
HAL Id: hal-04397931
https://hal.science/hal-04397931v1

Preprint submitted on 18 Jan 2024 (v1), last revised 13 Feb 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Riemannian trust-region methods for strict saddle
functions with complexity guarantees

Florentin Goyens, Clément W. Royer

To cite this version:
Florentin Goyens, Clément W. Royer. Riemannian trust-region methods for strict saddle functions
with complexity guarantees. 2024. �hal-04397931v1�

https://hal.science/hal-04397931v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Riemannian trust-region methods for strict saddle functions with

complexity guarantees

Florentin Goyens1,2 and Clément W. Royer1

1LAMSADE, CNRS, Université Paris Dauphine-PSL, Place du Maréchal de Lattre de
Tassigny, 75016 Paris, France.

2Corresponding author: goyensflorentin@gmail.com
Cite this version on https://hal.science/hal-04397931

January 18, 2024

Abstract

For a function with strict saddle points and strong convexity near minimizers, we show
that the classical trust-region algorithm with exact subproblem minimization finds approx-
imate (local) minimizers in polynomial-time. The accuracy parameter ε only appears in a
log log(ε−1) term and, in that sense, the complexity is essentially independent of the accu-
racy ε. Using a second-order model allows to benefit from the quadratic convergence rate
of Newton’s method near minimizers. This is a notable improvement over known results for
generic nonconvex functions, where the worst-case number of iterations to find an approx-
imate second-order critical point is of the order O(ε−3). Our complexity bound depends
polynomially on the inverse of landscape parameters which represent negative curvature and
strong convexity constants. In the context where these landscape parameters are known,
we present a strict saddle trust-region method with similar complexity guarantees which
minimizes the trust-region subproblem approximately. It is based on a truncated conjugate
gradient scheme and uses the Lanczos method to compute directions of negative curvature.
Our complexity result gives an upper bound on the total number of gradient evaluations and
Hessian-vector products. All our results apply to the setting where the function is defined
on a Riemannian manifold, and Riemannian algorithms are used.
Keywords: Riemannian optimization, strict saddle function, second-order method, com-
plexity.

1 Introduction

We consider the optimization problem

min
x∈M

f(x) (P)

where M is a Riemannian manifold, and f :M → R is twice continuously differentiable and
nonconvex.

A popular way to solve Problem (P) is to use a Riemannian optimization method. These
methods use differential geometry to generalize unconstrained optimization methods to mini-
mization over smooth manifolds (Absil et al., 2008; Boumal, 2023). While convergence guar-
antees have historically focused on the behaviour of algorithms near minimizers (local conver-
gence), the past decade has seen a great interest in global complexity results. They give an

1

goyensflorentin@gmail.com
 https://hal.science/hal-04397931

upper bound on the number of iterations that algorithms perform before termination, starting
from an arbitrary initial guess x0 ∈ M. These guarantees are based on approximate satis-
faction of first- and second-order necessary conditions for stationarity. For a smooth function
f :M → R, second-order critical points have a zero Riemannian gradient and positive semi-
definite Riemannian Hessian:

gradf(x) = 0 and Hessf(x) ⪰ 0. (1.1)

In practice, given positive tolerances (εg, εH), the target points of our algorithms satisfy

∥gradf(x)∥ ≤ εg and λmin(Hessf(x)) ≥ −εH , (1.2)

where λmin(·) denotes the smallest eigenvalue of a symmetric operator.
For a general nonconvex function f , complexity guarantees for Riemannian optimization

methods are of the order ofO(ε−3) iterations to find an (ε, ε)-second-order critical point (Boumal
et al., 2019; Agarwal et al., 2021). These results are pessimistic in nature and do not reflect the
good practical behaviour of second-order methods.

In an effort to reconcile theoretical guarantees with performance in practice, it becomes
necessary to leverage additional structure in the function f . Many problems of the form (P)
satisfy a strict saddle property (see Definition 2.4). It ensures that the Riemannian Hessian of
f has a negative eigenvalue at every critical point that is not a local minimizer. This makes
it tractable to find approximate local minimizers using local optimization algorithms, which is
too difficult to guarantee for general nonconvex optimization.

Strict saddle properties hold in applications which include Burer-Monteiro factorizations of
semidefinite programs (Boumal et al., 2020; Luo and Trillos, 2022), phase retrieval (Sun et al.,
2018), matrix completion and factorization (Ge et al., 2016; Li et al., 2019), dictionary learn-
ing (Sun et al., 2017a; Qu et al., 2019) and others (Wright and Ma, 2022). The results listed have
the additional property that all local minimizers are global minimizers. For instance, Boumal
et al. (2020) show that all second-order critical points (1.1) are global minimizers for smooth
Burer-Monteiro factorizations. (This implies that all saddle points have a negative eigenvalue.)
These properties are often grouped under the umbrella term of benign nonconvexity.

It follows that an optimization algorithm which is able to “escape” strict saddle points is
guaranteed to find a global minimizer. There are two families of algorithms which provably
escape saddle points.

The first kind uses noise injection to perturb iterates and prove that, with high probability,
the algorithm does not terminate near a strict saddle point. These are usually first-order
gradient descent methods (Lee et al., 2019). They may be impractical to implement, as the
noise level must be chosen carefully according to problem constants (Jin et al., 2017). First-order
methods with noise injection to avoid saddle points on manifolds are described in (Criscitiello
and Boumal, 2019; Sun et al., 2019).

