe because it has been

shown that ϕ does not vary more than a few percent in the densest objects in the universe that are not hidden behind

an event horizon [Arruga, Rousselle and Minazzoli, 2021].
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Then, from Eq. (4), one can check that one has

g

(
Ri j −

1

2
gi jR

)
= O(c−4), (17)

where g is the metric’s determinant. Therefore, as in General Relativity, there exist a system of

coordinates that satisfies the Strong Spatial Isotropy Condition (SSIC) [Damour, Soffel and Xu,

1991]—that is −g00gi j = δi j +O(c−4). This notably means that the post-Newtonian parameters
γ and β are both equal to one, such that the post-Newtonian metric can be written as follows

g00 = −1 + 2
w

c2
− 2
w2

c4
+O(1/c6) (18a)

g0i = −4
w i

c3
+O(1/c5) (18b)

gi j = δi j

(
1 + 2

w

c2

)
+O(1/c4), (18c)

Injecting this metric in the metric field equation gives the equation on the potential w and w i that

follow

w = wGR −
1

c2
G

∫
P (x′)d3x ′

|x− x′| +O(1/c
4),

:= wGR +
1

c2
δw +O(1/c4), (19a)

w i = w iGR +O(1/c2) (19b)

where wGR and w
i
GR are the expressions of the potentials predicted by general relativity, and

8πG := c4κ̄. The scalar-field equation on the other-hand is

φ

Φ0
= 2δw +O

(
1

c2

)
, (20)

where φ ≡ c4(Φ − Φ0) and Φ0 the background “astrophysical” value of Φ. Let us note that the
derivation follows the one in [Minazzoli and Hees, 2013], since Eq. (12) turns out to be a special

case of the class of scalar-tensor theories considered in [Minazzoli and Hees, 2013].

2.2 Trajectories and Shapiro delay

The non-conservation of the stress-energy tensor in Eq. (7) implies an additional gravitational

force acting on free-fall particles. However, this additional force turns out to exactly cancel out

the modification of the metric with respect to the metric of General Relativity. The result is

that the equation of motion for free-fall objects is the same as in General Relativity at the post-

Newtonian level, despite the metric being different at the post-Newtonian level—because of the

δw term. Indeed, using the conservation of the rest-mass energy density ∇σ(ρ0Uσ) = 0, the
non-conservation equation reduces to

Uσ∇σUµ = −
1

2
(gµσ + UµUσ)

∂σΦ

Φ
, (21)

where Uα = dxα/dτ is the proper four-velocity of the particles, which leads to

d2x i

dt2
= aiGR + c

−2
[
∂iδw −

1

2

∂iφ

Φ0

]
+O(1/c4) (22)

= aiGR +O(1/c4), (23)
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where aiGR is the standard acceleration in General Relativity.

The unsourced electromagnetic field equation on the other hand reads

∇σ
(√
ΦFµσ

)
= 0, (24)

where Fµν is the standard Farraday tensor. One can show that in the geometric optic limit, it

implies that photons still follow null-geodesics of spacetime [Minazzoli and Hees, 2013]. But since

the metric only differs from the one of General Relativity at the O(c−4) level, it means that the
trajectory of ligth is the same as in General Relativity at the O(c−2) level, which is the only level
that can be probed with the current accuracy of Solar System tests. In particular, the Shapiro delay

is the same as in General Relativity at the current level of accuracy of radioscience experiments.

It follows that Entangled Relativity is currently indistinguishable from General Relativity from

radioscience and ephemerides in the Solar System. This is a rather remarkable result, given the

non-linear formulation that one started with in Eq. (1), and given the fact that it did not require

adjusting any sort of free parameter. Indeed, the only parameter of the theory is the quantum of

energy squarred ϵ2, which value affect only the paths that are not stationary in the path integral—

that is, ϵ2 affects purely quantum phenomena only.

2.3 The variation of ℏ
Planck’s quantum of action ℏ does not appear in the formulation of Entangled Relativity. It

necessarely implies that ℏ is not a constant in this theory. We have just seen that the variation Φ
in the solar system is even smaller than the variation of gravitational potentials w and w i . In terms

of the original formulation of the theory, it means that the ratio between R and Lm varies less
than the gravitational potentials. This is not supprising, if one keeps in mind that κGR = −R/T
is a constant in General Relativity, while one has Lm ≈ T at leading order for perfect fluid with
conserved rest-mass energy densities, such that κ ≈ −R/T in that situation in Entangled Relativity.
This means that when one neglects gravity, the variation of the ratio between R and Lm can also
be neglected. In that situation, Eq. (1) would reduce to [Minazzoli, 2023]

ZER−QFT =

∫ ∏
i

[Dfi ] exp

(
i

κϵ2

∫
d4xLm(f )

)
. (25)

Because one wants to recover standard quantum field theory when gravity is neglected, it means

that

κϵ2 = cℏ. (26)

It implies that ℏ actually varies proportionally to κ in general. In other words, it means that ℏ
varies akin to a new gravitational field. But, more importantly, one now has determined the value

of the quantum of energy ϵ: it is the reduced Planck energy. Let us note that this is similar to

how one determines the valus of κGR in General Relativity: by demanding that General Relativity

recovers the theory of Newton at leading order—which imposes that κGR = 8πG/c
4. Here, it is the

requirement to recover standard quantum field theory in the limit where gravity can be neglected

that dictates the value of ϵ.

