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Abstract

We provide a unified approach to S-estimation in balanced linear models with structured
covariance matrices. Of main interest are S-estimators for linear mixed effects models, but
our approach also includes S-estimators in several other standard multivariate models, such as
multiple regression, multivariate regression, and multivariate location and scatter. We provide
sufficient conditions for the existence of S-functionals and S-estimators, establish asymptotic
properties such as consistency and asymptotic normality, and derive their robustness prop-
erties in terms of breakdown point and influence function. All the results are obtained for
general identifiable covariance structures and are established under mild conditions on the
distribution of the observations, which goes far beyond models with elliptically contoured
densities. Some of our results are new and others are more general than existing ones in the
literature. In this way this manuscript completes and improves results on S-estimation in a
wide variety of multivariate models. We illustrate our results by means of a simulation study
and an application to data from a trial on the treatment of lead-exposed children.

1 Introduction

Linear models are widely used and provide a versatile approach for analyzing correlated responses,
such as longitudinal data, growth data or repeated measurements. In such models, each subject i,
i = 1, . . . , n, is observed at ki occasions, and the vector of responses yi is assumed to arise from
the model

yi = Xiβ + ui,

where Xi is the design matrix for the ith subject and ui is a vector whose covariance matrix
can be used to model the correlation between the responses. One possibility is the linear mixed
effects model, in which the random effects together with the measurement error yields a specific
covariance structure depending on a vector θ consisting of some unknown covariance parameters.
Other covariance structures may arise, for example if the ui are the outcome of a time series, see
e.g., [14] or [10], for different possible covariance structures.

Maximum likelihood estimation of β and θ has been studied, e.g., in [12, 25, 15], see also [10, 7].
To be resistant against outliers, robust methods have been investigated for linear mixed effects
models, e.g., in [22, 5, 4, 13, 1, 3]. This mostly concerns S-estimators, originally introduced in the
multiple regression context by Rousseeuw and Yohai [27] and extended to multivariate location and
scatter in [6, 17], to multivariate regression in [29], and to linear mixed effects models in [5, 13, 3].

∗This work has been partly supported by the French Agence Nationale de la Recherche through the Investments
for the Future (Investissements d’Avenir) program, grant ANR-17-EURE-0010.
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S-estimators are well known smooth versions of the minimum volume ellipsoid estimator [26]
that are highly resistant against outliers. As such, S-estimators have gained popularity as robust
estimators, but they may also serve as initial estimators to further improve the efficiency. However,
the theory about these estimators is far from complete, even in balanced models where the number
of observed responses is the same for all subjects.

In view of this, we provide a unified approach to S-estimation in balanced linear models with
structured covariance matrices, and postpone a unified approach for unbalanced models to a fu-
ture paper. The balanced setup is already quite flexible and includes several specific multivariate
statistical models. Of main interest are S-estimators for linear mixed effects models, but our ap-
proach also includes S-estimators in several other standard multivariate models, such as multiple
regression, multivariate regression, and multivariate location and scatter. We provide sufficient
conditions for the existence of S-functionals and S-estimators, establish their asymptotic proper-
ties, such as consistency and asymptotic normality, and derive their robustness properties in terms
of breakdown point and influence function. All results are obtained for a large class of identifiable
covariance structures, and are established under very mild conditions on the distribution of the
observations, which goes far beyond models with elliptically contoured densities. In this way, some
of our results are new and others are more general than existing ones in the literature.

Existence of S-estimators and S-functionals is established under mild conditions. Although
existence of the estimators seems a basic requirement, such results are missing for instance for
multivariate regression in [30] and for linear mixed effects models in [5, 3]. We obtain robustness
properties for S-estimators, such as breakdown point and influence function, under mild conditions
on collections of observations and under mild conditions on the distribution of the observations.
High breakdown and a bounded influence function seem basic requirements for a robust method,
but both properties are not available for linear mixed effects models [5, 3]. For multivariate regres-
sion [30], the influence function is only determined at distributions with an elliptical contoured
density. Finally, we establish consistency and asymptotic normality for S-estimators under mild
conditions on the distribution of the observations. A rigorous derivation is missing for multivariate
regression [30], or is only available for observations from a normal distribution [27, 3].

We apply our asymptotic results, such as influence function and asymptotic normality, to the
special case for which the distribution of the observations corresponds to an elliptically contoured
density. In this way we retrieve earlier results found in [27, 17, 30]. Somewhat surprisingly, the
asymptotic variances of our S-estimators for linear mixed effects models in which the response has
an elliptically contoured density, differ from the ones found in [5]. We investigate this difference
by means of a simulation study.

The paper is organized as follows. In Section 2, we explain the model in detail and provide
some examples of standard multivariate models that are included in our setup. In Section 3 we
define the S-estimator and S-functional and in Section 4 we give conditions under which they exist.
In Section 5 we establish continuity of the S-functional, which is then used to obtain consistency
of the S-estimator. Section 6 deals with the breakdown point. Section 7 provides the preparation
for Sections 8 and 9 in which we obtain the influence function and establish asymptotic normality.
Finally, in Section 10, we illustrate our results by means of a simulation and investigate the
performance of our estimators by means of an application to data from a trial on the treatment of
lead-exposed children. All proofs and some technical lemmas are put in an Appendix at the end
of the paper. Other long and technical proofs are available as supplemental material [16].

2 Balanced models with structured covariances

We consider independent observations (y1,X1), . . . , (yn,Xn), for which we assume the following
model

yi = Xiβ + ui, i = 1, . . . , n, (2.1)

where yi ∈ Rk contains repeated measurements for the i-th subject, β ∈ Rq is an unknown
parameter vector, Xi ∈ Rk×q is a known design matrix, and ui ∈ Rk are unobservable independent
mean zero random vectors with covariance matrix V ∈ PDS(k), the class of positive definite
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symmetric k×k matrices. The model is balanced in the sense that all yi have the same dimension.
Furthermore, we consider a structured covariance matrix, that is, the matrix V = V(θ) is a known
function of unknown covariance parameters combined in a vector θ ∈ Rl. We first discuss some
examples that are covered by this setup.

Example 1. An important case of interest is the (balanced) linear mixed effects model

yi = Xiβ + Zγi + εi, i = 1, . . . , n. (2.2)

This model arises from ui = Zγi + εi, for i = 1, . . . , n, where Z ∈ Rk×g is known and γi ∈ Rg
and εi ∈ Rk are independent mean zero random variables, with unknown covariance matrices G
and R, respectively. In this case V(θ) = ZGZT + R and θ = (vech(G)T , vech(R)T )T , where

vech(A) = (a11, . . . , ak1, a22, . . . , akk) (2.3)

is the unique k(k + 1)/2-vector that stacks the columns of the lower triangle elements of a sym-
metric matrix A. In full generality, the model is usually overparametrized and one may run into
identifiability problems. A more feasible example is obtained by taking R = σ2

0Ik, Z = [Z1 · · · Zr]
and γi = (γi1 . . . , γir)

T , where the Zj’s are known k × gj design matrices and the γij ∈ Rgj are
independent mean zero random variables with covariance matrix σ2

j Igj , for j = 1, . . . , r. This leads
to

yi = Xiβ +

r∑
j=1

Zjγij + εi, i = 1, . . . , n, (2.4)

with V(θ) =
∑r
j=1 σ

2
jZjZ

T
j + σ2

0Ik and θ = (σ2
0 , σ

2
1 , . . . , σ

2
r).

Example 2. An example with an unstructured covariance is the multivariate linear regression
model

yi = BTxi + ui, i = 1, . . . , n, (2.5)

where B ∈ Rq×k is a matrix of unknown parameters, xi ∈ Rq is known, and ui, for i = 1, . . . , n,
are independent mean zero random variables with covariance matrix V(θ) = C ∈ PDS(k). In this
case, the vector of unknown covariance parameters is given by

θ = vech(C) = (c11, . . . , c1k, c22, . . . , ckk)T ∈ R
1
2k(k+1). (2.6)

The model can be obtained as a special case of (2.1), by taking Xi = xTi ⊗ Ik and β = vec(BT ),
where ⊗ denotes the Kronecker product and vec(·) is the k2-vector that stacks the columns of a
matrix. Clearly, the linear multiple regression model is a special case with k = 1.

Example 3. Model (2.1) also includes examples, for which u1, . . . ,un are generated from a time
series. One example, is the case where ui has a covariance matrix with elements

vst = σ2ρ|s−t|, s, t = 1, . . . , k. (2.7)

This arises when the ui’s are generated by an autoregressive process of order one. The vector of
unknown covariance parameters is θ = (σ2, ρ) ∈ (0,∞) × [−1, 1]. A general stationary process
leads to

vst = θ|s−t|+1, s, t = 1, . . . , k, (2.8)

in which case θ = (θ1, . . . , θk)T ∈ Rk, where θ|s−t|+1 represents the autocovariance over lag |s− t|.
Example 4. Also the multivariate location-scale model can be obtained as a special case of (2.1),
by taking Xi = Ik, the k × k identity matrix. In this case, β ∈ Rk is the unknown location
parameter and V(θ) is the unstructured covariance matrix as in Example 2, with θ as in (2.6).

Throughout the manuscript we will assume that the parameter θ is identifiable in the sense
that,

V(θ1) = V(θ2) ⇒ θ1 = θ2. (2.9)

This is true for all models in Examples 2, 3 and 4. This may not be true in general for the linear
mixed effects model in Example 1 with unknown vech(G) and vech(R). For linear mixed effects
models in (2.4), identifiability of θ = (σ2

0 , σ
2
1 , . . . , σ

2
r) holds for particular choices of the design

matrices Z1, . . . ,Zr.
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3 Definitions

We start by representing our observations as points in Rk × Rkq in the following way. For r =
1, . . . , k, let xTr denote the r-th row of the k × q matrix X, so that xr ∈ Rq. We represent the
pair s = (y,X) as an element in Rk × Rkq defined by sT = (yT ,xT1 , . . . ,x

T
k ). In this way our

observations can be represented as s1, . . . , sn, with si = (yi,Xi) ∈ Rk × Rkq.

3.1 S-estimator

S-estimators are defined by means of a function ρ : R→ [0,∞) that satisfies the following proper-
ties

(R1) ρ is symmetric around zero with ρ(0) = 0 and ρ is continuous at zero;

(R2) There exists a finite constant c0 > 0, such that ρ is non-decreasing on [0, c0] and constant
on [c0,∞); put a0 = sup ρ.

The S-estimator ξn = (βn,θn) is defined as the solution to the following minimization problem

min
β,θ

det(V(θ))

subject to

1

n

n∑
i=1

ρ

(√
(yi −Xiβ)TV(θ)−1(yi −Xiβ)

)
≤ b0,

(3.1)

where the minimum is taken over all β ∈ Rq and θ ∈ Rl, such that V(θ) ∈ PDS(k), with ρ
satisfying (R1)-(R2).

The S-estimator defined by (3.1) for the setup in (2.1) includes several specific cases that have
been considered in the literature. The original regression S-estimator introduced by Rousseeuw
and Yohai [27] is obtained as a special case by taking Xi = xTi a 1× q vector and V(θ) = σ2 > 0.
S-estimators for multivariate location and scale, as considered in Davies [6] and Lopuhaä [17] can
be obtained by taking Xi and V(θ) as in Example 4. For the multivariate regression model in
Example 2, S-estimators have been considered by Van Aelst and Willems [30]. Copt and Victoria-
Feser [5] and Chervoneva and Vishnyakov [3] consider S-estimators for the parameters in the linear
mixed effects model (2.4).

The constant 0 < b0 < a0 in (3.1) can be chosen in agreement with an assumed underlying
distribution. For the multivariate regression model in [30], it is assumed that yi | Xi has an
elliptically contoured density of the form

fµ,Σ(y) = det(Σ)−1/2h
(
(y − µ)TΣ−1(y − µ)

)
, (3.2)

with µ = Xiβ and Σ = V(θ) and h : [0,∞) → [0,∞). For the linear mixed effects model in [5],
it is assumed that yi | Xi has a multivariate normal distribution, which is a special case of (3.2)
with h(t) = (2π)−k/2 exp(−t/2). When the underlying distribution corresponds to a density of the
form (3.2), then a natural choice is b0 = E0,Iρ(‖z‖), where z has density (3.2) with (µ,Σ) = (0, Ik).
Finally, it should be emphasized that the ratio b0/a0 determines the breakdown point of the S-
estimator (see Theorem 4), as well as its limiting variance (see Corollary 6). By choosing the
constant c0 in (R2) one then has to make a trade-off between robustness and efficiency.

Note that at this point we do not assume smoothness of ρ or strict monotonicity on [0, c0].
This means that (R1)-(R2) allow the function ρ(d) = 1 − 1[−c0,c0](d), which corresponds to the
minimum volume ellipsoid estimator in location-scale models (see [26]) and to the least median of
squares estimator in linear regression models (see [28]). Indeed, with ρ(d) = 1 − 1[−c0,c0](d), the
S-estimator (βn,θn) corresponds to the smallest cylinder

C(β,θ, c0) =
{

(y,X) ∈ Rk × Rkq : (y −Xβ)TV(θ)−1(y −Xβ) ≤ c20
}

(3.3)

that contains at least n− nb0 points.
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Remark 3.1. Clearly, the definition of the S-estimator in (3.1) has great similarities with the S-
estimator for multivariate location and covariance (see [6] and [17]), defined as the solution (tn,Cn)
to the minimization problem

min
t,C

det(C)

subject to

1

n

n∑
i=1

ρ

(√
(yi − t)TC−1(yi − t)

)
≤ b0,

(3.4)

where the minimum is taken over all t ∈ Rk and C ∈ PDS(k). Even more so, if all Xi are assumed
to be equal to the same design matrix X of full rank, as was done in [5, 4]. However, there is
a subtle, but important difference between minimization problems (3.4) and (3.1). The important
difference is that in (3.4) we minimize over all positive definite symmetric k × k matrices C,
whereas in (3.1), we only minimize over positive definite symmetric k × k matrices V(θ), which
can arise as the image of the mapping θ 7→ V(θ). The latter collection is a subset of the other:{

V(θ) ∈ PDS(k) : θ ∈ Rl
}
⊂ PDS(k),

and will typically be a strictly smaller subset. This means that the properties of V(θn) and Cn

are related, but the properties of V(θn) cannot simply be derived from properties of Cn, not even
in the case where all Xi are equal to the same X. In fact, this will lead to limiting covariances
that differ from the ones found in [5], see Corollary 6.

3.2 S-functional

The concept of S-functional is needed to investigate local robustness properties of the correspond-
ing S-estimator, such as the influence function (see Section 8). Let s = (y,X) have a probability
distribution P on Rk × Rkq. The S-functional ξ(P ) = (β(P ),θ(P )) is defined as the solution to
the following minimization problem:

min
β,θ

det(V(θ))

subject to∫
ρ

(√
(y −Xβ)TV(θ)−1(y −Xβ)

)
dP (y,X) ≤ b0,

(3.5)

where the minimum is taken over all β ∈ Rq and θ ∈ Rl, such that V(θ) ∈ PDS(k), with ρ
satisfying (R1)-(R2).

As a special case, we obtain the S-estimator ξn = (βn,θn) by taking P = Pn, the empirical
measure corresponding to the observations (y1,X1), . . . , (yn,Xn). In view of this connection,
existence and consistency of solutions to (3.1) will follow from general results on the existence and
the continuity of solutions to (3.5).

The definition of the S-functionals for the multivariate location-scale model given in Lop-
uhaä [17] and for the multivariate regression model given by Van Aelst and Willems [30] can be
obtained as special cases of (3.5), by choosing X, β and V(θ) as in Examples 4 and 2, respectively.
Copt and Victoria-Feser [5] do not pay attention to S-functionals or the influence function in the
linear mixed effects model (2.4). However, S-functionals for linear mixed effects models can be
also be obtained as a special case of (3.5), by choosing X, β and V(θ) as in Example 1.

4 Existence

We will first establish existence of the S-functional ξ(P ) defined by (3.5), under particular con-
ditions on the probability measure P . As a consequence, this will also yield the existence of

5



the S-estimator, defined by (3.1). Recall that (y1,X1), . . . , (yn,Xn) are represented as points in
Rk×Rkq. Note however, that for linear models with intercept the first column of each Xi consists
of 1’s. This means that the points (yi,Xi) are concentrated in a lower dimensional subset of
Rk × Rkq. A similar situation occurs when all Xi are equal to the same design matrix, such as
in [5]. In view of this, define X ⊂ Rkq as the subset with the lowest dimension p = dim(X ) ≤ kq
satisfying

P (X ∈ X ) = 1. (4.1)

Hence, P is then concentrated on the subset Rk × X of Rk × Rkq, which is of dimension k + p,
which may be of smaller than k + kq.

The first condition we require, expresses the fact that P cannot have too much mass at infinity,
in relation to the ratio r = b0/a0.

(C1ε) There exists a compact set Kε ⊂ Rk ×X , such that P (Kε) ≥ r + ε.

The second condition requires that P cannot have too much mass at arbitrarily thin strips in
Rk × X . For α ∈ Rk+kq, such that ‖α‖ = 1, ` ∈ R and δ ≥ 0, we define a strip H(α, `, δ) as
follows:

H(α, `, δ) =
{
s ∈ Rk × Rkq : `− δ/2 ≤ αT s ≤ `+ δ/2

}
. (4.2)

Defined in this way, a strip is the area between two parallel hyperplanes which are symmetric
around the hyperplane H(α, `, 0) =

{
s ∈ Rk × Rkq : αT s = `

}
. Since the distance between two

parallel hyperplanes αT s = `1 and αT s = `2 is |`1 − `2|, the strip H(α, `, δ) defined as in (4.2)
has width δ. We require the following condition

(C2ε) The value

δε = inf
{
δ : P (H(α, `, δ)) ≥ ε,α ∈ Rk+kq, ‖α‖ = 1, ` ∈ R, δ ≥ 0

}
is strictly positive.

According to (4.1), in (C2ε) one only needs to consider strips in Rk ×X .
Both conditions are satisfied for any 0 < ε ≤ 1 − r by any probability measure P that is

absolutely continuous. Clearly, condition (C1ε) holds for any 0 ≤ ε ≤ 1 − r for the empirical
measure Pn corresponding to a collection of n points Sn = {s1, . . . , sn} ⊂ Rk×X . Condition (C2ε)
for ε = (k + p + 1)/n is also satisfied by the empirical measure Pn, when the collection Sn is in
general position, i.e., no subset J ⊂ Sn of k + p + 1 points is contained in the same hyperplane
in Rk ×X . Conditions (C1ε) and (C2ε) together, are similar to condition (Cε) in [17]. The reason
that (C1ε) slightly deviates from [17], is to handle the presence of X in minimization problem (3.5).

Remark 4.1. Note that condition (C2ε) is equivalent with

ωε = inf
P (J)≥ε

inf
‖α‖=1

inf
`∈R

sup
s∈J
|αT s− `| > 0, (4.3)

where the infima are taken over all subsets J ⊂ Rk × X with P (J) ≥ ε, all vectors α ∈ Rk+kq,
with ‖α‖ = 1, and levels ` ∈ R. Details can be found in [16].

To establish existence of the S-functional, we follow the reasoning in [17]. The idea is to argue
that one can restrict oneself to a compact set for finding solutions to (3.5). When the object
function in (3.5) is continuous, this immediately yields existence of a solution of (3.5). To this
end, we assume the following condition.

(V1) The mapping θ 7→ V(θ) is continuous.

The lemma below is fundamental for the existence of the S-functional. It requires that the identity
is in V = {V(θ) ∈ PDS(k) : θ ∈ Rl} and that V is closed under multiplication with a positive
scalar.
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(V2) There exists a θ ∈ Rl, such that V(θ) = Ik. For any V(θ) ∈ V and any α > 0, it holds that
αV(θ) = V(θ′), for some θ′ ∈ Rl.

Conditions (V1)-(V2) are not very restrictive. For example, all models in Examples 1 to 4 satisfy
these conditions.

For any k × k matrix A, let λk(A) ≤ · · · ≤ λ1(A) denote the eigenvalues of A. We then have
the following key lemma for the existence of S-functionals. The lemma is similar to Lemma 1
in [17] and its proof can be found in [16].

Lemma 1. Let (β,θ) ∈ Rq × Rl, 0 < m0 <∞, 0 < c <∞, and 0 < ε < 1, and suppose that the
mapping θ 7→ V(θ) satisfies (V2). Then the following properties hold.

(i) If P satisfies (C2ε) and P (C(β,θ, c))) ≥ ε, then λk(V(θ)) ≥ a1 > 0, where a1 only depends
on c and the width δε from condition (C2ε).

(ii) Suppose
∫
ρ(‖y‖/m0) dP (s) ≤ b0. Then for any solution (β,θ) of (3.5), which is such that

λk(V(θ)) ≥ a1 > 0, it holds that λ1(V(θ)) ≤ a2 <∞, where a2 only depends on a1 and m0.