The second kind are second-order methods that directly compute search directions in which
the Hessian has a negative curvature. Their framework naturally exploits the negative curvature
of strict saddle points, which leads to deterministic results and simple proofs (Wright and Recht,
2022, Section 3.6). Computing directions of negative curvature can be expensive, but practical
implementations compute these directions using an iterative method based on Hessian-vector
products, which is cheaper than a complete eigenvalue decomposition (Cartis et al., 2012; Royer
and Wright, 2018). Our work considers methods of the second kind.

Complexity results based on landscape parameters instead of the accuracy ε appear in (Sun
et al., 2018; O’Neill and Wright, 2023). In (Sun et al., 2018), the authors consider the phase
retrieval problem and analyse the landscape of a least-squares cost function. They show that

2

the domain of the function is partitioned into three area: large gradients, negative eigenvalues
of the Hessian and neighbourhood of minima with strong local convexity. They propose a
second-order algorithm for the minimization of such function and derive a worst-case number of
iteration, where the accuracy ε only influences the local quadratic convergence. The algorithm is
presented as a trust-region method with exact subproblem minimization where the trust-region
radius does not change during the iterations. The trust-region radius must be initialized with a
small value depending on problem constants that are difficult to know a priori. Similar results
are obtained for the complete dictionary recovery problem in (Sun et al., 2017b).

In (O’Neill and Wright, 2023), the authors consider low-rank optimization problems for
which saddle points are strict. They consider a first-order algorithm with additional computa-
tions of negative curvature directions of the Hessian to avoid saddle points. The algorithm uses
parameters of the landscape to compute search directions. If the parameters are unknown, it
estimates them dynamically. Under a regularity condition near minimizers, they show local lin-
ear convergence of the algorithm. Carmon et al. (2018) propose an accelerated gradient method
with negative curvature detection and give convergence rate for strict saddle functions. Liu
and Roosta (2023) define a relaxation of the strict saddle property, and Paternain et al. (2019)
propose a Newton-like method for the unconstrained minimization of strict saddle functions.
Each iteration computes a full eigenvalue decomposition of the Hessian and take the absolute
value of eigenvalues. Similarly to (Sun et al., 2018), they show a worst-case complexity that
depends on landscape parameters. Curtis and Robinson (2021) introduce the notion of regional
complexity. They bound the number of iterations that can be performed in regions with large
gradient or negative curvature.

Contributions

In this work, we study two version of the Riemannian trust-region method (Absil et al., 2007):
one with exact minimization of the subproblems, and one where the subproblems are minimized
inexactly by an iterative procedure based on truncated conjugate gradients. For strict saddle
functions, we provide theoretical guarantees which are closer to the true behaviour of the al-
gorithms, and do not suffer from a crippling dependency in the accuracy ε. In our results, the
accuracy ε only plays a role in the local convergence, near the minimizer. (This corresponds to
what happens in practice.) The strength of our results is to use second-order methods which
benefit from the local quadratic convergence of Newton’s method. Hence, quadratic convergence
triggers the termination condition in only a handful of iterations, even for the smallest values
of ε used in practice. In that sense, we say that the complexity results are independent of ε.
The complexity estimates therefore depend on landscape parameters of the function f . These
parameters—which we define below—quantify the negative curvature at strict saddle points and
the strong convexity constant near minimizers (see Definition 2.4).

Our complexity result for the Riemannian trust-region with exact subproblem minimization
applies to the original algorithm, without any modification. This algorithm benefits from the
improved complexity without needing to know the landscape parameters and without using a
scheme to estimate them. We then propose a new algorithm, a Riemannian trust-region with
inexact subproblem minimization that uses the landscape parameters to compute directions
that are appropriate for the local landscape. For this algorithm, the guarantees measure the
operation complexity : the number of gradient evaluations and Hessian-vector products before
termination.

Our results apply naturally to the case M = R. Many applications of strict saddle opti-
mization include optimization over smooth constraints. Our work presents the first practical
second-order algorithm that comes with complexity guarantees for strict saddle functions on

3

manifolds. It is also the first such analysis that applies to a generic manifoldM.

Outline: In Section 2, we introduce strict saddle functions on a Riemannian manifolds. In
Section 3, we show that the classical Riemannian trust-region with exact subproblem mini-
mization achieves a worst-case complexity rate which in independent of εH and depend on εg
in a log log term. For a formal statement, see Theorem 3.18. In Section 4, we design a new
RTR algorithm with inexact minimization of the subproblems which exploits the strict saddle
structure. Finally, we summarize our work and discuss perspectives in Section 5.

2 Strict saddle functions on Riemannian manifolds

In this section, we provide a formal definition of the strict saddle property over Riemannian
manifolds. To this end, we first present background material on Riemannian optimization in
Section 2.1, with a focus on Lipschitz continuity. We then discuss the notion of geodesic strong
convexity in Section 2.2, which plays a key role in our definition of strict saddle functions. This
definition is provided along with several examples in Section 2.3. For simplicity, we state all
the necessary definitions and properties using our function f and our manifoldM of interest.

