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Abstract: This paper presents an operational approach for detecting floods and establishing flood
extent using Sentinel-1 radar imagery with Google Earth Engine. The methodology relies on change
detection, comparing pre-event and post-event images. The change-detection method is based on
the normalised difference ratio. Additionally, the HAND model is employed to delineate zones for
processing only in flood-prone areas. The approach was tested and calibrated at a small scale to
optimise parameters. In these calibration tests, an accuracy of 85% is achieved. The approach was then
applied to the whole of the island of Madagascar after Cyclone Batsirai in 2022. The proposed method
is enabled by the computing power and data availability of Google Earth Engine and Google Colab.
The results show satisfactory accuracy in delineating flooded areas. The advantages of this approach
are its rapidity, online availability and ability to detect floods over a wide area. The approach relying
on Google Tools thus offers an effective solution for generating a large-scale synoptic picture to inform
hazard management decision making. However, one of the method’s drawbacks is that it depends to
a large extent on frequent radar imagery being available at the time of flood events and on free access
to the platform. These drawbacks will need to be taken into account in an operational scenario.

Keywords: flood; radar imagery; Sentinel-1; Google Earth Engine; Python

1. Introduction

Extreme precipitation events are increasing in frequency and intensity in a number
of regions of the globe, driven by climate change [1]. These disruptions in precipitation
patterns have consequences on the distribution of water areas, as well as their spatiotem-
poral dynamics, at various scales. Having knowledge about availability and distribution
of water resources is extremely important in order to facilitate their management in the
context of climate change. In particular, flooding is on the increase in many countries [2],
potentially leaving some 1.81 billion people exposed to a risk of 100-year floods [3]. In
Madagascar and the islands in the western Indian Ocean, these problems are compounded
by cyclones [4]. While the number of cyclones in the Indian Ocean is not rising, their
impacts are increasingly severe [5] and further amplified in developing nations through
a lack of land planning and reliable and accessible data to inform decisions [6]. Thanks
to the increased availability of Earth observation data and the proliferation of different
types of images (optical, radar, etc.), satellite imagery has proven to be a valuable tool for
continuously mapping the distribution and dynamics of water bodies on a large scale. It
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also quickly helps identify large-scale flooded areas, aids in disaster relief planning, and
contributes to damage quantification in the event of a cyclonic event [7].

Flood map products are generated by a range of international organisations depending
on the severity of specific cyclone events. ESA’s rapid mapping products are one exam-
ple [8]. They are usually obtained at the request of local authorities and/or through the
International Charter Space and Major Disasters [9]. The FAO also produces flood maps for
assessing food security [10]. However, these maps only cover relatively localised areas hit
by major cyclones and not all territories affected by flooding. This level of event coverage
justifies the need for other larger mapping products at the scale of the affected territories.

Because floods are accompanied by dense cloud cover, the utility of optical remote
sensing approaches is nevertheless limited. Indeed, optical remote sensing can lead to an
underestimation of flood extents due to the lack of timely cloud-free satellite imagery to
coincide with cyclone events [11]. Earth imaging systems like Landsat 8 and 9 or Sentinel-2
are therefore strongly constrained. Furthermore, intertropical zones are subject to frequent
cloud cover. Radar satellite imagery offers a way around this issue, as the wavelengths in
radar imagery are on the order of a centimetre, so the atmosphere is almost transparent
to them [12].

A flood is an uncommon body of standing water. Such surface water is detected by
radar data because backpropagation radar waves from the water surface are much weaker
than from other surfaces [13–15]. However, radar imaging systems are also sensitive to
surface roughness and the dielectric properties of the surface [16]. It is also possible that
the radar response from a standing water surface and a smooth soil surface will be similar.
Moreover, side-view radar systems can create shadows in imagery. Comparing two radar
images acquired before and during or just after a flood happened enables low backscatter
features and permanent water bodies to be filtered out [15].

Image comparison supports flood analysis and can be performed using supervised
or unsupervised [17,18] change detection algorithms [19,20]. It can be performed using
pixel-by-pixel simple algebraic operations like a ratio [21] or textural indices [22]. Com-
parisons can also be operated on previously identified features [23]. The ratio between
two images attenuates the speckle effect in radar images [24]. Machine learning is also
increasingly used in this field [25]. Phase information from each pixel can also be used to
identify changes. Interferometric coherence has been employed to detect floodwaters in
urban areas [26].

A digital elevation model (DEM) and water flow properties can improve flood detec-
tion by masking and reducing areas to be processed. For this, we use topographic indices
like the geomorphic flood index (GFI) [27] or height above nearest drainage (HAND) [28].
Razafipahatelo et al. [29] used the HAND index to define preferred samples for nonsuper-
vised classification. The ever-increasing volume of radar data and the sometimes very wide
extent of floods justify this need to bound processing, and radar images could take a long
time to download depending on available data rates.

