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Abstract

The difficulty of minimizing a nonconvex function is in part explained by the presence of
saddle points. This slows down optimization algorithms and impacts worst-case complexity
guarantees. However, many nonconvex problems of interest possess a favorable structure
for optimization, in the sense that saddle points can be escaped efficiently by appropriate
algorithms. This strict saddle property has been extensively used in data science to derive
good properties for first-order algorithms, such as convergence to second-order critical points.
However, the analysis and the design of second-order algorithms in the strict saddle setting
have received significantly less attention.

In this paper, we consider second-order trust-region methods for a class of strict sad-
dle functions defined on Riemannian manifolds. These functions exhibit (geodesic) strong
convexity around minimizers and negative curvature at saddle points. We show that the
standard trust-region method with exact subproblem minimization finds an approximate
local minimizer in a number of iterations that depends logarithmically on the accuracy pa-
rameter, which significantly improves known results for general nonconvex optimization. We
also propose an inexact variant of the algorithm that explicitly leverages the strict saddle
property to compute the most appropriate step at every iteration. Our bounds for the inex-
act variant also improve over the general nonconvex case, and illustrate the benefit of using
strict saddle properties within optimization algorithms.

Keywords: Riemannian optimization, strict saddle function, second-order method,
complexity guarantees.

MSC: 49M05, 49M15, 65K05, 90C60.

1 Introduction

We consider the optimization problem

min
x∈M

f(x) (P)

where M is an n-dimensional Riemannian manifold, and f : M → R is twice continuously
differentiable and nonconvex. A popular way to solve Problem (P) is to use Riemannian op-
timization techniques, that use differential geometry to generalize unconstrained optimization
methods to the Riemannian setting (Absil et al., 2008; Boumal, 2023). Theoretical guarantees
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for such methods have historically focused on the behavior close to minimizers (local conver-
gence). These results usually rely on the objective function being convex (or strongly convex)
around minimizers, thereby enabling the derivation of local convergence rates (Absil et al., 2008;
Nocedal and Wright, 2006).

Meanwhile, the past decade has seen a growing interest in global convergence results for
nonconvex optimization, where one quantifies the rate of convergence towards a stationary point
independently of the starting point (Cartis et al., 2022). These rates can be stated in the form
of complexity results, which bound the number of iterations necessary to satisfy approximate
first- or second-order necessary conditions for optimality. Second-order stationary points for
Problem (P) have a zero Riemannian gradient and positive semidefinite Riemannian Hessian:

gradf(x) = 0 and λmin (Hessf(x)) ≥ 0, (1.1)

where λmin(·) is the smallest eigenvalue of a symmetric operator. Given positive tolerances
(εg, εH), complexity results bound the cost of satisfying an approximate version of (1.1), given
by

‖gradf(x)‖ ≤ εg and λmin (Hessf(x)) ≥ −εH . (1.2)

In the unconstrained or Euclidean setting (i.e., when M = R
n), it is well established that

classical second-order trust-region methods (Conn et al., 2000) reach an iterate satisfying (1.2)
in at most O(max(ε−2

g ε−1
H , ε−3

H )) iterations (Cartis et al., 2012). Although this complexity

can be improved to O(max(ε−2
g , ε−3

H )) without changing the essence of the algorithm (Curtis
et al., 2018; Gratton et al., 2020), the resulting bound remains suboptimal among a large class
of second-order methods (Cartis et al., 2019). Indeed, techniques such as cubic regularization

enjoy a O(max(ε
−3/2
g , ε−3

H )) complexity bound, that strictly improves over standard trust-region
methods and is optimal among the class of second-order algorithms. Similar bounds were
obtained for the Riemannian counterparts of trust-region methods (Boumal et al., 2019) and
cubic regularization (Agarwal et al., 2021). Modifications of the trust-region scheme have been
proposed to achieve the optimal complexity of cubic regularization (Curtis et al., 2017, 2021).

These worst-case results are pessimistic in nature and do not reflect the good behaviour of
second-order methods on many practical problems. In an effort to reconcile theoretical guar-
antees with practical performances, it becomes necessary to leverage additional structure from
the function f . Numerous problems of the form (P) have the property that the nonconvexity is
benign, meaning that second-order critical points—Equation (1.1)—are global minimizers (Sun
et al., 2015; Wright and Ma, 2022). Data analysis tasks with this property include Burer-
Monteiro factorizations of semidefinite programs (Boumal et al., 2020; Luo and Trillos, 2022),
phase retrieval (Sun et al., 2018), matrix completion and factorization (Ge et al., 2016; Li et al.,
2019), dictionary learning (Sun et al., 2017a; Qu et al., 2019) and others.

Benign nonconvexity implies that the Hessian possesses a negative eigenvalue at every saddle
point. This strict saddle property allows first- and second-order methods to provably avoid
saddle points and converge towards minimizers. First-order methods escape strict saddle points
almost surely (Lee et al., 2019), and complexity bounds can even be derived for randomized
first-order techniques, in both the Euclidean and Riemannian setting (Criscitiello and Boumal,
2019; Sun et al., 2019). In addition, second-order methods, that leverage directions of negative
curvature of the Hessian, escape strict saddle points by design, and are thus particularly suitable
for strict saddle problems (Wright and Ma, 2022, Chapter 9).

Adaptations of complexity analysis to strict saddle problems have recently begun to ap-
pear in the literature. On one hand, complexity results were established for specific instances
satisfying a strict saddle property, such as phase retrieval (Sun et al., 2018) or dictionary learn-
ing (Sun et al., 2017b). More recently, O’Neill and Wright (2023) considered low-rank matrix
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optimization problems under a strict saddle property, and designed a line-search method that
made explicit use of the strict saddle structure. In these works, the analysis is tailored to specific
problems, and its generalization to a broader strict saddle setting is not straightforward.

On the other hand, general analyses based on dividing the feasible set into regions of inter-
est yielded complexity bounds that improved over the general nonconvex setting, in the sense
that the dependencies with respect to εg and εH were only logarithmic rather than polyno-
mial (Paternain et al., 2019; Curtis and Robinson, 2021). Carmon et al. (2018) showed that an
accelerated gradient technique tailored to nonconvex problems would enjoy improved complex-
ity when applied to a function satisfying the strict saddle property. These general results apply
to unconstrained strict saddle problems, and do not cover optimization problems on manifolds,
a popular source of strict saddle problems (Wright and Ma, 2022).

Contributions and outline

In this work, we analyze a trust-region framework for minimizing strict saddle functions over Rie-
mannian manifolds. The strict saddle problems we consider are strongly convex near minimizers,
which leads to connections with Riemannian optimization of geodesically strongly convex func-
tions. In particular, we leverage local convergence results for Newton’s method in order to derive
complexity results for our framework. We show that the standard trust-region method (Absil
et al., 2007) with exact subproblem minimization applied to a strict saddle function benefits
from improved complexity guarantees compared to the general nonconvex setting. Indeed, our
complexity bound possesses a logarithmic dependency in the optimality tolerances, thanks to
the local quadratic convergence of the method, which improves over polynomial dependencies
from the general case. We also derive similar results for an inexact version of our algorithm
based on inexact solutions of the trust-region subproblem, that makes explicit use of the strict
saddle structure. Our analysis builds on recent advances in the complexity of (Euclidean) trust-
region methods by relying on iterative linear algebra routines. This yields complexity bounds
in terms of iterations as well as Hessian-vector products.

To the best of our knowledge, we provide the first strict saddle analysis of a generic second-
order trust-region method, and the first strict saddle analysis that applies to a generic manifold
M. All our results apply naturally to the unconstrained case M = R

n. Overall, our results
advocate for further use of the strict saddle structure in the design and analysis of nonconvex
optimization methods.

The rest of the paper is organized as follows. In Section 2, we describe the class of strict
saddle functions on Riemannian manifolds that we investigate throughout the paper. This is
prefaced by background material on Riemannian optimization and geodesic convexity. In Sec-
tion 3, we analyze the global complexity of the Riemannian trust-region with exact subproblem
minimization. This is a well-known algorithm for which we show an improved complexity when
applied to strict saddle functions. In Section 4, we design a new Riemannian trust-region method
with inexact subproblem minimization that uses landscape parameters to compute directions
which are appropriate for the local landscape. The guarantees for the inexact algorithm account
for the cost of solving the subproblem.

2 Strict saddle functions on Riemannian manifolds

In this section, we define a class of strict saddle functions on Riemannian manifolds. We
first present background material on Riemannian optimization in Section 2.1, with a focus on
retractions. We then discuss the notion of geodesic strong convexity in Section 2.2, which plays
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a role in our definition of strict saddle functions. This definition is provided along with several
examples in Section 2.3.

2.1 Retractions and derivatives on Riemannian manifolds

Recall that problem (P) considers the minimization of a smooth function f over a Riemannian
manifoldM. We cover the basic ideas that allow to build feasible algorithms for (P).

At every x ∈ M, the linear approximation of the manifold M is called the tangent space,
written TxM. Each tangent space is equipped with an inner product 〈·, ·〉x, which defines the
norm of a tangent vector as ‖v‖x :=

√
〈v, v〉x for v ∈ TxM. (We often write 〈·, ·〉 and ‖·‖ when

the reference point is clear from context.) For smooth functions, the metric defines aRiemannian
gradient and Riemannian Hessian of f at x ∈ M, which we denote by gradf(x) ∈ TxM and
Hessf(x) : TxM → TxM, respectively. By contrast, we use the symbols ∇ and ∇2 for the
gradient and Hessian of a function defined over a Euclidean space.

Riemannian optimization algorithms use tangent vectors to generate search directions. Fol-
lowing a tangent direction in a straight line may lead outside the manifold, which is undesirable.
Therefore, we need a tool to travel on the manifold in a direction prescribed by a tangent vector.
This can be done by following the geodesic associated with a tangent vector. On manifolds,
geodesics are curves with zero acceleration that generalize the notion of straight line in Eu-
clidean spaces. Formally, a geodesic is a smooth curve c : I → M defined on an open interval
I ⊂ R such that c′′(t) = 0 for all t ∈ I, where c′′(t) is the intrinsic acceleration of c (Boumal,
2023, Chapter 5). The exponential map travels along the manifold by following geodesics,
but optimization algorithms commonly use first-order approximations of the exponential map,
called retractions (Absil et al., 2008, §4.1). A retraction at x is a map from the tangent space
to the manifold, denoted by Rx : TxM → M. For many manifolds of interest, practical and
popular retractions are defined globally (Absil et al., 2008, Chapter 4). However, the retraction
at x ∈ M may only be defined locally, in a ball of radius ̺(x) > 0 centered around 0x in TxM.
In that case the size of the step at x ∈ M must be limited to ̺(x). We discuss this further in
Section 3.1.

Given a retraction, one can lift the function f to the tangent space through the following
composition.

Definition 2.1. For any x ∈ M, the pullback of f to the tangent space TxM is the function
f̂x : TxM→ R defined by

f̂x(s) := f ◦Rx(s) for all s ∈ TxM.

In particular, given x ∈ M and s ∈ TxM, we consider the gradient of the pullback function
∇f̂x(s) ∈ TxM as well as its Hessian ∇2f̂x(s) : TxM → TxM. Note the distinction between
these derivatives and the Riemannian derivatives of f at Rx(s), denoted by gradf(Rx(s)) and
Hessf(Rx(s)). The identities f̂x(0) = f(x) and ∇f̂x(0) = gradf(x) hold by definition (Boumal,
2023, Proposition 3.59) and additional assumptions on the retraction allow to relate the second-
order derivatives. To benefit fully from second-order methods, we require that the retraction
be a second-order approximation of geodesics.

A1. The retraction mapping is a second-order retraction: for any x ∈ M and s ∈ TxM, the
curve c : t ∈ [0, 1]→ Rx(ts) has zero acceleration at t = 0, that is, c′′(0) = 0.

If Rx is a second-order retraction, it holds that

∇2f̂x(0) = Hessf(x) ∀x ∈ M, (2.1)
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i.e., the Hessian of the pullback function is the Riemannian Hessian of f (Boumal, 2023, Propo-
sition 5.45).

Remark 2.1. In this paper, we choose to use a general retraction over the more restrictive ex-
ponential map. This requires certain smoothness assumptions on the pullback function (see A3),
but has the advantage of resembling the Euclidean setting. Using the exponential map typically
leads to a different analysis that relies on parallel transport along geodesics, where the curvature
of the manifold appears explicitly (Sun et al., 2019; Criscitiello and Boumal, 2019, Section 4).