2.1 Displacements and derivatives on Riemannian manifolds

We begin by a summary of the key concepts from Riemannian optimization that will be of use
in this paper. Recall that problem (P) considers the optimization of a smooth function f over
a Riemannian manifoldM. A key component of manifold optimization consists in introducing
proper notions of displacement on the manifold. On the manifold, the notion of shortest path
between two points can be expressed through that of geodesic. A geodesic of the manifoldM
is a smooth curve c : I → M defined on an open interval I ⊂ R such that c′′(t) = 0 for all
t ∈ I, where c′′(t) is the intrinsic acceleration of c defined by the covariant derivative (we refer
to (Boumal, 2023, Chapter 5) for details regarding the covariant derivative). Moving along the
geodesics thus guarantees to remain on the manifold.

On the other hand, optimization algorithms such as those used in this paper typically
produce steps that lie outside of the manifold, in which case one must define a way to map these
steps to the manifold. To this end, steps are produced within tangent spaces, and retractions
are then applied to generate a point on the manifold. Formally, given a point x ∈ M, the
tangent space TxM is the vector space of vectors tangent to the manifold. We equip this vector
space with the inner product ⟨·, ·⟩x (which we may write ⟨·, ·⟩ when the point of interest is clear
from context). One also defines a retraction at x, that maps the tangent space to the manifold,
denoted by Rx : TxM → M. A classical example of such retraction is the exponential map,
that follows a geodesic defined by x and s. In this paper, however, we allow for a more generic
choice of retraction, with the following requirement.

A1 (Assumption 6.9 in (Boumal, 2023)). There exists positive constants νS , κS such that for
all (x, s) ∈ M × TxM, if ∥s∥x ≤ νS, then dist(x,Rx(s)) ≤ κS ∥s∥x, where dist(·, ·) is the
Riemannian distance onM.

Assumption 1 will be instrumental in controlling the distance between iterates of our algo-
rithms.

Given a retraction, one can lift the function f to the tangent space through the following
composition.

4

Definition 2.1. For any x ∈ M, the pullback of f to the tangent space TxM is the function
f̂x : TxM→ R defined by

∀s ∈ TxM, f̂x(s) := f ◦Rx(s).

Since the function f is twice continuously differentiable over the manifold, we can define
a Riemannian gradient and Riemannian Hessian of f at any x ∈ M, which we denote by
gradf(x) and Hessf(x), respectively. By contrast, we use the symbols ∇ and ∇2 to the gradient
and Hessian of a given function over a Euclidean space. In particular, given x ∈ M and
s ∈ TxM, we will consider the gradient of the pullback function ∇f̂x(s) ∈ TxM as well as
the Hessian ∇2f̂x(s) : TxM → TxM. Note that we distinguish these derivatives from the
Riemannian derivatives of f at Rx(s), denoted by gradf(Rx(s)) and Hessf(Rx(s)). However,
the identification f̂x(0) = f(x) and ∇f̂x(0) = gradf(x) holds by definition (Boumal, 2023,
Proposition 3.59). Under additional assumptions on the retraction, we can also relate the
second-order derivatives. Assumption 2 below states our main requirement.

We also require that the retraction is a second-order approximation of geodesics.

A2. The retraction mapping is a second-order retraction, i.e. for any (x, s) ∈ M× TxM, the
curve c : t ∈ [0, 1]→ Rx(ts) has zero acceleration at t = 0, that is c′′(0) = 0.

Provided a second-order retraction is used, one can show that

∇2f̂x(0) = Hessf(x) ∀x ∈M, (2.1)

i.e. the Hessian of the pullback function corresponds to the Riemannian Hessian of f (Boumal,
2023, Proposition 5.45).

Remark 2.1. In this paper, we have elected to use a more general retraction, which requires
certain smoothness assumptions on the pullback function. However, when the exponential map
is used, a different reasoning based on the manifold curvature can be employed Sun et al. (2019);
Criscitiello and Boumal (2019), yielding a simple analysis. Still, our approach is more general
(note that the exponential map satisfies Assumptions 1 and 2), and yields a analysis of our
algorithms that resembles the Euclidean setting.

2.2 Geodesic convexity

We now provide the key definitions behind geodesic convexity, a concept that generalizes the
notion of convexity in the Euclidean setting to functions defined over Riemannian manifolds.
As suggested by the name, this notion is built upon that of geodesics. Geodesically convex sets
and functions are indeed defined with respect to geodesics ofM as follows.

Definition 2.2. A subset S of M is geodesically convex if, for every x, y ∈ S, there exists a
geodesic segment c : [0, 1]→M such that c(0) = x, c(1) = y and c(t) is in S for all t ∈ [0, 1].

Definition 2.3. Given a subset S of M, the function f is geodesically convex on S (resp.
geodesically strongly convex) if S is geodesically convex and for every geodesic c : [0, 1] → M
such that c(0) ̸= c(1) and c([0, 1]) ⊂ S, the function f ◦ c : [0, 1] → R is convex (resp. strongly
convex).

From Definition 2.3, we can view geodesic convexity as convexity over geodesics. Interest-
ingly, in the case of a smooth function, one can show that geodesic strong convexity is determined
by the eigenvalues of the Riemannian Hessian.

5

Proposition 2.1 (Theorem 11.23 in (Boumal, 2023)). A function f :M → R is geodesically
γ-strongly convex on the set S ⊂ M if S is a geodesically convex set and λmin (Hessf(x)) ≥ γ
for every x ∈ S.