Cloud computing services offer a way around these issues. Since Google Earth Engine
(GEE) has come on stream [30], a growing number of applications have been developed
to use this service for remote sensing and geographic information systems. GEE is a
cloud-based geospatial analysis platform that allows users to visualise and analyse Earth
observation (EO) data. GEE’s database includes all freely accessible satellite imagery and
is refreshed daily. Imagery can be processed directly in the cloud without the need to
download it [31], which is very useful in countries like Madagascar, where bandwidth
can be low and downloading heavy data complicated. GEE is used in a wide range of
applications like vegetation mapping and monitoring, land cover mapping, agriculture,
and hazard management [32,33], including for floods [34].

GEE is accessible via two client libraries. The first one is based on the JavaScript (JS)
programming language and the second on Python. While both libraries provide access to
the same services, Python makes it easy to automate the execution of laborious and multiple
tasks. This advantage afforded by Python enables the parallel processing of several images.
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Google Colab, an online Python interpreter, is the tool used with GEE’s Python application
programming interface (API).

In this paper, we report on the development of an image-processing chain for iden-
tifying floods from several Sentinel-1 scenes. The approach is designed to address the
challenges of monitoring extensive areas using synthetic aperture radar (SAR) and its
automatisation. This chain is implemented in Google Colab using the Python API. It
was first tested and calibrated on the immediate outskirts of Antananarivo (Madagascar)
using optical and radar images acquired before and after a series of floods in 2018. It is
then applied to the whole of Madagascar after the passage of Cyclone Batsirai on 5 and
6 February 2022.

The next section of the paper covers the data we used, where we calibrated the method
and how we carried out the testing. We also explain the steps in our process. Then, we share
our results and compare them to other flood maps from when Cyclone Batsirai occurred.
We also check our results against another method called S1Chain [34]. Lastly, we dive into
discussing our results in detail.

2. Materials and Methods

This section outlines the methodology, data sources, and processing steps used in our
flood detection approach. Calibration and testing were performed in Madagascar, with
Sentinel-1 satellite imagery as the primary data source. The processing chain includes the
delineation of flood-prone areas based on the HAND index, choice of reference images
acquired before flooding to compare to post-flood images, radar image filtering, and
delineating flood by change detection.

2.1. Study Areas

To calibrate the processing chain, it was applied first on the plain in the immediate
outskirts of Antananarivo, in the centre of the island. This calibration was conducted
following a specific rainy season in 2018 characterised by continuous and heavy rainfall.
This region was selected because it offers a wealth of information regarding previous flood
events, experiences recurrent flooding, and possesses the most documented knowledge
of flood-prone areas in the country [4]. These attributes greatly facilitated the calibration
process and made it an ideal location for fine-tuning our flood detection methodology.

Our chain was then tested during the passage of the Batsirai cyclone. Cyclone Batsirai
swept across southern Madagascar on 5 and 6 February 2022 (Figure 1). Several zones
along the island’s eastern seaboard were declared disaster areas. Reference flood maps are
available for a few zones [8,10]. To showcase the chain’s ability to detect floods over an
extensive area, the detection period was extended to 12 days. Thus, some detected floods
may not be related to the cyclonic event. More detailed analyses were conducted in areas
where other flood map products were also available, notably in the districts of Mananjary
and Manakara.

2.2. Data

This section provides an overview of the data sources and satellite imagery used in
our flood detection methodology. We focus on available HAND datasets, the Sentinel-1
constellation and its operational details, data availability in Google Earth Engine, and the
specifics of data used for both calibration and application.
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Figure 1. Track of Cyclone Batsirai as it barrelled across southern Madagascar from the north-east
to south-west on 5 and 6 February 2022 and location of the calibration and validation sites. Source:
Track of Cyclone Batsirai, NCEI [35].

2.2.1. HAND Dataset

Flood-proneness can be measured by the GIS-based flood index FSI (flood susceptibil-
ity index) [36] or a topographic index, among them GFI (geomorphic flood index) [27] or
HAND (height above nearest drainage) [28]. The advantage of the HAND index is that it
can be calculated from a DEM without hydrology data.