2.2 Geodesic convexity

We now provide the key definitions behind geodesic convexity, a concept that generalizes con-
vexity in Euclidean spaces to Riemannian manifolds. Geodesically convex sets and functions
are defined with respect to geodesics ofM as follows.

Definition 2.2. A subset S of M is geodesically convex if, for every x, y ∈ S, there exists a
geodesic segment c : [0, 1]→M such that c(0) = x, c(1) = y and c(t) is in S for all t ∈ [0, 1].

A function is geodesically convex on S ⊂ M if it is convex in the usual sense along all
geodesics on S.

Definition 2.3. Given a subset S of M, the function f :M→ R is geodesically convex on S
(resp. geodesically strongly convex) if S is geodesically convex and for every geodesic c : [0, 1]→
M such that c(0) 6= c(1) and c([0, 1]) ⊂ S, the function f ◦c : [0, 1]→ R is convex (resp. strongly
convex).

For smooth functions, geodesic strong convexity is determined by the eigenvalues of the
Riemannian Hessian.

Proposition 2.1 (Theorem 11.23 in (Boumal, 2023)). A function f :M → R is geodesically
γ-strongly convex on the set S ⊂ M if S is a geodesically convex set and λmin (Hessf(x)) ≥ γ
for every x ∈ S.

Since we are interested in nonconvex problems, we consider functions that are geodesically
strongly convex over a subset of the manifold (near minimizers). Functions with geodesic
convexity over the entire manifold have also been studied, with most interesting applications
arising on Hadamard manifolds (Zhang and Sra, 2016).

2.3 Strict saddle property

We are now ready to define our problem class of interest, robust strict saddle functions onM.
The definition is based on (Ge et al., 2015; Sun et al., 2015).

Definition 2.4. Let f :M → R be twice differentiable and let α, β, γ, δ be positive constants.
The function f is (α, β, γ, δ)-strict saddle if the manifoldM satisfiesM = R1∪R2∪R3, where

R1 = {x ∈ M : ‖gradf(x)‖ ≥ α}
R2 = {x ∈ M : λmin (Hessf(x)) ≤ −β}
R3 = {x ∈ M : there exists x∗ ∈ M, a local minimizer of f such that dist(x, x∗) ≤ δ and

f is geodesically γ-strongly convex over the set {y ∈ M : dist(x∗, y) < 2δ}} .
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Definition 2.4 has the following interpretation. If f is a strict saddle function onM, then,
at any x ∈ M, either the norm of the Riemannian gradient is sufficiently large, the Riemannian
Hessian has a sufficiently negative eigenvalue, or x is close to a local minimum of f onM and
f is geodesically strongly convex in the neighborhood of this local minimum. Note that the last
two cases are mutually exclusive, but that the first case may occur simultaneously with one of
the other two.

Remark 2.2. Other definitions of strict saddle functions exist in the literature, and the main
differences appear in the definition of the region R3, where strong convexity is not always re-
quired (Liu and Roosta, 2023; O’Neill and Wright, 2023). Our definition excludes non-isolated
minimizers, where strong convexity cannot hold. Nevertheless, non-isolated minimizers can
arise due to rotational symmetries in the problem (Wright and Ma, 2022). We note that recent
work has focused on reformulating such problems on a quotient set induced by the symmetry,
leading to problems where minimizers are isolated (Luo and Trillos, 2022).

We conclude this section with two simple examples of strict saddle functions in the sense of
Definition 2.4. Our first example is a strongly convex function over Rn.

Example 2.1. Let f : R
n → R be a (geodesically) γ-strongly convex function with global

minimizer x∗. For any α > 0, f is (α, 1, γ, 2αγ )-strict saddle. The region R2 is empty, and for
any x /∈ R1 (i.e., ‖∇f(x)‖ < α), we show that x ∈ R3. Strong convexity gives

γ
2‖x− x∗‖2 ≤ f(x)− f(x∗) ≤ −∇f(x)T(x− x∗) ≤ ‖∇f(x)‖‖x− x∗‖ ≤ α‖x− x∗‖,

hence ‖x− x∗‖ ≤ 2α
γ =: δ. Clearly, f is γ-strongly convex on {x : ‖x− x∗‖ < 2δ} ⊂ R

n.

Our second example, previously introduced in (Sun et al., 2015), illustrates the interest of
the region R2 in the presence of nonconvexity.

Example 2.2. Let M be the unit sphere in R
n, denoted by S

n−1, and let f : Sn−1 → R be
defined by f(x) = xTAx, where A ∈ R

n×n is a symmetric matrix with eigenvalues λ1 >
λ2 ≥ · · · ≥ λn−1 > λn. Then, there exists an absolute constant c > 0 such that f is
(c(λn−1 − λn)/λ1, c(λn−1 − λn), c(λn−1 − λn), 2c(λn−1 − λn)/λ1)-strict saddle on S

n−1.

To end this section, we state our key assumption about Problem (P).

A2. There exist positive constants (α, β, γ, δ) such that the function f is (α, β, γ, δ)-strict saddle
on the manifold M and R3 is a compact subset ofM.

The compactness assumption on R3 merely prevents the function from having infinitely
many minimizers on M, and is made to simplify the presentation. It is possible to extend
our analysis to an unbounded region R3, but this lengthens the argument considerably. Note
that Assumption 2 holds for both examples above. The boundedness assumption also allows to
control the distance between iterates of our algorithms.

Lemma 2.2 (Lemma 6.32 in (Boumal, 2023)). Under A2, there exists positive constants νS , κS
such that for all x ∈ R3 and s ∈ TxM, if ‖s‖x ≤ νS, then dist(x,Rx(s)) ≤ κS ‖s‖x, where
dist(·, ·) is the Riemannian distance on M.

3 Riemannian trust-region method with exact subproblem

minimization

In this section we analyze the classical Riemannian trust-region algorithm (RTR) with exact
subproblem minimization. Our goal is to leverage the strict saddle property to obtain better

6



complexity bounds than those existing for general nonconvex functions (Boumal et al., 2019).
The algorithm is perfectly standard, yet the analysis borrows from recent results on Newton-
type methods for the Euclidean setting (Curtis et al., 2021). In particular, our improved com-
plexity bounds rely on a good understanding of the local convergence of the algorithm. Note
that using the exponential map would simplify the analysis, as noticed for Riemannian cubic
regularization (Agarwal et al., 2021).

Section 3.1 describes the exact trust-region algorithm, along with key assumptions. Standard
decrease lemmas are provided in Section 3.2. A local convergence analysis of the algorithm in
the region of geodesic strong convexity is provided in Section 3.3. This analysis allows to derive
our global convergence result, that is established in Section 3.4.

3.1 Algorithm and assumptions

The Riemannian trust-region method with exact subproblem minimization is described in Al-
gorithm 1. At every iteration, a step sk is computed by minimizing a quadratic model of (the
pullback of) the function over the tangent space corresponding to the current iterate xk. In this
section, we assume that the subproblem (3.1) is solved exactly using standard approaches (Moré
and Sorensen, 1983; Absil et al., 2007) (the inexact case is addressed in Section 4). The algo-
rithm computes the step sk, then evaluates f at the point Rxk

(sk) ∈ M to measure the change
in function value. If the function decrease is at least a fraction of the model decrease, the iter-
ation is successful, and the candidate point Rxk

(sk) becomes the new iterate. The trust-region
radius is either unchanged (successful iteration) or can be increased (very successful iteration).
If the iteration is unsuccessful, the algorithm remains at the current iterate and the trust-region
radius is decreased.

Algorithm 1 RTR with exact subproblem minimization

1: Inputs: Initial point x0 ∈ M, initial and maximal trust-region radii 0 < ∆0 < ∆̄, constants
0 < η1 < η2 < 1 and 0 < τ1 < 1 < τ2.

2: for k = 1, 2, . . . do

3: Compute sk as a solution to the trust-region subproblem

sk ∈ argmin
s∈Txk

M
mk(s) subject to ‖s‖ ≤ ∆k, (3.1)

where mk is the model defined by (3.2).
4:

5: Compute ρk =
f(xk)− f (Rxk

(sk))

mk(0)−mk(sk)
and set xk+1 =

{
Rk(xk) if ρk ≥ η1

xk otherwise.
6:

7: Set ∆k+1 =





min
(
τ2∆k, ∆̄

)
if ρk > η2 [very successful]

∆k if η2 ≥ ρk ≥ η1 [successful]

τ1∆k otherwise. [unsuccessful]
8: end for

The model is a second-order Taylor expansion of the pullback function f̂xk
, namely

mk : TxM→ R : s 7→ mk(s) = f(xk) + 〈s, gk〉+
1

2
〈s,Hks〉 , (3.2)

where gk = ∇f̂xk
(0) = gradf(xk) and Hk = ∇2f̂xk

(0), which gives a second-order accurate
model. Although we do not consider it here, we belive that our analysis can be extended to
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approximate second-order accurate models, under the condition that Hk is a suitable approxi-
mation of ∇2f̂k(0) (Absil et al., 2008, Eq. (7.36)). When the retraction is second-order (A1),
we have Hk = Hessf(xk) by (2.1).

In order to derive complexity results for Algorithm 1, we make a standard Lipschitz-type
assumption on the Hessian of the pullback (Boumal et al., 2019). Recall that if the retraction
at xk is defined locally, we write ̺(xk) > 0 for the radius of the ball centered around 0xk

in
Txk
M in which it is defined.

A3. There exists LH > 0 such that for all iterates xk generated by Algorithm 1, the pullback
f̂k = f ◦Rxk

satisfies

f(Rxk
(s)) ≤ f(xk) + 〈s, gradf(xk)〉+

1

2

〈
s,∇2f̂k(0)[s]

〉
+

LH

6
‖s‖3 . (3.3)

for all s ∈ Txk
M such that ‖s‖ ≤ ̺(xk). We further assume ∆k ≤ ̺(xk), so that the prop-

erty (3.3) holds in the entire trust region produced by Algorithm 1.

A simple strategy to ensure ̺(xk) ≥ ∆k in the assumption above is to set ∆̄ below
infx∈M : f(x)≤f(x0) ̺(x), which is positive if the injectivity radius of the manifold is positive (Boumal
et al., 2019, Remark 2.2). Throughout we work implicitly under the assumption that this is
satisfied. We additionally make the following assumption on the Hessian operators considered
throughout the algorithm.

A4. There exists κH > 0 such that for all iterates xk generated by Algorithm 1, we have

‖Hk‖ := sup
s∈Txk

M

‖s‖≤1

| 〈s,Hk(s)〉 | ≤ κH . (3.4)

3.2 Preliminary lemmas

In this section, using standard arguments from the theory of trust-region methods, we bound
the model decrease in the regions R1,R2,R3 defined by the strict saddle property . We also
provide a lower bound on the trust-region radius.

Our first result handles the case of an iterate with large gradient norm (i.e., in R1).

Lemma 3.1. Under A2 and A4, consider the kth iterate of Algorithm 1 and suppose that
xk ∈ R1. Then,

mk(0)−mk(sk) ≥
1

2
min

(
∆k,

α

κH

)
α. (3.5)

Proof. Define sCk as the Cauchy point associated with the trust-region subproblem (3.1), i.e.
sCk = −tgk with t = argmint≥0,‖t gk‖≤∆k

mk(−t gk). A straightforward application of Boumal
(2023, Lemma 6.15) gives

mk(0)−mk(s
C
k ) ≥

1

2
min (∆k, ‖gk‖ /κH) ‖gk‖

≥ 1

2
min (∆k, α/κH )α.

The desired result follows from the optimality of sk, since mk(sk) ≤ mk(s
C
k ).

Our second result considers an iterate at which the Hessian possesses significant negative
curvature (i.e., in R2).
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Lemma 3.2. Under A1 and A2, consider the kth iterate of Algorithm 1 and suppose that
xk ∈ R2. Then,

mk(0) −mk(sk) ≥
1

2
β∆2

k. (3.6)

Proof. Define sEk = ∆kuk, where uk ∈ Txk
M satisfies

‖uk‖xk
= 1, 〈gk, uk〉xk

≤ 0 and 〈uk,Hkuk〉xk
≤ −β.