(iii) Let P satisfy (C2ε) and suppose that P (C(β,θ, c)) ≥ a > 0. Suppose there exists a compact
set K ∈ Rk × X , such that P (K) ≥ 1− a+ ε. If λ1(V(θ)) ≤ a2 <∞, then ‖β‖ ≤M <∞,
where M only depends on c, a2, the set K, and a constant γε > 0 that can be deduced from
condition (C2ε).

Lemma 1 will ensure that there exists a compact set that contains all pairs (β,V(θ)) that
correspond to possible solutions (β,θ) of (3.5). To establish that possible solutions (β,θ) of (3.5)
are in a compact set, we need that the pre-image {θ ∈ Rl : V(θ) ∈ K} of a compact set K ⊂ Rk×k
is again compact. Recall that subsets of Rl are compact if and only if they are closed and bounded,
and note that the pre-image of a continuous mapping of a closed set is closed. Hence, in view of
condition (V1), it suffices to require the following condition.

(V3) The mapping θ 7→ V(θ) is such that the pre-image of a bounded set is bounded.

Condition (V3) is satisfied by all models in Examples 1 to 4, including the linear mixed effects
model of Example 1, as long as the matrix Z is of full rank. We then have the following theorem.

Theorem 1. Consider minimization problem (3.5) with ρ satisfying (R1)-(R2). Suppose that P
satisfies (C1ε) and (C2ε), for some 0 < ε ≤ 1 − r, where r = b0/a0, and suppose that V satisfies
(V1)-(V3). Then there exists at least one solution to (3.5).

The theorem has a direct corollary for the existence of the S-estimator, when dealing with a
collections of points. Let Sn = {s1, . . . , sn}, with si = (yi,Xi) be a collection of n points in Rk×X .
Define

κ(Sn) = maximal number of points of Sn lying on the same hyperplane in Rk ×X . (4.4)

For example, if the distribution P is absolutely continuous, then κ(Sn) ≤ k + p with probability
one. We then have the following corollary.

Corollary 1. Consider minimization problem (3.1) with ρ satisfying (R1)-(R2), for a collection
Sn = {s1, . . . , sn} ⊂ Rk × X , with si = (yi,Xi), for i = 1, . . . , n. Suppose that V satisfies (V1)-
(V3). If κ(Sn)+1 ≤ n(1−r), where r = b0/a0, then there exists at least one solution ξn = (βn,θn)
to the minimization problem (3.1).

Copt and Victoria-Feser [5] consider S-estimators for the linear mixed effects model (2.4).
Despite their Proposition 1 about the asymptotic behavior of solutions to their S-minimization
problem [5, equation (7)], the actual existence of such a solution is not established. However, this
now follows from our Corollary 1. In their case, V(θ) satisfies conditions (V1) and (V2). It can be
seen, that if all matrices Zj , for j = 1, . . . , r, are of full rank, then V(θ) also satisfies (V3). The
translated bi-weight ρ-function proposed in [5] satisfies (R1)-(R2). Finally, under their assumption
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that Xi = X is the same and yi | X ∼ Nk(Xβ,V(θ)), it follows that κ(Sn) ≤ k. It then follows
from Corollary 1 that with b0 ≤ a0(n − k − 1)/n, at least one solution to their S-minimization
problem exists.

For the multivariate regression model from Example 2, Van Aelst & Willems [30] do not
explicitly prove existence of the S-estimator. Since in their case, V(θ) = C ∈ PDS(k) satisfies
(V1)-(V3) and the conditions imposed in [30] on the ρ-function satisfy (R1)-(R2), the existence of
their S-estimator now also follows from Corollary 1, when b0 is chosen suitably.

Existence of S-estimators is obtained from existence of S-functionals at the empirical measure
Pn. The following corollary shows that existence can be established in general, for probability
measures that are close to P . It requires the following condition on P .

(C3) Let C be the class of all measurable convex subsets of Rk×Rkq. Every C ∈ C is a P -continuity
set, i.e., P (∂C) = 0, where ∂C denotes the boundary of C.

Corollary 2. Suppose that ρ satisfies (R1)-(R2) and V satisfies (V1)-(V3). Let Pt, t ≥ 0 be a
sequence of probability measures on Rk × Rkq that converges weakly to P , as t → ∞. Suppose
that P satisfies (C3), as well as (C1ε′) and (C2ε), for some 0 < ε < ε′ ≤ 1 − r = b0/a0. Then,
for t sufficiently large, the minimization problem (3.5) with probability measure Pt has at least one
solution ξ(Pt).

Condition (C3) is needed to apply (A.2). Clearly, this condition is satisfied if P is absolutely
continuous.

5 Continuity and consistency

Consider a sequence Pt, t ≥ 0, of probability measures on Rk × Rkq that converges weakly to P ,
as t → ∞. By continuity of the S-functional ξ(P ) we mean that ξ(Pt) → ξ(P ), as t → ∞. An
example of such a sequence is the sequence of empirical measures Pn, n = 1, 2, . . ., that converges
weakly to P , almost surely. Continuity of the S-functional for this sequence would then mean that
the S-estimator ξn is consistent, i.e., ξn = ξ(Pn)→ ξ(P ), almost surely.

We require an additional condition for the function ρ.

(R3) ρ is continuous and strictly increasing on [0, c0].

For s = (y,X) and ξ = (β,θ), define the Mahalanobis distances by

d2(s, ξ) = d2(s,β,θ) = (y −Xβ)TV(θ)−1(y −Xβ). (5.1)

We then have the following theorem for the S-functional ξ(P ) = (β(P ),θ(P )).

Theorem 2. Let Pt, t ≥ 0 be a sequence of probability measures on Rk×Rkq that converges weakly
to P , as t→∞, and let ξ(Pt) be a solution to minimization problem (3.5) with probability measure
Pt. Suppose that ρ satisfies (R1)-(R3) and V satisfies (V1)-(V3). Suppose that P satisfies (C3),
as well as (C1ε′) and (C2ε), for some 0 < ε < ε′ ≤ 1− r = b0/a0. If the solution ξ(P ) of (3.5) is
unique, then for any sequence of solutions ξ(Pt), t ≥ 0, it holds

lim
t→∞

ξ(Pt) = ξ(P ).

Theorem 2 is an extension of Theorem 3.1 in [17] on the continuity of S-functionals for multi-
variate location and scale. Continuity of S-functionals for multiple regression has been investigated
in [9].

Continuity of the S-functional will be used to derive the influence function of the S-estimator
in Section 8. Another nice consequence of the continuity of the S-functional is, that one can di-
rectly obtain consistency of the S-estimator. Consider the S-estimator ξn defined by minimization
problem (3.1). Recall that ξn = ξ(Pn), so that we can use Theorem 2 to establish consistency of
the S-estimator.
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Corollary 3. Let ξn be a solution to minimization problem (3.1). Suppose ρ satisfies (R1)-(R3)
and V satisfies (V1)-(V3). Suppose that P satisfies (C3) as well as (C1ε′) and (C2ε), for some
0 < ε < ε′ ≤ 1− r = b0/a0. If the solution ξ(P ) of (3.5) is unique, then

lim
n→∞

ξn = ξ(P ),

with probability one.

Theorem 2 and Corollary 3 require that ξ(P ) is the unique solution to minimization prob-
lem (3.5). An example of a distribution P for which ξ(P ) is unique, is when P is such that y | X
has an elliptically contoured density (3.2). This situation is very similar to that of multivari-
ate location-scale S-estimators, for which Davies [6, Theorem 1] shows that the corresponding
S-minimization problem (3.5) has a unique solution. The next theorem is a direct consequence of
that result. Its proof can be found in [16].

Theorem 3. Suppose that ρ : R → [0,∞) satisfies (R1)-(R2) and suppose that the probability
distribution P of (y,X) is such that y | X has an elliptically contoured density fµ,Σ from (3.2),
with µ = Xβ0 and Σ = V(θ0). Suppose that h in (3.2) is non-increasing and such that the
functions −ρ and h have at least one common point of decrease d0 > 0, i.e.,

ρ(s) < ρ(d0) < ρ(t) and h(s) > h(d0) > h(t)

for all s, t ≥ 0, such that s < d0 < t. If XTX is non-singular with probability one, then the
minimization problem

min
β,θ

det(V(θ))

subject to∫
ρ

(√
(y −Xβ)TV(θ)−1(y −Xβ)

)
fµ,Σ(y)dy ≤ b0,

(5.2)

where the minimum is taken over all β ∈ Rq and θ ∈ Rl, such that V(θ) ∈ PDS(k), has the
unique solution (β,θ) = (β0,θ0) with probability one.

Minimization problem (5.2) seems to be slightly different from the one in (3.5). However, note
that when P is such that X is equal to a single value with probability one, both minimization
problems are identical. This situation was considered, e.g., in [5].

An elliptically contoured density for yi | Xi in the context of S-estimators for specific cases of
the model (2.1) has been assumed in [6] for the multivariate location-scale model of Example 4,
in [30] for the multivariate regression model of Example 2, and in [5] for the linear mixed effects
model (2.4). More precisely, in [5] it is assumed that Xi = X and that yi | X has a multivariate
normal distribution. In that case, the function h in (3.2) satisfies all the conditions of Theorem 3.

6 Global robustness: the breakdown point

Consider a collection of points Sn = {si = (yi,Xi), i = 1, . . . , n} ⊂ Rk × X . To emphasize the
dependence on the collection Sn, denote by ξn(Sn) = (βn(Sn),θn(Sn)), the S-estimator, as defined
in (3.1). To investigate the global robustness of S-estimators, we compute that finite-sample
(replacement) breakdown point. For a given collection Sn the finite-sample breakdown point (see
Donoho and Huber [8]) of a regression S-estimator βn is defined as the smallest proportion of
points from Sn that one needs to replace in order to carry the estimator over all bounds. More
precisely,

ε∗n(βn,Sn) = min
1≤m≤n

{
m

n
: sup
S′
m

‖βn(Sn)− βn(S ′m)‖ =∞

}
, (6.1)
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where the minimum runs over all possible collections S ′m that can be obtained from Sn by replac-
ing m points of Sn by arbitrary points in Rk ×X .

The estimator θn determines the covariance estimator Vn = V(θn). For this reason it seems
natural to let the breakdown point of θn correspond to the breakdown of a covariance estimator.
We define the finite sample (replacement) breakdown point of the S-estimator θn at a collection Sn,
as

ε∗n(θn,Sn) = min
1≤m≤n

{
m

n
: sup
S′
m

dist(V(θn(Sn))),V(θn(S ′m)) =∞

}
, (6.2)

with dist(·, ·) defined as dist(A,B) = max
{
|λ1(A)− λ1(B)| ,

∣∣λk(A)−1 − λk(B)−1
∣∣}, where the

minimum runs over all possible collections S ′m that can be obtained from Sn by replacing m points
of Sn by arbitrary points in Rk × X . So the breakdown point of θn is the smallest proportion
of points from Sn that one needs to replace in order to make the largest eigenvalue of V(θ(S ′m))
arbitrarily large (explosion), or to make the smallest eigenvalue of V(θ(S ′m)) arbitrarily small
(implosion).

Good global robustness is illustrated by a high breakdown point. The breakdown point of the
S-estimators is given the theorem below. It extends the results for S-estimators of multivariate
location and scale, see [6] and [19], and S-estimators for multivariate regression, see [30]. For
S-estimators in the linear mixed effects model considered in [5], the breakdown point has not been
established. This will now follow as a special case from the next theorem. Its proof can be found
in [16].

Theorem 4. Consider the minimization problem (3.1) with ρ satisfying (R1)-(R2). Suppose
that V satisfies (V1)-(V3). Let Sn ⊂ Rk×X be a collection of n points si = (yi,Xi), i = 1, . . . , n.
Let r = b0/a0 and suppose that 0 < r ≤ (n− κ(Sn))/(2n), where κ(Sn) is defined by (4.4). Then
for any solution (βn,θn) of minimization problem (3.5),

b(n+ 1)/2c
n

≥ ε∗n(βn,Sn) ≥ dnre
n

,

ε∗n(θn,Sn) =
dnre
n

.

The largest possible value of the breakdown point occurs when r = (n−κ(Sn))/(2n), in which
case dnre/n = d(n− κ(Sn))/2e/n = b(n− κ(Sn) + 1)/2c/n. When the collection Sn is in general
position, then κ(Sn) = k + p. In that case the breakdown point of both estimators is at least
equal to b(n− k− p+ 1)/2c/n. When all Xi are equal to the same X, in [5, 4], one has p = 0 and
κ(Sn) = k. In that case, the breakdown point of θn is equal to b(n− k + 1)/2c/n. This coincides
with the maximal breakdown point for affine equivariant estimators for k× k covariance matrices
(see [6, Theorem 6]).

Remark 6.1. Van Aelst & Willems [30] also take into account the case r > (n − κ(Sn))/(2n).
For this case, by replacing dn− nre − κ(Sn) points, a specific solution to the S-minimization
problem is constructed that breaks down. However, since there may be multiple solutions to the
S-minimization problem, this does not necessarily mean that all solutions break down. In the proof
of our Theorem 4, for the case r ≤ (n − κ(Sn))/(2n), we show that all solutions to (3.1) do not
break down, when replacing at most dnre − 1 points, and that the covariance part of all solutions
do break down, when replacing dnre points. For the case r > (n− κ(Sn))/(2n), we can show that
all solutions to (3.1) do not break down, when replacing at most dn− nre − κ(Sn)− 1 points.

7 Score equations

Up to this point, properties of S-functionals and S-estimators have been derived from the mini-
mization problems (3.1) and (3.5). To obtain the influence function and to establish the limiting
distribution of S-estimators, we use the score equations that can be found by differentiation of the
Lagrangian corresponding to the constrained minimization problems. To this end, we require the
following additional condition on the function ρ,

10



(R4) ρ is continuously differentiable and u(s) = ρ′(s)/s is continuous,

and the following condition on the mapping θ 7→ V(θ),

(V4) V(θ) is continuously differentiable.

Obviously, condition (V4) implies the former condition (V1).

7.1 General covariance structures

Let ξP = (βP ,θP ) be a solution to minimization problem (3.5). If we denote the corresponding
Lagrange multiplier by λP , then the pair (ξP , λP ) is a zero of all partial derivatives ∂LP /∂β,
∂LP /∂θ, and ∂LP /∂λ, where LP is the Lagrangian given by

LP (ξ, λ) = log det(V(θ))− λ
{∫

ρ

(√
(y −Xβ)TV(θ)−1(y −Xβ)

)
dP (y,X)− b0

}
.

If EP ‖X‖ <∞, then under conditions (R4) and (V4), one may interchange the order of integration
and differentiation in ∂LP /∂β and ∂LP /∂θ, on a neighborhood of ξP . It follows that besides the
constraint in (3.5), the pair (ξP , λP ) satisfies ∫

u(d)XTV−1(y −Xβ) dP (s) = 0

tr

(
V−1

∂V

∂θj

)
+
λ

2

∫
u(d)(y −Xβ)TV−1

∂V

∂θj
V−1(y −Xβ) dP (s) = 0,

(7.1)

for j = 1, . . . , l, where u(s) = ρ′(s)/s and d = d(s, ξ) is defined by (5.1), and where we abbrevi-
ate V(θ) by V. To solve λP from the second set of equations, we multiply the j-th equation by θj
and then sum over j = 1, . . . , l. This leads to

tr

V−1
l∑

j=1

θj
∂V

∂θj

+
λ

2

∫
u(d)(y −Xβ)TV−1

 l∑
j=1

θj
∂V

∂θj

V−1(y −Xβ) dP (s) = 0,

which is solved by

λP =
−2tr

(
V−1

∑l
j=1 θj(∂V/∂θj)

)
∫
u(d)(y −Xβ)TV−1

(∑l
j=1 θj(∂V/∂θj)

)
V−1(y −Xβ) dP (s)

.

When we insert this back into the second equation in (7.1), we find

tr

(
V−1

∂V

∂θj

)∫
u(d)(y −Xβ)TV−1

(
l∑
t=1

θt
∂V

∂θt

)
V−1(y −Xβ) dP (s)

− tr

(
V−1

l∑
t=1

θt
∂V

∂θt

)∫
u(d)(y −Xβ)TV−1

∂V

∂θj
V−1(y −Xβ) dP (s) = 0,

or briefly ∫
u(d)(y −Xβ)TV−1HjV

−1(y −Xβ) dP (s) = 0, j = 1, . . . , l, (7.2)

where

Hj = tr

(
V−1

∂V

∂θj

)( l∑
t=1

θt
∂V

∂θt

)
− tr

(
V−1

l∑
t=1

θt
∂V

∂θt

)
∂V

∂θj
. (7.3)
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Because
∑l
j=1 θjHj = 0, the system of equations (7.2) is linearly dependent. Similar to [17] we

subtract the S-constraint from each equation. For each j = 1, . . . , l, we subtract the term

tr

(
V−1

∂V

∂θj

)
(ρ(d)− b0)

from the left hand side of equation (7.2). We then find that any solution ξP of (3.5) satisfies the
following equation ∫

Ψ(s, ξ) dP (s) = 0, (7.4)

where Ψ = (Ψβ,Ψθ), with Ψθ = (Ψθ,1, . . . ,Ψθ,l), where

Ψβ(s, ξ) = u(d)XTV−1(y −Xβ)

Ψθ,j(s, ξ) = u(d)(y −Xβ)TV−1HjV
−1(y −Xβ)− tr

(
V−1

∂V

∂θj

)
(ρ(d)− b0),

(7.5)

for j = 1, . . . , l, where Hj and d = d(s, ξ) are defined in (7.3) and (5.1), respectively, and where
we abbreviate V(θ) by V.

The regression score equation for Ψβ with the empirical measure Pn for P in (7.4) coincides
with the one for the regression S-estimator in the linear mixed effects model (2.4) considered in [5]
(see their equation (10)). The empirical regression score equation also coincides with the one for
the regression S-estimator in the multivariate regression model of Example 2 considered in [30]
(see equation (2.2) in [29]). Similarly, the empirical score equation for Ψβ coincides with the one
for the location S-estimator of Example 4 considered in [17].

For general covariance structures the empirical covariance score equation for Ψθ does not
compare directly to existing equations in the literature. However, as we will see in the next
subsection, similar comparisons are available for models with a linear covariance structure.

7.2 Linear covariance structures

In the previous section, we solved λ from (7.1) and subtracted the S-constraint, leading to score
equation (7.4) with Ψ given in (7.5). The fact that this was done in a specific way has the following
reason. In cases where V(θ) is linear, say

V(θ) =

l∑
j=1

θjLj , (7.6)

the function Ψθ simplifies a lot and can also be related to the covariance psi-function in [17].
Typical models of interest that have a covariance matrix of this type are the mixed linear effects
model from Example 1 and the multivariate regression model from Example 2. But also the
multivariate location-scale model from Example 4 and the time series model (2.8) from Example 3
have linear covariance structures.

When V is of the form (7.6), then ∂V/∂θj = Lj and
∑l
j=1 θj(∂V/∂θj) = V. In this case, (7.3)

simplifies to Hj = tr
(
V−1Lj

)
V − kLj , and Ψθ,j in (7.5) becomes

Ψθ,j(s, ξ) = tr
(
V−1Lj

)
v(d)− ku(d)(y −Xβ)TV−1LjV

−1(y −Xβ),

where u(s) is defined in (R4) and

v(s) = u(s)s2 − ρ(s) + b0. (7.7)

Using that tr(ATB) = vec(A)Tvec(B), this can be written as

Ψθ,j(s, ξ) = −vec
(
ku(d)(y −Xβ)(y −Xβ)T − v(d)V

)T
vec
(
V−1LjV

−1) .
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On the right hand side we recognize ku(d)(y − Xβ)(y − Xβ)T − v(d)V, being the covariance
psi-function that also appears in (2.8) in [17]. For our purposes we define

ΨV(s, ξ) = ku(d(s, ξ))(y −Xβ)(y −Xβ)T − v(d(s, ξ))V. (7.8)

The functions Ψθ,j , for j = 1, . . . , l, can be combined in one expression for the vector valued
function Ψθ as follows. First note that

vec
(
V−1LjV

−1) =
(
V−1 ⊗V−1

)
vec (Lj)

for j = 1, . . . , l. Define the k2 × l matrix

L =
[

vec (L1) · · · vec (Ll)
]
. (7.9)

Then, the column vector Ψθ = (Ψθ,1, . . . ,Ψθ,l) can be written as

Ψθ(s, ξ) = −LT
(
V−1 ⊗V−1

)
vec (ΨV(s, ξ)) ,

where ΨV is defined in (7.8) and L in (7.9). Note that the dependence on s = (y,X) in Ψθ is
only through the function ΨV. We conclude that in the case of a linear covariance structure, any
solution ξP of (3.5) satisfies (7.4), where Ψ = (Ψβ,Ψθ), with

Ψβ(s, ξ) = u(d)XTV−1(y −Xβ)

Ψθ(s, ξ) = −LT
(
V−1 ⊗V−1

)
vec (ΨV(s, ξ))

(7.10)

where d = d(s, ξ) is defined in (5.1), and where we abbreviate V(θ) by V.
For the multivariate regression model in Example 2, one has V(θ) = C, where θ = vech(C).