A set of HAND values covering the entire globe is already available in GEE [37]. DEMs
used are SRTM (30 m) and Viewfinder Panoramas (90 m) [38] for latitudes above 60 degrees,
where SRTM data are lacking.
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To obtain the HAND, it is assumed that water in a given pixel flows towards the next
downstream pixel following the steepest slope. Any given pixel may receive water from
zero, one or several pixels upstream of it. Water can thus accumulate in a pixel, since
water can only flow into a single pixel downstream. The direction of water flow in each
pixel is first deduced from the DEM. The water accumulation rate is then calculated for
each pixel (the number of upstream pixels feeding water into it). All pixels with a water
accumulation rate above a given threshold, called the flow accumulation threshold (FAT),
are considered part of the thalweg network. These are valley lines along which water flows
and accumulates when it rains. Once all points in the thalweg network are identified, a
matrix connecting each pixel in the study zone to the first point in the network receiving
water from this specific pixel is established. This connection matrix, combined with the
DEM, enables the value of the HAND parameter to be deduced by calculating elevation
difference between each of the connected two points.

Two values of FAT were considered for the HAND dataset available in GEE: 100 for
local drainage basins and 1000 for large drainage basins.

2.2.2. Sentinel-1

Our methodology relies on synthetic aperture radar (SAR) images from the Sentinel-1
constellation, operated by the European Space Agency (ESA). This constellation is com-
posed of two satellites, Sentinel-1A and Sentinel-1B. Each satellite is equipped with an
imaging radar operating in C band. Sentinel-1B ceased operating in July 2022 [36]. The
native spatial resolution of Sentinel-1 imagery depends on the satellite’s acquisition mode,
of which there are four: Stripmap (SM), Interferometric Wide (IW), Extra Wide (EW), and
Wave (WV). The respective spatial resolutions for these acquisition modes are 5 × 5 m,
5 × 20 m, 20 × 40 m, and 5 × 5 m.

Sentinel-1 imagery is acquired each 5 to 12 days depending on where the territory
being imaged is and on ESA’s satellite tasking plans. Unfortunately, these plans do not
support emergency retasking [39]. For Madagascar, past and planned acquisition scenarios
show that images are acquired by Sentinel-1A in IW mode during the descending phase
of its orbit, except for southwest Madagascar, where scenes are regularly acquired on
two ascending passes. Data are available in both VV and VH polarisations and at least every
12 days. It takes 4 to 10 days to acquire images covering all of Madagascar.

The Sentinel-1 data we used are already stored in GEE. Only GRD (ground range de-
tected) products are available in GEE. In this format, Sentinel-1 image pixels are
square—5 × 5 m, 10 × 10 m or 25 × 25 m maximum, depending on acquisition mode—and
noise is attenuated at the price of coarser resolution and loss of phase information. GEE
performs preprocessing on the Sentinel-1 imagery after refreshing the orbit metadata before
posting online to suppress edge noise and thermal noise, and to perform radiometric
calibration and terrain correction. In the latter case, SRTM 30 m digital elevation model
data are used [40].

Images available in GEE are stored at several levels of resolution in pyramid mode.
The pyramid is built from the original image at its native resolution (base of the pyramid).
The next level is formed by combining pixels in groups of four and averaging them. This
operation is repeated until an image no larger than 256 × 256 pixels (apex of the pyramid)
is obtained. The pyramid level used by GEE for processing is determined automatically
by the specified output spatial resolution (display or export) [41]. This enables processing
of a vast zone at optimal resolution and avoids overwhelming GEE’s computing capacity.
However, it is also possible to specify the desired spatial resolution, and while exporting
from the JS and Python libraries is possible, automating multiple exports is easier with
Python, as each export operation in Javascript in GEE’s IDE requires interaction with
the user. To streamline the computation without sacrificing too much information, 20-m
resolution images were used.
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2.2.3. Data Used for Calibration

For the calibration, in addition to Sentinel-1 images, optical images from Sentinel-
2 satellites are used. Part of the ESA Copernicus program, Sentinel-2 comprises twin
satellites: Sentinel-2A and Sentinel-2B. The combination of the two satellites provides a
5-day revisit period. Sentinel-2 images have a native spatial resolution of 10 m, 20 m or
60 m depending on the spectral band. The bands used—visible and near-infrared—offer a
resolution of 10 m. Cloudless optical images are often used to validate flood detection from
radar image processing. Optical images allow one to obtain very high accuracy due to their
multispectral bands [13].

During the beginning of 2018, there was abundant rainfall in the area around Antana-
narivo up to the beginning of March, flooding low-lying zones around the city. In March,
the rainfall was driven by a tropical depression and then Cyclone Dumazile. On 13 March
2018, good weather conditions enabled a Sentinel-2 optical image with only 1% cloud cover
to be acquired, while a Sentinel-1 image was available for 12 March 2018. This Sentinel-2
image and another Sentinel-2 image acquired during the dry season were used to delineate
the flooded areas and calibrate processing for Sentinel-1 data. In Sentinel-2 images, water
surfaces are detected by thresholding the NDWI (normalised difference water index) with
Otsu algorithm [42]. The same method is applied to the reference Sentinel-2 image to detect
and filter out permanent surface waters. The results thus obtained are compared to the
processing of radar images.