The vector sEk —called an eigenstep—exists because xk ∈ R2. By Boumal (2023, Lemma 6.16),
it satisfies

mk(0)−mk(s
E
k ) ≥

1

2
β∆2

k.

The desired result follows from the optimality of sk, as mk(sk) ≤ mk(s
E
k ).

Our last decrease lemma is based on the strong convexity constant, and proceeds similarly
to the previous two results.

Lemma 3.3. Under A1 and A2, consider the kth iterate of Algorithm 1 and suppose that
xk ∈ R3. Then, the step sk is uniquely defined, and satisfies

mk(0) −mk(sk) ≥
1

2
γ ‖sk‖2 . (3.7)

Proof. Since sk is a solution of the trust-region subproblem (3.1), there exists λk ≥ 0 such that
the following optimality conditions hold (Absil et al., 2008, Proposition 7.3.1):

(Hk + λk Id) sk = −gk (3.8)

〈s, (Hk + λk Id) [s]〉 ≥ 0 ∀s ∈ Txk
M (3.9)

‖sk‖ ≤ ∆k (3.10)

λk(∆k − ‖sk‖) = 0. (3.11)

Moreover, if the inequality in (3.9) is strict for nonzero s, then the solution is unique. To
establish a decrease guarantee for sk, we combine (3.8) and λk ≥ 0 to obtain

mk(0) −mk(sk) = −〈sk, gk〉 −
1

2
〈sk,Hksk〉

= 〈sk, (Hk + λk Id)sk〉 −
1

2
〈sk,Hksk〉

=
1

2
〈sk,Hksk〉+ λk ‖sk‖2

≥ 1

2
〈sk,Hksk〉

≥ 1

2
γ ‖sk‖2 .

The last line follows from Hk = Hessf(xk) and xk ∈ R3, i.e., 〈s,Hks〉 ≥ γ ‖s‖2 for any s ∈
Txk
M. This also implies that Hk + λk Id is positive definite, hence sk is uniquely defined.

The three lemmas above, together with the Lipschitz-type assumptions on the pullback,
yield a lower bound on the trust-region radius.
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Lemma 3.4. Let A1, A2, A3 and A4 hold. Then, for any iteration of index k, the trust-region
radius ∆k in Algorithm 1 satisfies

∆k ≥ ∆min := c∆min
(
∆0, α

1/2, α2/3, β, γ
)
, (3.12)

where c∆ = min

(
1, τ1

√
3(1− η1)

LH
, τ1

3

√
3(1− η1)

κHLH
, 3τ1

(1− η1)

LH

)
.

Proof. We begin by showing that if the trust-region radius drops below a certain threshold,
then the iteration must be successful. We consider the quantity

1− ρk = 1− f(xk)− f(Rxk
(sk))

mk(0) −mk(sk)
=

f(Rxk
(sk))−mk(sk)

mk(0)−mk(sk)
(3.13)

for the three regions defined by the strict saddle property. First note that for any xk ∈ M,
a second-order retraction (A1) and Lipschitz continuity of the Hessian (A3) give the following
bound on the numerator of (3.13):

f(Rxk
(sk))−mk(sk) = f(Rxk

(sk))− f(xk)− 〈gk, sk〉 −
1

2
〈sk,Hksk〉

≤ LH

6
‖sk‖3 ≤

LH

6
∆3

k. (3.14)

For xk ∈ R1, the denominator of (3.13) satisfies (3.5). It follows that

1− ρk ≤
LH∆3

k

3min (∆kα,α2/κH)
≤ LH

3
max

(
∆2

k

α
,
κH∆3

k

α2

)
.

As a result, if xk ∈ R1 and

∆k ≤ min



√

3(1 − η1)

LH
α1/2, 3

√
3(1 − η1)

κHLH
α2/3


 ,

then 1− ρk ≤ 1− η1 and iteration k is successful.
If xk ∈ R2, the denominator of (3.13) satisfies (3.6), which we combine with (3.14) to give

1− ρk ≤
LH∆3

k

3β∆2
k

=
LH

3β
∆k.

Thus, if xk ∈ R2 and ∆k ≤ 3(1− η1)β/LH , we have ρk ≥ η1 and iteration k is successful.
Finally, for xk ∈ R3, the upper bound (3.14) together with the model decrease (3.7) gives

1− ρk ≤
LH ‖sk‖3

3γ ‖sk‖2
≤ LH

3γ
∆k.

As a result, if xk ∈ R3 and ∆k ≤ 3(1− η1)γ/LH , then ρk ≥ η1 and iteration k is successful.
Overall, we have shown that the iteration k is successful as long as

∆k ≤ min



√

3(1 − η1)

LH
α1/2, 3

√
3(1− η1)

κHLH
α2/3,

3(1− η1)

LH
β,

3(1− η1)

LH
γ


 ,
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in which case ∆k+1 ≥ ∆k. It follows from the updating rule on ∆k that the trust-region radius
is lower bounded for any k ≥ 0:

∆k ≥ min


∆0, τ1

√
3(1 − η1)

LH
α1/2, τ1

3

√
3(1− η1)

κHLH
α2/3, τ1

3(1− η1)

LH
β, τ1

3(1− η1)

LH
γ




≥ c∆ min
(
∆0, α

1/2, α2/3, β, γ
)
.

For xk ∈ R1∪R2, it is straightforward to combine Lemma 3.4 with the results of Lemmas 3.1
and 3.2 to guarantee a model decrease that is independent of k. For xk ∈ R3, deriving a uniform
lower bound on the decrease based on Lemma 3.3 is more involved, and is the topic of the next
section.

3.3 Region of geodesic strong convexity and local convergence

In this section, we analyze the behavior of Algorithm 1 in the region of strong convexity R3.
The global subproblem minimizer is a regularized Newton step—Equation (3.8)—and thus our
approach mimics the study of Newton’s method applied to strongly convex functions (Boyd and
Vandenberghe, 2004). For sufficiently large gradients, we provide a lower bound on the decrease
achieved by the step; and for small gradients, we show that a local convergence phase begins,
during which the iterates converge quadratically towards a local minimizer of (P). To establish
local convergence, we quantify how small the gradient norm needs to be so that the following
occurs: the full Newton step is the solution of the subproblem, it is successful, it produces a new
iterate that is also in R3, and the sequence of gradient norms converges quadratically towards
zero.

Before stating those results, we establish several consequences of the boundedness assump-
tion on R3 (A2) that are helpful in analyzing (regularized) Newton steps, starting with a
Lipschitz-type inequality on the gradient of the pullback.

Lemma 3.5. Under A2, there exists L̂H > 0 such that for all iterates xk ∈ R3 produced by
Algorithm 1, we have

∥∥∥∇f̂k(sk)−∇f̂k(0) −∇2f̂k(0)[sk]
∥∥∥ ≤ L̂H

2
‖sk‖2 . (3.15)

Proof. The constant L̂H exists by continuity of the derivatives over R3 (a compact set) and
boundedness of the steps (Boumal, 2023, Lemma 10.57). The compactness ofR3 comes from A2,
while the boundedness of the steps sk follows from ‖sk‖ ≤ ∆k ≤ ∆̄.

The next result describes a non-singularity condition for the differential of the retraction
on small steps. This allows to relate the gradient of the pullback and the gradient at the next
iterate. This property was introduced in (Absil et al., 2007), and further analyzed in the context
of cubic regularization of Newton’s method (Agarwal et al., 2021).

Lemma 3.6. Let κR > 1, under A2 there exists νR > 0 such that for any xk ∈ R3 and
s ∈ Txk

M with ‖s‖ ≤ νR, we have

‖gradf(Rx(s))‖xk+1
≤ κR

∥∥∥∇f̂(s)
∥∥∥
xk

. (3.16)

Proof. We apply (Agarwal et al., 2021, Theorem 7) to R3 as a non-empty compact subset ofM.
This ensures that for any κR > 1, there exists a constant νR > 0 such that, at each xk ∈ R3,

‖s‖ ≤ νR ⇔ σmin(DRxk
(s)) ≥ 1

κR
,
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where DRxk
denotes the differential of Rxk

. The desired conclusion follows by combining this
result with (Agarwal et al., 2021, Equation 22), which states that

∥∥∥∇f̂xk
(s)
∥∥∥ ≥ σmin (DRxk

(s)) ‖gradf(Rxk
(s))‖ .

Combining the previous two lemmas, we bound the change in gradient norm for Newton
steps.

Lemma 3.7. Under A1 and A2, let xk ∈ R3 be an iterate produced by Algorithm 1 such that sk
is the Newton step, i.e., Hksk = −gk, and ‖sk‖ ≤ νR where νR is the constant from Lemma 3.6.
Then, if the iteration is successful, we have

‖gradf(xk+1)‖xk+1
≤ κR

L̂H

2
‖sk‖2xk

(3.17)

where L̂H comes from Lemma 3.5.

Proof. By assumption, xk+1 = Rxk
(sk). Using successively Lemma 3.6, A1 and Lemma 3.5, we

obtain

‖gradf(xk+1)‖xk+1
≤ κR

∥∥∥∇f̂xk
(sk)

∥∥∥
xk

= κR

∥∥∥∇f̂xk
(sk)− gradf(xk) + gradf(xk)

∥∥∥
xk

= κR

∥∥∥∇f̂xk
(sk)− gradf(xk)−Hksk

∥∥∥
xk

= κR

∥∥∥∇f̂xk
(sk)−∇f̂xk

(0)−∇2f̂k(0)[sk]
∥∥∥
xk

≤ κR
L̂H

2
‖sk‖2xk

.

Remark 3.1. Using the exponential map rather than a general retraction significantly simplifies
the analysis above. Indeed, with the exponential map, Lemma 3.5 can be replaced by

∥∥P−1
s gradf(Expx(s))− gradf(x)−Hessf(x)[s]

∥∥ ≤ LH

2
‖s‖2 (3.18)

where P−1
s is the parallel transport from TExpx(s)

M to TxM, and LH is the Lipschitz constant
of Hessf from (3.3), see (Boumal, 2023, Corollary 10.56). As a result, the proof of Lemma 3.7
is also simplified, and no longer requires the decomposition in short and long steps induced by
Lemma 3.6.

We are equipped to prove a decrease guarantee for Newton steps.

Lemma 3.8. Under the assumptions of Lemma 3.7, we have

mk(0)−mk(sk) ≥
γ

L̂H κR
‖gradf(xk+1)‖xk+1

.

Proof. By combining (3.17) with (3.7), we obtain

mk(0) −mk(sk) ≥
γ

2
‖sk‖2xk

≥ γ

L̂HκR
‖gradf(xk+1)‖xk+1

.
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We now turn to local convergence results. Our goal is to show that Newton steps are
eventually accepted by the algorithm, and that they produce iterates with decreasing gradient
norm. We begin with a bound on the norm of the subproblem minimizer in R3.

Lemma 3.9. Suppose that Algorithm 1 produces an iterate xk ∈ R3. Then,

‖sk‖ ≤
‖gk‖
γ

. (3.19)

Proof. The result holds trivially if ‖sk‖ = 0. Otherwise, using the definition of R3 together
with λk ≥ 0 and (3.8), we get

γ ‖sk‖2 ≤ 〈sk,Hksk〉 ≤ 〈sk, (Hk + λ Id)sk〉 = −〈sk, gk〉 ≤ ‖sk‖ ‖gk‖ ,

and division by ‖sk‖ gives (3.19).

Lemma 3.9 is an elementary identity that we use throughout. We use it in the next propo-
sition to show that iterations in R3 with a small enough gradient are successful.

Proposition 3.10. Under A1 and A3, suppose that Algorithm 1 generates xk ∈ R3 such that

‖gradf(xk)‖ <
3(1− η1)γ

2

LH
. (3.20)

Then, the kth iteration is successful.

Proof. First, we note that the condition for a successful step ρk ≥ η1 is equivalent to

f(Rk(sk))−mk(sk) + (1− η1)(mk(sk)−mk(0)) ≤ 0. (3.21)

The proof then consists in finding an upper bound for the left-hand side that is negative. From
Lemma 3.3, we have that

(1− η1) (mk(sk)−mk(0)) ≤ (1− η1)(−
γ

2
‖sk‖2).

Combining this property with (3.14) and (3.19) gives

f(Rk(sk))−mk(sk) + (1− η1)(mk(sk)−mk(0)) ≤
LH

6
‖sk‖3 −

γ

2
(1− η1) ‖sk‖2

= ‖sk‖2
(
LH

6
‖sk‖ −

γ

2
(1− η1)

)

≤ ‖sk‖2
(
LH

6

‖gk‖
γ
− γ

2
(1− η1)

)
.