The matrix L = ∂vec(V)/∂θT is then equal to the so-called duplication matrix Dk, which is the
unique k2×k(k+1)/2 matrix, with the properties Dkvech(C) = vec(C) and (DkDk)−1DTk vec(C) =
vech(C) (e.g., see [20, Ch. 3, Sec. 8]). Because V has full rank, it follows that equation (7.4) holds
for Ψ = (Ψβ,ΨV). The resulting score equations for the empirical measure Pn corresponding to
observations (yi,Xi), for i = 1, . . . , n, are then equivalent with the ones found in [30].

For the linear mixed effects model (2.4), the covariance matrix V(θ) has a linear structure with
the vector θ = (σ2

0 , . . . , σ
2
r) of unknown covariance parameters. The matrix L is then a k2×(r+1)

matrix and will typically be of rank r+ 1 < k2. As a consequence, in this case one cannot further
simplify equation (7.4), by removing the factor LT

(
V−1 ⊗V−1

)
from the function Ψθ. The score

equation for Ψβ resulting from the empirical measure Pn corresponding to observations (yi,Xi),
for i = 1, . . . , n, is the same as the one obtained in [5]. The corresponding score equation for Ψθ

differs slightly from the one in [5], because the authors do not subtract a term with ρ(d) − b0 to
remove the linear dependency of the equations (7.2).

8 Local robustness: the influence function

For 0 < h < 1 and s = (y,X) ∈ Rk × Rkq fixed, define the perturbed probability measure

Ph,s = (1− h)P + hδs,

where δs denotes the Dirac measure at s ∈ Rk×Rkq. The influence function of the functional ξ(·)
at probability measure P , is defined as

IF(s; ξ, P ) = lim
h↓0

ξ((1− h)P + hδs)− ξ(P )

h
, (8.1)

if this limit exists. In contrast to the global robustness measured by the breakdown point, the
influence function measures the local robustness. It describes the effect of an infinitesimal contam-
ination at a single point s on the functional (see Hampel [11]). Good local robustness is therefore
illustrated by a bounded influence function.
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8.1 The general case

The theorem below gives the influence function for the S-functional ξ. It extends the result for
S-functionals of multivariate location and scale [17]. Under the assumption that the limit in (8.1)
exists and P has an elliptical contoured density (3.2), Van Aelst and Willems [30] relate the influ-
ence function for S-functionals of multivariate regression to that of S-functionals of multivariate
location and scale. For the linear mixed effects model considered in [5], the influence function has
not been established. The influence function for these functionals now follows as a special case
from the theorem below.

We will show that the limit in (8.1) exists and derive its expression at general P . Since the
value of θ determines the covariance matrix V(θ), we also include the influence function of the
covariance functional. Consider the S-functional at Ph,s0 . From the Portmanteau theorem [2,
Theorem 2.1] it can easily be seen that Ph,s0 → P , weakly, as h ↓ 0. Therefore, under the
conditions of Corollary 2 and Theorem 2, it follows that there exist solutions ξ(Ph,s0) and ξ(P )
to minimization problems (3.5) at Ph,s0 and P , respectively, and that ξ(Ph,s0)→ ξ(P ), as h ↓ 0.

Theorem 5. Let ξ(Ph,s0) and ξ(P ) be solutions to minimization problems (3.5) at Ph,s0 and P ,
respectively, and suppose that ξ(Ph,s0) → ξ(P ), as h ↓ 0. Suppose that ρ satisfies (R4) and V
satisfies (V4). Let Ψ be defined in (7.5) and suppose that

Λ(ξ) =

∫
Ψ(s, ξ) dP (s), (8.2)

is continuously differentiable with a non-singular derivative D(P ) at ξ(P ). Then for s0 ∈ Rk×Rkq,

IF(s0; ξ, P ) = −D(P )−1Ψ(s0, ξ(P )).

For the covariance functional C(P ) = V(θ(P )), it holds that

IF(s0; vec(C), P ) =

(
∂ vec(V(θ(P )))

∂θT

)
IF(s0;θ, P ).

To investigate the local robustness of S-estimators, we derive the following bound on the
influence function for ξ(P ).

Corollary 4. Suppose that ρ satisfies (R2) and (R4), and V satisfies (V4). Then there exist
0 < C1 < ∞ and 0 < C2 < ∞, only depending on P , such that for s = (y,X) it holds that
‖IF(s, ξ(P ))‖ ≤ C1 + C2‖X‖.

Its proof can be found in [16].

8.2 Elliptically contoured densities

When P is such that y | X has an elliptically contoured density (3.2) and V(θ) is linear, we can
obtain a more detailed expression for the influence function, This requires the following condition
on the function ρ,

(R5) ρ is twice continuously differentiable,

and the following condition on the mapping θ 7→ V(θ),

(V5) V(θ) is twice continuously differentiable.

Conditions (R5) and (V5) are needed to establish that Λ, as defined in (8.2), is continuously
differentiable. Clearly, condition (V5) implies former conditions (V4) and (V1).

Suppose that P is such that y | X has an elliptically contoured density fµ,Σ from (3.2), with
µ ∈ Rk and Σ ∈ PDS(k). When the S-functional is affine equivariant, it suffices to determine the
influence function for the case (µ,Σ) = (0, Ik). However, this does not hold in general for the
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S-functionals in our setting. The reason is that, for a k × k non-singular matrix A and θ ∈ Rl,
the matrix AV(θ)AT may not be of the form V(θ′), for some θ′ ∈ Rl. Examples are the (linear)
covariance structure that corresponds to the linear mixed effects model (2.4) considered in [5] or
the models discussed in Example 3.

Nevertheless, note that for the general case with µ ∈ Rk and Σ ∈ PDS(k), we can still use the
fact that, conditionally on X, the distribution of y is the same as that of Σ1/2z + µ, where z has
a spherical density f0,Ik . As a consequence, we can still obtain the following result, which enables
one to determine the influence functions of the functionals β(P ) and θ(P ) separately.

If P itself is also absolutely continuous, then it satisfies (C3), as well as (C1ε′) and (C2ε), for
any 0 < ε′ < ε ≤ 1−r. When ρ and V satisfy (R1)-(R3) and (V1)-(V3), it follows from Theorem 1
and Corollary 2 that ξ(P ) and ξ(Ph,s) exist, for h sufficiently small. If h in (3.2) is non-increasing
and not constant on [0, c20], then ξ(P ) is unique, according to Theorem 3, so that ξ(Ph,s)→ ξ(P ),
as h ↓ 0. Hence, in order to apply Theorem 5, it remains to show that Λ in (8.2) is continuously
differentiable with a non-singular derivative at ξ(P ). As a first step we obtain that the derivative
of Λ is a block matrix.

Lemma 2. Suppose that P is such that y | X has an elliptically contoured density fµ,Σ from (3.2)
and E‖X‖2 <∞. Suppose that ξ(P ) is a solution to the corresponding minimization problem (3.5),
such that (Xβ(P ),V(θ(P ))) = (µ,Σ). Suppose that ρ satisfies (R2), (R4)-(R5) and that V
satisfies (V5) and has a linear structure (7.6). Let Λ be defined in (8.2) with Ψ defined in (7.10).
Then

∂Λ(ξ(P ))

∂ξ
=


∂Λβ(ξ(P ))

∂β
0

0
∂Λθ(ξ(P ))

∂θ

 ,

where
∂Λβ(ξ(P ))

∂β
= −αE

[
XTΣ−1X

]
, (8.3)

with

α = E0,Ik

[(
1− 1

k

)
ρ′(‖z‖)
‖z‖

+
1

k
ρ′′(‖z‖)

]
, (8.4)

and
∂Λθ(ξ(P ))

∂θ
= γ1L

T
(
Σ−1 ⊗Σ−1

)
L− γ2LTvec(Σ−1)vec(Σ−1)TL.

where L = ∂vec(V(θ(P )))/∂θT is the k2 × l matrix given in (7.9) and

γ1 =
E0,Ik

[
ρ′′(‖z‖)‖z‖2 + (k + 1)ρ′(‖z‖)‖z‖

]
k + 2

γ2 =
E0,Ik

[
2ρ′′(‖z‖)‖z‖2 + kρ′(‖z‖)‖z‖

]
2k(k + 2)

,

(8.5)

The proof is tedious, but straightforward, and can be found in [16].

Remark 8.1. The proof of Lemma 2 uses the fact that

∂Λ(ξ)

∂ξ
=

∫
∂Ψ(s, ξ)

∂ξ
dP (s).

for all ξ in a neighborhood of ξ(P ). This holds for general P and any covariance structure V(θ)
that satisfies (V2)-(V3) and (V5), see Lemma B.3 in [16]. Furthermore, Lemma 2 is obtained for
a linear covariance structure. However, with some additional technicalities, this result can also be
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shown to hold for Ψ defined in (7.5) corresponding to general covariance structures. For general
covariance structures one still obtains (8.3), and that

∂Λθ,j(ξ(P ))

∂θs
=− α1tr

(
Σ−1

∂V(θ(P ))

∂θs
Σ−1Hj

)
+ α2tr

(
Σ−1

∂V(θ(P ))

∂θs

)
tr

(
Σ−1

∂V(θ(P ))

∂θj

)
,

for j, s = 1, . . . , l, and where α1 = γ1/k and α2 = γ1/k− γ2, with γ1, γ2 from (8.5), and where Hj

is defined in (7.3).

The next corollary gives expressions for the influence functions of the functionals β(P ) and θ(P )
separately, at a distribution P that is such that y | X has an elliptically contoured density. The
proof is tedious, but straightforward, and can be found in [16].

Corollary 5. Suppose that P is such that y | X has an elliptically contoured density fµ,Σ
from (3.2), such that (Xβ(P ),V(θ(P ))) = (µ,Σ). Let ξ(Ph,s0) and ξ(P ) be a solution to mini-
mization problem (3.5) at Ph,s0 and P , respectively, and suppose that ξ(Ph,s0) → ξ(P ), as h ↓ 0.
Suppose that E‖X‖2 < ∞ and suppose that ρ satisfies (R2)-(R5) and that V satisfies (V5), and
has a linear structure (7.6). Let α, γ1, and γ2 be defined in (8.4) and (8.5), and suppose that
E0,Ik [ρ′′(‖z‖)] > 0. If X has full rank with probability one, then

IF(s0,β, P ) =
u(d0)

α

(
E
[
XTΣ−1X

] )−1
XT

0 Σ−1(y0 −X0β(P ))

where d20 = (y0 − X0β(P ))TΣ−1(y0 − X0β(P )) and u(s) = ρ′(s)/s. If γ1 > 0 and the k2 × l
matrix L, as defined in (7.9), has full rank, then IF(s0,θ, P ) is given by

ku(d0)

γ1

(
LT (Σ−1 ⊗Σ−1)L)

)−1
LTvec

(
Σ−1(y0 −X0β(P ))(y0 −X0β(P ))TΣ−1

)
+

(
−u(d0)d20

γ1
+
ρ(d0)− b0
γ1 − kγ2

)
θ(P ).

Note that since Lθ(P ) = vec(V(θ(P ))) = vec(Σ), we can immediately obtain the influence
function for the covariance functional C(P ) = V(θ(P )). From Theorem 5 it immediately follows
that IF(s0, vec(C), P ) is given by

ku(d0)

γ1
L
(
LT (Σ−1 ⊗Σ−1)L)

)−1
LTvec

(
Σ−1(y0 −X0β)(y0 −X0β)TΣ−1

)
+

(
−u(d0)d20

γ1
+
ρ(d0)− b0
γ1 − kγ2

)
vec(Σ).

Since the functions u(s)s = ρ′(s), u(s)s2 = ρ′(s)s, and ρ(s) are bounded, it follows that IF(s,θ, P )
and IF(s, vec(C), P ) are bounded uniformly in both y and X, whereas IF(s,β, P ) is bounded
uniformly in y, but not in X. This illustrates the phenomenon in linear regression that leverage
points can have a high effect on the regression S-estimator.

For the S-estimators in the linear mixed effects model (2.4) with normal errors considered in [5],
the influence function is not available. The expression can now be obtained from Corollary 5. The
expression for IF(s,β, P ) in Corollary 5 coincides with the one found for the multivariate regression
S-functional in [30], where α > 0 is the same constant as the one in the expression of the influence
function for the location S-functional in [17]. Furthermore, for the multivariate regression model,
one has θ = vech(C) and the matrix L is equal to the duplication matrix Dk. From the properties
of Dk, the expressions for the influence functions simplify. One finds in this case that

IF(s,θ, P ) =
ku(d)

γ1
vech

(
(y −Xβ(P ))(y −Xβ(P ))T

)
+

(
−u(d)d2

γ1
+
ρ(d)− b0
γ1 − kγ2

)
θ(P )
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and the influence function of the covariance functional C(P ) = V(θ(P )) itself is given by

IF(s,C, P ) =
ku(d)

γ1
(y −Xβ(P ))(y −Xβ(P ))T +

(
−u(d)d2

γ1
+
ρ(d)− b0
γ1 − kγ2

)
Σ.

This coincides with the expressions found for the covariance S-functionals in [30] and in [17].

9 Asymptotic normality

To establish asymptotic normality of the S-estimators, we use the score equations obtained from
differentiation of the Lagrangian corresponding to the minimization problem (3.1). In the same way
as before, we obtain score equation (7.4), with P equal to the empirical measure Pn corresponding
to observations s1, . . . , sn, with si = (yi,Xi) ∈ Rk × Rkq. From (7.4), we see that any solution
ξn = ξ(Pn) to the S-minimization problem (3.1) must satisfy∫

Ψ(s, ξn) dPn(s) = 0, (9.1)

where Ψ = (Ψβ,Ψθ) is defined in (7.5).

9.1 General case

Writing ξP = ξ(P ), we decompose (9.1) as follows

0 =

∫
Ψ(s, ξn) dP (s) +

∫
Ψ(s, ξP ) d(Pn − P )(s)

+

∫
(Ψ(s, ξn)−Ψ(s, ξP )) d(Pn − P )(s).

(9.2)

The essential step in establishing asymptotic normality of ξn, is to show that the third term on
the right hand side of (9.2) is of the order oP (n−1/2). To this end we will apply results from
empirical process theory as developed in Pollard [23]. This leads to the following theorem.

Theorem 6. Suppose that ρ satisfies (R1)-(R2) and (R4), such that u(s) is of bounded variation,
and suppose that V satisfies (V4). Let ξn and ξ(P ) be solutions to minimization problems (3.1)
and (3.5), and suppose that ξn → ξ(P ) in probability. Suppose that Λ, as defined in (8.2) with Ψ
defined in (7.5), is continuously differentiable with a non-singular derivative D(P ) at ξ(P ) and
suppose that E‖X‖2 < ∞. Then

√
n(ξn − ξ(P )) is asymptotically normal with mean zero and

covariance matrix
D(P )−1E

[
Ψ(s, ξ(P ))Ψ(s, ξ(P ))T

]
D(P )−1.

Theorem 6 is similar to Theorem 4.1 in [17]. Note that Theorem 6 confirms the well know
heuristic that relates the limiting covariance of

√
n(ξn − ξ(P )) to the influence function of the

functional ξ(·) given in Theorem 5,

D(P )−1E
[
Ψ(s, ξ(P ))Ψ(s, ξ(P ))T

]
D(P )−1 = E

[
IF(s, ξ, P )IF(s, ξ, P )T

]
. (9.3)

Van Aelst and Willems [30] consider the limiting behavior of S-estimators in the multivariate
regression model of Example 2, but only under P for which y | X has an elliptical contoured
density. Copt and Victoria-Feser [5] consider asymptotic normality for S-estimators in the linear
mixed effects model (2.4) with a constant design matrix Xi = X and only consider P for which
y | X has an multivariate normal distribution.
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9.2 Elliptically contoured densities

Consider the special case that P is such that y | X has an elliptically contoured density fµ,Σ
from (3.2), with µ ∈ Rk and Σ ∈ PDS(k). As before, in determining the limiting normal distribu-
tion of the individual S-estimators, we cannot use affine equivariance and restrict ourselves to the
case (0, Ik). Instead, we use some of the results obtained in Section 8.2 to establish the limiting
normal distributions of the S-estimators βn = β(Pn), θn = θ(Pn), and Cn = V(θ(Pn)).

Corollary 6. Suppose that P is such that y | X has an elliptically contoured density fµ,Σ
from (3.2), such that (Xβ(P ),V(θ(P ))) = (µ,Σ). Let ξn and ξ(P ) be solutions to minimization
problems (3.1) and (3.5), and suppose that ξn → ξ(P ) in probability. Suppose that E‖X‖2 < ∞
and suppose that ρ satisfies (R2)-(R5), such that u(s) is of bounded variation. Suppose that V
satisfies (V5), and has a linear structure (7.6). Let α, γ1, and γ2 be defined in (8.4) and (8.5),
and suppose that E0,Ik [ρ′′(‖z‖)] > 0. If X has full rank with probability one, then

√
n(βn−β(P ))

is asymptotically normal with mean zero and covariance matrix

E0,Ik

[
ρ′(‖z‖)2

]
kα2

(
E
[
XTΣ−1X

])−1
.

If γ1 > 0 and the k2 × l matrix L, as defined in (7.9), has full rank, then
√
n(θn − θ(P )) is

asymptotically normal with mean zero and covariance matrix

2σ1

(
LT
(
Σ−1 ⊗Σ−1

)
L
)−1

+ σ2θ(P )θ(P )T ,

where

σ1 =
k(k + 2)E0,Ik

[
u(‖z‖)2‖z‖4

]
(E0,Ik [ρ′′(‖z‖)‖z‖2 + (k + 1)ρ′(‖z‖)‖z‖])2

σ2 = −2

k
σ1 +

4E0,Ik [(ρ(‖z‖)− b0)
2
]

(E0,Ik [ρ′(‖z‖)2])
2

Due to the linearity of V, we can immediately establish asymptotic normality of the covariance
estimator Cn = V(θn). From Corollary 6 it follows that

√
n (vec(Cn)− vec(Σ)) =

√
n (Lθn − Lθ(P )) = L

√
n (θn − θ(P )) .

It follows that the limiting covariance of
√
n (vec(V(θn))− vec(Σ)) is given by

2σ1L
(
LT
(
Σ−1 ⊗Σ−1

)
L
)−1

LT + σ2vec(Σ)vec(Σ)T .

Corollary 6 is a direct consequence of Theorem 6. Its proof, in particular the derivations
of the expressions for the limiting covariances, can be found in [16]. Note that the constants
E0,Ik

[
ρ′(‖z‖)2

]
/(kα2), σ1 and σ2, are the same as the ones found in [17] for the location and

covariance S-estimators, respectively. In fact, Corollary 6 is an extension of Corollary 5.1 in [17]
for S-estimators in the multivariate location-scale model of Example 4.

Asymptotic normality of S-estimators in the multivariate regression model of Example 2 follows
from Corollary 6. These estimators have been considered in [30], but asymptotic normality has
not been established. Under the assumption that the heuristic (9.3) holds, asymptotic relative
efficiencies are computed on the basis of this heuristic. Indeed, now that Corollary 6 has been
established, one may check that (9.3) holds.

Finally, note that the limiting covariances of
√
n(βn−β(P )) and

√
n(θn−θ(P )) in Corollary 6

differ from the ones found in [5] for the linear mixed effects model (2.4) with Xi = X, for i =
1, . . . , n. The results in [5] are obtained by re-parameterizing Xβ = µ and interpreting the model
as a multivariate location-scale model. Then building on the results in [17] for S-estimators of
multivariate location-scale, the limiting covariances in [5] are found by application of the delta
method. However, in view of Remark 3.1 this does not seem to be a correct approach.
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Remark 9.1. Although our expressions for the limiting covariances in Corollary 6 differ from the
ones found in Proposition 1 in [5], somewhat surprisingly, they yield the same matrices for the
example discussed in Section 5.1 in [5]. However, this is a consequence of the specific structure of
the design matrices X and Z in this example. One can easily find other design matrices for which
the limiting covariances in Corollary 6 yield different matrices as the ones found in [5]. Moreover,
the corresponding confidence regions based on the expressions in Corollary 6 can be substantially
smaller than the ones based on the expressions found in [5]. See the simulation in Section 10.

10 Simulation and data example

We compare the asymptotic results of the S-estimators with their finite sample behavior by means
of a simulation. Moreover we investigate the differences between the expressions found in Corol-
lary 6 and the ones in Copt and Victoria-Feser [5]. To this end we will study the behavior of the
estimators for samples generated from a model that is close to the one in [5]:

yi = Xβ + γiZ + εi, i = 1, . . . , n, (10.1)

a linear mixed effects model with yi in dimension k = 4 and all subjects with the same design
matrix X for the fixed effects β = (β1, β2)T . Following the setup in [5], the matrix X is built as
follows. The first column of X is taken to be a vector 1 consisting of ones of length four. The four
x-values in the second column are generated from a standard normal, and then X is rescaled to a
new matrix X = [1 x], such that XTX = 4I2. For our simulation we used

X =


1 −0.9504967
1 −0.5428346
1 1.6650521
1 −0.1717207

 .