Let’s evaluate the variation of ℏ in the Solar System, from Eq. (26) and Eqs. (10-12), one has

δℏ
ℏ
=
δκ

κ
= −
1

2

δΦ

Φ
. (27)

Then, from Eq. (20) and (19a), one deduces that for a spherical body A one has

δℏ
ℏ
= δ

(
GMPA
c2r

)
,with MPA := 4π

∫
A

r2P (r)

c2
dr, (28)
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which is a mass term defined from pressure rather than from the density. One can evaluate MP
for the Sun and the Earth, they are respectively MPSUN = 2.3× 1024 kg and MPEARTH = 8.0× 1014
kg—to be compared with their masses that are MSUN = 2.0× 1030 kg and MEARTH = 6.3× 1024
kg. The maximal fractional osbervable variation of ℏ in the solar system is between the surface of
the Sun and a remote observer, and is therefore given by

δℏ
ℏ
≈
GMPSUN

c2RSUN
≈ 2.5× 10−12, (29)

where RSUN is the radius of the Sun. Whether such a small fractional variation can be probed

experimentally remains to be investigated. (The details of the derivations will be checked and then

communicated in a peer-reviewed journal).

2.4 The c−4 Shapiro delay

Preliminary calculations—which, if confirmed, will be comunicated in a peer-reviewed journal—

indicate that the whole c−4 metric of Entangled Relativity surprisingly simply reads as follows

gαβ = g
GR
αβ + δ

00
αβ

2δw

c4
+O(c−5), (30)

where gGRαβ is the solution of general relativity, δw is defined in Eq. (19a), and δ
00
αβ is a Kro-

necker symbol. As a consequence, the coordinate propagation time between an emission (e) and

a reception (r) in Entangled Relativity would read as follows

c(tr − te)ER = R +
∑
A

(1 + γA)
GMA
c2
ln

(
n⃗ · r⃗rA + rrA
n⃗ · r⃗eA + reA

)
+c(tr − te)(4)GR +O(c

−5), (31)

where c(tr − te)(4)GR are the remaining c
−4 terms that are the same as in General Relativity. Hence,

suprisingly, the c−4 correction to the Shapiro delay due to Entangled Relativity looks like an usual

post-Newtonian correction. However, it is important to emphasize a few key aspects. First, unlike

in usual alternative theories, its value is body-dependent. Moreover, it can be fully calculated

for each body A without any free parameter at the theoretical level. Finally, the value of γA is

expected to be very small, again without any free parameter at the theoretical level. Indeed, while

the exact derivation and numerical estimations will be published in a peer-reviewed journal, it is

roughly estimated that 1 − γA ∝ MPA /MA, while MPA /MA is at best of the order of 10−6 in the
Solar System (for the Sun).

While testing the Shapiro delay at the 10−6 level in the Solar System is currently beyond the

reach of experimental accuracy, the MORE experiment on BepiColombo is approaching this level

of precision [Cappuccio et al., 2020]. Therefore, it is not too much of a stretch to consider that

it may be possible to verify this prediction in the not-too-distant future.

3. CONCLUSION

Entangled Relativity is a novel general theory of relativity that is more economical than General

Relativity in its formulation. Nevertheless, it predicts very small deviations from General Relativity

in weak field situations, such as those in the Solar System. Additionally, it implies several signif-

icant conceptual shifts at the theoretical level. One notable example is the proposition that the

quantum of action, ℏ, would not be a constant, but rather vary as a new gravitational field. In
this communication, I explained that the deviations from General Relativity, which do not depend
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on any free theoretical parameters, are quite small in the Solar System, yet they might still be

detectable in future experiments.
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Olivier Minazzoli and Aurélien Hees, Intrinsic Solar System decoupling of a scalar-tensor theory

with a universal coupling between the scalar field and the matter Lagrangian. Phys. Rev. D,

88:041504, September 2013. doi: 10.1103/PhysRevD.88.041504.

Charles W. Misner, Kip S. Thorne, and John Archibald Wheeler. Gravitation. 1973.

Franck Wilczek. A Beautiful Question. Penguin Random House, UK, 2016.

8