The right-hand side is negative by (3.20), from which we conclude that (3.21) holds, and the
iteration is successful.

We now show that if the gradient norm is small enough, the Newton step decreases the
gradient norm.

Proposition 3.11. Under A1 and A2, let xk ∈ R3 be an iterate produced by Algorithm 1 such
that sk is the Newton step, i.e., Hksk = −gk, with ‖sk‖ ≤ νR where νR is the constant from
Lemma 3.6. If

‖gradf(xk)‖ <
2γ2

κRL̂H

, (3.22)

and the iteration is successful, then ‖gradf(xk+1)‖xk+1
< ‖gradf(xk)‖xk

.
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Proof. Combining (3.17), (3.19) and (3.22) gives

‖gk+1‖ ≤
κRL̂H

2
‖sk‖2 ≤

κRL̂H

2

‖gk‖2
γ2

≤ κRL̂H

2γ2
‖gk‖ · ‖gk‖ < ‖gk‖ .

In order to derive a local convergence result, we show that, if xk ∈ R3 and the gradient
norm is small enough, the Newton step remains in the neighborhood of the same minimizer.

Proposition 3.12. Under A1 and A2, let xk ∈ R3 be an iterate produced by Algorithm 1 such
that sk is the Newton step, and ‖sk‖ ≤ νR where νR is the constant from Lemma 3.6, and that

‖gradf(xk)‖ < min

(
νSγ,

γδ

2κS
,
γδ

2
,

2γ2

κRL̂H

)
. (3.23)

Let x∗ ∈ M be a local minimum of problem (P) such that dist (xk, x
∗) ≤ δ and f is geodesi-

cally γ-strongly convex on {y ∈ M : dist(y, x∗) < 2δ}. If the iteration is successful, then
dist (xk+1, x

∗) < δ.

Proof. We first show that dist (xk+1, x
∗) < 2δ. Using (3.19) and (3.23), we have that

‖sk‖ ≤
‖gk‖
γ

<
νSγ

γ
= νS .

It follows from Lemma 2.2 that

dist(xk+1, xk) ≤ κS ‖sk‖ ≤ κS
‖gk‖
γ
≤ κS

γ

γδ

2κS
=

δ

2
,

where the last inequality is due to (3.23). As a result,

dist(xk+1, x
∗) ≤ dist(xk+1, xk) + dist(xk, x

∗) ≤ δ

2
+ δ < 2δ.

By definition of x∗, we know that f is geodesically γ-strongly convex over S ⊆M, a subset ofM
that includes x∗ and xk+1. Consider a geodesic c : [0, 1] → S contained in S with c(0) = xk+1

and c(1) = x∗, such that dist(xk+1, x
∗) ≤ L(c) where L(c) = ‖c′(0)‖c(0) is the length of the

geodesic path. From (Boumal, 2023, Theorem 11.21), we have

f(x∗) ≥ f(xk+1) +
〈
gradf(xk+1), c

′(0)
〉
xk+1

+
γ

2
L(c)2.

Using f(x∗) ≤ f(xk+1) gives

γ

2
L(c)2 ≤

〈
gradf(xk+1),−c′(0)

〉
xk+1

≤ ‖gradf(xk+1)‖xk+1

∥∥c′(0)
∥∥
xk+1

= ‖gradf(xk+1)‖xk+1
L(c).

Therefore, we have L(c) ≤ 2

γ
‖gradf(xk+1)‖xk+1

. To conclude, recall that we have ‖sk‖ ≤ νR

by assumption, thus Proposition 3.11 applies, and we obtain

dist(xk+1, x
∗) ≤ L(c) ≤ 2

γ
‖gradf(xk+1)‖xk+1

<
2

γ
‖gradf(xk)‖xk

<
2

γ

γδ

2
= δ.

We now characterize the local convergence of Algorithm 1. The quadratic convergence rate
stems from the following proposition.
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Proposition 3.13. Under A1 and A2, let xk ∈ R3 be an iterate produced by Algorithm 1 such
that sk is a Newton step, and ‖sk‖ ≤ νR where νR is the constant from Lemma 3.6. Suppose
further that the kth iteration is successful. Then,

κRL̂H

2γ2
‖gradf(xk+1)‖xk+1

≤
(
κRL̂H

2γ2
‖gradf(xk)‖xk

)2

.

Proof. Using Lemma 3.7 and Lemma 3.9 gives

‖gradf(xk+1)‖xk+1
≤ κRL̂H

2
‖sk‖2xk

≤ κRL̂H

2γ2
‖gradf(xk)‖2xk

,

and multiplying both sides by
κRL̂H

2γ2
yields the desired conclusion.

Proposition 3.13 guarantees that the gradient norm decreases quadratically along Newton
steps, provided that the gradient norm is small enough. In Proposition 3.14, we show that the
local phase of Algorithm 1 begins once the trust-region method generates a point in R3 with a
small enough gradient.

Proposition 3.14 (Local convergence of Algorithm 1). Suppose that A1, A2 and A3 hold. Let
xk ∈ R3 be an iterate produced by Algorithm 1, and let x∗ ∈ M be a local minimum of (P)
such that dist(xk, x

∗) ≤ δ and f is geodesically γ-strongly convex on {y ∈ M : dist(y, x∗) < 2δ}.
Finally, suppose that

‖gradf(xk)‖ < min
(
cQmin

(
γ, γ2, γδ

)
, γ∆k

)
(3.24)

where cQ = min

(
3(1 − η1)

LH
, νR,

1

κS
,
1

2
,

1

κR L̂H

)
. Then, all subsequent iterations are successful

Newton steps that remain in R3. Moreover, the sequence of gradient norms (‖gradf(xk)‖)k
converges quadratically to zero.

Proof. Lemma 3.9 and (3.24) give ‖sk‖ ≤ ‖gradf(xk)‖ /γ < ∆k, and thus sk is the Newton
step. In addition, the condition (3.24) also implies (3.20), thus the kth iteration is successful
by Proposition 3.10. Similarly, (3.24) implies (3.22), (3.23), and ‖sk‖ ≤ νR, which yields
‖gk+1‖ < ‖gk‖ (Proposition 3.11) and dist(xk+1, x

∗) < δ (Proposition 3.12).
Since ‖gk+1‖ < ‖gk‖ < γ∆k ≤ γ∆k+1, the same reasoning applies at iteration k + 1,

and at every subsequent iteration by induction, proving the first part of the result. Finally,
quadratic convergence follows from repeated application of Proposition 3.13, as (3.24) implies
‖gradf(xk)‖ < γ2/(κRL̂H). Indeed, for any index l ≥ k, we have

L̂HκR
2γ2

‖gradf(xl)‖ ≤
(
L̂HκR
2γ2

‖gradf(xk)‖
)2l−k

≤
(
1

2

)2l−k

, (3.25)

which characterizes quadratic convergence.

We emphasize that the local convergence property is an integral part of our global conver-
gence analysis. Deriving global rates of convergence (i.e., complexity results) is the subject of
the next section.

15



3.4 Complexity bounds

In this section, we combine the results from Sections 3.2 and 3.3 to obtain complexity bounds.
More precisely, we seek a bound on the number of iterations Algorithm 1 requires to reach an
iterate xK ∈ M that is an (εg, εH)-second-order critical point—defined in Equation (1.2).

Following Section 3.3, we can bound the number of iterations in the local phase necessary
to satisfy (1.2). The result below is a direct corollary of Proposition 3.14.

Theorem 3.15. Let the assumptions of Proposition 3.14 hold for xk ∈ R3 generated by Algo-
rithm 1. Then, the algorithm returns an iterate satisfying (1.2) in at most

log2 log2

(
2γ2

κRL̂Hεg

)
(3.26)

iterations following iteration k.

Proof. For any l ≥ k, it follows from Equation (3.25) that if ‖gradf(xl)‖ ≥ εg, it must be that

l − k ≤ log2 log2

(
2γ2

L̂HκRεg

)
.

Our main complexity result comes under the assumption that f is lower bounded onM.

A5. There exists f∗ > −∞ such that f(x) ≥ f∗ for all x ∈ M.

We first give an upper bound on the number of successful steps for Algorithm 1.

Theorem 3.16 (Number of successful iterations of Algorithm 1). Suppose that A1–A5 hold.
Algorithm 1 produces an iterate satisfying (1.2) in at most

C

min
(
α2, α4/3β, α4/3γ, α2/3γ2, β3, β2γ, βγ2, γ3, γ2δ

) + 1 + log2 log2

(
2γ2

κRL̂Hεg

)

successful iterations, where the constant C > 0 depends on κH , c∆,∆0, νR, κR, L̂H , η1, cQ, and
for any θ ∈ {α, β, γ, δ}, we define θ = min(1, θ).

Proof. LetK ∈ N such that Algorithm 1 has not produced an iterate satisfying (1.2) by iteration
K. Let S = {k ≤ K : ρk ≥ η1} denote the set of indices corresponding to successful (and very
successful) iterations up to index K. We partition the set of iterations as follows:

S1 = {k ∈ S : xk ∈ R1}
S2 = {k ∈ S : xk ∈ R2 \ R1}
S3 = {k ∈ S : xk ∈ R3 \ R1}.

We now bound the decrease in function value for all three sets.
Let k ∈ S1, using Lemma 3.1 and Lemma 3.4, we obtain

f(xk)− f(xk+1) ≥ η1 (mk(0)−mk(sk)) ≥
η1
2
min

(
α

κH
,∆k

)
α ≥ η1

2
min

(
α

κH
,∆min

)
α. (3.27)

For k ∈ S2, combining Lemma 3.2 with Lemma 3.4 gives

f(xk)− f(xk+1) ≥ η1 (mk(0)−mk(sk)) ≥
η1
2
∆2

kβ ≥
η1
2
∆2

minβ. (3.28)
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We partition S3 into iterations with long steps, short steps on the boundary of the trust
region, and short steps inside the trust region: S3 := S l3 ∪ S

s,b
3 ∪ S

s,i
3 , where

S l3 = {k ∈ S3 : ‖sk‖ > νR}
Ss,b3 = {k ∈ S3 : ‖sk‖ ≤ νR, ‖sk‖ = ∆k}
Ss,i3 = {k ∈ S3 : ‖sk‖ ≤ νR, ‖sk‖ < ∆k}

where νR > 0 is defined in Lemma 3.6.
If k ∈ S l3, Lemma 3.3 yields

f(xk+1)− f(xk) ≥
η1
2
γ ‖sk‖2 ≥

η1
2
γν2R. (3.29)

If k ∈ Ss,b3 , we use Lemma 3.3 together with Lemma 3.4 to obtain

f(xk+1)− f(xk) ≥
η1
2
γ ‖sk‖2 =

η1
2
γ∆2

k ≥
η1
2
γ∆2

min. (3.30)

Finally, if k ∈ Ss,i3 , we partition further Ss,i3 into Ss,i,s3 ∪ Ss,i,l3 , where

Ss,i,l3 =
{
k ∈ Ss,i3 : ‖gk+1‖ ≥ min

(
cQmin

(
γ, γ2, γδ

)
, γ∆k

)}
,

Ss,i,s3 = Ss,i3 \ S
s,i,l
3 .

If k ∈ Ss,i,l3 , Proposition 3.8 implies

f(xk)− f(xk+1) ≥ η1γ
‖gk+1‖
L̂H κR

≥ η1

L̂H κR
min

(
cQmin

(
γ2, γ3, γ2δ

)
, γ2∆k

)

≥ η1

L̂H κR
min

(
cQmin

(
γ2, γ3, γ2δ

)
, γ2∆min

)
. (3.31)

Finally, if k ∈ Ss,i,s3 , either xk+1 ∈ S3 and the local convergence phase begins at xk+1

according to Proposition 3.14; which produces an iterate that satisfies (1.2) in a number of
iterations given by (3.26). Otherwise, we must have xk+1 ∈ S1 ∪ S2, and as a result we have

∣∣∣Ss,i,s3

∣∣∣ ≤ |S1|+ |S2|+ 1 + log2 log2

(
2γ2

κRL̂Hεg

)
. (3.32)

It thus suffices to bound the cardinality of S1 and S2 to bound
∣∣∣Ss,i,s3

∣∣∣.
Thanks to A5, we have

f(x0)− f∗ ≥ f(x0)− f(xK)

≥
∑

k∈S

f(xk)− f(xk+1)

≥
∑

k∈S1

f(xk)− f(xk+1) +
∑

k∈S2

f(xk)− f(xk+1) +
∑

k∈Sl
3

f(xk)− f(xk+1)

+
∑

k∈Ss,b
3

f(xk)− f(xk+1) +
∑

k∈Ss,i,l
3

f(xk)− f(xk+1).
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Putting (3.27), (3.28), (3.29), (3.30) and (3.31) together, we obtain

f(x0)− f∗ ≥ |S1|
η1
2
min (α/κH ,∆min)α+ |S2|

η1
2
∆2

minβ +
∣∣∣S l3
∣∣∣
η1
2
ν2Rγ

+
∣∣∣Ss,b3

∣∣∣
η1
2
∆2

minγ +
∣∣∣Ss,i,l3

∣∣∣
η1

L̂H κR
min

(
cQmin

(
γ2, γ3, γ2δ

)
, γ2∆min

)
.