The random effects γi are independent N(0, σ2
γ) distributed random variables, which are inde-

pendent from the measurement error εi ∼ N(0, σ2
εR). This leads to a structured covariance

Σ = σ2
γZZT + σ2

εR, with covariance parameter vector θ = (θ1, θ2)T , where θ1 = σ2
γ and θ2 = σ2

ε .
Following the setup in [5], we set β1 = β2 = 1 and θ1 = θ2 = 1.

In [5], the authors took Z = (1, 1, 1, 1)T and R = I4. With these choices the expression

VarCVF(βn) =
E0,Ik

[
ρ′(‖z‖)2

]
kα2

(XTX)−1XTΣX(XTX)−1 (10.2)

found in [5] for the limiting covariance matrix of
√
n(βn − β) (see (14) in [5]), is equal to our

expression

VarLGRG(βn) =
E0,Ik

[
ρ′(‖z‖)2

]
kα2

(XTΣ−1X)−1, (10.3)

found in Corollary 6, and similarly for the limiting covariance matrix of
√
n(θn−θ). However, this

is just the consequence of the extreme simple choices for X, Z and R. Already, if we keep X as
it is, and only take a slight variation of either Z or R, one finds severe differences between (10.2)
and (10.3), and similarly for the expression of the limiting covariance matrix of

√
n(θn − θ).

We considered the following two alternatives

1. take Z = (1, 2, 3, 4)T and leave X and R = I4 as they are;

2. take R = (1, 4, 9, 16)T and leave X and Z = (1, 1, 1, 1)T as they are.

We generated 10 000 samples of size n = 100 according to model (10.1) and computed the value
of S-estimators βn and θn by means of Tukey’s bi-weight

ρB(s; c) =

{
s2/2− s4/(2c2) + s6/(6c4), |s| ≤ c
c2/6 |s| > c.

(10.4)
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Figure 1: Empirical marginal and joined distributions together with limiting marginal and joined
distributions of

√
n(βn − β) (first row) and

√
n(θn − θ) (second row).

and b0 = E0,Ik [ρB(‖z‖; c0)], with the cut-off value c0 chosen such that b0/a0 = 0.5. According to
Theorem 4, this corresponds to (asymptotic) breakdown point 50%.

Figure 1 displays the limiting marginal and joined distributions of
√
n(βn−β) in the first row,

where we generated the samples with alternative 1. The histograms and scatterplot correspond
to the 10 000 different values of

√
n(βn − β). The dashed curves correspond to the densities

and 95% contourlines of the theoretical limiting marginal and joined normal distributions using
the covariance matrix in (10.2). The solid curves correspond to the marginal and joined normal
distributions using the covariance matrix in (10.3). The empirical contourlines based on the sample
mean and sample covariance of the 10 000 estimates are plotted in dotted lines, but they almost
indistinguishable from the solid contourlines. We find

VarCVF(βn) =

(
8.13 1.78
1.78 0.72

)
and VarLGRG(βn) =

(
1.97 0.38
0.38 0.40

)
.

Clearly, the histograms of the repeated estimates for β1 and β2 match the graphs of the (marginal)
normal densities with the variances given by VarLGRG(βn), and the scatterplot matches with the
95% contourline corresponding to VarLGRG(βn). Note that the differences with VarCVF(βn) are
quite severe. For example, this yields that the length of the confidence interval for β1 based on
VarCVF(βn) will be two times larger than the one based on VarLGRG(βn).

The second row in Figure 1 displays the limiting distributions of
√
n(θn−θ), where we generated

the samples with alternative 2. In [5], the limiting covariance matrix was given by (see (15)
in [5]) (LTL)−1LTVΣL(LTL)−1, where VΣ = σ1(Ik2 + Kk,k)(Σ ⊗ Σ) + σ2vec(Σ)vec(Σ)T , see
Corollary 5.1 in [17]. Because

(LTL)−1LT (Ik2 + Kk,k) = 2(LTL)−1LT ,

(LTL)−1LTvec(Σ) = θ(P ),
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Figure 2: Left picture: standardized residuals for the S-estimates (horizontal axis) and the ML
estimates (vertical axis). Right picture: observations for the subjects in the treatment group.

the expression given in [5] becomes

VarCVF(θn) = 2σ1(LTL)−1LT (Σ⊗Σ) L(LTL)−1 + σ2θ(P )θ(P )T .

This differs from our Corollary 6, which gives

VarLGRG(θn) = 2σ1

(
LT
(
Σ−1 ⊗Σ−1

)
L
)−1

+ σ2θ(P )θ(P )T .

For the choices of X, Z and R in [5], both expressions are equal. However, for the alternative
choice for R made in alternative 2, one finds

VarCVF(θn) =

(
20.63 −1.22
−1.22 1.77

)
and VarLGRG(θn) =

(
8.57 −0.82
−0.82 0.80

)
.

Again the differences are quite large. For example, as a consequence the length of the confidence
interval for θ1 based on VarCVF(θn) will be 1.5 times larger than the one based on VarLGRG(θn).

Finally, we illustrate the performance of S-estimators by an application to data from a trial
on the treatment of lead-exposed children. This dataset is discussed in [10] and consists of four
repeated measurements of blood lead levels obtained at baseline (or week 0), week 1, week 4,
and week 6 on 100 children who were randomly assigned to chelation treatment with succimer (a
chelation agent) or placebo. On the basis of a graphical display of the mean response over time, it
is suggested in [10] that a quadratic trend over time seems suitable. We fitted the following model

yij = β0 + β1δi + (β3 + β4δi)tj + (β5 + β6δi)t
2
j + γ1i + γ2itj + γ3it

2
j + εij ,

for i = 1, . . . , 100 and j = 1, . . . , 4, where (t1, . . . , t4) = (0, 1, 4, 6) refer to the different weeks, yij
is the blood lead level (mcg/dL) of subject i obtained at time tj , and δi = 0 if the i-th subject is in
the placebo group and δi = 1, otherwise. The random effects γi = (γ1i, γ2i, γ3i), i = 1, . . . , 100, are
assumed to be independent mean zero normal random vectors with a diagonal covariance matrix
consisting of variances σ2

γ1 , σ2
γ2 and σ2

γ3 , respectively. The measurement errors εi = (εi1, . . . , εi4),
i = 1, . . . , 100, are assumed to be independent mean zero random vectors with covariance matrix
σ2
ε I4, also being independent of the random effects. In this way we are fitting a balanced linear
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mixed effects model with unknown parameters β = (β1, . . . , β6) and θ = (σ2
γ1 , σ

2
γ2 , σ

2
γ3 , σ

2
ε ), and a

linear covariance structure.
We estimated (β,θ) by means of maximum likelihood and by means of the S-estimator corre-

sponding to Tukey’s bi-weight defined in (10.4). The tuning-constant was chosen to be c = 4.097,

which corresponds to asymptotic breakdown point 0.5. For each estimate (β̂, θ̂), we determined

the estimate V(θ̂) for the structured covariance and the standardized residuals for each subject

RESi =

√
(yi −Xiβ̂)TV(θ̂)−1(yi −Xiβ̂)

The residuals for both estimation procedures are visible in the left picture of Figure 2, with the
residuals determined from the S-estimate on the horizonal axis and the ones determined from the
ML estimate on the vertical axis. Both estimates identify subject 40 as an outlier, but only the
robust S-estimate also clearly identifies observation 98 as outlier. The extreme large observation in
week 6 seems to be the reason that observation 40 is identified as outlier by both methods. See the
right picture in Figure 2. Observation 98 also seems to deviate from the overall quadratic trend,
by having a suspicious low observation in week 6. The corresponding S-residual clearly sticks out
from the other S-residuals, whereas this is much less so for the corresponding ML residual.

A Proofs and technical lemmas

Proof of Theorem 1

Proof. Let (β,θ) ∈ Rq ×Rl satisfy the S-constraint in (3.5). Then from (R1)-(R2) it follows that

P (C(β,V(θ), c0)) ≥ 1− 1

a0

∫
ρ

(√
(y −Xβ)TV(θ)−1(y −Xβ)

)
dP (s) ≥ 1− r. (A.1)

Since 1− r ≥ ε, Lemma 1(i) then implies that λk(V(θ)) ≥ a1 > 0. Because

lim
m→∞

∫
ρ (‖y‖/m) dP (y,X) = 0,

we can find m0 > 0, such that
∫
ρ(‖y‖/m0) dP (y,X) ≤ b0. Lemma 1(ii) then yields that

λ1(V(θ)) ≤ a2 < ∞. Application of Lemma 1(iii), with a = 1 − r together with (C1ε), im-
plies that ‖β‖ ≤M <∞. It follows that β is in a compact subset of Rq and V(θ) is in a compact
set K ⊂ Rk×k.

According to (2.9), the mapping θ 7→ V(θ) is one-to-one, so that we can restrict θ to the
pre-image V−1(K). Then with conditions (V1) and (V3) it follows that also V−1(K) is compact
in Rl. We conclude that for solving minimization problem (3.5), we can restrict ourselves to a
compact set K ′ ⊂ Rq×Rl. As det(V(θ)) is a continuous function of (β,θ), due to condition (V1),
it must attain a minimum on K ′.

Proof of Corollary 1

Proof. Let Pn be the empirical measure corresponding to the collection Sn. Then Pn satisfies
(C1ε) for any 0 < ε ≤ 1− r and satisfies (C2ε), for ε = (κ(Sn)+1)/n. Clearly 0 < ε ≤ 1− r, where
r = b0/a0, so according to Theorem 1 there exists at least one solution to (3.5) with P = Pn. This
means that there exists at least one solution to (3.1).

Proof of Corollary 2

Proof. First note there exists 0 < η < ε′ − ε. According to Ranga Rao [24, Theorem 4.2] we have

sup
C∈C
|Pt(C)− P (C)| → 0, as t→∞. (A.2)
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Because strips H(α, `, δ) ∈ C, property (A.2) implies that every strip with Pt(H(α, `, δ)) ≥ ε+ η,
for t sufficiently large, must also satisfy P (H(α, `, δ)) ≥ ε. This means that

inf {δ : Pt(H(α, `, δ)) ≥ ε+ η} ≥ inf {δ : P (H(α, `, δ)) ≥ ε} > 0.

It follows that, for t sufficiently large, Pt satisfies condition (C2ε+η). Next, consider the compact
set K from (C1ε′). Without loss of generality we may assume that it belongs to C. Therefore, as
P (K) ≥ r+ ε′, for t sufficiently large Pt(K) ≥ r+ ε+ η. It follows that, for t sufficiently large, Pt
satisfies condition (C1ε+η). Since ε+η < 1−r, according to Theorem 1 at least one solution ξ(Pt)
exists, for t sufficiently large.

Proof of Theorem 2

Proof. First note that there exists 0 < η < ε′ − ε. Denote ξ(Pt) = ξt = (βt,θt). Similar to (A.1)
we find that Pt(C(βt,θt, c0)) ≥ 1 − r. Therefore, as C(βt,θt, c0) ∈ C and 1 − r > 1 − r − η, it
follows from (A.2) that

P (C(βt,θt, c0)) ≥ Pt(C(βt,θt, c0))− sup
C∈C
|Pt(C)− P (C)| ≥ 1− r − η, (A.3)

for t sufficiently large. Since 1− r− η > ε, this means that, according to Lemma 1(i), there exists
a1 > 0 only depending on c0 and P , such that for t sufficiently large,

λk(V(θt)) ≥ a1 > 0.

Denote ξ(P ) = ξ0 = (β0,θ0) and let d0(s) = d(s,β0,θ0). Then according to Lemma B.1 in [16],
for any σ > −1, ∫

ρ

(
d0(s)

1 + σ

)
dPt(s)→

∫
ρ

(
d0(s)

1 + σ

)
dP (s),

as t→∞. As the limit is strictly decreasing at σ = 0, and ξ0 satisfies the constraint in (3.5), we
find that for all σ > 0, ∫

ρ

(
d0(s)

1 + σ

)
dPt(s) ≤ b0,

for t sufficiently large. Hence, similar to the proof of Lemma 1(ii) we conclude that for any possible
solution ξt = (βt,θt), it must hold that

det(V(θt)) ≤ (1 + σ)2kdet(V(θ0)),

for t sufficiently large. As σ > 0 can be taken arbitrarily small, we conclude that

lim sup
t→∞

det(V(θt)) ≤ det(V(θ0)), (A.4)

and we find that λ1(V(θt)) ≤ det(V(θ0))/ak−11 < ∞, for t large sufficiently large. Finally, let K
be the compact set from (C1ε′), so that P (K) ≥ r + ε′ > r + ε + η. Then, according to (A.3), it
follows from Lemma 1(iii) with a = 1− r − η, that there exists 0 < M <∞ such that ‖βt‖ ≤M ,
for t sufficiently large. This means that there exists a compact set K ′, such that for t sufficiently
large the sequence {(βt,V(θt))} ⊂ K ′. Then, similar to the second part of the proof of Theorem 1,
the conditions on the mapping θ 7→ V(θ) yield that there exists a compact set K ′′ ⊂ Rq+l, such
that for t sufficiently large, the sequence {ξt} ⊂ K ′′.

Consider a convergent subsequence {ξtj} with ξtj → ξL. With Lemma B.1 in [16] and the fact
that ξtj satisfies the S-constraint in (3.5) at P = Ptj , we find∫

ρ(d(s, ξL)) dP (s) = lim
j→∞

∫
ρ(d(s, ξtj )) dPtj (s) ≤ b0.

Hence, ξL satisfies the S-constraint in (3.5), which has solution ξ0. This means that det(V(θL)) ≥
det(V(θ0)). But then from (A.4), it follows det(V(θL)) = det(V(θ0)). Uniqueness of ξ0 together
with identifiability (2.9) then implies that ξL = ξ0. Because {ξt} eventually stays in a compact
set, this means that we must have limt→∞ ξt = ξ0.
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Proof of Corollary 3

Proof. We apply Theorem 2 to the sequence Pn, n = 1, 2, . . ., of probability measures, where Pn
is the empirical measure corresponding to (y1,X1), . . . , (yn,Xn). According to the Portmanteau
Theorem (e.g., see Theorem 2.1 in [2]), Pn converges weakly to P , with probability one. The
corollary then follows from Theorem 2.

Proof of Theorem 5

Proof. Denote ξh,s0 = ξ(Ph,s0). This solution satisfies the score equation (7.4) for the regression
S-functional at Ph,s0 , that is ∫

Ψ(s, ξh,s0) dPh,s0(s) = 0.

We decompose as follows

0 =

∫
Ψ(s, ξh,s0) dPh,s0(s)

= (1− h)

∫
Ψ(s, ξh,s0) dP (s) + hΨ(s0, ξh,s0)

= (1− h)Λ(ξh,s0) + h
(

Ψ(s0, ξh,s0)−Ψ(s0, ξ(P ))
)

+ hΨ(s0, ξ(P )).

We first determine the order of ξh,s0 − ξ(P ), as h ↓ 0. Because ξ 7→ Ψ(s0, ξ) is continuous, it
follows that

Ψ(s0, ξh,s0) = Ψ(s0, ξ(P )) + o(1), as h ↓ 0.

Furthermore, because ξ 7→ Λ(ξ) is continuously differentiable at ξ(P ), we have that

Λ(ξh,s0) = Λ(ξ(P )) + D(P )(ξh,s0 − ξ(P )) + o(‖ξh,s0 − ξ(P )‖).

Since ξ(P ) is the S-functional at P , it is a zero of the corresponding score equation, i.e., Λ(ξ(P )) =
0. It follows that

0 = (1− h)D(P )(ξh,s0 − ξ(P )) + o(‖ξh,s0 − ξ(P )‖) + o(h) + hΨ(s0, ξ(P )).

Because D(P ) is non-singular and Ψ(s0, ξ(P )) is fixed, this implies ξh,s0 − ξ(P ) = O(h). After
inserting this in the previous equality, it follows that

0 = (1− h)D(P )(ξh,s0 − ξ(P )) + hΨ(s0, ξ(P )) + o(h)

= D(P )(ξh,s0 − ξ(P )) + hΨ(s0, ξ(P )) + o(h).

We conclude
ξh,s0 − ξ(P )

h
= −D(P )−1Ψ(s0, ξ(P )) + o(1), as h ↓ 0.

This means that the limit of the left hand side exists and

IF(s0; ξ, P ) = lim
h↓0

ξ((1− h)P + hδs0)− ξ(P )

h
= −D(P )−1Ψ(s0, ξ(P )).

Next, consider the covariance functional C(P ) = V(θ(P )). By definition

IF(s0; vec(C), P ) = lim
h↓0

vec(C(Ph,s0))− vec(C(P ))

h
.

Due to (V4), by applying the chain rule (e.g., see [20, Theorem 12, page 108]), we find

vec(C(Ph,s0))− vec(C(P )) =
∂vec(V(θ(P )))

∂θT

(
θ(Ph,s0)− θ(P )

)
+ o(‖θ(Ph,s0)− θ(P )‖)

=

(
∂vec(V(θ(P )))

∂θT

)(
θ(Ph,s0)− θ(P )

)
+ o(h).

Dividing by h and letting h ↓ 0, finishes the proof.
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Proof of Theorem 6

Proof. Write ξP = ξ(P ). Then from (9.2) and Lemma B.8 in [16], it follows that

0 = Λ(ξn) +

∫
Ψ(s, ξP ) d(Pn − P )(s) + oP (n−1/2). (A.5)

From Theorem 2, we know that ξn → ξP with probability one. For the first term on the right
hand side we have that

Λ(ξn) = D(P )(ξn − ξP ) + oP (‖ξn − ξP ‖) = D(P )(ξn − ξP ) + oP (‖ξn − ξP ‖),

using that Λ(ξP ) = 0, due to the fact that ξP is the solution of (3.5), see also (7.4). From
Lemma B.2 in [16] we have that ‖Ψβ‖ ≤ C1‖X‖ and ‖Ψθ‖ ≤ C2, for universal constants 0 <
C1, C2 < ∞. Hence, from the conditions of the theorem, it follows that E‖Ψ(s, ξ(P ))‖2 < ∞.
This means that for the second term on the right hand side of (A.5),∫

Ψ(s, ξP ) d(Pn − P )(s) =
1

n

n∑
i=1

(Ψ(si, ξP )− EΨ(s, ξP )) = OP (n−1/2),

according to the central limit theorem. It follows that

0 = D(P )(ξn − ξP ) + oP (‖ξn − ξP ‖) +OP (n−1/2),

so that ‖ξn − ξP ‖ = OP (n−1/2). If we insert this is in (A.5), we obtain

0 = D(P )(ξn − ξP ) +
1

n

n∑
i=1

(Ψ(si, ξP )− EΨ(s, ξP )) + oP (n−1/2),

from which it follows that

√
n(ξn − ξP ) = −D(P )−1

√
n

(
1

n

n∑
i=1

(Ψ(si, ξP )− EΨ(s, ξP ))

)
+ oP (1).

After application of the central limit theorem, we conclude that
√
n(ξn − ξP ) is asymptotically

normal with mean zero and covariance matrix

D(P )−1E
[
Ψ(s, ξP )Ψ(s, ξP )T

]
D(P )−1,

where we use that EΨ(s, ξP ) = Λ(ξP ) = 0. This proves the theorem.
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B Supplemental Material

For later use we first define two important matrix norms and mention some useful properties. For
m× n real-valued matrices A, we define the Euclidean norm or Frobenius norm as

‖A‖ =

√√√√ m∑
i=1

n∑
j=1

a2ij .

and the spectral norm by
‖A‖2 = sup

‖u‖=1

‖Au‖.

Recall that for real-valued A, the largest eigenvalue is defined by

λ1(A) = sup
‖u‖=1

uTAu. (B.1)

This means that ‖A‖22 = λ1(ATA). Other useful properties are

‖A‖2 ≤ ‖A‖ ≤
√

min(m,n)‖A‖2 (B.2)

and
‖A‖2 = tr(ATA) = tr(AAT ), (B.3)

and
‖uvT ‖ = ‖u‖‖v‖ (B.4)

for u ∈ Rm and v ∈ Rn. When A is symmetric then λ1(ATA) = λ1(A2) = λ1(A)2. In that case

|λ1(A)| = ‖A‖2 ≤ ‖A‖ ≤
√

min(m,n)‖A‖2 =
√

min(m,n) |λ1(A)| . (B.5)

Finally, note that both matrix norms are submultiplicative, that is

‖AB‖2 ≤ ‖A‖2‖B‖2, (B.6)

and
‖AB‖ ≤ ‖A‖‖B‖. (B.7)

B.1 Proofs of Section 4

Proof of Lemma 1

Proof. Note that cylinder C(β,θ, c) is contained in some strip H(α, `, 2c
√
λk(V(θ))). It then

follows from (C2ε) that λk(V(θ)) ≥ δ2ε /4c
2. This proves (i). Let θ0 be such that the pair

(β,V(θ0)) = (0,m2
0Ik) satisfies the S-constraint in (3.5), which is possible due to condition (V2).