2.2.4. Data Used for Application

To simulate a calculation covering the entire territory of Madagascar, flood detection
is extended over a 12-day period. This approach aims to ensure complete coverage of the
territory using Sentinel images, as the revisit frequency of Sentinel-1 satellites is every
12 days. To ensure a significant presence of flooding, the period following the passage
of Cyclone Batsirai on 5 and 6 February 2022, is chosen. A total of 30 Sentinel-1 scenes
were required. They were acquired between 5 and 17 February 2022. Radar images
acquired at the same period as these post-flood images for each previous year were used as
reference images.

2.3. Processing Chain

To make everything less computer-intensive, processing will be applied only to flood-
prone zones predetermined according to topography. This is performed by thresholding
the HAND model. The processing chain developed is based on detecting changes between
two Sentinel-1 radar images using the normalised difference ratio: images acquired before
floods for reference and images acquired during or after a flood has peaked are required.
Before attempting to detect flooded areas, it is also crucial to filter out speckle noise from
radar images. The choice of reference Sentinel-1 images will have a significant impact on
results and their interpretation. The procedure for selecting these images is outlined in a
dedicated subsection.

2.3.1. Delineating Flood-Prone Areas

Flood-prone areas are delineated in order to limit processing only on such zones. It also
avoids false positive flood detection. The HAND model enables a pixel’s flood-proneness
to be determined: the greater the difference in elevation between the pixel and the thalweg
network, the less likely it is to be flooded [29]. By applying a threshold to HAND values,
we can identify flood-prone areas and mask all pixels outside of them. This threshold must
be chosen to maintain a balance between accuracy and performance. If the threshold value
is set too high, non-flood-prone zones will be included and thus needlessly slow down
processing; too low, and zones genuinely at risk of flooding will be excluded.

In the specific case of Madagascar, a HAND threshold value of 5 m and a FAT value of
100 were chosen to include zones already known to have flooded previously. These values
were determined on the basis of data on previous floods and local terrain features.
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2.3.2. Choice of Reference Sentinel-1 Images

Reference images used in the change detection process are usually chosen from dates
when there were no floods. There are several options when choosing them. We can choose
images acquired during the dry season when water levels are at their lowest. However,
this can lead to mistaking a stream bed filling up for a flood. We can also choose an
image acquired just before the flood event, but in this case, the results would only factor in
submersions caused by this specific event and could therefore include seasonal rains, which
are not strictly speaking floods, or exclude subsequent submersions due to the floods. The
best option would be to use radar images acquired when the main stream beds of water
courses are full but not overflowing. However, this precise moment may not coincide with
a satellite pass.

An alternative approach is employed here for selecting reference images. For a given
scene (post-flood image), all available images acquired during the same period in previ-
ous years are selected, starting from 2014. To guarantee at least one image for each year,
for Sentinel-1, the period is extended to cover the 12 days preceding the event. A flood-
detection operation is then applied to the post-flood image and each of these reference
images. The results are combined using a majority-voting process to select pixels corre-
sponding to water. This approach excludes zones that are usually under water (permanent
water bodies) during the event in question.

2.3.3. Radar Image Filtering

Radar image filters play a crucial role in image processing, enhancing the quality of
radar imagery for various applications. That is why Mullissa et al. [43] developed a speckle
filtering tool in GEE. However, this tool is not available in Google Colab. Therefore, it was
rewritten in Python while developing this processing chain. Speckle filter performance is
generally assessed by analysing how much speckle noise is reduced and how well features
are preserved in the filtered image [44]. Each filter is assessed in terms of the accuracy with
which water bodies are detected. Five filters have been incorporated in the processing chain.
These filters include the boxcar filter, which smooths images by averaging neighbouring
pixels; the gamma map [45], a technique for adjusting brightness and contrast; the Lee
filter [46], designed for speckle noise reduction; the Lee sigma filter [47], an enhanced
version with adjustable noise reduction; the refined Lee filter [48], which further refines
speckle noise reduction; and the Quegan multitemporal filter [49], utilising information
from multiple radar images taken at different times to reduce noise.

2.3.4. Delineating Flood Extent by Change Detection

The change-detection method is based on the normalised difference, first used by
Coppin and Bauer [50] and subsequently developed by Gianinetto and Villa [51]. It has
already been used to establish flood extents [52].

For two images, Y1 and Y2, from the same scene but acquired on different dates, the
normalised difference between them is given by:

D = (Y2 − Y1)/(Y2 + Y1)

D is between −1 and +1. A value close to 0 indicates no change, while a value near to
+/−1 corresponds to a large decrease or increase in the pixel value between the two dates.