Since all quantities on the right-hand side are nonnegative, we can bound each cardinality
independently as follows:

|S1| ≤
2(f(x0)− f∗)

η1
max

(
κHα−2,∆−1

minα
−1
)

|S2| ≤
2(f(x0)− f∗)

η1
∆−2

minβ
−1

|S l3| ≤
2(f(x0)− f∗)

η1
ν−2
R γ−1

|Ss,b3 | ≤
2(f(x0)− f∗)

η1
∆−2

minγ
−1

|Ss,i,l3 | ≤ κRL̂H(f(x0)− f∗)

η1
max

(
c−1
Q max

(
γ−2, γ−3, γ−2δ−1

)
, γ−2∆−1

min

)
.

Using that ∆min = c∆min
(
∆0, α

1/2, α2/3, β, γ
)
≥ c∆min(∆0, 1)min

(
α2/3, β, γ

)
yields the follow-

ing upper bounds

|S1| ≤
2(f(x0)− f∗)

η1
max

(
κH , c−1

∆ ∆−1
0 , c−1

∆

)
max

(
α−2, α−1β−1, α−1γ−1

)

|S2| ≤
2(f(x0)− f∗)

η1
max

(
c−2
∆ ∆−2

0 , c−2
∆

)
max

(
α−4/3β−1, β−3, β−1γ−2

)

|S l3| ≤
2(f(x0)− f∗)

η1
ν−2
R γ−1

|Ss,b3 | ≤
2(f(x0)− f∗)

η1
max

(
c−2
∆ ∆−2

0 , c−2
∆

)
max

(
α−4/3γ−1, β−2γ−1, γ−3

)

|Ss,i,l3 | ≤ κRL̂H(f(x0)− f∗)

η1
max

(
c−1
Q , c−1

∆ ∆−1
0 , c−1

∆

)
max

(
α−2/3γ−2, β−1γ−2, γ−3, γ−2δ−1

)
.

Combining these bounds with (3.32), the total number of successful iterations is bounded as

|S| = |S1|+ |S2|+ |S l3|+ |Ss,b3 |+ |S
s,i,l
3 |+ |Ss,i,s3 |

≤ 2|S1|+ 2|S2|+ |S l3|+ |Ss,b3 |+ |S
s,i,l
3 |+ 1 + log2 log2

(
2γ2

κRL̂Hεg

)
.

≤ Cmin
(
α2, α4/3β, α4/3γ, α2/3γ2, β3, β2γ, βγ2, γ3, γ2δ

)−1
+ 1 + log2 log2

(
2γ2

κRL̂Hεg

)
,

where

C =
(f(x0)− f∗)

η1

[
4max

(
κH , c−1

∆ ∆−1
0 , c−1

∆

)
+ 6max

(
c−2
∆ ∆−2

0 , c−2
∆

)

+2ν−2
R + κRL̂H max

(
c−1
Q , c−1

∆ ∆−1
0 , c−1

∆

)]
.
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Theorem 3.16 bounds the number of successful iterations required to satisfy (1.2), which
corresponds to the number of gradient and Hessian evaluations. To account for the total number
of iterations—the number of function evaluations, we follow a common strategy and show that
this number is at most a constant multiple of the number of successful iterations.

Lemma 3.17. Under the assumptions of Lemma 3.4, let K ∈ N and let S denote the set of
successful iterations of index k ≤ K. Then,

|S| ≥ logτ2(1/τ1)

1 + logτ2(1/τ1)
(K + 1)

− 1

1 + logτ2(1/τ1)
max

[
0, logτ2

(
1

c∆

)
, logτ2

(
∆0

c∆α
1
2

)
, logτ2

(
∆0

c∆α
2
3

)
, logτ2

(
∆0

c∆β

)
,

logτ2

(
∆0

c∆γ

)]
.

Proof. The proof follows verbatim (Boumal, 2023, Lemma 6.23) with (3.12) replacing (Boumal,
2023, Eq. (6.36)) and τ1, τ2 replacing 1

4 and 2, respectively. Since c∆ ≤ 1 by definition, the
maximum is always a nonnegative quantity.

Combining Theorem 3.16 with Lemma 3.17 gives the total iteration complexity.

Theorem 3.18 (Iteration complexity of Algorithm 1). Under the assumptions of Theorem 3.16,
Algorithm 1 produces a point that satisfies (1.2) in at most

1 + logτ2(1/τ1)

logτ2(1/τ1)

[
C

min
(
α2, α4/3β, α4/3γ, α2/3γ2, β3, β2γ, βγ2, γ3, γ2δ

) + 1 + log2 log2

(
2γ2

κRL̂Hεg

)]

(3.33)

+
1

logτ2(1/τ1)
max

(
logτ2

(
1

c∆

)
, logτ2

(
∆0

c∆α
1

2

)
, logτ2

(
∆0

c∆α
2

3

)
, logτ2

(
∆0

c∆β

)
, logτ2

(
∆0

c∆γ

))

iterations, where C,α, β, γ, δ are defined as in Theorem 3.16.

The bound of Theorem 3.18 holds for any values εg > 0 and εH > 0, but it is especially rele-
vant when εg < α and εH < β. In that case, the iteration complexity (3.33) is an improvement
over the O

(
max(ε−2

g ε−1
H , ε−3

H )
)
bound of Riemannian trust-region methods for generic noncon-

vex functions (Boumal et al., 2019). Perhaps surprisingly, our bound does not depend on εH .
This is because every iterate xk such that ‖gradf(xk)‖ ≤ ǫg and λmin(Hessf(xk)) < −εH belongs
to R2, where the function decrease depends on β. In fact, if εg < α and εH < β, Algorithm 1
necessarily reaches some xk ∈ R3 such that

‖gradf(xk)‖ ≤ εg and λmin(Hessf(xk)) ≥ γ.

This ensures that the algorithm finds an approximate minimizer, which is not guaranteed in
the general nonconvex case. In that sense, the strict saddle property allows to obtain stronger
guarantees of optimality and improved complexity bounds.

On the other hand, if εg ≥ α or εH ≥ β, an (εg, εH)-critical point (1.2) need not belong
to R3. The following table indicates the possible regions in which Algorithm 1 can terminate
depending on the values of εg and εH :

Convergence of Algorithm 1 α > εg α ≤ εg
β > εH R3 R1 ∪R3

β ≤ εH R2 ∪R3 R1 ∪R2 ∪R3

19



When the strict saddle parameters α and β are known, one can always select εg and εH to
ensure that the method reaches an iterate in R3. In that case, the value of εg only affect the
complexity through a logarithmic factor, and εH is irrelevant.

To end this section, we apply our complexity result to the examples of strict saddle functions
from Section 2.

Example 3.1. As a continuation of Example 2.1, let f : R
n → R be a γ-strongly convex

function, choose α = 1 so that f is (1, 1, γ, 2
γ )-strict saddle, and let εg ∈ (0, 1). Then, by

Theorem 3.18, Algorithm 1 computes an iterate such that ‖∇f(xk)‖ ≤ εg in at most O(γ−3) +
log log(γ2ε−1

g ) iterations. In comparison, a standard analysis of Newton’s method with Armijo
backtracking linesearch gives at most O(γ−5)+log log(γ3ε−1

g ) iterations to find such a point (Boyd
and Vandenberghe, 2004). Although our bound has a better dependency on γ, we believe that this
is an artefact of the line-search analysis, which could be improved by changing the line-search
condition.

Example 3.2. As a continuation of Example 2.2, let f : Sn−1 → R be defined by f(x) = xTAx,
where A ∈ R

n×n is a symmetric matrix with eigenvalues λ1 > λ2 ≥ · · · ≥ λn−1 > λn. Then, by
Theorem 3.18, Algorithm 1 computes an iterate satisfying (1.2) in at most

O
(
max

(
1,

λ2
1

(λn−1 − λn)2
,

λ
4/3
1

(λn−1 − λn)7/3
,

λ
2/3
1

(λn−1 − λn)8/3
,

1

(λn−1 − λn)3
,

λ1

(λn−1 − λn)3

))

+O
(
log log

(
(λn−1 − λn)

2ε−1
g

))

iterations.

4 Riemannian trust-region method with inexact subproblem

minimization

In this section, we design an inexact variant of the Riemannian trust-region algorithm, that
is tailored to strict saddle functions. In each region of M, some landscape-aware step is ap-
propriate and ensures good convergence rates: gradient-like steps in R1, negative curvature
steps in R2, and (regularized) Newton steps in R3. Our goal is to compute these steps ap-
proximately, without computing the entire spectrum of the Hessian to determine the region
of the current point. The natural choice for this is the well-known truncated conjugate gradi-
ent algorithm (Toint, 1981; Steihaug, 1983), and its recent adaptations that yield second-order
complexity guarantees (Curtis et al., 2021). We make minimial adjustements to the standard
truncated conjugate gradient (tCG), in order to leverage the strict saddle structure and ensure
convergence to second-order critical points. In a departure from the exact setting, we explicitly
use the strict saddle parameters α, β, γ in the inexact algorithm. This idea appears in a recent
proposal for nonconvex matrix factorization problems, which satisfy a different strict saddle
property (O’Neill and Wright, 2023).

4.1 Inexact algorithm and subroutines

Recall that, at every iteration k, the trust-region subproblem is given by

min
s∈Txk

M
mk(s) subject to ‖s‖ ≤ ∆k, (4.1)

where mk is the quadratic model defined in (3.2). For nonzero gk, we apply a truncated
conjugate gradient method to find an approximate solution of the subproblem. Our variant of
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truncated conjugate gradient, described in Algorithm 2, is a Riemannian adaptation of (Curtis
et al., 2021)—a nonconvex trust-region method with complexity guarantees; which we further
adapt to strict saddle problems.

Algorithm 2 Truncated Conjugate Gradient (tCG) for subproblem (4.1)

Input: Nonzero gradient gk, Hessian matrix Hk, trust-region radius ∆k, accuracy parameter
ζ ∈ (0, 1), bound κH ∈ [‖Hk‖,∞), strict saddle parameter γ > 0.
Output: trial step s and flag outCG indicating termination type

Define JCG = min

{
n,

1

2

√
κH
γ

ln

(
2
√
κH

ζ
√
γ

max
(
ε−2
g , ε−1

g , κH/γ
))}

.

Set y0 = 0, r0 = gk, p0 = −gk, j = 0.
while j < JCG do

if 〈yj,Hkyj〉 < γ ‖yj‖2 then

Set d = ∆kyj/ ‖yj‖ and terminate with outCG = not strongly convex

end if

if 〈pj,Hkpj〉 < γ ‖pj‖2 then

Set d = ∆kpj/ ‖pj‖ and terminate with outCG = not strongly convex

end if

σj ← ‖rj‖2 / 〈pj,Hkpj〉 ⊲ Begin standard tCG procedure
yj+1 = yj + σjpj
if ‖yj+1‖ ≥ ∆k then

Compute σ̄j ≥ 0 such that ‖yj + σ̄jpj‖ = ∆k

return s← yj + σ̄jpj and outCG = boundary step

end if

rj+1 ← rj + σjHkpj
if condition (4.2) holds then

return s← yj+1 and outCG = small residual

end if

τj+1 ← ‖rj+1‖2 / ‖rj‖2
pj+1 ← −rj+1 + τj+1pj ⊲ end standard tCG procedure
j ← j + 1

end while

return s← ykmax
and outCG = max iter

The main differences between Algorithm 2 and (Curtis et al., 2021, Algorithm 3.1) lie in
the tolerance on the curvature and the stopping criterion. For the former, we use the strict
saddle constant γ (the strong convexity constant in R3) instead of an arbitrary tolerance on
the smallest eigenvalue of the Hessian. Throughout the iterations of Algorithm 2, we monitor
the curvature of the Hessian along the directions generated by CG. Any curvature less than γ
indicates that the current iterate does not belong to R3, and triggers termination of tCG. We
also strengthen the stopping criterion of tCG from (Curtis et al., 2021), and use

‖rj+1‖ ≤ ζmin
(
‖gk‖2 , ‖gk‖ , γ ‖yj+1‖

)
, (4.2)

where rj = ∇mk(yj) is the residual of the CG algorithm after j iterations, and ζ ∈ (0, 1). The
term ‖gk‖2 in (4.2) ensures a local quadratic convergence, as we show in Section 4.3.