It then follows that for any solution (β,V(θ)) of (3.5), one must have det(V(θ)) ≤ m2k
0 . The

lower bound on the smallest eigenvalue then implies λ1(V(θ)) ≤ m2k
0 /a

k−1
1 <∞, which proves (ii).

Note that
γε = inf

P (J)≥ε
inf
‖γ‖=1

sup
s∈J
‖Xγ‖ > 0, (B.8)

where the infima are taken over all subsets J ⊂ Rk×X with P (J) ≥ ε and all unit vectors γ ∈ Rq.
This can be seen as follows. Take αT = (0T ,γT , . . . ,γT )/k, where 0 is a k-vector of zeros, so
α ∈ Rk × Rkq and ‖α‖ = 1. Then, with ` = 0, we have αT s− ` = (γTx1 + · · ·+ γTxk)/k. Note

that ‖Xγ‖2 =
∑k
j=1(xTj γ)2. Therefore, if γε = 0, then γTxj = 0, for all j = 1, . . . , k, which

means that αT s− ` = 0. This would be in contradiction with (4.3), which is equivalent to (C2ε),
according to Remark 4.1. Now, note that

P (C(β,θ, c) ∩K) ≥ P (C(β,θ, c))− P (Kc) ≥ a− 1 + 1− a+ ε = ε.
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Hence, according to (B.8), there exists s0 = (y0,X0) ∈ C(β,θ, c) ∩K, such that ‖X0γ‖ ≥ γε > 0,
for all γ with ‖γ‖ = 1. Because s0 ∈ C(β,θ, c), it holds

‖y0 −X0β‖2 ≤ (y0 −X0β)TV(θ)−1(y0 −X0β)λ1(V(θ)) ≤ cλ1(V(θ)) ≤ ca2,

due to part (ii). Because s0 = (y0,X0) ∈ K, this means that

‖X0β‖ ≤ ‖y0 −X0β‖+ ‖y0‖ ≤
√
ca2 + sup

(y,X)∈K
‖y‖.

Because s0 ∈ C(β,θ, c), together with (B.8) we conclude that

‖β‖ = ‖X0β‖ ×
‖β‖
‖X0β‖

≤ 1

γε
‖X0β‖ ≤

1

γε

(
√
ca2 + sup

(y,X)∈K
‖y‖

)
<∞.

This proves part (iii).

Proof of Remark 4.1

Proof. Suppose that (C2ε) holds and suppose that ωε = 0. Then there exists a sequence (Jn,αn, `n),
with Jn ⊂ Rk × X , αn ∈ Rk+kq, ‖αn‖ = 1, and `n ∈ R, such that P (Jn) ≥ ε, for all n = 1, 2, . . .,
and

sup
s∈Jn
|αTns− `n| → 0.

This means that for n sufficiently large δn = 2 sups∈Jn |α
T
ns − `n| < δε. Then, there exists a

strip H(αn, `n, δn) containing Jn, such that δn < δε and P (H(αn, `n, δn)∩(Rk×X )) ≥ P (Jn) ≥ ε.
This would be in contradiction with the definition of δε in (C2ε). On the other hand, suppose
that (4.3) holds and suppose that δε = 0. That means that we can find a sequence (αn, `n, δn),
with αn ∈ Rk×Rkq, ‖αn‖ = 1, and `n ∈ R, such that δn ↓ 0 and P (H(αn, `n, δn)∩ (Rk×X )) ≥ ε,
for all n = 1, 2, . . .. This means that for n sufficiently large δn < 2ωε and then

sup
s∈H(αn,`n,δn)∩Rk×X

|αTns− `n| = δn/2 < ωε,

which would contradict definition (4.3).

Lemma B.1. Let Pt, t ≥ 0 be a sequence of probability measures on Rk × Rkq that converges
weakly to P , as t → ∞. Let ξt = (βt,θt), t ≥ 0, be a sequence in Rq × Rl, such that ξt → ξL,
as t → ∞. If g(s, ξ) = ρ(d(s, ξ)/α), for some α > 0 fixed, where ρ satisfies (R2)-(R3) and V
satisfies (V1), then

lim
t→∞

∫
g(s, ξt) dPt(s) =

∫
g(s, ξL) dP (s).

Proof. Let gt(s) = g(s, ξt) and gL(s) = g(s, ξL). Then for every sequence {st}, such that st → s,
we have

lim
t→∞

gt(st) = gL(s).

Now, apply Theorem 5.5 from [2]. Let Γ : [0,∞)→ [0,∞) be the function

Γ(u) = u1[0,a0](u) + a01(a0,∞)(u),

which is bounded and uniformly continuous. Then as a consequence of Pt → P weakly, we have

lim
t→∞

∫
g(s, ξt) dPt(s) = lim

t→∞

∫
Γ(gt(s)) dPt(s) =

∫
Γ(gL(s)) dP (s) =

∫
g(s, ξL) dP (s).
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B.2 Proofs of Section 5

Proof of Theorem 3

Proof. Davies [6] defines location-scale S-estimators by means of a function κ : [0,∞)→ [0, 1]. It
relates to our ρ-function as ρ(d) = a0(1 − κ(d2)). The S-minimization problem considered in [6]
can be formulated in our notation as follows

min
α,A

det(A)

subject to∫
ρ

(√
(y −α)TA−1(y −α)

)
fµ,Σ(y) dy ≤ b0,

(B.9)

where the minimum is taken over all α ∈ Rk and A ∈ PDS(k). The conditions (R1)-(R2) imply
the conditions on κ(s) = 1 − ρ(

√
s)/a0 imposed in [6], and κ and h have a common point of

decrease. It then follows from Theorem 1 in [6] that (B.9) has a unique solution

(α∗,A∗) = (µ,Σ) = (Xβ0,V(θ0)).

Since this solution is unique, candidate solutions to (B.9) must be of the form (α,A) = (Xβ,V(θ)),
for some β ∈ Rq and θ ∈ Rl. It follows that minimization problem (B.9) is equivalent to
minimization problem (5.2). As a consequence, minimization problem (5.2) has a unique solu-
tion (β∗,θ∗) for which Xβ∗ = Xβ0 and V(θ∗) = V(θ0). Since XTX is non-singular we can
multiply Xβ∗ = Xβ0 from the left by (XTX)−1XT . It then follows that β∗ = β0. Finally,
from (2.9) we find that θ∗ = θ0. This proves the theorem.

B.3 Proofs for Section 6

Proof of Theorem 4

Proof. Without loss of generality we may assume that c0 = 1 and sup ρ = 1, so that r = b0. The
first step is to show that for both estimators ε∗n ≥ dnre/n. To this end, consider a collection S ′m
obtained from the original collection Sn by replacing at most m = dnre − 1 number of points
in Rk × X . We must show that at least one solution (βn(S ′m),θn(S ′m)) to the S-minimization
problem (3.1) exists for the corrupted collection S ′m, and that all possible solutions do not break
down.

Denote a possible solution to the S-minimization problem (3.1) corresponding to the corrupted
collection S ′m, by

ξ′m = (β′m,θ
′
m) = (βn(S ′m),θn(S ′m)),

and consider the corresponding cylinder C(β′m,θ′m, 1) defined by (3.3). We apply Lemma 1 to
the empirical measure P′m corresponding to the corrupted collection S ′m of n points. Because
ξ′m = (β′m,θ

′
m) must satisfy the S-constraint in (3.1), one can argue as in (A.1),

P′m(C(β′m,θ′m, 1)) =
1

n

∑
si∈S′

m

1 {si ∈ C(β′m,θ′m, 1)}

≥ 1− 1

n

∑
si∈S′

m

ρ (d(si, ξ
′
m)) ≥ 1− b0,

where d(si, ξ
′
m) is defined in (5.1). It follows that the cylinder C(β′m,θ′m, 1) must contain at least

dn − nb0e = dn − nre number of points from the corrupted collection S ′m. Furthermore, since
r ≤ (n− κ(Sn))/(2n), for any such subset of S ′m it holds that it contains

dn− nre −m = n− bnrc − dnre+ 1 ≥ κ(Sn) + 1 (B.10)
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points of the original collection Sn. It follows that the measure P′m satisfies condition (C2ε),
for ε = (κ(Sn) + 1)/n and with the value δε > 0 only depending on the original collection Sn.
Moreover, we also have that P′m(C(β′m,θ′m, 1)) ≥ ε, for ε = (κ(Sn) + 1)/n > 0. According to
Lemma 1(i), it then follows that λk(V(θ′m)) ≥ a1 > 0, where a1 only depends on the original
collection Sn.

Because nb0 −m = nr − dnre+ 1 > 0 and

lim
R→∞

∑
(yi,Xi)∈Sn

ρ

(
‖yi‖
R

)
= 0,

we can find an R0 > 0, only depending on the original collection Sn, such that∑
(yi,Xi)∈Sn

ρ

(
‖yi‖
R0

)
≤ nb0 −m.

The collection S ′m contains n−m points of the original collection Sn. Consider the smallest M > 0,
such that ∑

(yi,Xi)∈S′
m∩Sn

ρ

(
‖yi‖
M

)
≤ nb0 −m.

Because S ′m ∩ Sn has less points than Sn, it holds that M ≤ R0. It follows that∫
ρ

(
‖y‖
R0

)
dP′m(s) =

1

n

∑
(yi,Xi)∈S′

m

ρ

(
‖yi‖
R0

)

≤ 1

n

∑
(yi,Xi)∈S′

m

ρ

(
‖yi‖
M

)

≤ 1

n

 ∑
(yi,Xi)∈S′

m∩Sn

ρ

(
‖yi‖
M

)
+m

 ≤ b0.
According to Lemma 1(ii), it then follows that λ1(V(θ′m)) ≤ a2 < ∞. where a2 only depends
on a1 and the collection Sn.

To show that the estimate β′m stays bounded, recall that the cylinder C(β′m,θ′m, 1) contains a
subset J0 of κ(Sn) + 1 points from the original collection Sn, according to (B.10). By definition,
κ(Sn) + 1 original points cannot be on the same hyperplane, so that

γn = inf
J⊂Sn

inf
‖γ‖=1

max
s∈J
‖Xγ‖ > 0.

where the first infimum runs over all subsets J ⊂ Sn of κ(Sn) + 1 points. By definition of γn,
there exists an original point s0 ∈ J0 ⊂ Sn ∩ C(β′m,θ′m, 1), such that

‖β′m‖ = ‖X0β
′
m‖ ×

‖β′m‖
‖X0β′m‖

≤ 1

γn
‖X0β

′
m‖.

Because s0 ∈ C(β′m,θ′m, 1), similar to the proof of Lemma 1(iii), it follows that ‖y0−X0β
′
m‖2 ≤ a2,

and because s0 ∈ Sn, we have that

‖X0β
′
m‖ ≤

√
a2 + max

(yi,Xi)∈Sn
‖yi‖ <∞.

We conclude that there exists a compact set Kn, only depending on the original collection Sn,
that contains the pair (β′m,V(θ′m)). Similar to the reasoning in the proof of Theorem 1, it follows
that at least one solution (βn(S ′m),θn(S ′m)) to the S-minimization problem (3.1) exists for the
collection S ′m, and that all possible solutions βn(S ′m) and θn(S ′m) do not break down.
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We continue by showing ε∗n(θn) ≤ dnre/n. Replace m = dnre points of Sn to obtain a corrupted
collection S ′m of n points. Suppose that a solution ξ′m = (β′m,θ

′
m) = (βn(S ′m),θn(S ′m)) exists to

the S-minimization problem (3.1) corresponding to the corrupted collection S ′m. We must show
that the estimate θ′m breaks down. Note that the estimates β′m and θ′m satisfy the S-constraint
in (3.1) for the corrupted collection, ∑

si∈S′
m

ρ (d(si, ξ
′
m)) ≤ nr. (B.11)

If all m = dnre replaced points are outside the cylinder C(β′m,θ′m, 1), then∑
si∈S′

m

ρ (d(si, ξ
′
m)) =

∑
si∈S′

m∩Sn

ρ (d(si, ξ
′
m)) + dnre > nr,

when nr /∈ N. When nr ∈ N, then by assumption n−m = n− dnre ≥ κ(Sn) + 1. Hence, there is
at least one point si ∈ Sn, for which d(si, ξ

′
m) > 0. Because ρ is strictly increasing on [0, 1], this

implies ∑
si∈S′

m

ρ (d(si, ξ
′
m)) > nr.

We conclude that at least one replaced point s′i = (y′i,X
′
i) ∈ C(β′m,θ′m, 1). Similarly, if all original

points in S ′m are outside C(β′m,θ′m, 1), then∑
si∈S′

m

ρ (d(si, ξ
′
m)) ≥ n− dnre ≥ n− dn− nre+ κ(Sn) > nr,

which is in contradiction with (B.11). Therefore, the cylinder C(β′m,θ′m, 1) must contain a point
s0 = (y0,X0) from the original collection Sn as well as one replaced point s′i = (y′i,X

′
i).

Note that for each point s = (y,X) ∈ C(β′m,θ′m, 1) it holds that

|qT1 (y −Xβ′m)|2

λ1(V(θ′m))
+ · · ·+ |q

T
k (y −Xβ′m)|2

λk(V(θ′m))
≤ 1, (B.12)

where λj(V(θ′m)) > 0, for j = 1, . . . , k, are the eigenvalues of V(θ′m) and q1, . . . ,qk are the
corresponding orthonormal eigenvectors. Now, replace all m points by s′i = (y′i,X

′
i) = (z,0),

where 0 is a k × q matrix of zeros and z = t
∑k
j=1 qj , so that qTj z = t, for each j = 1, . . . , k. By

sending t→∞ and the fact that at least one replaced point (z,0) satisfies (B.12), it follows that
λj(V(θ′m))→∞, for each j = 1, . . . , k. This means θ′m breaks down.

The upper bound for ε∗n(βn,Sn) follows from the fact that βn is regression equivariant. Similar
to Theorem 2 in [19] it can be shown that the maximal breakdown point of regression equivariant
estimators is b(n+ 1)/2c/n. This proves the theorem.

B.4 Proofs for Section 8

Lemma B.2. Suppose that ρ satisfies (R2), (R4) and V satisfies (V4). Let Ψ = (Ψβ,Ψθ), as
defined in (7.5). Then there exist 0 < C1 <∞ and 0 < C2 <∞, only depending on P , such that
‖Ψβ(s, ξ(P ))‖ ≤ C1‖X‖ and ‖Ψθ(s, ξ(P ))‖ ≤ C2.

Proof. Consider the expression of Ψβ in (7.5). Consecutively, we apply (B.3), (B.1), (B.5), (B.6),
and (B.2). This gives∥∥XTV−1(y −Xβ)

∥∥2 = (y −Xβ)TV−1XXTV−1(y −Xβ)

≤ λ1(V−1/2XXTV−1/2)(y −Xβ)TV−1(y −Xβ)

= d2
∥∥∥V−1/2XXTV−1/2

∥∥∥
2

≤ d2
∥∥∥V−1/2∥∥∥2

2

∥∥XXT
∥∥
2

≤ d2‖X‖2λ1(V−1),

(B.13)
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where d = d(s, ξ) as defined by (5.1), and where we abbreviate V(θ) by V. This means that

‖Ψβ(s, ξ(P ))‖ ≤ |u(d)d| × ‖X‖ ×
√
λ1(V(θ(P ))−1).

From (R2) and (R4) it follows that u(s)s = ρ′(s) is bounded. This means that there exists a
universal constant 0 < C1 <∞, such that

‖Ψβ(s, ξ(P ))‖ ≤ C1‖X‖.

For Ψθ = (Ψθ,1, · · · ,Ψθ,l), we have

Ψθ,j(s, ξ) = u(d)(y −Xβ)TV−1HjV
−1(y −Xβ)− tr

(
V−1

∂V

∂θj

)
(ρ(d)− b0),

for j = 1, . . . , l, where we write V instead of V(θ). Recall that

Hj = tr

(
V−1

∂V

∂θj

)( l∑
t=1

θt
∂V

∂θt

)
− tr

(
V−1

l∑
t=1

θt
∂V

∂θt

)
∂V

∂θj
.

To bound Hj , we first obtain a bound on

(y −Xβ)TV−1
∂V

∂θj
V−1(y −Xβ). (B.14)

Note that ∂V/∂θj is symmetric, but not necessarily positive definite. When (B.14) is positive,
then application of (B.1) gives

0 < (y −Xβ)TV−1
∂V

∂θj
V−1(y −Xβ) ≤ d2λ1

(
V−1/2

∂V

∂θj
V−1/2

)
≤ d2

∥∥∥V−1/2∥∥∥2 ∥∥∥∥∂V

∂θj

∥∥∥∥
≤ d2

∥∥∥∥∂V

∂θj

∥∥∥∥λ1(V−1),

according to (B.7) and (B.5). When (B.14) is negative, then similarly

0 < (y −Xβ)TV−1
(
−∂V

∂θj

)
V−1(y −Xβ) ≤ d2λ1

(
V−1/2

(
−∂V

∂θj

)
V−1/2

)
≤ d2

∥∥∥∥∂V

∂θj

∥∥∥∥λ1(V−1).

It follows that ∣∣∣∣(y −Xβ)TV−1
∂V

∂θj
V−1(y −Xβ)

∣∣∣∣ ≤ d2 ∥∥∥∥∂V

∂θj

∥∥∥∥λ1(V−1). (B.15)

Furthermore, according to (V4), the mapping θ 7→ V(θ) is continuously differentiable. This means
that there exists a universal constant 0 < M1 <∞, such that

max
1≤j≤l

∥∥∥∥∂V(θ(P ))

∂θj

∥∥∥∥ ≤M1. (B.16)

Because ∂V/∂θj is symmetric, according to (B.5) and (B.6)∣∣∣∣λ1(V−1
∂V

∂θj

)∣∣∣∣ ≤ ∥∥V−1∥∥2 ∥∥∥∥∂V

∂θj

∥∥∥∥
2

≤
√
kλ1

(
V−1

) ∥∥∥∥∂V

∂θj

∥∥∥∥ .
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Together with (B.16), we find∣∣∣∣tr(V−1
∂V

∂θj

)∣∣∣∣ ≤ k ∣∣∣∣λ1(V−1
∂V

∂θj

)∣∣∣∣ ≤ k3/2M1λ1
(
V−1

)
, (B.17)

where we abbreviate V(θ(P )) by V. It then follows there exists a constant 0 < M2 < ∞, only
depending on P , such that at θ(P ),

max
1≤j≤l

∣∣(y −Xβ)TV−1HjV
−1(y −Xβ)

∣∣ ≤ d2M2. (B.18)

From (R2) and (R4) it follows that u(s)s2 = ρ′(s)s and ρ(s) − b0 are bounded. Together
with (B.17), it follows that there exists a universal constant 0 < C2 <∞, such that

‖Ψθ,j(s, ξ(P ))‖ ≤ C2,

for all j = 1, . . . , l. This finishes the proof.

Proof of Corollary 4

Proof. Take s = (y,X) fixed and consider IF(s; ξ, P ). Since D(P ) does not depend on s, from
Theorem 5 and Lemma B.2, it follows immediately that IF(s; ξ, P ) remains bounded in y, but not
necessarily in X.

Lemma B.3. Consider Λ as defined by (8.2) with Ψ defined in (7.5). Suppose that ρ satisfies
(R2) and (R5) and V satisfies (V5). Furthermore, suppose that E‖X‖2 < ∞. Let ξ(P ) be a
solution to (3.5) and let N be an open neighborhood of ξ(P ). Then, Λ is continuous differentiable
at ξ(P ) and for all ξ ∈ N ,

∂Λ(ξ)

∂ξ
=

∫
∂Ψ(s, ξ)

∂ξ
dP (s).

Proof. Write ∂Λ/∂ξ as the block matrix

∂Λ(ξ)

∂ξ
=


∂Λβ(ξ)

∂β

∂Λβ(ξ)

∂θ

∂Λθ(ξ)

∂β

∂Λθ(ξ)

∂θ

 , (B.19)

where

Λβ(ξ) =

∫
Ψβ(s, ξ) dP (s),

Λθ(ξ) =

∫
Ψθ(s, ξ) dP (s).