As the reflected signal from areas under water is much weaker, the normalised differ-
ence will be negative. We can establish a normalised difference threshold value to delineate
flooded areas.

2.3.5. Processing Chain Overview

Figure 2 below shows a simplified overview of the processing chain. Flood detection
begins by selecting satellite images covering the study area and applying a mask to identify
flood-prone areas using HAND data. These selected images are then divided into pre-
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event and post-event categories based on the flood event date. Subsequently, speckle
filtering techniques are applied. Change detection is carried out by comparing each post-
event image with multiple reference images acquired before the event, with a focus on
selecting reference images that overlap with the post-event image. The results of the change
detection process, involving multiple reference images, are integrated using a majority
voting approach.
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2.3.6. Calibration and Validation of Results

To calibrate and assess the effectiveness of the processing chain, the flood-detection
protocol was applied to the outskirts of Antananarivo (Figure 3). Results of the processing
chain are compared to results from optical Sentinel 2 images presented on data subsection.
After comparing results, we chose the best filter and polarisations as well as the NDR
threshold for flood detection.
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To achieve a more impartial validation process, a set of 100 random points was
generated for each predicted class, distinguishing between areas affected by flooding and
those unaffected (flooded and non-flooded, respectively). Subsequently, a comprehensive
analysis of optical and radar images, along with water index, was conducted using a visual
interpretation approach. This method allowed for the actual ground-truth state of each
point within the study area. This interpretation process was conducted with consideration
for the available information regarding historical occurrences of flooding within the study
area, ensuring a robust and reliable validation process.

During Batsirai, partial flood maps were produced by the FAO [10] for the island’s
eastern seaboard and the Rapid Mapping component of the Copernicus Emergency Man-
agement Service (CEMS) program for certain zones. The CEMS Rapid Mapping product is a
mapping solution tailored for rapid disaster response [8]. It leverages advanced Earth obser-
vation satellites (such as TerraSar-X data) to deliver near-real-time, high-resolution satellite
imagery and geospatial data during crucial early phases of emergencies like earthquakes,
floods, and wildfires. CEMS Rapid Mapping empowers authorities and first responders to
quickly assess damage, identify affected areas, and coordinate targeted relief efforts. This
rapid access to precise mapping data enhances situational awareness and accelerates aid
delivery, bolstering community resilience and safety. Those products were compared to the
results obtained by our processing chain for the same zones.
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For further validation, the results of the processing chain were compared to the results
of the S1Chain developed by Alexandre et al. [52]. This processing chain downloads and
extracts Sentinel-1 imagery within the Sentinel-2 tile footprints, incorporates multitemporal
filtering, calculates the normalised difference ratio, and generates a mask delineating
flooded regions. The data used were processed following the passage of Cyclone Batsirai in
2022, using the same Sentinel-1 data that we processed for this cyclone event. This makes it
possible to compare the different chain outputs.

3. Results
3.1. Calibration Phase

The processing chain is calibrated on the outskirts of Antananarivo by comparing
results with those obtained from two optical images (pre- and post-flood).

Figure 3 shows surface water detected from Sentinel-2 optical imagery with automatic
thresholding of the normalised difference water index (NDWI). Permanent water bodies
are filtered out by processing another Sentinel-2 image acquired on 18 September 2017 (dry
season) in the same fashion. This date was chosen because a Sentinel-1 image acquired the
same day will be used as the reference radar image when processing radar data.

As the calibration is small enough, it was easy to variate the threshold. Maximum
precision is obtained with a −0.35 threshold.

Figure 4 shows flood detection results obtained using a single polarisation (VV and
then VH) and both polarisations at the same time.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 4. Detection of floods in the Antananarivo plain using different polarisations of the Sentinel-
1 image (VV only, VH only and both VV and VH). The post-flood image was acquired on 13 March 
2018 and the reference image on 18 September 2017. 

Table 1. Kappa of processing chain results according to the type of filter used by comparing with 
the result obtained from Sentinel-2 optical images. 

Filter Mono 1 (%) Multi 2 (%) 
No filter 64.95 - 

BOXCAR 71.36 70.67 
Gamma MAP 68.98 68.48 

LEE 70.81 70.08 
LEE SIGMA 70.48 69.77 

REFINED LEE 72.42 71.74 
1 Processing with post-flood image and a single reference image. 2 Processing with post-flood image 
and all available pre-flood images and applying Quegan multidate filters [49]. 

The best match is obtained with the refined Lee filter on a single image. We note that 
accuracy is slightly reduced when using multidate filters. This may be because different 
nonpermanent features (temporary water bodies) are in different places and have differ-
ent shapes in the multidate imagery. 