The remaining terms on the right-hand side of (4.2) are used to certify a good decrease
when the current iterate belongs to R1 or R3. Importantly, when Hk is positive definite, the
residual condition (4.2) is satisfied in min

(
n,O

(
γ−1/2

))
iterations. This property is intrinsic to

the conjugate gradient algorithm.
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Lemma 4.1. Suppose that we apply the conjugate gradient algorithm to gk ∈ Txk
M with

‖gk‖ > εg and Hk such that γ Id � Hk � κH Id. Then, given a tolerance ζ ∈ (0, 1), CG finds a
vector y ∈ Txk

M such that

‖Hky + gk‖ ≤ ζmin
(
‖gk‖2 , ‖gk‖ , γ ‖y‖

)
(4.3)

in at most

JCG := min

(
n,

1

2

√
κH
γ

ln

(
2
√
κH

ζ
√
γ

max
(
ε−2
g , ε−1

g , κH/γ
)))

(4.4)

iterations or, equivalently, Hessian-vector products.

Proof. The result follows from (Royer and Wright, 2018, Lemma 11), and in particular the
inequality

‖Hkyj + gk‖ ≤ 2

√
κH
γ

(√
κH/γ − 1√
κH/γ + 1

)j

‖gk‖

that holds for any j ≤ n. The model is also minimized in at most n steps, ‖Hkyn + gk‖ = 0.

Lemma 4.1 implies that one can use a cap on the number of iterations, along with checks on
the curvature of Hk, to monitor the convergence of tCG. In particular, if λmin(Hk) ≥ γ, then
Algorithm 2 satisfies (4.2) in JCG iterations, which may be smaller than n in large dimensions.
When this is not the case, and that xk /∈ R1, the Hessian is guaranteed to have negative
curvature, and we compute (an approximation of) the smallest eigenvalue.

To this end, we rely on a minimum eigenvalue oracle (MEO), that either computes a direction
of sufficient negative curvature, or certifies that such direction does not exist (Royer et al., 2020;
Curtis et al., 2021). One possible implementation of this procedure consists in constructing a
full eigenvalue decomposition of the Hessian, which deterministically guarantees the desired
outcome but requires access to the entire Hessian matrix (or, equivalently, n Hessian-vector
products). Cheaper variants rely on Krylov subspace methods, such as Lanczos’ method, that
provide the desired guarantee with high probability using potentially less than n Hessian-vector
products (Royer et al., 2020, Appendix B). For the sake of generality, we describe the MEO as
a probabilistic method in Algorithm 3. Similarly to Algorithm 2, a key difference with previous
minimum eigenvalue oracles is that the strict saddle constant β (associated with the region of
negative curvature R2) replaces an a priori optimality tolerance on the minimum eigenvalue of
the Hessian.

Algorithm 3 Minimum eigenvalue oracle (MEO)

Inputs: Matrix Hk, trust-region radius ∆k, failure probability tolerance p ∈ (0, 1), bound
κH ∈ [‖H‖ ,∞), strict saddle parameter β.
Outputs: Either a certificate that λmin(Hk) ≥ −β valid with probability at least 1− p, or a
vector s ∈ Txk

M such that

〈gk, s〉 ≤ 0, 〈s,Hks〉 ≤ −
1

2
β ‖s‖2 , and ‖s‖ = ∆k. (4.5)

Our inexact trust-region method (Algorithm 4) combines tCG (Algorithm 2) and the MEO
(Algorithm 3). We first attempt to use tCG to solve subproblem (4.1) approximately. If the
current iterate has a large enough gradient (xk ∈ R1) or tCG hits the boundary of the trust
region, we use the step given by tCG. Otherwise, we call the MEO to estimate the minimum
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Algorithm 4 Strict saddle RTR with inexact subproblem minimization

1: Inputs: Initial point x0 ∈ M, initial and maximal trust-region radii 0 < ∆0 < ∆̄, constants
0 < η1 < η2 < 1 and 0 < τ1 < 1 < τ2, failure probability tolerance p ∈ [0, 1), strict saddle
parameters (α, β, γ).

2: for k = 1, 2, . . . do

3: if ‖gk‖ > 0 then

4: Call Algorithm 2 on the subproblem (4.1) to obtain sCG
k and outCG.

5: end if

6: if ‖gk‖ ≥ α or outCG=boundary step then

7: Set sk = sCG
k .

8: else if ‖gk‖ = 0 or (outCG ∈ {max iter,not strongly convex,small residual} and
‖gk‖ < α) then.

9: Call Algorithm 3 on the Hessian Hk.
10: if Algorithm 3 certifies that λmin(Hk) > −β then

11: Set sk = sCG
k if ‖gk‖ > 0, otherwise terminate and return xk.

12: else

13: Set sk = sMEO
k , where sMEO

k is the output of Algorithm 3.
14: end if

15: end if

16: Compute ρk =
f(xk)− f (Rxk

(sk))

mk(0)−mk(sk)
and set xk+1 =

{
Rk(xk) if ρk ≥ η1

xk otherwise.
17:

18: Set ∆k+1 =





min
(
τ2∆k, ∆̄

)
if ρk > η2 [very successful]

∆k if η2 ≥ ρk ≥ η1 [successful]

τ1∆k otherwise. [unsuccessful]
19: end for
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eigenvalue of the Hessian. If the MEO finds a direction of sufficient negative curvature, we use
it as an approximate model minimizer. Otherwise, we proceed with the tCG step.

Note that when gk = 0, the trust-region method calls Algorithm 3 directly, and terminates
if it certifies that λmin(Hk) ≥ −β, since this implies xk ∈ R3 is a local minimum. This corner
case is not central to our complexity analysis.

For the rest of Section 4, we consider the following assumption on the MEO (Algorithm 4).

A6. For any iteration of Algorithm 4, if Algorithm 3 is called during this iteration, it outputs
the correct answer, i.e., a certificate that λmin(Hk) > −β or a step of curvature less than −β

2 ,
in at most

JMEO := min

(
n, 1 +

⌈
1

2
ln(2.75n/p2)

√
κH
β

⌉)
(4.6)

iterations, with probability at least 1− p.

Computing a full eigenvalue decomposition for Algorithm 3 ensures that A6 holds for any
p ≥ 0, with JMEO = n. The bound (4.6) also applies to Krylov subspace methods, such as
Lanczos’ method with an initial vector uniformaly distributed on the unit sphere (Royer et al.,
2020).

4.2 Properties of inexact steps

In this section, we provide several decrease lemmas for the steps produced by Algorithms 2
and 3. Our proof technique follows earlier works on Euclidean trust-region methods for general
nonconvex functions (Curtis et al., 2021).

We first consider iterations of Algorithm 2 where xk ∈ R1 (large gradient norm).

Lemma 4.2. Under A2 and A4, consider the kth iteration of Algorithm 4. Suppose that ‖gk‖ ≥
α, so that Algorithm 2 is called. Suppose that it outputs sk with outCG 6= boundary step.
Then, we have

mk(0)−mk(sk) ≥
1

2
min

(
∆k,

α

κH

)
α. (4.7)

Proof. By assumption, the step generated by tCG is taken, and it guarantees at least as much
model decrease as the Cauchy step sCk , defined in the proof of Lemma 3.1. Indeed, the Cauchy
step corresponds to the first iterate of tCG (Boumal, 2023; Conn et al., 2000). Applying
Lemma 3.1 gives

mk(0)−mk(sk) ≥ mk(0) −mk(s
C
k ) ≥

1

2
min

(
∆k,

α

κH

)
α.

The following lemma gives a model decrease when xk ∈ R2 and the MEO is called.

Lemma 4.3. Under A1 and A2, consider the kth iteration of Algorithm 4. Suppose that
Algorithm 3 is called with xk ∈ R2. Then,the method outputs a vector sk ∈ Txk

M satisfying

mk(0) −mk(sk) ≥
1

4
β∆2

k. (4.8)

with probability at least 1− p.

Proof. Since xk ∈ R2, Algorithm 3 is called with Hk such that λmin(Hk) ≤ −β. Algorithm 4
then outputs a step satisfying (4.5) with probability 1 − p. Reasoning as in the proof of
Lemma 3.2, we bound the model decrease as

mk(0)−mk(sk) ≥ −
1

2
〈sk,Hksk〉 ≥

β

4
‖sk‖2 =

β

4
∆2

k.
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Note that Lemma 4.3 is a probabilistic result, because it depends on the minimum eigenvalue
oracle, but this oracle is only called for small gradients.

We now consider an iteration at which tCG terminates with a small residual, which satis-
fies (4.2).

Lemma 4.4. Under A1 and A2, consider the kth iteration of Algorithm 4. Suppose that
Algorithm 2 is called and outputs sk with outCG=small residual. Then,

mk(0)−mk(sk) ≥
1

4
γ ‖sk‖2 . (4.9)

In addition, if ‖sk‖ ≤ νR, we have

mk(0) −mk(sk) ≥
1

2(κ2R + 2L̂HκR)
min

(
‖gradf (Rxk

(sk))‖2 γ−1, γ3
)
. (4.10)

Proof. By assumption, we have sk = yj+1, where yj+1 is the first iterate of tCG that satisfies
the residual condition (4.2). As a result,

〈sk,Hksk〉 = 〈yj + σjpj ,Hk(yj + σjpj)〉
= 〈yj,Hkyj〉+ σj 〈yj,Hkpj〉+ σj 〈pj ,Hkyj〉+ σ2

j 〈pj,Hkpj〉
= 〈yj,Hkyj〉+ σ2

j 〈pj,Hkpj〉 , (4.11)

where the last line follows from the standard properties of CG iterates yj =
∑j−1

i=0 σipi and
〈pj ,Hkpi〉 = 0 for i 6= j, which implies 〈pj ,Hkyj〉 = 0 (see, e.g., (Nocedal and Wright,
2006, Chapter 5) or (Royer et al., 2020, Appendix A)). In addition, Algorithm 2 ensures that
〈pj ,Hkpj〉 ≥ γ ‖pj‖2 and 〈yj,Hkyj〉 ≥ γ ‖yj‖2, hence

〈sk,Hksk〉 ≥ γ ‖yj‖2 + γ ‖σjpj‖2 ≥
γ

2
‖sk‖2 , (4.12)

where the last inequality follows from ‖u‖2 + ‖v‖2 ≥ 1

2
‖u+ v‖2 for all vectors u, v ∈ Txk

M.