Note that we will consider geodesic strong convexity over proper subsets of the manifold,
since we are interested in nonconvex problems. Geodesic convex functions over the entire
manifold have however been investigated, with examples arising from the use of Hadamard
manifolds (Zhang and Sra, 2016).

2.3 Strict saddle property

We are now ready to define our function class of interest on the manifold M, namely that of
strict saddle functions onM. Our definition follows that of (Sun et al., 2015).

Definition 2.4. The function f is (α, β, γ, δ)-strict saddle if the manifold M satisfies M =
R1 ∪R2 ∪R3, where

R1 = {x ∈M : ∥gradf(x)∥ ≥ α}
R2 = {x ∈M : λmin (Hessf(x)) ≤ −β}
R3 = {x ∈M : there exists a local minimum x∗ ∈M of f such that dist(x, x∗) ≤ δ and

f is geodesically γ-strongly convex over the set {y ∈M : dist(x∗, y) < 2δ}} .

Definition 2.4 has the following interpretation. If f is a strict saddle function on M, then
for any x ∈M, either the Riemannian gradient of f atM is sufficiently large, the Riemannian
Hessian of x ∈M possesses a sufficiently large eigenvalue, or x is close to a local minimum of f
onM and f is geodesically strongly convex in the neighborhood of this local minimum. Note
that the last two cases are mutually exclusive, but that the first case may occur simultaneously
with one of the other two.

Remark 2.2. Other definitions of strict saddle functions have been proposed in the literature,
that mainly differ from ours in that the region R3 is defined without requiring geodesic strong
convexity O’Neill and Wright (2023). One advantage of these other definitions is that they
often encompass functions with non-isolated local minima, unlike ours. Indeed, Definition 2.4
does not cover functions with non-isolated local minima, since strong convexity cannot hold at
minimizers in this setting. Nevertheless, non-isolated minima often arise due to rotational sym-
metries in the problem (Wright and Ma, 2022), in which case such rotations define equivalence
classes. Reformulating the problem on the quotient manifold induced by these classes leads to
a problem where minimizers become isolated, thus fitting our definition. We note that this ap-
proach was recently employed for studying Burer-Monteiro formulations of certain semidefinite
programs (Luo and Trillos, 2022).

To end this section, we provide two simple examples of strict saddle functions in the sense
of Definition 2.4. Our first example, albeit not being a truly nonconvex function, illustrates the
interest of the region R3 in the definition.

Example 2.1. Suppose thatM = Rn, and that f : Rn → R is a geodesically γ-strongly convex
function with global minimum x∗. Then, for any α > 0, the function f is (α, 1, γ, 2αγ)-strict
saddle. Indeed, with these constants, the region R2 is empty, while for any x ∈ Rn such that
∥∇f(x)∥ < α (i.e. x /∈ R1), we have by convexity that

γ
2∥x− x∗∥ ≤ f(x)− f(x∗) ≤ −∇ϕ(x)T(x− x∗) ≤ ∥∇f(x)∥∥x− x∗∥ ≤ α∥x− x∗∥,

hence ∥x − x∗∥ ≤ δ = 2α
γ . Since f is γ-strongly convex on Rn, it is in particular γ-strongly

convex on {x | ∥x− x∗∥ ≤ 2δ}, showing that x ∈ R3.

6

Our second example previously introduced in Sun et al. (2015), illustrates the interest of
the region R2 in presence of nonconvexity.

Example 2.2. Suppose thatM is the unit sphere in Rn, denoted by Sn−1 and let f : Sn−1 → R
be defined by f(x) = xTAx, where A ∈ Rn×n is a symmetric matrix with eigenvalues λ1 >
λ2 ≥ · · · ≥ λn−1 > λn. Then, there exists an absolute constant c > 0 such that the function
f is (c(λn−1 − λn)/λ1, c(λn−1 − λn), c(λn−1 − λn), 2c(λn−1 − λn)/λ1)-strict saddle function on
Sn−1.

To end this section, we provide our key assumption about the problem of interest.

A3. There exist positive constants (α, β, γ, δ) such that the function f is (α, β, γ, δ)-strict saddle
on the manifoldM with R3 being a compact set.

Our additional assumption on R3 precludes the function from having infinitely many local
minima on M, and is made for simplicity. It is possible to extend our analysis to the case of
an unbounded region R3, but this comes at the cost of a significantly more involved reasoning.
Note that Assumption 3 holds for both examples above.

3 Riemannian trust-region with exact subproblem solutions

In this section we analyze a classical Riemannian trust-region algorithm applied to a strict
saddle function. Our goal is to leverage the strict saddle property to obtain improved com-
plexity bounds compared to those that have previously been derived for general nonconvex
functions (Agarwal et al., 2021; Boumal et al., 2019). Our algorithm is fairly standard, yet the
analysis borrows from recent results on Newton-type methods from the Euclidean setting (Cur-
tis et al., 2021). In particular, understanding the local convergence properties of such algorithms
is crucial to obtaining improved bounds. Note that using the exponential map would greatly
simplify the analysis, similarly to the case of Riemannian cubic regularization Agarwal et al.
(2021).

Section 3.1 describes our algorithmic framework, along with key assumptions. Standard
decrease lemmas are provided in Section 3.2. A local convergence analysis of the algorithm in
the region of geodesic strong convexity is provided in Section 3.3. This analysis is instrumental
to deriving our global convergence rate results, that are established in Section 3.4.