After generating 100 random points for each predicted class (flood/non-flood), the 
real state of each pixel was verified manually (reference). The confusion matrix is pre-
sented in Table 2, indicating an overall accuracy of 85%. A significantly improved accuracy 
is achieved for the predicted non-flood class (user’s accuracy = 92%) compared to the pre-
dicted flood class (user’s accuracy = 78%) thanks to the utilisation of the HAND index. 
The majority of the reference non-flooded areas are effectively identified as non-flood-
prone regions through the HAND thresholding (producer’s accuracy = 81%). 
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2018 and the reference image on 18 September 2017.

We note that VV polarisation is sensitive to the irregularity of water surfaces caused
by wind [3]. That is why this polarisation does not detect flooding better in the relatively
open northwestern part of the calibration area. On the other hand, the effectiveness of VV
polarisation in the agricultural fields is due to the sensitivity of VH to the double bounce
phenomenon that occurs when vegetation still emerges from water. These two polarisations
are then complementary, minimising false negative flood detection. Both polarisations will
therefore be used henceforth.
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Table 1 shows how processing chain results match according to the type of filter used
with respect to the result obtained with two Sentinel-2 optical images.

Table 1. Kappa of processing chain results according to the type of filter used by comparing with the
result obtained from Sentinel-2 optical images.

Filter Mono 1 (%) Multi 2 (%)

No filter 64.95 -
BOXCAR 71.36 70.67

Gamma MAP 68.98 68.48
LEE 70.81 70.08

LEE SIGMA 70.48 69.77
REFINED LEE 72.42 71.74

1 Processing with post-flood image and a single reference image. 2 Processing with post-flood image and all
available pre-flood images and applying Quegan multidate filters [49].

The best match is obtained with the refined Lee filter on a single image. We note that
accuracy is slightly reduced when using multidate filters. This may be because different
nonpermanent features (temporary water bodies) are in different places and have different
shapes in the multidate imagery.

After generating 100 random points for each predicted class (flood/non-flood), the
real state of each pixel was verified manually (reference). The confusion matrix is presented
in Table 2, indicating an overall accuracy of 85%. A significantly improved accuracy
is achieved for the predicted non-flood class (user’s accuracy = 92%) compared to the
predicted flood class (user’s accuracy = 78%) thanks to the utilisation of the HAND index.
The majority of the reference non-flooded areas are effectively identified as non-flood-prone
regions through the HAND thresholding (producer’s accuracy = 81%).

Table 2. Confusion matrix of results of the flood detection in Antananarivo.

Predicted Reference

Non-Flood Flood Total

Non-flood 92 8 100
Flood 22 78 100
Total 114 86 200

Overall accuracy: 85%

3.2. Application for Large-Scale Area

The processing chain is applied to identify flooded areas across the entire island
of Madagascar, covering an extensive area of 587,041 square kilometres for the 12 days
following the passage of Cyclone Batsirai on 5 and 6 February 2022 (Figure 5). We utilised
both VV and VH polarisations with a spatial resolution of 20 metres and applied a refined
Lee filter to the images. We obtained 30 scenes covering Madagascar in its entirety.

For reference Sentinel-1 images, we used a series of images acquired annually during
the same 12 days period in previous years. Six or seven reference images were accessible
for each scene. By combining the series of flood detection by majority vote, each pixel
was considered flooded if it emerged in more than three of the reference images. Frequent
submersions are thus excluded from the flood detection results.

To efficiently process the 30 scenes, we simultaneously submitted requests to Google
Earth Engine (GEE) from the Google Colab session executing our Python code. GEE,
equipped with automated resource allocation, managed concurrent processing seamlessly.
Remarkably, all requests were completed in under an hour. The entire processing chain,
from data processing to result visualisation, was implemented within a single Colab
session [53].
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3.3. Comparison with Other Flood-Mapping Products

Figure 6 overlays the results obtained with the processing chain proposed here on the
map supplied by Copernicus emrs564. This map shows the southeast region of Madagascar,
which was hardest hit by Cyclone Batsirai. The images used for this study were acquired
on 9 February 2022, i.e., three days after the floods peaked, potentially explaining why
the flood areas identified using the processing chain appear smaller compared to the
Copernicus emsr564 product. The Copernicus emrs564 product was generated from a
TerraSAR-X image acquired on 6 February 2022. Specifically, the flood area detected by
the Copernicus emsr564 product covers approximately 3776 hectares, while the processing
chain identifies around 582 hectares of flooded area. There is an overlap of approximately
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424 hectares detected by both processes. These numbers demonstrate that a large portion
of the water has receded by the time our processing chain was applied, resulting in a
reduction in the identified flooded area when compared to the Copernicus product.
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Figure 6. Flood map obtained with the processing chain overlaid on a flood map supplied by
Copernicus emsr564 in the district of Mananjary. In blue are flooded areas detected by the processing
chain generated by using Sentinel-1 image acquired on 9 February 2022. EMSR product is derived
from TerraSAR-X image acquired on 6 February 2022.