We prove the lemma for each block separately. Consider ∂Λβ/∂β. We have

∂Ψβ(s, ξ)

∂β
= −u

′(d)

d
XTV−1(y −Xβ)(y −Xβ)TV−1X− u(d)XTV−1X, (B.20)

where d = d(s, ξ) is defined by (5.1) and where we abbreviate V(θ) by V. First note that, accord-
ing to (R5), ξ 7→ u′(d(s, ξ))/d(s, ξ) is continuous at ξ(P ), for each s fixed such that d(s, ξ(P )) 6= 0.
Together with (V1), this means that for such s fixed, ξ 7→ ∂Ψβ(s, ξ)/∂β is continuous at ξ(P ).
For the first term on the right hand side of (B.20), we apply (B.4) and (B.13). This gives∥∥XTV−1(y −Xβ)(y −Xβ)TV−1X

∥∥ =
∥∥XTV−1(y −Xβ)

∥∥2 ≤ d2‖X‖2λ1(V−1).
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Similarly, for the second term on the right hand side of (B.20), after application of (B.7) and (B.5),
we get ∥∥XTV−1X

∥∥ ≤ ‖X‖2 ∥∥V−1∥∥ ≤ √q‖X‖2λ1(V−1).

Since λ1(V−1) is bounded uniformly on the neighborhood N of ξ(P ) and because u(s) and u′(s)s =
ρ′′(s) − u(s) are bounded, due to (R2), it follows that there exists a constant 0 < C1 < ∞, only
depending on P , such that ∥∥∥∥∂Ψβ(s, ξ)

∂βT

∥∥∥∥ ≤ C1‖X‖2.

Since E‖X‖2 <∞, it follows by dominated convergence that for ξ in the neighborhood N of ξ(P ),
it holds that

∂Λβ(ξ)

∂β
=

∫
∂Ψβ(s, ξ)

∂β
dP (s), (B.21)

and that ∂Λβ/∂β is continuous at ξ(P ).
Next consider ∂Ψβ/∂θ. For each j = 1, . . . , l fixed, we have

∂Ψβ(s, ξ)

∂θj
=
u′(d)

2d
(y −Xβ)TV−1

∂V

∂θj
V−1(y −Xβ) ·XTV−1(y −Xβ)

+ u(d) ·XTV−1
∂V

∂θj
V−1(y −Xβ).

(B.22)

First note that, similar to (B.20), ξ 7→ ∂Ψβ(s, ξ)/∂θj is continuous at ξ(P ), for each s fixed such
that d(s, ξ(P )) 6= 0. Consider the first term on the right hand side of (B.22). From (B.13), we
have

‖XTV−1(y −Xβ)‖ ≤ d‖X‖
√
λ1(V−1).

Moreover, similar to the reasoning in (B.15), we find∣∣∣∣(y −Xβ)TV−1
∂V

∂θj
V−1(y −Xβ)

∣∣∣∣ ≤ d2 ∥∥∥∥∂V

∂θj

∥∥∥∥λ1(V−1). (B.23)

For the second term on the right hand side of (B.22), similar to the reasoning in (B.13), we have∥∥∥∥XTV−1
∂V

∂θj
V−1(y −Xβ)

∥∥∥∥2 = (y −Xβ)V−1
∂V

∂θj
V−1XXTV−1

∂V

∂θj
V−1(y −Xβ)

≤ d2λ1
(

V−1/2
∂V

∂θj
V−1XXTV−1

∂V

∂θj
V−1/2

)
≤ d2

∥∥∥∥V−1/2 ∂V

∂θj
V−1XXTV−1

∂V

∂θj
V−1/2

∥∥∥∥
2

≤ d2‖X‖2
∥∥∥∥∂V

∂θj

∥∥∥∥2 λ1(V−1)3.

According to (V4), the mapping V(θ) is continuously differentiable. This means that ‖∂V/∂θj‖
is bounded on the neighborhood N of ξ(P ). Since λ1(V−1) is bounded uniformly on N and
because u(s)s = ρ′(s) and u′(s)s2 = ρ′′(s)s − ρ′(s) are bounded, it follows that there exists a
constant 0 < C2 <∞, only depending on P , such that for j = 1, . . . , l,∥∥∥∥∂Ψβ(s, ξ)

∂θj

∥∥∥∥ ≤ C2‖X‖2.

As before, it follows by dominated convergence that for ξ in the neighborhood N of ξ(P ), it holds
that

∂Λβ(ξ)

∂θ
=

∫
∂Ψβ(s, ξ)

∂θ
dP (s), (B.24)
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and that ∂Λβ/∂θ is continuous at ξ(P ).
Next consider ∂Ψθ,j/∂β, for j = 1, . . . , l. We have

∂Ψθ,j(s, ξ)

∂β
=
u′(d)

d
XTV−1(y −Xβ) · (y −Xβ)TV−1HjV

−1(y −Xβ)

− u(d) · 2XTV−1HjV
−1(y −Xβ)

+ tr

(
V−1

∂V

∂θj

)
u(d)XTV−1(y −Xβ),

(B.25)

where Hj is defined in (7.3). As before, ξ 7→ ∂Ψθj (s, ξ)/∂β is continuous at ξ(P ), for each s fixed
such that d(s, ξ(P )) 6= 0. Consider the first term on the right hand side of (B.25). From (B.18),∣∣(y −Xβ)TV−1HjV

−1(y −Xβ)
∣∣ ≤ d2M2. (B.26)

Because u′(s)s2 is bounded, together with (B.13), the norm of the first term on the right hand
side of (B.25) is bounded by a constant times ‖X‖λ1(V−1)1/2. Similar to (B.13), for the second
term on the right hand side of (B.25),

‖XTV−1HjV
−1(y −Xβ)‖2 ≤ d2

∥∥∥V−1/2HjV
−1
∥∥∥2
2

∥∥XXT
∥∥2
2

≤ kd2‖X‖2‖Hj‖2λ1(V−1)3,

and for the third term on the right hand side of (B.25), we can use (B.13) and (B.17). As before,
since u′(s)s = ρ′′(s)−u(s) and u(s)s2 = ρ′(s)s are bounded, it follows that there exists a constant
0 < C3 <∞, only depending on P , such that for j = 1, . . . , l,∥∥∥∥∂Ψθ,j(s, ξ)

∂β

∥∥∥∥ ≤ C3‖X‖.

Since E‖X‖ <∞, if follows by dominated convergence that for ξ in the neighborhood N of ξ(P ),
it holds that

∂Λθ(ξ)

∂β
=

∫
∂Ψθ(s, ξ)

∂β
dP (s), (B.27)

and that ∂Λθ/∂β is continuous at ξ(P ).
Finally, consider ∂Ψθ,j/∂θt, for j, t = 1, . . . , l. We find

∂Ψθ,j

∂θt
=− u′(d)

2d
(y −Xβ)TV−1

∂V

∂θt
V−1(y −Xβ)

· (y −Xβ)TV−1HjV
−1(y −Xβ)

− u(d)(y −Xβ)TV−1
∂V

∂θt
V−1 ·HjV

−1(y −Xβ)

+ u(d)(y −Xβ)TV−1
∂Hj

∂θt
·V−1(y −Xβ)

− u(d)(y −Xβ)TV−1Hj ·V−1
∂V

∂θt
V−1(y −Xβ)

+ tr

(
V−1

∂V

∂θt
V−1 · ∂V

∂θj

)
(ρ(d)− b0)

− tr

(
V−1 ·

(
∂2V

∂θjθt

))
(ρ(d)− b0)

+ tr

(
V−1

∂V

∂θj

)
· u(d)

2
(y −Xβ)TV−1

∂V

∂θt
V−1(y −Xβ).

(B.28)

As before, together with (V5), ξ 7→ ∂Ψθj (s, ξ)/∂θt is continuous at ξ(P ), for each s fixed such
that d(s, ξ(P )) 6= 0. From (B.15) and (B.18), it follows that the first term on the right hand side
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of (B.28) is bounded by
|u′(d)d3|

2

∥∥∥∥∂V

∂θt

∥∥∥∥λ1(V−1)M2.

Because u′(s)s3 = ρ′′(s)s2 − ρ′(s)s is bounded, together with (B.16), we conclude this is bounded
on the neighborhood N of ξ(P ). Similar to (B.13), the second term on the right hand side of (B.28)
is bounded by

|u(d)|d2
∥∥∥∥V−1/2 ∂V

∂θt
V−1HjV

−1/2
∥∥∥∥2
2

≤ |u(d)|d2
∥∥∥∥∂V

∂θt

∥∥∥∥2 ‖Hj‖2 λ1
(
V−1

)4
.

Since u(s)s2 = ρ′(s)s is bounded, together with (B.17), we again find that this is bounded on the
neighborhood N of ξ(P ). The same holds for the fourth term on the right hand side of (B.28).

We continue with the third term on the right hand side of (B.28). Similar to (B.13), this is
bounded by

|u(d)|d2
∥∥∥∥V−1/2 ∂Hj

∂θt
V−1/2

∥∥∥∥2
2

≤ |u(d)|d2λ1
(
V−1

)2 ∥∥∥∥∂Hj

∂θt

∥∥∥∥ .
We have that

∂Hj

∂θt
=

{
tr

(
−V−1

∂V

∂θt
V−1

∂V

∂θj

)
+ tr

(
V−1

∂2V

∂θjθt

)}( l∑
s=1

θs
∂V

∂θs

)

+ tr

(
V−1

∂V

∂θj

){(
∂V

∂θt

)
+

(
l∑

s=1

θs
∂2V

∂θsθt

)}

−

{
tr

(
−V−1

∂V

∂θt
V−1

l∑
s=1

θs
∂V

∂θs

)
+ tr

(
V−1

∂V

∂θt

)
+ tr

(
V−1

l∑
s=1

θs
∂2V

∂θsθt

)}
∂V

∂θj

− tr

(
V−1

l∑
s=1

θs
∂V

∂θs

)(
∂2V

∂θjθt

)
.

With (B.5), (B.6), and (B.16), we find∣∣∣∣tr(V−1
∂V

∂θt
V−1

∂V

∂θs

)∣∣∣∣ ≤ k ∥∥∥∥V−1 ∂V

∂θt
V−1

∂V

∂θs

∥∥∥∥
2

≤ k
∥∥V−1∥∥2

2

∥∥∥∥∂V

∂θt

∥∥∥∥∥∥∥∥∂V

∂θs

∥∥∥∥
≤ kλ1(V−1)M2

1 ,

(B.29)

which is uniformly bounded on the neighborhood N of ξ(P ), and similar to (B.17) we find∣∣∣∣tr(V−1
∂2V

∂θjθt

)∣∣∣∣ ≤ k3/2λ1(V−1)

∥∥∥∥ ∂2V∂θjθt

∥∥∥∥ . (B.30)

Because, according to (V5), the mapping θ 7→ V(θ) is twice continuously differentiable, it follows
that

∥∥∂2V/∂θjθt∥∥ is uniformly bounded on the neighborhood N of ξ(P ). Together with the fact
that with (B.16), ∥∥∥∥∥

l∑
s=1

θs
∂V

∂θs

∥∥∥∥∥ ≤
l∑

s=1

‖θs‖
∥∥∥∥∂V

∂θs

∥∥∥∥ ≤M1

l∑
s=1

‖θs‖,

it follows that the first term of ∂Hj/∂θt is bounded on the neighborhood N of ξ(P ). The traces
in the other terms can be handled in the same way, which yields that ‖∂Hj/∂θt‖ is bounded on
the neighborhood N of ξ(P ). Because u(s)s2 = ρ′(s)s is bounded, it follows that the third term
on the right hand side of (B.28) is bounded.
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Next, consider the fifth term on the right hand side of (B.28). From (B.29),∣∣∣∣tr(V−1
∂V

∂θt
V−1

∂V

∂θj

)∣∣∣∣ ≤ kλ1(V−1)M2
1 ,

which is uniformly bounded on the neighborhood N of ξ(P ). Because ρ(s) is bounded, it follows
that the fifth term on the right hand side of (B.28) is bounded. For the sixth term on the right
hand side of (B.28), from (B.30) we have∣∣∣∣tr(V−1

∂2V

∂θjθt

)∣∣∣∣ ≤ k3/2λ1(V−1)

∥∥∥∥ ∂2V∂θjθt

∥∥∥∥ .
Because V(θ) is twice continuously differentiable and ρ(s) is bounded, we conclude that the sixth
term on the right hand side of (B.28) is bounded. Finally, from (B.17) and (B.23) together with
the fact that u(s)s2 = ρ′(s)s is bounded, it also follows that the last term on the right hand
side of (B.28) is bounded. By putting everything together, it follows that there exists a constant
0 < C4 <∞, only depending on P , such that for j, t = 1, . . . , l,∥∥∥∥∂Ψθ,j(s, ξ)

∂θt

∥∥∥∥ ≤ C4.

It follows by dominated convergence that for ξ in the neighborhood N of ξ(P ), it holds

∂Λθ(ξ)

∂θ
=

∫
∂Ψθ(s, ξ)

∂θ
dP (s), (B.31)

and that ∂Λθ/∂θ is continuous at ξ(P ). This finishes the proof.

For convenience we state the following result from [17] about spherically contoured densities,
see Lemma 5.1 in [17]. This lemma uses the commutation matrix Kk,k, which is the k2× k2 block
matrix with the (i, j)-block being equal to the k× k matrix ∆ji consisting of zero’s except a 1 at
entry (j, i). A useful property (e.g., see [20, Section 3.7]) is that for any k × k matrix A, it holds
that

Kk,kvec(A) = vec(AT ). (B.32)

Lemma B.4. Suppose that z has a k-variate elliptical contoured density defined in (3.2), with
parameters µ = 0 and Σ = Ik. Then u = z/‖z‖ is independent of ‖z‖, has mean zero and
covariance matrix (1/k)Ik. Furthermore, E0,IkuuTu = 0 and

E0,Ikvec(uuT )vec(uuT )T = σ1(Ik2 + Kk,k) + σ2vec(Ik)vec(Ik)T ,

where σ1 = σ2 = (k(k + 2))−1.

Proof of Lemma 2

Proof. Write ∂Λ/∂ξ as in (B.19). We determine each block separately and apply Lemma B.3.
Let ξP = (βP ,θP ) = (β(P ),θ(P )). When we also write VP instead of V(θ(P )), then according
to Lemma B.3 we have

∂Λβ(ξP )

∂β
=

∫
∂Ψβ(s, ξP )

∂β
dP (s)

= −E
[
u′(d)

d
XTV−1P (y −XβP )(y −XβP )TV−1P X + u(d) ·XTV−1P X

]
= −E

[
E

[
u′(d)

d
XTΣ−1(y − µ)(y − µ)TΣ−1X + u(d) ·XTΣ−1X

∣∣∣∣∣X
]]

,
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where d2 = (y − XβP )TV−1P (y − XβP ). The inner expectation on the right hand side is the
conditional expectation of y | X, which has the same distribution as Σ1/2z + µ, where z has a
spherical density f0,Ik . This implies that the inner expectation on the right hand side is equal to

XTΣ−1/2E0,Ik

[
u′(‖z‖)
‖z‖

zzT + u(‖z‖)Ik
]

Σ−1/2X.

From Lemma B.4, we find

E0,Ik

[
u′(‖z‖)
‖z‖

zzT + u(‖z‖)Ik
]

= E0,Ik

[
u′(‖z‖)‖z‖ zzT

‖z‖2
+ u(‖z‖)Ik

]
= E0,Ik

[
u′(‖z‖)‖z‖

]
E0,Ik

[
uuT

]
+ E0,Ik [u(‖z‖)] Ik

= E0,Ik [u′(‖z‖)‖z‖] 1

k
Ik + E0,Ik [u(‖z‖)] Ik

= αIk,

where u = z/‖z‖ and

α = E0,Ik

[
1

k
u′(‖z‖)‖z‖+ u(‖z‖)

]
= E0,Ik

[(
1− 1

k

)
ρ′(‖z‖)
‖z‖

+
1

k
ρ′′(‖z‖)

]
.

It follows that
∂Λβ(ξP )

∂β
= −αE

[
XTΣ−1X

]
.

Next, for j = 1, . . . , l, consider

∂Λβ(ξP )

∂θj
=

∫
∂Ψβ(s, ξP )

∂θj
dP (s)

= E

[
E

[
u′(d)

2d
(y −XβP )TV−1P

∂VP

∂θj
V−1P (y −XβP ) ·XTV−1P (y −XβP )

∣∣∣∣∣X
]]

+ E

[
E

[
u(d) ·XTV−1P

∂VP

∂θj
V−1P (y −XβP )

∣∣∣∣∣X
]]

.

(B.33)

According to Lemma B.4, the inner conditional expectation of the first term on the right hand
side of (B.33) can be written as

XTE0,Ik

[
u′(‖z‖)

2‖z‖
zTΣ−1/2

∂VP

∂θj
Σ−1/2zΣ−1/2z

]
= XTE0,Ik

[
u′(‖z‖)‖z‖2

2

]
E0,Ik

[
uTΣ−1/2

∂VP

∂θj
Σ−1/2uΣ−1/2u

]
,

Since the second term on the right hand side is the expectation with respect to a spherical density
of an odd function of u, this expectation is equal to zero due to Lemma B.4. Similarly, the second
term on the right hand side of (B.33) has inner conditional expectation

XTE0,Ik

[
u(‖z‖)Σ−1 ∂VP

∂θj
Σ−1/2z

]
= XTE0,Ik [u(‖z‖)‖z‖] Σ−1 ∂VP

∂θj
Σ−1/2E0,Ik [u] = 0,

due to Lemma B.4. It follows that
∂Λβ(ξP )

∂θ
= 0.
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Next, using Lemma B.3 and (B.25), for all j = 1, . . . , l, consider

∂Λθ,j

∂βT
=

∫
∂Ψθ,j(s, ξP )

∂βT
dP (s)

= −E

[
E

[
u′(d)

d
XTV−1P (y −XβP ) · (y −XβP )TV−1P HjV

−1
P (y −XβP )

∣∣∣∣∣X
]]

− E

[
E

[
u(d) · 2XTV−1P HjV

−1
P (y −XβP )

∣∣∣∣∣X
]]

− tr

(
V−1

∂V

∂θj

)
E

[
E

[
ρ′(d)

d
XTV−1P (y −XβP )

∣∣∣∣∣X
]]

.

(B.34)

According to Lemma B.4, the first term on the right hand side of (B.34) has inner conditional
expectation

XTE0,Ik

[
u′(‖z‖)
‖z‖

Σ−1/2zzTΣ−1/2HjΣ
−1/2z

]
= XTE0,Ik

[
u′(‖z‖)‖z‖2

]
Σ−1/2E0,Ik

[
uuTΣ−1/2HjΣ

−1/2u
]
.

Again, the second term on the right hand side is the expectation with respect to a spherical density
of an odd function of u, and is therefore equal to zero. Similarly, the inner expectation of the
second term on the right hand side of (B.34) is equal to

2XTΣ−1HjΣ
−1/2E0,Ik [u(‖z‖)z] = 2XTΣ−1HjΣ

−1/2E0,Ik [u(‖z‖)‖z‖]E0,Ik [u] = 0,

and the inner expectation of the third term on the right hand side of (B.34) is equal to

XTΣ−1/2E0,Ik

[
ρ′(‖z‖)
‖z‖

z

]
= XTΣ−1/2E0,Ik [ρ′(‖z‖)]E0,Ik [u] = 0.

It follows that
∂Λθ(ξP )

∂β
= 0.

Finally, to determine ∂Λθ,j(ξP )/∂θs, note that when V is linear, we can write

Ψθ,j(s, ξ) = −vec
(
V−1LjV

−1)T vec (ΨV(s, ξ))

where ΨV is defined in (7.8) and has the property that∫
ΨV(s, ξP ) dP (s) = 0,

when y | X has an elliptically contoured density fµ,Σ with parameters µ = XβP and Σ = VP .
This means that for each j, s = 1, . . . , l, we have

∂Λθ,j(ξP )

∂θs
=

∫
∂Ψθ,j(s, ξP )

∂θs
dP (s) = −vec(Σ−1LjΣ

−1)Tvec

(∫
∂ΨV(s, ξP )

∂θs
dP (s)

)
where ΨV is defined in (7.8). As before, we find∫

∂ΨV(s, ξP )

∂θs
dP (s) =− E

[
E

[
ku′(d)

2d
zTΣ−1/2LsΣ

−1/2z ·Σ1/2zzTΣ1/2

∣∣∣∣∣X
]]

+ E

[
E

[
v′(d)

2d
zTΣ−1/2LsΣ

−1/2z ·Σ

∣∣∣∣∣X
]]

− E

[
E

[
v(d)Ls

∣∣∣∣∣X
]]

.

(B.35)
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The first term on the right hand side of (B.35) is equal to

E0,Ik

[
ku′(‖z‖)

2‖z‖
zTΣ−1/2LsΣ

−1/2zΣ1/2zzTΣ1/2

]
= E0,Ik

[
ku′(‖z‖)‖z‖3

2

]
E0,Ik

[
uTΣ−1/2LsΣ

−1/2uΣ1/2uuTΣ1/2
]
.