Meanwhile, the model decrease satisfies

mk(0)−mk(sk) = −〈sk, gk〉 −
1

2
〈sk,Hksk〉 = −〈sk,−Hksk + rj+1〉 −

1

2
〈sk,Hksk〉

=
1

2
〈sk,Hksk〉 − 〈rj+1, sk〉

=
1

2
〈sk,Hksk〉 ,

using that rj+1 = Hkyj+1 + gk = Hksk + gk and 〈rj+1, yj+1〉 = 0 by the orthogonality property
of the CG residual. Combining the last equality with (4.12), we obtain

mk(0)−mk(sk) ≥
1

4
γ ‖sk‖2 , (4.13)

which proves the first part of the proposition.
Now assume ‖sk‖ ≤ νR and let g+k = gradf (Rxk

(sk)). Using the proof of Lemma 3.7 gives

∥∥g+k
∥∥ ≤ κR

∥∥∥∇f̂k(sk)− gradf(xk) + gradf(xk)
∥∥∥

= κR

∥∥∥∇f̂k(sk)− gradf(xk)−Hksk + rj+1

∥∥∥

≤ κR

∥∥∥∇f̂k(sk)− gradf(xk)−Hksk

∥∥∥+ κR ‖rj+1‖ (4.14)

≤ L̂HκR
2
‖sk‖2 + κRγ ‖sk‖ ,
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where the last line follows from the small residual condition (4.2). The inequality

L̂HκR
2
‖sk‖2 + κRγ ‖sk‖ −

∥∥g+k
∥∥ ≥ 0 (4.15)

involves a univariate quadratic function of ‖sk‖ ≥ 0, and thus (4.15) holds as long as

‖sk‖ ≥
−κRγ +

√
κ2Rγ

2 + 2L̂HκR
∥∥g+k

∥∥

L̂HκR
=



−κR +

√
κ2R + 2L̂HκR

∥∥g+k
∥∥ γ−2

L̂HκR


γ

≥


−κR +

√
κ2R + 2L̂HκR

L̂HκR


min

(∥∥g+k
∥∥ γ−2, 1

)
γ

=


 2

κR +
√

κ2R + 2L̂HκR


min

(∥∥g+k
∥∥ γ−1, γ

)

≥ 1√
κ2R + 2L̂HκR

min
(∥∥g+k

∥∥ γ−1, γ
)
,

where we used that −a +
√
a2 + bt ≥ (−a +

√
a2 + b)min(t, 1) with a = κR, b = 2L̂HκR and

t = ‖gk+1‖ γ−2 and that
2

1 +
√
1 + c

≥ 1√
1 + c

for any c > 0. Combining the above with (4.13),

we get

mk(0)−mk(sk) ≥
1

4
γ ‖sk‖2 ≥

1

2(κ2R + 2L̂HκR)
min

(
‖gradf (Rxk

(sk))‖2 γ−1, γ3
)
,

proving (4.10).

The next lemma considers steps that lie on the boundary of the trust region. Note that our
proof differs from the general nonconvex setting (Curtis et al., 2021, Lemma 4.3), because we
do not add an artificial regularizer in the subproblem.

Lemma 4.5. Under A1 and A2, consider the kth iteration of Algorithm 4. Suppose that
Algorithm 2 is called and outputs sk together with outCG=boundary step. Then,

mk(0) −mk(sk) ≥
1

4
γ∆2

k. (4.16)

Proof. Since outCG=boundary step, the step has the form sk = yj + σ̄jpj with ‖sk‖ = ∆k and

0 ≤ σ̄j ≤ σj =
‖rj‖2

〈pj ,Hkpj〉
= − 〈gk, pj〉
〈pj,Hkpj〉

, (4.17)

where the last equality holds by definition of the CG residual. Since 〈pj,Hkpj〉 ≥ γ ‖pj‖2 > 0,
Equation (4.17) implies

−σ̄j 〈gk, pj〉 ≥ σ̄2
j 〈pj ,Hkpj〉 ,
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from which we obtain

mk(0)−mk(σ̄jpj) = −σ̄j 〈gk, pj〉 −
σ̄2
j

2
〈pj,Hkpj〉

≥ σ̄2
j 〈pj,Hkpj〉 −

σ̄2
j

2
〈pj,Hkpj〉

=
σ̄2
j

2
〈pj,Hkpj〉

≥ γ

2
‖σ̄jpj‖2 . (4.18)

The reasoning used to prove (4.9) can be applied to mk(0) −mk(yj) (recall that 〈yj,Hkyj〉 ≥
γ ‖yj‖2), which gives

mk(0)−mk(yj) ≥
γ

2
‖yj‖2 . (4.19)

Finally, using mk(sk) − mk(0) = mk(yj) − mk(0) + mk(σ̄jpj) − mk(0) (see (4.11)), we com-
bine (4.18) and (4.19) to conclude as follows:

mk(0)−mk(sk) = mk(0)−mk(yj) +mk(0)−mk(σ̄jpj)

≥ γ

2
‖yj‖2 +

γ

2
‖σ̄jpj‖2

≥ γ

2

(
‖yj‖2 + ‖σ̄jpj‖2

)

≥ γ

4
‖sk‖2 ,

where the last line holds because ‖u‖2 + ‖v‖2 ≥ 1

2
‖u+ v‖2 for all u, v ∈ Txk

M.

We end this section with a lower bound on the trust-region radius based on the decrease
lemmas above, akin to the exact setting.

Lemma 4.6. Let A1, A2, A3 and A4 hold. For any index k ≥ 0, assume that all calls to the
MEO (Algorithm 3) up to iteration k with an iterate in R2 succeed in finding a direction of
sufficient negative curvature. Then, the trust-region radius ∆k in Algorithm 4 satisfies

∆k ≥ ∆̃min := c̃∆ min
(
∆0, α

1/2, α2/3, β, γ
)
, (4.20)

where c̃∆ = min

(
1, τ1

3(1− η1)

2LH
, τ1

√
3(1 − η1)

2LH
, τ1

3

√
3(1 − η1)

2κHLH

)
.

Proof. The proof follows the lines of the exact case (Lemma 3.4) by considering the quantity
1− ρk. However, rather than partitioning the iterates according to the strict saddle regions, we
consider the various steps that can be produced by the trust-region algorithm.

Consider first that tCG (Algorithm 2) is called and outputs sk with flag outCG=small residual.
Per Lemma 4.4, we know that the model decrease satisfies (4.9). Using A3, we combine this
with the bound (3.14) on f(Rxk

(sk))−mk(sk) to give

1− ρk =
f(Rxk

(sk))−mk(sk)

mk(0)−mk(sk)
≤ (LH/6) ‖sk‖3

(γ/4) ‖sk‖2
=

2LH

3γ
‖sk‖ ≤

2LH

3γ
∆k.

Therefore, if outCG=small residual and ∆k ≤ 3(1−η1)
2LHγ , then ρk ≥ η1 and the iteration is

successful.
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Suppose now that tCG outputs a boundary step, i.e., outCG=boundary step. Lemma 4.5
combined with (3.14) gives

1− ρk ≤
(LH/6)∆3

k

(γ/4)∆2
k

≤ 2LH

3γ
∆k,

hence the same conclusion than in the previous case holds.
If the MEO is called with xk ∈ R2, then by assumption it succeeds in finding a direction of

curvature at most −β/2. Lemma 4.3 combined with (3.14) gives

1− ρk ≤
(LH/6)∆3

k

(β/4)∆2
k

≤ 2LH

3β
∆k.

If ‖gk‖ ≥ α and sk is not a boundary step, Lemma 4.2 combined with (3.14) gives

1− ρk ≤
(LH/6)∆3

k

1

2
min

(
∆k,

α

κH

)
α

≤ LH

3
max

(
∆2

k

α
,
κH∆3

k

α2

)
.

We have thus established that the kth iteration is successful as long as

∆k ≤ min


3(1− η1)

2LH
γ,

3(1− η1)

2LH
β,

√
3(1− η1)

LH
α1/2, 3

√
3(1− η1)

κHLH
α2/3


.

holds, in which case ∆k+1 ≥ ∆k. Applying the updating rule on ∆k, we find that the trust-region
radius is lower bounded for any k ≥ 0 by

∆k ≥ min


∆0, τ1

3(1 − η1)

2LH
γ, τ1

3(1 − η1)

2LH
β, τ1

√
3(1 − η1)

2LH
α1/2, τ1

3

√
3(1− η1)

2κHLH
α2/3




≥ c̃∆ min
(
∆0, α

1/2, α2/3 β, γ
)
.

The result of Lemma 4.6 relies on the MEO not failing to detect sufficient negative curvature
if present. In the upcoming analysis, we bound the probability of such failure while deriving
our main complexity result.

4.3 Complexity bounds

We now derive complexity bounds for our inexact trust-region method (Algorithm 4), and show
that they depend logarithmically on the optimality tolerances, similarly to those established in
Section 3.4 for the exact algorithm.

We begin by describing the local convergence of Algorithm 4. The reasoning follows the
exact setting detailed in Section 3.3, and uses several results from that section.

Theorem 4.7. Suppose that A1 and A2 hold. Let xk ∈ R3 be an iterate produced by Al-
gorithm 4, and let x∗ ∈ M be a local minimum of (P) such that dist(xk, x

∗) ≤ δ and f is
geodesically γ-strongly convex on {y ∈ M : dist(y, x∗) < 2δ}. Finally, suppose that either
gradf(xk) = 0 or that

‖gradf(xk)‖ < min
(
c̃Qmin

(
1, γ, γ2, γδ

)
, γ∆k

)
, (4.21)
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where c̃Q = min

(
3(1− η1)

2LH
, νR,

1

κS
,
1

2
,

1

κR(2 + L̂H)

)
. Then, either Algorithm 4 terminates or

computes an iterate satisfying (1.2) in at most

log2 log2

(
2min(1, γ2)

κR(L̂H + 2)εg

)
(4.22)

iterations.

Proof. Since xk ∈ R3, we know that λmin(Hk) ≥ γ > 0. If gradf(xk) is zero, then Algorithm 4
calls Algorithm 3, which deterministically outputs a certificate that λmin(Hk) > −β since no
negative curvature direction exists, hence the algorithm terminates.

Consider now ‖gradf(xk)‖ > 0. Since xk ∈ R3, Lemma 3.9 and (4.21) imply that the global
minimizer of the trust-region subproblem s∗k satisfies ‖s∗k‖ ≤ ‖gk‖ /γ < ∆k. As a result, s∗k is
the minimizer of the quadratic model, and lies inside the trust region. The iterates of CG have
a norm not greater than the model minimizer, thus we have

‖sk‖ ≤ ‖s∗k‖ < ∆k. (4.23)

We show that this step leads to a successful iteration. As in Proposition 3.10, we obtain
from (4.21) along with the decrease (4.9) and (3.14) that

f(Rxk
(sk))−mk(sk) + (1− η1)(mk(sk)− f(xk)) ≤

LH

6
‖sk‖3 − (1− η1)

γ

4
‖sk‖2

≤ ‖sk‖2
(
LH

6

‖gk‖
γ
− γ

4
(1− η1)

)
< 0,

showing that ρk ≥ η1 and thus the iteration is successful.
Because Hk � γ Id and the model minimizer is inside the trust-region, tCG terminates with

a vector sk that satisfies the small residual condition (4.2). We combine Lemma 3.5, Lemma 3.6,
Lemma 3.9 and (4.21) to obtain

‖gk+1‖xk+1
≤ κR ‖gk‖xk

≤ κR

∥∥∥∇f̂k(sk)− gk −Hksk

∥∥∥
xk

+ κR ‖rj+1‖xk

≤ κR
L̂H

2
‖sk‖2xk

+ κR ‖gk‖2xk

≤ κR

(
1

γ2
+

L̂H

2

)
‖gk‖2xk

≤ κR
2 + L̂H

2min(1, γ2)
‖gk‖2xk

<
1

2
‖gk‖xk

. (4.24)

As a result, we have ‖gk+1‖ < ‖gk‖ < γ∆k ≤ γ∆k+1. Applying Proposition 3.12 ensures
that dist(xk+1, x

∗) ≤ δ (note that c̃Q < cQ and thus (3.23) holds). We can apply the above
reasoning to xk+1, which guarantees that either the method terminates or all subsequent iterates
correspond to successful iterations with truncated CG steps that satisfy (4.2). Finally, to bound
the number of iterations before reaching some xℓ such that ‖gradf(xℓ)‖ < εg, we rewrite (4.24)
as

κR
(L̂H + 2)

2min(1, γ2)
‖gk+1‖ ≤

(
κR

(L̂H + 2)

2min(1, γ2)
‖gk‖

)2

.

This shows the iteration bound (4.22) for the local phase, using the proof of Theorem 3.15.
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Having characterized the local convergence behavior of our method, we can now derive global
convergence results. As in the exact setting, we first bound the number of successful iterations.

Theorem 4.8 (Number of successful iterations for Algorithm 4). Suppose that A1–A6 hold.
Algorithm 4 either terminates or produces an iterate satisfying (1.2) in at most

KS̃ :=
C̃

min
(
α2, α4/3β, α4/3γ, β3, β2γ, β γ2, γ3, γδ2

) + 1 + log2 log2

(
2γ2

κRL̂Hεg

)

successful iterations with probability (1 − p)KS̃ , where the constant C̃ > 0 depends on κH , c̃∆,
∆0, νR, κR, L̂H , η1, c̃Q, and α, β, γ, δ are defined in Theorem 3.16.