3.1 Algorithm and assumptions

Our Riemannian trust-region algorithm is described in Algorithm 1. At every iteration, a step
sk is computed by minimizing a given model of the function over the tangent space correspond-
ing to the current iterate xk. For this section, we assume that the subproblem can be solved
exactly using standard approaches (Moré and Sorensen, 1983; Absil et al., 2007) (the inexact
case will be addressed in Section 4). Once the step sk has been computed, the function is
evaluated at the point Rxk

(sk) ∈M, and the changes in both the true function and the model
are compared. Provided those are in sufficient agreement (as measured by the ratio of both
quantities), the candidate point Rxk

(sk) is accepted as the new iterate and the trust-region
radius may be kept constant (successful iteration) or possibly increased (very successful itera-
tion). Otherwise, the current iterate is kept for the next iteration, and the trust-region radius
is decreased (unsuccessful iteration).

In our algorithm, we build the model as a second-order Taylor expansion of the pullback
function f̂xk

, namely

mk : TxM→ R : s 7→ mk(s) = f(xk) + ⟨s, gk⟩+
1

2
⟨s,Hks⟩ , (3.2)

7

Algorithm 1 RTR with exact subproblem minimization

1: Inputs: Tolerances (εg, εH), initial point x0 ∈ M, initial and maximal trust-region radii
0 < ∆0 < ∆̄, constants 0 < η1 < η2 < 1 and 0 < τ1 < 1 < τ2.

2: for k = 1, 2, . . . do
3: Compute sk as a solution to the trust-region subproblem

sk ∈ argmin
s∈Txk

M
mk(s) subject to ∥s∥ ≤ ∆k, (3.1)

where mk is the model defined by (3.2).
4:

5: Compute ρk =
f(xk)− f (Rxk

(sk))

mk(0)−mk(sk)
and set xk+1 =

{
Rk(xk) if ρ ≥ η1

xk otherwise.
6:

7: Set ∆k+1 =


min

(
τ2∆k, ∆̄

)
if ρ > η2 [very successful]

∆k if η2 ≥ ρ ≥ η1 [successful]

τ1∆k otherwise. [unsuccessful]
8: end for

where gk = ∇f̂xk
(0) = gradf(xk) and Hk = ∇2f̂xk

(0).. Such a model is called second-order
accurate. In this paper, we do not consider approximate second-order accurate models, although
we believe that our analysis could be extended to such models under suitable conditions (Absil
et al., 2008, Eq. (7.36)). Note that when the retraction is second-order (i.e. Assumption 2
holds), it follows that Hk = Hessf(xk).

In the rest of Section 3, we will endow Algorithm 1 with complexity results. To this end,
we make Lipschitz-type assumptions on the derivatives of the pullback functions Boumal et al.
(2019).

A4. There exists Lg > 0 such that for all iterates xk generated by Algorithm 1, the pullback
f ◦Rxk

satisfies

f(Rxk
(s)) ≤ f(xk) + ⟨s, gradf(xk)⟩+

Lg

2
∥s∥2 . (3.3)

for all s ∈ TxM such that ∥s∥ ≤ ∆k.

A5. There exists LH > 0 such that for all iterates xk generated by Algorithm 1, the pullback
f ◦Rxk

satisfies

f(Rxk
(s)) ≤ f(xk) + ⟨s, gradf(xk)⟩+

1

2
⟨s,Hess(f ◦Rxk

)(0)[s]⟩+ LH

6
∥s∥3 . (3.4)

for all s ∈ TxM such that ∥s∥ ≤ ∆k.

Note that Assumptions 4 and 5 both apply on the trust regions encountered throughout the
algorithmic process, rather than on the entire (tangent) space.

We additionally make the following assumption on the Hessian operators considered through-
out the algorithm.

A6. There exists κH > 0 such that for all iterates xk generated by Algorithm 1, we have

| ⟨s,Hk(s)⟩xk
| ≤ κH ∥s∥2xk

(3.5)

for all s ∈ Txk
M.

Note that one could use κH = Lg, however those quantities play different roles in our
analysis, and we use distinct notations to better illustrate those roles.

8

3.2 Preliminary lemmas

In this section, we bound the model decrease in each of the regions defined by the strict saddle
property, thanks to standard arguments from the theory of trust-region methods. We also pro-
vide a lower bound on the trust-region radius, which is needed to obtain complexity guarantees.

Our first result handles the case of an iterate with large enough gradient (i.e. in R1).

Lemma 3.1. Under A3 and A6, consider the kth iterate of Algorithm 1 and suppose that
xk ∈ R1. Then,

mk(0k)−mk(sk) ≥
1

2
min

(
∆k,

α

κH

)
α. (3.6)

Proof. Define sCk as the Cauchy point associated with the trust-region subproblem (3.1), i.e.
sCk = −tgk with t = argmint≥0,∥t gk∥≤∆k

mk(−t gk). A straightforward application of Boumal
(2023, Lemma 6.15) gives

mk(0k)−mk(s
C
k) ≥

1

2
min

(
∆k,
∥gk∥
κH

)
∥gk∥

≥ 1

2
min

(
∆k,

α

κH

)
α.

The desired result then follows from the optimality of sk, since mk(sk) ≤ mk(s
C
k).

Our second result considers an iterate at which the Hessian possesses significant negative
curvature (i.e. in R2).