Furthermore, we can write

vec(Σ−1LjΣ
−1)Tvec

(
E0,Ik

[
uTΣ−1/2LsΣ

−1/2uΣ1/2uuTΣ1/2
])

= vec(Lj)
T
(
Σ−1 ⊗Σ−1

)
E0,Ik

[
vec
(
Σ1/2uuTΣ1/2

)
uTΣ−1/2LsΣ

−1/2u
]

= vec(Lj)
T
(
Σ−1 ⊗Σ−1

) (
Σ1/2 ⊗Σ1/2

)
E0,Ik

[
vec
(
uuT

)
vec
(
uuT

)T ]
vec
(
Σ−1/2LsΣ

−1/2
)

= vec
(
Σ−1/2LjΣ

−1/2
)T 1

k(k + 2)

(
Ik2 + Kk,k + vec(Ik)vec(Ik)T

)
vec
(
Σ−1/2LsΣ

−1/2
)
,

using Lemma B.4. Application of property (B.32) and the fact that vec(A)Tvec(B) = tr(AB),
yields

vec(Σ−1LjΣ
−1)Tvec

(
E0,Ik

[
uTΣ−1/2LsΣ

−1/2uΣ1/2uuTΣ1/2
])

=
1

k(k + 2)

(
2tr(Σ−1LjΣ

−1Ls) + tr(Σ−1Lj)tr(Σ
−1Ls)

)
.

It follows that the first term on the right hand side of (B.35) leads to a first term in ∂Λθ,j(ξP )/∂θs,
which is equal to

E0,Ik

[
u′(‖z‖)‖z‖3

]
2(k + 2)

(
2tr(Σ−1LjΣ

−1Ls) + tr(Σ−1Lj)tr(Σ
−1Ls)

)
. (B.36)

The second term on the right hand side of (B.35) is equal to

E0,Ik

[
v′(‖z‖)
2‖z‖

zTΣ−1/2LsΣ
−1/2zΣ

]
= E0,Ik

[
v′(‖z‖)‖z‖

2

]
E0,Ik

[
uTΣ−1/2LsΣ

−1/2u
]

Σ

= E0,Ik

[
v′(‖z‖)‖z‖

2

]
vec
(
Σ−1/2LsΣ

−1/2
)T

vec
(
E0,Ik

[
uuT

])
Σ

= E0,Ik

[
v′(‖z‖)‖z‖

2

]
vec
(
Σ−1/2LsΣ

−1/2
)T

vec

(
1

k
Ik

)
Σ

=
E0,Ik [v′(‖z‖)‖z‖]

2k
tr
(
Σ−1Ls

)
Σ,

using Lemma B.4. This leads to a second term in ∂Λθ,j(ξP )/∂θs, which is equal to

− E0,Ik [v′(‖z‖)‖z‖]
2k

tr
(
Σ−1Ls

)
vec
(
Σ−1LjΣ

−1)T vec(Σ)

= −E0,Ik [v′(‖z‖)‖z‖]
2k

tr
(
Σ−1Ls

)
tr
(
Σ−1Lj

)
.

(B.37)

The third term on the right hand side of (B.35) leads to a third term in ∂Λθ,j(ξP )/∂θs, which is
equal to

E0,Ik [v(‖z‖)] vec
(
Σ−1LjΣ

−1)T vec(Ls) = E0,Ik [v(‖z‖)] tr
(
Σ−1LjΣ

−1Ls
)
. (B.38)
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We conclude that ∂Λθ,j(ξP )/∂θs consists of three terms given in (B.36), (B.37) and (B.38). This
means that ∂Λθ,j(ξP )/∂θs has a term tr(Σ−1LjΣ

−1Ls) with coefficient

E0,Ik

[
u′(‖z‖)‖z‖3

]
(k + 2)

+ E0,Ik [v(‖z‖)] = γ1,

and a term tr(Σ−1Ls)tr(Σ
−1Lj) with coefficient

E0,Ik

[
u′(‖z‖)‖z‖3

]
2(k + 2)

− E0,Ik [v′(‖z‖)‖z‖]
2k

= −γ2,

where γ1 and γ2 are defined in (8.5), and where we use that u′(s)s3 = ρ′′(s)s2 − ρ′(s)s and
v(s) = ρ′(s)s− ρ(s) + b0. Finally, from the definition of L in (7.9) it follows that the l × l matrix
with entries

γ1tr(Σ−1LjΣ
−1Ls)− γ2tr(Σ−1Ls)tr(Σ

−1Lj)

= γ1vec(Lj)
T
(
Σ−1/2 ⊗Σ−1/2

)(
Σ−1/2 ⊗Σ−1/2

)
vec(Ls)

− γ2vec(Lj)
T
(
Σ−1/2 ⊗Σ−1/2

)
vec(Ik)vec(Ik)T

(
Σ−1/2 ⊗Σ−1/2

)
vec(Ls)

= γ1L
T
(
Σ−1 ⊗Σ−1

)
L− γ2vec(Lj)

Tvec(Σ−1)vec(Σ−1)Tvec(Ls),

is the matrix
γ1L

T
(
Σ−1 ⊗Σ−1

)
L− γ2LTvec(Σ−1)vec(Σ−1)TL.

This proves the lemma.

Lemma B.5. Suppose that ρ satisfies (R3)-(R4). Let γ1 and γ2 defined in (8.5) and suppose that
γ1 > 0. Then the inverse of ∂Λθ(ξ(P ))/∂θT exists and is given by

a

(
LT
(
Σ−1 ⊗Σ−1

)
L

)−1

+ b

(
LT
(
Σ−1 ⊗Σ−1

)
L

)−1
LTvec(Σ−1)vec(Σ−1)TL

(
LT
(
Σ−1 ⊗Σ−1

)
L

)−1
where a = 1/γ1 and b = γ2/(γ1(γ1 − kγ2)).

Proof. Together with Lemma 2, first write

∂Λθ(ξ(P ))

∂θT
= γ1L

T
(
Σ−1 ⊗Σ−1

)
L− γ2LTvec(Σ−1)vec(Σ−1)TL

= γ1E
TE− γ2ETvec(Ik)vec(Ik)TE,

where E =
(
Σ−1/2 ⊗Σ−1/2

)
L. Since V(θ(P )) = Σ, by definition of L, it follows that for θ(P ) =

(θ1, . . . , θl)
T ,

Lθ(P ) =

l∑
j=1

θjvec(Lj) = vec

 l∑
j=1

θjLj

 = vec(Σ).

This means that

Eθ(P ) =
(
Σ−1/2 ⊗Σ−1/2

)
Lθ(P ) =

(
Σ−1/2 ⊗Σ−1/2

)
vec(Σ) = vec(Ik). (B.39)

Since L has full rank, also E has full rank. This means that (ETE)−1 exists, and satisfies

(ETE)−1ETvec(Ik) = θ(P ). (B.40)
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Now, write

γ1E
TE− γ2ETvec(Ik)vec(Ik)TE

=

(
γ1Ik − γ2ETvec(Ik)vec(Ik)TE(ETE)−1

)
(ETE).

When we multiply the first matrix from the left with a matrix of the same type,(
aIk + bETvec(Ik)vec(Ik)TE(ETE)−1

)
(
γ1Ik − γ2ETvec(Ik)vec(Ik)TE(ETE)−1

)
,

(B.41)

then we find four terms. A term Ik with coefficient aγ1, two terms

ETvec(Ik)vec(Ik)TE(ETE)−1,

with coefficient −aγ2 + bγ1, and the term

ETvec(Ik)vec(Ik)TE(ETE)−1ETvec(Ik)vec(Ik)TE(ETE)−1

with coefficient −bγ2. Consider the scalar valued inner product in the middle

vec(Ik)TE(ETE)−1ETvec(Ik) = vec(Ik)TEθ(P ) = vec(Ik)Tvec(Ik) = k, (B.42)

by application of (B.40) and then (B.39). It follows that the term with coefficient −bγ2 reduces
to

kETvec(Ik)vec(Ik)TE(ETE)−1.

Hence the matrix product in (B.41) is equal to

aγ1Ik + (−aγ2 + bγ1 − kbγ2)ETvec(Ik)vec(Ik)TE(ETE)−1 (B.43)

When we multiply the same matrix from the right,(
γ1Ik − γ2ETvec(Ik)vec(Ik)TE(ETE)−1

)(
aIk + bETvec(Ik)vec(Ik)TE(ETE)−1

)
,

we find the same result (B.43). This matrix is equal to Ik if and only if aγ1 = 1 and −aγ2 + bγ1−
kbγ2 = 0, or equivalently

a = 1/γ1

b =
aγ2

γ1 − kγ2
=

γ2
γ1(γ1 − kγ2)

,
(B.44)

where we use that γ1 > 0 and γ1 − kγ2 = E0,Ik [ρ′(‖z‖)] /2 > 0, due to (R3)-(R4). We conclude
that the inverse of γ1Ik − γ2ETvec(Ik)vec(Ik)TE(ETE)−1 exists and is equal to

aIk + bETvec(Ik)vec(Ik)TE(ETE)−1

with a and b given in (B.44). Hence, the inverse of the matrix γ1E
TE− γ2ETvec(Ik)vec(Ik)TE is

equal to (
ETE

)−1(
γ1Ik − γ2ETvec(Ik)vec(Ik)TE(ETE)−1

)−1

=
(
ETE

)−1(
aIk + bETvec(Ik)vec(Ik)TE(ETE)−1

)
= a(ETE)−1 + b(ETE)−1ETvec(Ik)vec(Ik)TE(ETE)−1.

After inserting E =
(
Σ−1/2 ⊗Σ−1/2

)
L, this finishes the proof.
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Proof of Corollary 5

Proof. Since ρ is strictly increasing on [0, c0], the function u(s) = ρ′(s)/s > 0, for 0 < s ≤ c0 and
zero for s > c0. This means that

α = E0,Ik

[(
1− 1

k

)
ρ′(‖z‖)
‖z‖

+
1

k
ρ′′(‖z‖)

]
≥ 1

k
E0,Ik [ρ′′(‖z‖)] > 0.

Furthermore, since X has full rank, the inverse of E
[
XTΣ−1X

]
exists. It follows that the matrix

∂Λβ(ξ(P ))/∂β in (8.3) is non-singular. According to Lemma B.5, also ∂Λθ(ξ(P ))/∂θ is non-
singular. Together, with Lemma B.3 and Lemma 2, we conclude that ∂Λ/∂ξ is continuously
differentiable with a non-singular derivative at ξ(P ), so that Theorem 5 applies. Together with
Lemma 2, this implies that

IF(s0,β, P ) = −
(
∂Λβ(ξ(P ))

∂β

)−1
Ψβ(s0, ξ(P ))

=
u(d0)

α

(
E
[
XTΣ−1X

])−1
XT

0 Σ−1(y0 −X0β)

where d20 = (y0−X0β)TΣ−1(y0−X0β). From Theorem 5, together with Lemma 2, it also follows
that

IF(s0,θ, P ) = −
(
∂Λθ(ξ(P ))

∂θ

)−1
Ψθ(s0, ξ(P ))

=

(
∂Λθ(ξ(P ))

∂θ

)−1
LT (Σ−1 ⊗Σ−1)×

× vec
(
ku(d0)(y0 −X0β)(y0 −X0β)T − v(d0)Σ

)
= ku(d0)

(
∂Λθ(ξ(P ))

∂θ

)−1
LT (Σ−1 ⊗Σ−1)vec

(
(y0 −X0β)(y0 −X0β)T

)
− v(d0)

(
∂Λθ(ξ(P ))

∂θ

)−1
LT (Σ−1 ⊗Σ−1)vec(Σ).

(B.45)

Consider the first term on the right hand side of (B.45). We have that

(Σ−1/2 ⊗Σ−1/2)vec
(
(y0 −X0β)(y0 −X0β)T

)
= vec

(
Σ−1/2(y0 −X0β)(y0 −X0β)TΣ−1/2

)
and from Lemma B.5,(

∂Λθ(ξ(P ))

∂θ

)−1
LT (Σ−1/2 ⊗Σ−1/2)

= a(ETE)−1ET + b(ETE)−1ETvec(Ik)vec(Ik)TE(ETE)−1ET ,

(B.46)

where E = (Σ−1/2 ⊗Σ−1/2)L. This implies(
∂Λθ(ξ(P ))

∂θ

)−1
LT (Σ−1 ⊗Σ−1)vec

(
(y0 −X0β)(y0 −X0β)T

)
= a(ETE)−1ETvec

(
Σ−1/2(y0 −X0β)(y0 −X0β)TΣ−1/2

)
+ b(ETE)−1ETvec(Ik)vec(Ik)TE(ETE)−1ET×

× vec
(
Σ−1/2(y0 −X0β)(y0 −X0β)TΣ−1/2

)
.
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The first term on the right hand side is equal to

a
(
LT (Σ−1 ⊗Σ−1)L)

)−1
LT (Σ−1/2 ⊗Σ−1/2)×

× vec
(
Σ−1/2(y0 −X0β)(y0 −X0β)TΣ−1/2

)
and, with (B.39) and (B.40), the second term on the right hand side is equal to

bθ(P )θ(P )TETvec
(
Σ−1/2(y0 −X0β)(y0 −X0β)TΣ−1/2

)
= bθ(P )vec(Ik)Tvec

(
Σ−1/2(y0 −X0β)(y0 −X0β)TΣ−1/2

)
= bθ(P )tr

(
Σ−1/2(y0 −X0β)(y0 −X0β)TΣ−1/2

)
= bd20θ(P ).

It follows that the first term on the right hand side of (B.45) is equal to

aku(d0)
(
LT (Σ−1 ⊗Σ−1)L)

)−1
LT (Σ−1/2 ⊗Σ−1/2)×

× vec
(
Σ−1/2(y0 −X0β)(y0 −X0β)TΣ−1/2

)
+ bku(d0)d20θ(P ).

Next consider the second term on the right hand side of (B.45). We have that

(Σ−1/2 ⊗Σ−1/2)vec(Σ) = vec(Ik),

and with (B.46), together with (B.39) and (B.40),(
∂Λθ(ξ(P ))

∂θ

)−1
LT (Σ−1 ⊗Σ−1)vec(Σ)

= a(ETE)−1ETvec (Ik) + b(ETE)−1ETvec(Ik)vec(Ik)TE(ETE)−1ETvec (Ik)

= aθ(P ) + bθ(P )vec(Ik)TE(ETE)−1ETvec (Ik)

= aθ(P ) + bθ(P )vec(Ik)TEθ(P )

= aθ(P ) + bθ(P )vec(Ik)Tvec(Ik)

= (a+ bk)θ(P ).

It follows that the second term on the right hand side of (B.45) is equal to

−v(d0)(a+ bk)θ(P ).

Putting things together, we find that IF(s0,θ, P ) is equal to

aku(d0)
(
LT (Σ−1 ⊗Σ−1)L)

)−1
LT (Σ−1/2 ⊗Σ−1/2)×

× vec
(
Σ−1/2(y0 −X0β)(y0 −X0β)TΣ−1/2

)
+ (bku(d0)d20 − av(d0)− bkv(d0))θ(P ).

Since v(d0) = u(d0)d20 − ρ(d0) + b0, we have that

bku(d0)d20 − av(d0)− bkv(d0) = −
(
v(d0)

γ1
− kγ2
γ1(γ1 − kγ2)

(ρ(d0)− b0)

)
= −u(d0)d20

γ1
+

(
1

γ1
+

kγ2
γ1(γ1 − kγ2)

)
(ρ(d0)− b0)

= −u(d0)d20
γ1

+
ρ(d0)− b0
γ1 − kγ2
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We conclude that IF(s0,θ, P ) is given by

ku(d0)

γ1

(
LT (Σ−1 ⊗Σ−1)L)

)−1
LTvec

(
Σ−1(y0 −X0β)(y0 −X0β)TΣ−1

)
+

(
−u(d0)d20

γ1
+
ρ(d0)− b0
γ1 − kγ2

)
θ(P ).

This proves the corollary.

B.5 Proofs of Section 9

As preparation we first establish the following lemma, which is similar to Lemma 22 in [21].

Lemma B.6. Let ρ(·) be a real-valued function of bounded variation on R+. The class of all
functions on Rp of the form

s = (y,X) 7→ ρ(‖A(y −Xβ)‖)

with A ranging over all k × k matrices and β ranging over Rq, has polynomial discrimination.

Proof. Consider the class of functions

gA,β(s, t) = ‖A(y −Xβ)‖2 − ρ−1(t)2.

According to Lemma 18 in [21], it suffices to show that the functions gA,β(·, ·) span a finite-
dimensional vector space. In order to do so, write

‖A(y −Xβ)‖2 =

k∑
i=1

k∑
j=1

(ATA)ij(y −Xβ)i(y −Xβ)j

=

k∑
i=1

k∑
j=1

k∑
s=1

aisasj

(
yi −

q∑
r=1

xirβr

)(
yj −

q∑
w=1

xjwβw

)

This is a polynomial in s = (y1, . . . , yk, x11, . . . , xkq), with coefficients in R. This means that the
class of functions gA,β(s, t) = ‖A(y−Xβ)‖2−ρ−1(t)2 forms a finite dimensional vector space.

A useful first step is the following lemma.

Lemma B.7. Let u : R→ R be a function of bounded variation. Let s = (y,X) = (s1, . . . , sp) ∈
Rp, and define

g(s,β,V) = u(‖V−1/2(y −Xβ)‖) for β ∈ Rq,V ∈ PDS(k).

Consider the classes of functions

F = {g(s,β,V) : β ∈ Rq,V ∈ PDS(k)},
Fa = {g(s,β,V)sa : g ∈ F},
Fab = {g(s,β,V)sasb : g ∈ F},

for a, b = 1, . . . , p. Denote by G, Ga, and Gab, the corresponding classes of graphs of the functions
in F , Fa, and Fab, respectively. Then G, Ga, and Gab, all have polynomial discrimination for
a, b = 1, . . . , p.

Proof. Because the function u(·) is of bounded variation, it follows from Lemma B.6 that the
class G has polynomial discrimination. To show the same for the class Ga, suppose that Ga is not
of polynomial discrimination. This means that for every integer N there exists a set V ⊂ Rp+1 of N
points, such that all subsets of V can be written asDa∩V for someDa ∈ Ga. Let V = {v1, . . . ,vN},
where vi = (si, ti), for i = 1, . . . , N . Then for every (s, t) ∈ V with s = (s1, . . . , sa, . . . , sp), it must
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hold that sa 6= 0, otherwise this point cannot be separated from the other points by an element
of the class Ga. Define the set Va = {(s, t/sa) : (s, t) ∈ V }. Note that for Da ∈ Ga, we have

(s, t) ∈ Da ⇔ 0 ≤ t ≤ g(s,β,V)sa or g(s,β,V)sa ≤ t ≤ 0

⇔ 0 ≤ t

sa
≤ g(s,β,V) or g(s,β,V) ≤ t

sa
≤ 0

⇔ (s, t/sa) ∈ D,

where D ∈ G. This implies that every subset of Va can be written as D ∩ Va, for some D ∈ G.
However, this is in contradiction with the fact that G has polynomial discrimination. We conclude
that also Ga has polynomial discrimination. A similar argument yields that Gab has polynomial
discrimination.

Lemma B.7 is comparable to Lemma 3 in [18], for similar classes of functions built from
functions g(y, t,C) = u(‖C−1/2(y − t)‖), where t ∈ Rk and C ∈ PDS(k). With Lemma B.7
we can establish suitable bounds on the third term of (9.2). This is provided by the following
key lemma. Once having established Lemma B.8, asymptotic normality can be derived easily
from (9.2).

Lemma B.8. Let Ψ = (Ψβ,Ψθ) be defined in (7.5) and let ξn = ξ(Pn) and ξP = ξ(P ) be
the solutions to minimization problems (3.1) and (3.5). Suppose that ρ satisfies (R1)-(R4), such
that u(s) is of bounded variation, and suppose that V satisfies (V4). Suppose that ξn → ξP , in
probability, and that E‖s‖2 <∞. Then∫

(Ψ(s, ξn)−Ψ(s, ξP )) d(Pn − P )(s) = oP (1/
√
n). (B.47)

Proof. First write Ψθ,j(s, ξ) = Ψ2,j(s, ξ)−Ψ3,j(s, ξ), for j = 1, . . . , l, where

Ψ2,j(s, ξ) = u(d)(y −Xβ)TV−1HjV
−1(y −Xβ)

Ψ3,j(s, ξ) = tr

(
V−1

∂V

∂θj

)
(ρ(d)− b0),

(B.48)

where Hj and d = d(s, ξ) are defined in (7.3) and (5.1). It suffices to show that∫
(Ψβ(s, ξn)−Ψβ(s, ξP )) d(Pn − P )(s) = oP (1/

√
n), (B.49)∫

(Ψ2,j(s, ξn)−Ψ2,j(s, ξP )) d(Pn − P )(s) = oP (1/
√
n), (B.50)∫

(Ψ3,j(s, ξn)−Ψ3,j(s, ξP )) d(Pn − P )(s) = oP (1/
√
n), (B.51)

for j = 1, . . . , l.
To obtain (B.51), first write Mn = V(θn)−1 and MP = V(θP )−1, so that Mn → MP , in

probability, according to condition (V1). Decompose as follows

Ψ3,j(s, ξn)−Ψ3,j(s, ξP )

= tr

(
M−1

n

∂V(θn)

∂θj

)
(ρ(d(s, ξn))− ρ(d(s, ξP )))

+

{
tr

(
M−1

n

∂V(θn)

∂θj

)
− tr

(
M−1

P

∂V(θP )

∂θj

)}
(ρ(d(s, ξP ))− b0).