Proof. LetK ∈ N such that Algorithm 4 has not produced an iterate satisfying (1.2) by iteration
K. Then the method cannot terminate before iteration K, and tCG is called at every iteration.
We partition the set S̃ = {k ≤ K : ρk ≥ η1} of successful iterations based on properties of the
steps, i.e., we define

S̃0 =
{
k ∈ S̃ : outCG=boundary step

}
,

S̃1 =
{
k ∈ S̃ \ S̃0 : xk ∈ R1

}
,

S̃2 =
{
k ∈ S̃ \ S̃0 : xk ∈ R2 \ R1

}
,

S̃ l3 =
{
k ∈ S̃ \ S̃0 : xk ∈ R3 \ R1, outCG=small residual, ‖sk‖ > νR

}
,

S̃s3 =
{
k ∈ S̃ \ S̃0 : xk ∈ R3 \ R1, outCG=small residual, ‖sk‖ ≤ νR

}
.

First consider k ∈ S̃0. We obtain through Lemma 4.5 that

f(xk)− f(xk+1) ≥
η1
4
γ∆2

k ≥
η1
4
γ∆̃2

min. (4.25)

For k ∈ S̃1, we have ‖gk‖ ≥ α and Lemma 4.2 gives

f(xk)− f(xk+1) ≥
η1
2
min

(
∆k,

α

κH

)
α ≥ η1

2
min

(
α2

κH
, α∆̃min

)
. (4.26)

Consider now k ∈ S̃2, Lemma 4.3 gives

f(xk)− f(xk+1) ≥
η1
4
β∆2

k ≥
η1
4
β∆̃2

min, (4.27)

with probability 1− p.
For any k ∈ S̃ l3, Lemma 4.4 guarantees that

f(xk)− f(xk+1) ≥
η1
4
γ‖sk‖2 ≥

η1ν
2
R

4
γ. (4.28)

For any k ∈ S̃s3 , Lemma 4.4 and (4.10) apply. We further partition this set into S̃s,s3 ∪S̃
s,l
3 where

S̃s,l3 =
{
k ∈ S̃s3 : ‖gk+1‖ ≥ min

(
c̃Qmin(1, γ, γ2, γδ), γ∆k

)}
,

S̃s,s3 = S̃s3 \ S̃s,l3 .
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If k ∈ S̃s,l3 , Equation (4.10) implies that

f(xk)− f(xk+1) ≥
η1

2(κ2R + 2L̂HκR)
min

(
‖gk+1‖2 γ−1, γ3

)

≥ η1

2(κ2R + 2L̂HκR)
min

(
c̃2Q min(γ−1, γ, γ3, γδ2), γ∆2

k, γ
3
)

≥ η1

2(κ2R + 2L̂HκR)
min

(
c̃2Qmin(γ−1, γ, γ3, γδ2), γ∆̃2

min, γ
3
)
. (4.29)

Finally, if k ∈ S̃s,s3 , we discuss based on the region of xk+1. If xk+1 ∈ R3, the local phase begins
at xk+1 per Theorem 4.7. If xk+1 ∈ R1 \R3, we have ‖gk+1‖ ≥ α and k+ 1 ∈ S̃0 ∪ S̃1. Finally,
if xk+1 ∈ R2, it must be that k + 1 ∈ S̃0 ∪ S̃2. Thus,

∣∣∣S̃s,s3

∣∣∣ ≤
∣∣∣S̃0
∣∣∣+
∣∣∣S̃1
∣∣∣+
∣∣∣S̃2
∣∣∣+ 1 + log2 log2

(
2γ2

κR(L̂H + 2)εg

)
, (4.30)

and it suffices to bound |S̃0|, |S̃1|, |S̃2|, |S̃ l3|, and |S̃
s,l
3 | to bound |S̃|. The rest of the proof is

similar to the proof of Theorem 3.16 for the exact case. The following inequality holds by A5:

f(x0)− f∗ ≥
∑

k∈S̃0

f(xk)− f(xk+1) +
∑

k∈S̃1

f(xk)− f(xk+1) +
∑

k∈S̃2

f(xk)− f(xk+1)

+
∑

k∈S̃l
3

f(xk)− f(xk+1) +
∑

k∈S̃s,l
3

f(xk)− f(xk+1).

Combining this inequality with (4.25), (4.26), (4.27), (4.28) and (4.29), and considering each
sum individually, we obtain

∣∣∣S̃0
∣∣∣ ≤ 4(f(x0)− f∗)

η1
γ−1∆̃−2

min,

∣∣∣S̃1
∣∣∣ ≤ 2(f(x0)− f∗)

η1
max

(
κHα−2, α−1∆̃−1

min

)
,

∣∣∣S̃2
∣∣∣ ≤ 4(f(x0)− f∗)

η1
β−1∆̃−2

min,

∣∣∣S̃ l3
∣∣∣ ≤ 4(f(x0)− f∗)

η1
ν−2
R γ−1,

∣∣∣S̃s,l3

∣∣∣ ≤ 2(κ2R + 2L̂HκR)(f(x0)− f∗)

η1
max

(
(c̃Q)

−2 min
(
γ−1, γ, γ3, γδ2

)−1
, γ−1∆̃−2

min, γ
−3
)
.
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Using the definition of ∆̃min (4.20) as well as α, β,γ,δ, we obtain

∣∣∣S̃0
∣∣∣ ≤ 4(f(x0)− f∗)

η1
max

(
∆−2

0 , 1
)
min

(
α4/3γ, β2γ, γ3

)−1
,

∣∣∣S̃1
∣∣∣ ≤ 2(f(x0)− f∗)

η1
max

(
κH , (c̃∆∆0)

−1, (c̃∆)
−1
)

×min
(
α2, αβ, αγ

)−1
,

∣∣∣S̃2
∣∣∣ ≤ 4(f(x0)− f∗)

η1
max

(
∆−2

0 , 1
)
min

(
α4/3β, β3, γ2β

)−1
,

∣∣∣S̃ l3
∣∣∣ ≤ 4(f(x0)− f∗)

η1
ν−2
R γ−1,

∣∣∣S̃s,l3

∣∣∣ ≤ 2(κ2R + 2L̂HκR)(f(x0)− f∗)

η1
max

(
(c̃∆∆0)

−2, (c̃Q)
−2
)

×min
(
α4/3γ, β2γ, γ3, γδ2

)−1
.

Combining these bounds with (4.30) gives

∣∣∣S̃
∣∣∣ =

∣∣∣S̃0
∣∣∣+
∣∣∣S̃1
∣∣∣+
∣∣∣S̃2
∣∣∣+
∣∣∣S̃ l3
∣∣∣+
∣∣∣S̃s,l3

∣∣∣+
∣∣∣S̃s,s3

∣∣∣

≤ 2
∣∣∣S̃0
∣∣∣+ 2

∣∣∣S̃1
∣∣∣+ 2

∣∣∣S̃2
∣∣∣+
∣∣∣S̃ l3
∣∣∣+
∣∣∣S̃s,l3

∣∣∣+ 1 + log2 log2

(
2γ2

κR(L̂H + 2)εg

)

≤ C̃min
(
α2, α4/3β, α4/3γ, β3, β γ2, β2γ, γ3, γδ2

)−1

+1 + log2 log2

(
2γ2

κR(L̂H + 2)εg

)
,

with

C̃ := 4(f(x0)−f∗)
η1

[
max

(
∆−2

0 , 1
)
+max

(
κH , (c̃∆∆0)

−1, (c̃∆)
−1
)
+ ν−2

R

+
(κ2

R
+2LκR)
2 max

(
(c̃∆∆0)

−2, (c̃Q)
−2
)]

.

Thus we have K ≤ KS̃ if none of the calls to the MEO with xk ∈ R2 fail to find sufficient

negative curvature. The probability of all calls succeeding is bounded below by (1 − p)|S̃2| ≥
(1− p)K ≥ (1− p)KS̃ , hence the conclusion.

As in the exact setting, we can express the number of total iterations as a function of the
number of successful iterations. This leads to the following result.

Theorem 4.9. Under the assumptions of Theorem 4.8, Algorithm 4 produces a point that
satisfies (1.2) in at most

K̃ =
1 + logτ2(1/τ1)

logτ2(1/τ1)
K

S̃
+

1

logτ2(1/τ1)
max

(
0, logτ2

(
1

c̃∆

)
, logτ2

(
∆0

c̃∆α
2

3

)
, logτ2

(
∆0

c̃∆β

)
, logτ2

(
∆0

c̃∆γ

))

iterations with probability at least (1− p)K̃ .

Proof. Let K ∈ N be an iteration index satisfying the same assumptions than in the proof of
Theorem 4.8, and let S̃ be defined according to K as in that proof. By the same argument as
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in Lemma 3.17, we have that

|S̃| ≥ logτ2(1/τ1)

1 + logτ2(1/τ1)
(K + 1)

− 1

1 + logτ2(1/τ1)
max

[
0, logτ2

(
1

c̃∆

)
, logτ2

(
∆0

c̃∆α
1
2

)
, logτ2

(
∆0

c̃∆α
2
3

)
, logτ2

(
∆0

c̃∆β

)
,

logτ2

(
∆0

c̃∆γ

)]
.

Combining this result with Theorem 4.9 gives the desired bound, that holds with probability at
least (1− p)K̃ if Algorithm 3 can be called at every iteration, and (1− p)KS̃ if it is called only
on successful iterations.

Remark 4.1. While implementing Algorithm 4, one may avoid repeated calls to the MEO if a
negative curvature direction was found at iteration k and the iteration is unsuccessful (Curtis
et al., 2021, Implementation strategy 4.1). Such an approach can improve the probability bounds

in Theorems 4.8 and 4.9 to (1 − p)
K

S̃2 , where KS̃2
is a bound on the number of iterations in

S̃2 as defined in the proof of the theorem. In this paper, we focus on the improvement brought
by the strict saddle properties of f , and therefore use a simpler, albeit suboptimal bound on the
probability.

Since Algorithm 4 relies on an iterative procedure to solve the subproblems, we also provide
a bound on the number of Hessian-vector products required to reach an approximate stationary
point. The bound is obtained by accounting for both the inner iterations of tCG and the cost
of the MEO. The former is bounded by JCG in the algorithm, while the latter follows directly
from Assumption 6. Combining these properties with the result of Theorem 4.9, we obtain the
following result.

Corollary 4.10. Under the assumptions of Theorem 4.9, the total number of Hessian-vector
products performed by Algorithm 4 and its subroutines before producing an iterate satisfying (1.2)
is at most

max(JCG, JMEO)K̃ = O
(
max

(
n, ln

(
max

(
ε−2
g γ−1/2, ε−1

g γ−1/2, γ−3/2
))

γ−1/2, ln(n)β−1/2
)

×
[
min

(
α2, α4/3β, α4/3γ, β3, β γ2, β2γ, γ3, γδ2

)−1

+ log2 log2

(
γ2

εg

)])
(4.31)

with probability (1− p)K̃ , where K̃ is defined in Theorem 4.9.

As a final comment, we note that the operation complexity bound (4.31) exhibits an addi-
tional logarithmic factor in εg compared to the iteration complexity bound of Theorem 4.9, but
no additional dependency on εH , unlike in the case of general nonconvex functions. Overall,
the complexity guarantees of inexact variants also improve thanks to the strict saddle property.

5 Conclusions

We show that worst-case complexity guarantees of Riemannian trust-region algorithms on non-
convex functions improve significantly when the function satisfies a strict saddle property. The
guarantees we provide only depend logarithmically on the prescribed optimality tolerances, and,
as such, are a better reflection of how problem-dependent quantities affect the performance. In
particular, an algorithm with exact subproblem minimization does not require any modification
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from its standard version in order to benefit from these improved guarantees. Our analysis relies
on the local quadratic convergence of Newton’s method, and can be adapted to inexact subprob-
lem minimizations by incorporating knowledge of the strict saddle constants in the problem.
Although those parameters are known for a variety of problems, adaptive schemes have been
proposed to estimate them as the algorithm unfolds (O’Neill and Wright, 2023). Investigating
the numerical performance of these algorithms, along with their multiple possibilities for imple-
mentation, will be the subject of future work. Extending our results to a broader class of strict
saddle functions which includes non-isolated minimizers would also be valuable.
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