The results again identified persistent flooding that represents a long-term vulnerabil-
ity, especially where crop fields are affected. Such information can be of value during the
post-flood recovery phase. Availability of Sentinel-1 imagery is an issue that may preclude
the timely application of this methodology, even more so now that Sentinel-1B is no longer
in service. As Sentinel-1A is not retaskable, images may take several days to arrive (up to
16 days). The results are also compared with those obtained by the S1Chain (Figure 7). They
are in close agreement, with a kappa value of 0.78. However, differences are observed in
several small flooded areas marked by scattered red areas in our results. These anomalies
are more likely noise and are likely due to filtering effects, as the two chains apply speckle
filtering at different times. In the S1Chain, this step is performed before terrain correction,
whereas in GEE, images have already been corrected for terrain effects before being posted
online. These anomalies further underscore the importance of filtering methods in the
flood detection process and their impact on the interpretation of smaller flooded regions.
Indeed, these anomalies occupy 7993 Ha if the flood stably detected by the two chains is
about 50,700 ha.
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4. Discussion

In this study, the use of GEE has proven to be particularly relevant and effective in
addressing the needs of this research. GEE provided easy access to preprocessed SAR
data and computational resources, facilitating a two-fold study. Firstly, characterising
the spatiotemporal distribution of water resources in Madagascar, including seasonal and
inter-annual dynamics of water bodies, and secondly, assessing the impacts of flood events
resulting from cyclones in operational mode to enhance decision making using Earth
observation products.

In this methodology, an overall accuracy of 85% is achieved, which is similar to the
accuracy attained by more advanced approaches, such as [54], using neural networks.
Higher accuracy can be attained by employing more recent techniques such as automatic
thresholding used by [34,55] or deep learning used by [56], who respectively reached
overall accuracies of 96.4%, 98.68% and 99.1%. Automatic thresholding requires a minimum
portion of each class [42], necessitating image division into patches before thresholding.
Deep learning involves deploying a model, which is a paid service on Google Earth Engine.
However, the methodological developments of this flood detection tool, using Google
Earth Engine and Sentinel-1 radar imagery, aim to meet operational needs during crises.
This approach prioritises the speed of impact map production and precision suitable for
emergency situations rather than extreme accuracy. In a crisis situation, speed is crucial,
and the goal is to obtain an overview of flooded areas for effective crisis management.
Thus, the methodology relies on relatively straightforward techniques. This approach
strikes balances between operational speed and level precision required for informed
decision making.

The HAND index can play a crucial role in supporting the flood detection process [57].
We demonstrate the significance of utilising the existing global HAND dataset on GEE,
emphasising its time-saving benefits in the flood detection process in addition to the
accuracy improvement.

The results show that several locations affected by flooding during the passage of
Cyclone Batsirai were not mapped by traditional emergency services, thus demonstrating
the value of this new processing chain able to systematically generate flood maps for
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cyclone events on the scale of an entire country. The maps used by national emergency
management agencies, obtained from various sources, including through activation of the
International Charter Space and Major Disasters, currently remain very limited in space
and time. New information provided by our processing chain can help to improve disaster
management and response.

To swiftly provide practical information to risk managers, we can enhance our analysis
by integrating data from the European Space Agency (ESA) World Cover, which offers
a global land cover map for 2021 at a 10-metre resolution, derived from Sentinel-1 and
Sentinel-2 data. We can also utilise OpenStreetMap (OSM), a global open-source mapping
platform that crowdsources geographic data, providing comprehensive, free maps for vari-
ous applications. Additionally, Google Open Buildings can be used to incorporate building
footprints using advanced deep learning algorithms and very high-resolution imagery.

However, it is worth noting that while GEE offers data availability and processing
resources, including computational power and dedicated codes, which is particularly
beneficial for territories like Madagascar with vast expanses and limited resources, certain
limitations need to be considered. Sentinel-1 data come preprocessed with limited flexibility
for making specific adjustments. Additionally, there are restrictions on the volume of data
that can be processed freely without subscribing. Ownership issues of developments can
also be a concern, especially when collaborating with government agencies. Furthermore,
the number of image processing tools and classification algorithms is limited to what is
available in the API.