(B.52)

After integration with respect to Pn − P , the first term on the right hand side of (B.52) becomes

tr

(
M−1

n

∂V(θn)

∂θj

)∫
(ρ(d(s, ξn))− ρ(d(s, ξP ))) d(Pn − P )(s), (B.53)
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where with (V4),

tr

(
M−1

n

∂V(θn)

∂θj

)
→ tr

(
M−1

P

∂V(θP )

∂θj

)
(B.54)

in probability. Furthermore, note that all functions ρ(d(·, ξ)), for ξ ∈ Rq ×Rl are members of the
class

F =
{
ρ(‖V−1/2(y −Xβ)‖) : β ∈ Rq,V ∈ PDS(k)

}
.

From (R1)-(R2) it follows that the function ρ is of bounded variation (being the sum of two
monotone functions). According to Lemma B.7, the class G, consisting of subgraphs of functions
in the class F , has polynomial discrimination. Moreover, the class F has a constant envelope.
Then as a result of the empirical process theory developed in Pollard [23] (e.g., see Theorem 1
in [18]), it follows that for every δ > 0,

sup
f1,f2∈[δ]

√
n

∣∣∣∣∫ (f1(s)− f2(s)) d(Pn − P )(s)

∣∣∣∣→ 0

in probability, where

[δ] =

{
(f1, f2) : f1, f2 ∈ F and

∫
(f1 − f2)2 dP ≤ δ2

}
.

Because ξn → ξP in probability one, the pair of functions f1(s) = ρ(d(s, ξn) and f2(s) = ρ(d(s, ξP )
are in the set [δ], for sufficiently large n, with probability tending to one. It follows that

√
n

∣∣∣∣∫ (ρ(d(s, ξn)− ρ(d(s, ξP )) d(Pn − P )(s)

∣∣∣∣
≤ sup
f1,f2∈[δ]

√
n

∣∣∣∣∫ (f1(s)− f2(s)) d(Pn − P )(s)

∣∣∣∣→ 0,

(B.55)

in probability. Together with the fact that tr(M−1
P ∂V(θP )/∂θj) is bounded, this proves that (B.53)

is of the order oP (1/
√
n). For the second term on the right hand side of (B.52), we have that

according to the central limit theorem∫
(ρ(d(s, ξP ))− b0) d(Pn − P )(s) = OP (1/

√
n).

Together with (B.54) this implies that, after integration with respect to Pn − P , the second term
on the right hand side of (B.52) is of the order oP (1/

√
n). This proves (B.51).

To obtain (B.49), decompose as follows

Ψβ(s, ξn)−Ψβ(s, ξP )

=

{
u(d(s, ξn))XTMny − u(d(s, ξP ))XTMPy

}
−
{
u(d(s, ξn))XTMnXβn − u(d(s, ξP ))XTMPXβP

}
.

(B.56)

We will treat both terms on the right hand side separately. For the first term on the right hand
side of (B.56), we write{

u(d(s, ξn))− u(d(s, ξP ))
}

XTMny + u(d(s, ξP )XT (Mn −MP )y. (B.57)

First consider the first term in (B.57). We consider each single element of the vector XTMny ∈ Rq
separately. For i = 1, . . . , q fixed, write

(
XTMny

)
i

=

k∑
j=1

xji (Mny)j =

k∑
j=1

xji

k∑
s=1

mn,jsys =

k∑
j=1

k∑
s=1

xjiysmn,js.
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Hence, after integration with respect to Pn−P , the i-th component of the first term in (B.57) can
be written as a finite sum with summands∫ (

u(d(s, ξn))− u(d(s, ξP ))
)
xjiys d(Pn − P )(s)mn,js,

for i = 1, . . . , q and j, s ∈ {1, . . . , k} fixed, where mn,js → mP,js, Because u is of bounded variation
and since s = (y,X) = (y1, . . . , yk, x11, . . . , xkq), all functions u(d(s, ξ))xjiys, for ξ ∈ Rq ×Rl, are
members of the class

Fab =
{
u(‖V−1/2(y −Xβ)‖)sasb : β ∈ Rq,V ∈ PDS(k)

}
.

According to Lemma B.7, the corresponding class of subgraphs has polynomial discrimination, so
similar to (B.55) it follows that for each i = 1, . . . , q and j, s ∈ {1, . . . , k} fixed,∫ (

u(d(s, ξn))− u(d(s, ξP ))
)
xjiys d(Pn − P )(s) = oP (n−1/2),

which means that∫ {
u(d(s, ξn))− u(d(s, ξP ))

}
XTMPy d(Pn − P )(s) = oP (n−1/2). (B.58)

Next, consider the second term on the right hand side of (B.57). Similar to the first term, after
integration with respect to Pn −P , the i-th component of the second term on the right hand side
of (B.57) can be written as a finite sum of summands∫

u(d(s, ξP ))xjiys d(Pn − P )(s)(mn,js −mP,js),

for i = 1, . . . , q, and j, s ∈ {1, . . . , k} fixed. According to the central limit theorem, the integral is
of the order OP (n−1/2), and since mn,js → mP,js, in probability, it follows that the product is of
the order oP (n−1/2). We conclude that∫

u(d(s, ξP ))XT (Mn −MP )y d(Pn − P )(s) = oP (n−1/2). (B.59)

Putting together (B.58) and (B.59), it follows for the first term on the right hand side of (B.56)
that ∫ {

u(d(s, ξn))XTMny − u(d(s, ξP ))XTMPy
}

d(Pn − P )(s) = oP (n−1/2). (B.60)

For the second term on the right hand side of (B.56), we write

u(d(s, ξn))XTMnXβn − u(d(s, ξP ))XTMPXβP

=
(
u(d(s, ξn))− u(d(s, ξP ))

)
XTMnXβn

+ u(d(s, ξP )
(
XTMnXβn −XTMPXβP

)
.

(B.61)

Consider the first term on the right hand side of (B.61). For i = 1, . . . , q fixed, write

(
XTMnXβn

)
i

=

k∑
j=1

xji(MnXβn)j =

k∑
j=1

xji

k∑
s=1

mn,js(Xβn)s

=

k∑
j=1

xji

k∑
s=1

mn,js

k∑
t=1

xstβn,t =

k∑
j=1

k∑
s=1

k∑
t=1

xjixstmn,jsβn,t.
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We see that, after integration with respect to Pn −P , the i-th component of the first term on the
right hand side of (B.61) can be written as a finite summation of summands∫ (

u(d(s, ξn))− u(d(s, ξP ))
)
xjixst d(Pn − P )(s)mn,jsβn,t,

for i = 1, . . . , q and s, t, j ∈ {1, . . . , k}, where mn,js → mP,js and βn,t → βP,t, in probability. All
functions u(d(s, ξ))xjiys, for ξ ∈ Rq × Rl, are members of the class

Fab =
{
u(‖V−1/2(y −Xβ)‖)sasb : β ∈ Rq,V ∈ PDS(k)

}
,

and u is of bounded variation. According to Lemma B.7, the corresponding class of subgraphs
has polynomial discrimination, so similar to (B.55) it follows that∫ (

u(d(s, ξn))− u(d(s, ξP ))
)
xjixst d(Pn − P )(s) = oP (n−1/2),

which means that∫ (
u(d(s, ξn))− u(d(s, ξP ))

)
XTMnXβn d(Pn − P )(s) = oP (n−1/2). (B.62)

Next, consider the second term on the right hand side of (B.61). We then have to deal with
summands of the form∫

u(d(s, ξP ))xjixst d(Pn − P )(s)(mn,jsβn,t −mP,jsβP,t),

for i = 1, . . . , q, and s, t, j ∈ {1, . . . , k}, where mn,js → mP,js and βn,t → βP,t, in probabil-
ity. According to the central limit theorem, the integral is of the order OP (n−1/2). Because,
mn,isβn,t → mP,isβP,t, in probability, it follows that the product is of the order oP (n−1/2). We
conclude, ∫

u(d(s, ξP )
(
XTMnXβn −XTMPXβP

)
d(Pn − P )(s) = oP (n−1/2). (B.63)

Putting together (B.60) and (B.63), proves (B.49)
Finally, consider Ψ2,j in (B.48), with Hj defined (7.3). Write

Mn = V(θn)−1Hj(θn)V(θn)−1

MP = V(θP )−1Hj(θP )V(θP )−1,

so that Mn → MP , in probability, according to condition (V4). Decompose Ψ2,j(s, ξn) −
Ψ2,j(s, ξP ) as follows{

u(d(s, ξn))− u(d(s, ξP ))
}

(y −Xβn)TMn(y −Xβn)

+ u(d(s, ξP ))
{

(y −Xβn)TMn(y −Xβn)− (y −XβP )TMP (y −XβP )
}
.

(B.64)

The first term in (B.64), can be written as the trace of the matrix{
u(d(s, ξn))− u(d(s, ξP ))

}
(y −Xβn)(y −Xβn)TMn,

where βn → βP and Mn →MP , in probability. As before, we consider each single entry of this
k × k matrix. The (i, j)-th element of (y −Xβn)(y −Xβn)T is equal to

(y −Xβn)i(y −Xβn)j = yiyj −
k∑
s=1

yjxisβn,s −
k∑
t=1

yixjtβn,t

+

k∑
s=1

k∑
t=1

xisxjtβn,sβn,t.

(B.65)
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We see that the (i, j)-th entry of{
u(d(s, ξn))− u(d(s, ξP ))

}
(y −Xβn)(y −Xβn)T

is a combination of four summations. The last of these summations arising from (B.65), after
integration with respect to Pn − P , has summands∫ (

u(d(s, ξn))− u(d(s, ξP ))
)
xisxjt d(Pn − P )(s)βn,sβn,t,

where βn,sβn,t → βP,sβP,t, in probability. All functions u(d(s, ξ))xjiys, for ξ ∈ Rq × Rl, are
members of the class

Fab =
{
u(‖V−1/2(y −Xβ)‖)sasb : β ∈ Rq,V ∈ PDS(k)

}
,

where u is of bounded variation According to Lemma B.7, the corresponding class of subgraphs
has polynomial discrimination, so similar to (B.55) it follows that∫ {

u(d(s, ξn))− u(d(s, ξP ))
}
xisxjt d(Pn − P )(s) = oP (n−1/2).

The other three summations that arise from the right hand side of (B.65) can be handled in the
same way. It follows, that for each i, j ∈ {1, . . . , k} fixed,∫ {

u(d(s, ξn))− u(d(s, ξP ))
}

(y −Xβn)i(y −Xβn)j d(Pn − P )(s) = oP (n−1/2),

which means that∫ {
u(d(s, ξn))− u(d(s, ξP ))

}
(y −Xβn)(y −Xβn)TMn d(Pn − P )(s) = oP (n−1/2).

After taking traces, we conclude that∫ {
u(d(s, ξn))− u(d(s, ξP ))

}
(y −Xβn)TMn(y −Xβn) d(Pn − P )(s) = oP (n−1/2). (B.66)

Next, consider the second term on the right hand side of (B.64). First, note that

(y −Xβ)TM(y −Xβ) =

k∑
i=1

k∑
j=1

yiyjmij +

k∑
i=1

k∑
j=1

yi

k∑
s=1

xjsβsmij

+

k∑
i=1

k∑
j=1

yj

k∑
t=1

xitβtmij +

k∑
i=1

k∑
j=1

k∑
s=1

k∑
t=1

xisxjtβsβtmij .

This means that

(y −Xβn)TMn(y −Xβn)− (y −XβP )TMP (y −XβP )

=

k∑
i=1

k∑
j=1

yiyj (mn,ij −mP,ij) +

k∑
i=1

k∑
j=1

k∑
s=1

yixjs (βn,smn,ij − βP,smP,ij)

+

k∑
i=1

k∑
j=1

k∑
t=1

yjxit (βn,tmn,ij − βP,tmP,ij)

+

k∑
i=1

k∑
j=1

k∑
s=1

k∑
t=1

xisxjt (βn,sβn,tmn,ij − βP,sβP,tmP,ij) .

(B.67)
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We see that the (i, j)-th entry of

u(d(s, ξP ))
{

(y −Xβn)TMn(y −Xβn)− (y −XβP )TMP (y −XβP )
}

can be written as the combination of four summations. The last of the summations arising
from (B.67), after integration with respect to Pn − P , has summands∫

u(d(s, ξP ))xisxjt d(Pn − P )(s) (βn,sβn,tmn,ij − βP,sβP,tmP,ij) ,

where βn,sβn,tmn,ij → βP,sβP,tmP,ij , in probability. According to the central limit theorem,
the integral is of the order OP (n−1/2), whereas the second term tends to zero. All functions
u(d(s, ξ))xisxjt, for ξ ∈ Rq × Rl, are members of the class

Fab =
{
u(‖V−1/2(y −Xβ)‖)sasb : β ∈ Rq,V ∈ PDS(k)

}
,

where u is of bounded variation According to Lemma B.7, the corresponding class of subgraphs
has polynomial discrimination, so similar to (B.55) it follows that∫

u(d(s, ξP ))xisxjt d(Pn − P )(s) (βn,sβn,tmn,ij − βP,sβP,tmP,ij) = oP (n−1/2).

The other three summations that arise from the right hand side of (B.67) can be handled in the
same way, so that∫

u(d(s, ξP ))
{

(y −Xβn)TMn(y −Xβn)− (y −XβP )TMP (y −XβP )
}

d(Pn − P )(s)

= oP (n−1/2).

(B.68)

Putting together (B.66) and (B.68), proves (B.50) for each j = 1, . . . , l. This finishes the proof of
Lemma B.8.

Proof of Corollary 6

Proof. As in the proof of Corollary 5, it follows that ∂Λ/∂ξ is continuously differentiable with a
non-singular derivative at ξ(P ), so that Theorem 6 applies. According to Theorem 6 and Lemma 2,
it follows that

√
n(βn − β(P )) is asymptotically normal with mean zero and covariance matrix

1

α2

(
E
[
XTΣ−1X

])−1 E [Ψβ(s, ξP )Ψβ(s, ξP )T
] (

E
[
XTΣ−1X

])−1
where Ψβ is defined in (7.10). We find that

E
[
Ψβ(s, ξP )Ψβ(s, ξP )T

]
= E

[
XTE

[
u(d)2Σ−1(y − µ)(y − µ)TΣ−1

∣∣∣X]X
]
,

where d2 = (y − µ)TΣ−1(y − µ) and u(s) = ρ′(s)/s. As before, with z = Σ−1/2(y − µ) and
u = z/‖z‖, according to Lemma B.4, the inner conditional expectation can be written as

Σ−1/2E0,Ik

[
u(‖z‖)2‖z‖2

]
E0,Ik

[
uuT

]
Σ−1/2 =

E0,Ik

[
u(‖z‖)2‖z‖2

]
k

Σ−1.

This implies that the asymptotic covariance of
√
n(βn − β(P )) is given by

E0,Ik

[
ρ′(‖z‖)2

]
kα2

(
E
[
XTΣ−1X

])−1
.
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Again, according to Theorem 6 and Lemma 2, it follows that
√
n(θn − θ(P )) is asymptotically

normal with mean zero and covariance matrix(
∂Λθ(ξ(P ))

∂θ

)−1
E
[
vec (Ψθ(s, ξP )) vec (Ψθ(s, ξP ))

T
](∂Λθ(ξ(P ))

∂θ

)−1
where Ψθ is defined in (7.10). We have

E
[
vec (Ψθ(s, ξP )) vec (Ψθ(s, ξP ))

T
]

= ETE
[
vec
(
Σ−1/2ΨV(s, ξP )Σ−1/2

)
vec
(
Σ−1/2ΨV(s, ξP )Σ−1/2

)T]
E

where ΨV is defined in (7.8) and E =
(
Σ−1/2 ⊗Σ−1/2

)
L and

E
[
vec
(
Σ−1/2Ψθ(s, ξP )Σ−1/2

)
vec
(
Σ−1/2Ψθ(s, ξP )Σ−1/2

)T]
= k2E0,Ik

[
u(‖z‖)2‖z‖4

]
E0,Ik

[
vec
(
uuT

)
vec
(
uuT

)T ]
− kE0,Ik

[
u(‖z‖)v(‖z‖)‖z‖2

]
E0,Ik

[
vec
(
uuT

)
vec (Ik)

T
]

− kE0,Ik

[
u(‖z‖)v(‖z‖)‖z‖2

]
E0,Ik

[
vec (Ik) vec

(
uuT

)T ]
+ E0,Ik

[
v(‖z‖)2

]
E0,Ik

[
vec (Ik) vec (Ik)

T
]
.

From Lemma B.4, the first term on the right hand side is equal to

kE0,Ik

[
u(‖z‖)2‖z‖4

]
k + 2

(
Ik2 + Kk,k + vec(Ik)vec(Ik)T

)
.

This leads to one term Ik2 + Kk,k with coefficient

kE0,Ik

[
u(‖z‖)2‖z‖4

]
k + 2

and using that, according to Lemma B.4, E0,Ik

[
uuT

]
= (1/k)Ik, we find a second term vec(Ik)vec(Ik)T

with coefficient

kE0,Ik

[
u(‖z‖)2‖z‖4

]
k + 2

− 2E0,Ik

[
u(‖z‖)v(‖z‖)‖z‖2

]
+ E0,Ik

[
v(‖z‖)2

]
.

Since v(s) = u(s)s2 − ρ(s) + b0, we have that

k

k + 2
u(s)2s4 − 2u(s)v(s)s2 + v(s)2 = − 2

k + 2
u(s)2s4 + (ρ(s)− b0)2.

This means that

E
[
vec
(
Σ−1/2Ψθ(s, ξP )Σ−1/2

)
vec
(
Σ−1/2Ψθ(s, ξP )Σ−1/2

)T]
= δ1 (Ik2 + Kk,k) + δ2vec(Ik)vec(Ik)T

where

δ1 =
kE0,Ik

[
u(‖z‖)2‖z‖4

]
k + 2

δ2 = − 2

k + 2
E0,Ik

[
u(‖z‖)2‖z‖4

]
+ E0,Ik

[
(ρ(‖z‖)− b0)

2
]

= −2

k
δ1 + E0,Ik

[
(ρ(‖z‖)− b0)

2
] (B.69)
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Since, Kk,k(Σ−1/2 ⊗Σ−1/2) = (Σ−1/2 ⊗Σ−1/2)Kk,k, together with (B.32), this implies that

E
[
vec (Ψθ(s, ξP )) vec (Ψθ(s, ξP ))

T
]

= ET
(
δ1 (Ik2 + Kk,k) + δ2vec(Ik)vec(Ik)T

)
E

= 2δ1E
TE + δ2E

Tvec(Ik)vec(Ik)TE.

Furthermore, according to Lemma B.5,(
∂Λθ(ξ(P ))

∂θ

)−1
= a(ETE)−1 + b(ETE)−1ETvec(Ik)vec(Ik)TE(ETE)−1,

with a and b defined in (B.44). By application of (B.39), (B.40), and (B.42), we find that(
∂Λθ(ξ(P ))

∂θ

)−1
E
[
vec (Ψθ(s, ξP )) vec (Ψθ(s, ξP ))

T
]

= 2aδ1Ik + (aδ2 + 2bδ1 + bkδ2)(ETE)−1ETvec(Ik)vec(Ik)TE

and (
∂Λθ(ξ(P ))

∂θ

)−1
E
[
vec (Ψθ(s, ξP )) vec (Ψθ(s, ξP ))

T
](∂Λθ(ξ(P ))

∂θ

)−1
= 2σ1(ETE)−1 + σ2(ETE)−1ETvec(Ik)vec(Ik)TE(ETE)−1

= 2σ1(ETE)−1 + σ2θ(P )θ(P )T

where

σ1 = a2δ1

σ2 = 2b(2a+ kb)δ1 + (a+ kb)2δ2.

When we insert the expressions for δ1, δ2, a, and b given in (B.69) and (B.44), then we find

σ1 =
k(k + 2)E0,Ik

[
u(‖z‖)2‖z‖4

]
(E0,Ik [ρ′′(‖z‖)‖z‖2 + (k + 1)ρ′(‖z‖)‖z‖])2

σ2 = −2

k
σ1 +

4E0,Ik [(ρ(‖z‖)− b0)
2
]

(E0,Ik [ρ′(‖z‖)‖z‖])2

By substituting E =
(
Σ−1/2 ⊗Σ−1/2

)
L, we find that the limiting covariance of

√
n(θn − θ(P ))

is given by

2σ1

(
LT
(
Σ−1 ⊗Σ−1

)
L
)−1

+ σ2θ(P )θ(P )T

This finishes the proof.
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