Lemma 3.2. Under A3 and A2, consider the kth iterate of Algorithm 1 and suppose that
xk ∈ R2. Then,

mk(0k)−mk(sk) ≥
1

2
β∆2

k. (3.7)

Proof. Define sEk = ∆kuk, where uk ∈ Txk
M satisfies

∥uk∥xk
= 1, ⟨gk, uk⟩xk

≤ 0 and ⟨uk, Hkuk⟩xk
≤ −β.

Note that such a vector, called an eigenstep for the problem (3.1), exists thanks to xk ∈ R2.
Then, the step sEk satisfies (Boumal, 2023, Lemma 6.16)

mk(0k)−mk(s
E
k) ≥

1

2
β∆2

k.

The desired result again follows from the optimality of sk as mk(sk) ≤ mk(s
E
k).

Our last decrease lemma is slightly less used in convergence rate analysis of trust-region
methods, but proceeds similarly to the previous two lemmas.

Lemma 3.3. Under A3 and A2, consider the kth iterate of Algorithm 1 and suppose that
xk ∈ R3. Then, the step sk is uniquely defined, and satisfies

mk(0)−mk(sk) ≥
1

2
γ ∥sk∥2 . (3.8)

9

Proof. Since sk is a solution of the trust-region subproblem (3.1), there exists λk ≥ 0 such that
the following optimality conditions hold (Absil et al., 2008, Chapter 8):(

Hk + λk IdTxk
M

)
sk = −gk (3.9)〈

s,
(
Hk + λk IdTxk

M

)
[s]
〉
≥ 0 ∀s ∈ Txk

M (3.10)

∥sk∥ ≤ ∆k (3.11)

λk(∆k − ∥sk∥) = 0. (3.12)

Moreover, if the inequality in (3.10) is strict for nonzero s, then the solution is unique (Absil
et al., 2008, Proposition 7.3.1). To establish a decrease guarantee for sk, we combine (3.9)) and
λk ≥ 0 to obtain

mk(0)−mk(sk) = −⟨sk, gradf(xk)⟩ −
1

2
⟨sk, Hksk⟩

= ⟨sk, (Hk + λk Id)sk⟩ −
1

2
⟨sk, Hksk⟩

=
1

2
⟨sk, Hksk⟩+ λk ∥sk∥2

≥ 1

2
⟨sk, Hksk⟩ .

Using now that Hk = Hessf(xk) and xk ∈ R3, we have that ⟨s,Hk[s]⟩ ≥ γ ∥s∥2 for any

s ∈ Txk
M. This implies that

〈
s, (Hk + λk IdTxk

M)[s]
〉
> 0 for nonzero s, hence sk is uniquely

defined. In addition, we obtain

mk(0)−mk(sk) ≥
1

2
⟨sk, Hksk⟩ ≥

γ

2
∥sk∥2 ,

showing the desired result.

The three lemmas above together with the Lipschitz-type assumptions on the pullback
function yield a lower bound on the trust-region radius, as shown by Lemma 3.4.

Lemma 3.4. Let A2, A3, A4, A5 and A6 hold. Then, for any iteration index k, the trust-region
radius ∆k satisfies

∆k ≥ ∆min := c∆min {∆0, α, β, γ} , (3.13)

where c∆ = min

[
1,

1− η1
Lg + κH

, 3τ1
(1− η1)

LH

]
.

Proof. We begin by showing that if the trust-region radius drops below a certain threshold,
then the iteration is necessarily successful. To that aim, we investigate the quantity

1− ρk = 1− f(xk)− f(Rxk
(sk))

mk(0)−mk(sk)
=

f(Rxk
(sk))−mk(sk)

mk(0)−mk(sk)
(3.14)

for the three possible cases identified by the strict saddle property.
Suppose first that xk ∈ R1. Using (3.3), the numerator of (3.14) can be upper-bounded as

follows:

f(Rxk
(sk))−mk(sk) = f(Rxk

(sk))− f(xk)− ⟨gk, sk⟩ −
1

2
⟨sk, Hksk⟩

≤ Lg

2
∥sk∥2 +

1

2
∥Hk∥ ∥sk∥2

≤ Lg + κH
2

∆2
k.

10

Meanwhile, the denominator satisfies (3.6) per Lemma 3.1. It follows that

1− ρk ≤
(Lg + κH)∆2

k

min

(
∆k,

α

κH

)
α

.

As a result, if

∆k ≤ min

(
α

κH
,
(1− η1)α

Lg + κH

)
=

1− η1
Lg + κH

α,

then 1− ρk ≤ 1− η1 and iteration k is successful.
Suppose now that xk ∈ R2. In that case, A2 together with (3.4) give the following bound

on the numerator of (3.14):

f(Rxk
(sk))−mk(sk) = f(Rxk

(sk))− f(xk)− ⟨gk, sk⟩ −
1

2
⟨sk, Hksk⟩ ≤

LH

6
∥sk∥3 . (3.15)

while the numerator satisfies (3.7). Combining both results then gives

1− ρk ≤
1

6

LH ∥sk∥3

1/2∆2
kβ
≤ 1

3

LH∆3
k

∆2
kβ

=
1

3

LH

β
∆k.

Thus, if ∆k ≤ 3(1− η1)β/LH , we have ρk ≥ η1 and iteration k is successful.
Finally, suppose that xk ∈ R3. Using the upper bound (3.15) together with the de-

crease (3.8), we obtain that

1− ρk ≤
LH ∥sk∥3

1/2 ∥sk∥2 γ
=

1

3

LH

γ
∥sk∥ ≤

1

3

LH

γ
∆k.