The differences observed between the products compared in Figures 6 and 7 can be
explained in several ways. One of the main reasons lies in the temporal variations of image
data, with each method using images acquired at different times. This temporal difference
influences the characterisation of floods, with the processing chain detecting floods at
a specific time, while Copernicus EMS relies on older data, which impacts the results.
Furthermore, the specific mapping methods and algorithms of each method are major
sources of divergence. These divergences highlight the need for contextual analysis for
accurate interpretation. The temporal complementarity between the approach focused on
speed and extensive spatial coverage and official products, such as those from Copernicus,
allows for a better understanding of flood evolution.

The approach developed stands out for its responsiveness and capacity to map the
entire territory of Madagascar, whether for research purposes or operational applications
in times of emergencies. This responsiveness holds considerable potential for improving
flood response and disaster management.

The contribution of our approach to flood management relies on the complementarity
among various approaches, including those of Copernicus and the International Charter
Space and Major Disasters. Sentinel-1 images are used for their ability to provide valuable
information, even in unfavourable weather conditions. Our approach stands out for
its speed, providing near-real-time data complementary to Copernicus products. The
involvement of local stakeholders in data production and risk management enhances the
capacity of communities to respond appropriately to floods. This collaboration contributes
to more efficient flood management and rapid response in times of disaster. Furthermore,
the utilisation of Google Colab significantly eases collaboration. The processing chain is
easily shareable, requiring no installation, and the Python notebook contains both code and
formatted text, facilitating comprehension. This seamless integration of collaborative tools
enhances the accessibility of our approach, promoting wider engagement and cooperation
among stakeholders in addressing flood-related challenges.

5. Conclusions

This study developed a processing chain to identify flooded areas using radar imagery
in Google Earth Engine. The chain was developed in Google Colab in the form of a Python
notebook. We have shown that our processing chain is effective in detecting flooded
areas throughout Madagascar. This processing over large areas was possible thanks to the



Remote Sens. 2023, 15, 5368 16 of 19

computing power and the rapid access to the data offered by Google Earth Engine. The GEE
platform is a real opportunity for work on large volumes of data, particularly for countries
like Madagascar where bandwidth and the Internet network can be quite inconsistent.

The results show that several locations affected by flooding during the passage of
Cyclone Batsirai were not mapped by traditional emergency mapping services, thus demon-
strating the value of systematically generating national flood maps for cyclone events. The
maps used by national emergency management agencies, obtained from various sources
including through activation of the International Charter Space and Major Disasters, cur-
rently remain very limited. New information provided by our processing chain can help to
improve disaster management and response.

Cyclonic seasons give rise to clouds and atmospheric disturbances. Less affected
than optical imagery, we have shown that radar Sentinel-1 data are a reliable solution for
detecting flooding during these periods. It makes sense to continue working on these
data, since ESA has announced the launch of Sentinel-1-C this year, and the rest of the
programme is already planned. Building processing chains and operational tools based on
Sentinel-1 data is part of a long-term vision.

Code from the processing chain could easily be adapted to use other radar images
from different satellite constellations and to complete or replace Sentinel-1 imagery when it
is not available. The use of several sources of radar images in parallel could even make it
possible to improve the overall precision of the method, through a greater temporal density
of images, making it possible, for example, to capture critical periods for detecting the peak
of flooding (a few hours to few days after the passage of the cyclones). Cross-referencing
data from various sources (different sensors, trajectories or angles of incidence) could also
make it possible to refine the algorithms to complete flooded areas, or mask noise and
poor detections. As shown by the validation of the results with Sentinel-2 data, the use
of optical images could also be considered in addition, especially since the number of
constellations of Earth observation satellites of this type is constantly increasing (Planet,
etc.). The algorithms will also need to be adapted to process these types of data.

The chain currently runs on Google Earth Engine. Adapting the script to work with
multiple backends such as Digital Earth Africa [58] or Microsoft Planetary Computer [59]
or other proposals like the ESA’s [60] would be very interesting. The use of these different
platforms could also provide access to different data sources important for rapid detection
of all flooded areas.

The good results obtained for the detection of areas under water and the replicable
nature of the method raise the question of its use at an operational level. To this end, we
have launched the SCO (Space Climate Observatory) Cimopolée project, a research and
operational application project involving our teams and the Bureau National de Gestion
des Risques et des Catastrophes à Madagascar (BNGRC). The aim of this project is to
continue improving the results of the processing chain, but above all, to integrate the results
and provide operational information for decision makers and people in charge of risk
management in Madagascar.
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API Application Programming Interface
CEMS Copernicus Emergency Management Service
DEM Digital Elevation Model
EO Earth Observation
ESA European Space Agency
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GEE Google Earth Engine
HAND Height Above Nearest Drainage
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NDWI Normalised Difference
OSM Open Street Map
SAR Synthetic Aperture Radar
SRTM Shuttle Radar Topography Mission
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