As a result, if ∆k ≤ 3(1− η1)β/LH , then ρk ≥ η1 and iteration k is successful.
Overall, we have shown that the iteration k is successful as long as

∆k ≤ min

[
(1− η1)

Lg + κH
α,

3(1− η1)

LH
β,

3(1− η1)

LH
γ

]
,

in which case ∆k+1 ≥ ∆k. It follows from the updating rule on ∆k that the trust-region radius
is lower bounded for any k ≥ 1 by

∆k ≥ τ1 min

[
(1− η1)

Lg + κH
α,

3(1− η1)

LH
β,

3(1− η1)

LH
γ

]
≥ c∆min{α, β γ}.

Accounting for k = 0, we arrive at the desired result.

Lemma 3.4 will be combined with the results of Lemmas 3.1 and 3.2 to provide decrease
guarantees independent on k when ∥sk∥ = ∆k. Deriving such guarantees from Lemma 3.3 is
significantly more involved, and is the topic of the next section.

3.3 Region of geodesic strong convexity and local convergence

In this section, we analyze the behavior of the iterates produced by Algorithm 1 that belong
to R3, thanks to the properties of the global subproblem solution. Since that solution is a
Newton-type step (recall (3.9)), our approach mimics the study of Newton’s method applied
to strongly convex functions Boyd and Vandenberghe (2004). Indeed, we can either provide
a lower bound on the decrease achieved by the steps, or show that a local convergence phase
begins, during which the iterates converge quadratically towards a local minimum.

Before stating those results, we state several consequences of Assumption A3 that are helpful
in analyzing Newton-type steps, starting with a Lipschitz-type inequality on the gradient of the
pullback function.

11

Lemma 3.5. Under A3, there exists L̂H > 0 such that for all iterates xk ∈ R3 produced by
Algorithm 1, we have ∥∥∥∇f̂k(sk)−∇f̂k(0)−∇2f̂k(0)[sk]

∥∥∥ ≤ L̂H

2
∥sk∥2 . (3.16)

Proof. The constant L̂H exists by continuity of the derivatives over a compact set and bounded
steps (Boumal, 2023, Lemma 10.57). The compactness of R3 follows from A3, while the bound-
edness of the steps sk follows from ∥sk∥ ≤ ∆k ≤ ∆̄.

Note that Lemma 3.5 is stated on the points of interest produced by the algorithm, similarly
to the Lipschitz-type assumptions A4 and A5.

The next result describes a non-singularity condition for the pullback gradient, which is
critical for small-norm steps. A similar property was used in the context of Riemannian cubic
regularization, that also employs Newton-type steps (Agarwal et al., 2021).

Lemma 3.6. Under A3, for any κR > 1 there exists νR > 0 such that for any iterate xk ∈ R3

produced by Algorithm 1 such that ∥sk∥ ≤ νR, we have

∥gradf(Rx(s))∥xk+1
≤ κR

∥∥∥∇f̂(s)∥∥∥
xk

. (3.17)

Proof. We apply (Agarwal et al., 2021, Theorem 7) to R3 as a non-empty compact subset of
M. This result ensures that for any cR > 1, there exists a constant νR > 0 such that, at each
xk ∈ R3,

∥sk∥ ≤ νR ⇔ σmin(DRxk
(sk)) ≥

1

κR
,

where DRxk
denotes the differential of Rxk

. The desired conclusion follows by combining this
result with (Agarwal et al., 2021, Equation 22), that gives (when applied with s = sk)∥∥∥∇f̂xk

(sk)
∥∥∥ ≥ σmin (DRxk

(sk)) ∥gradf(Rxk
(s))∥ .

Combining the previous two lemmas, we obtain the following result on the change in gradient
norm for

Lemma 3.7. Suppose that A2 and A3 hold. Let xk ∈ R3 be an iterate produced by Algorithm 1
such that sk is a Newton step, i.e. Hksk = −gk, and ∥sk∥ ≤ νR where νR is the constant from
Lemma 3.6. Then, if the iteration is successful, we have

∥gradf(xk+1)∥xk+1
≤ cR

L

2
∥sk∥2xk

(3.18)

where L̂H comes from Lemma 3.5.

Proof. Let xk+1 = Rxk
(sk). Using successively Lemma 3.6, Lemma 3.5, and A2, we obtain

∥gradf(xk+1)∥xk+1
≤ κR

∥∥∥∇f̂xk
(sk)

∥∥∥
xk

= κR

∥∥∥∇f̂xk
(sk)− gradf(xk) + gradf(xk)

∥∥∥
xk

= κR

∥∥∥∇f̂xk
(sk)− gradf(xk)−Hksk

∥∥∥
xk

= κR

∥∥∥∇f̂xk
(sk)−∇f̂xk

(0)−∇2f̂xk
(0)[sk]

∥∥∥
xk

≤ κR
L̂H

2
∥sk∥2xk

12

Remark 3.1. Our results apply for a general retraction R, but using the exponential map Exp
greatly. In particular, thanks to (Boumal, 2023, Corollary 10.56), the result of Lemma 3.5 can
be replaced by ∥∥P−1

s gradf(Expx(s))− gradf(x)−Hessf(x)[s]
∥∥ ≤ LH

2
∥s∥2 (3.19)

where P−1
s is a parallel transport map that maps gradf(Expx(s)) ∈ TExpx(s)

M to TxM, and
LH is the Lipschitz constant of Hessf from (3.4). As a result, the proof of Lemma 3.7 is
also simplified, and no longer requires the decomposition in long and short steps induced by
Lemma 3.6.

We are now equipped to prove a decrease guarantee on Newton steps.

Lemma 3.8. Under the assumptions of Lemma 3.7, we have

mk(0)−mk(sk) ≥
γ

L̂H κR
∥gradf(xk+1)∥xk+1

.

Proof. By combining (3.18) with (3.8), we obtain

mk(0)−mk(sk) ≥
γ

2
∥sk∥2xk

≥ γ

L̂HκR
∥gradf(xk+1)∥xk+1

,

which is the desired result.

We now turn to local convergence results. Our goal is to show that Newton steps are
eventually accepted by the algorithm, and that they produce iterates with decreasing gradient
norm. To begin with, we give a bound on the norm of such steps.

Lemma 3.9. Suppose that Algorithm 1 produces an iterate xk ∈ R3. Then,

∥sk∥ ≤
∥gk∥
γ

. (3.20)

Proof. The result trivially holds if ∥sk∥ = 0. Otherwise, using the definition of R3 together
with λk ≥ 0 and (3.9), we get

γ ∥sk∥2 ≤ ⟨sk, Hksk⟩ ≤ ⟨sk, (Hk + λ Id)sk⟩ = −⟨sk, gk⟩ ≤ ∥sk∥ ∥gk∥ ,

and we obtain (3.20) by dividing by ∥sk∥.

Lemma 3.9 is a key ingredient towards showing an upper bound on the gradient that leads
to a successful iteration for an iterate in R3.

Proposition 3.10. Under A5 and A2, suppose that Algorithm 1 generates xk ∈ R3 such that

∥gradf(xk)∥xk
<

3(1− η1)γ
2

LH
. (3.21)

Then, the corresponding iteration is successful.

13

Proof. First, we note that the condition for a successful step ρk ≥ η1 is equivalent to

rk = f(Rk(sk))−mk(sk) + (1− η1)(mk(sk)− f(xk)) ≤ 0.

The proof then consists in finding an upper bound for rk that is negative when (3.21) holds.
From Lemma 3.3, we have that

(1− η1) (mk(sk)− f(xk)) ≤ (1− η1)(−
γ

2
∥sk∥2).

Combining this property with (3.15) and (3.20) gives

rk ≤
LH

6
∥sk∥3 −

γ

2
(1− η1) ∥sk∥2 = ∥sk∥2

(
LH

6
∥sk∥ −

γ

2
(1− η1)

)
≤ ∥sk∥2

(
LH

6

∥gk∥
γ
− γ

2
(1− η1)

)
.

The condition (3.21) is equivalent to the latter bound being negative, from which we conclude
that rk ≤ 0, hence the iteration is successful.

We now show that if a Newton step leads to a successful iteration with a small enough
gradient, the gradient norm decreases.

Proposition 3.11. Suppose that A2 and A3 hold. Let xk ∈ R3 be an iterate produced by
Algorithm 1 such that sk is a Newton step, i.e. Hksk = −gk, ∥sk∥ ≤ νR where νR is the
constant from Lemma 3.6, and

∥gradf(xk)∥xk
<

2γ2

κRL̂H

. (3.22)

Then, if the iteration is successful, the next iterate satisfies ∥gradf(xk+1)∥xk+1
< ∥gradf(xk)∥xk

.

Proof. Combining (3.18), (3.20) and (3.22), we immediately obtain that

∥gk+1∥ ≤
κRL̂H

2
∥sk∥2 ≤

κRL̂H

2

∥gk∥2

γ2
≤ κRL̂H

2γ2
∥gk∥ · ∥gk∥ < ∥gk∥ .

We have shown that the gradient norm decreases for iterates in R3 corresponding to success-
ful iterations with Newton steps. In order to derive a local convergence result, we now establish
that the iterates remain in R3 if the gradient is small enough.

Proposition 3.12. Suppose that A1, A2 and A3 hold. Let xk ∈ R3 be an iterate produced
by Algorithm 1 such that sk is a Newton step, and ∥sk∥ ≤ νR where νR is the constant from
Lemma 3.6, and that

∥gradf(xk)∥ ≤ min

(
νSγ,

γδ

κS
,
δγ

2
,

2γ2

κRL̂H

)
. (3.23)

Let x∗ ∈M be a local minimum of problem (P) such that dist (xk, x
∗) ≤ δ and f is geodesically

γ-strongly convex on {y | dist(y, x∗) ≤ 2δ}. If the iteration is successful, then dist (xk+1, x
∗) < δ.

14

Proof. We first show that dist (xk+1, x
∗) ≤ 2δ. Using (3.20), we have that

∥sk∥ ≤
∥gk∥
γ

<
νSγ

γ
= νS .

From A1, it then follows that

dist(xk+1, xk) ≤ κS ∥sk∥ ≤ κS
∥gk∥
γ
≤ κS

γδ

κSγ
= δ,

where the last inequality holds thanks to (3.23). As a result,

dist(xk+1, x
∗) ≤ dist(xk+1, xk) + dist(xk, x

∗) ≤ 2δ.

By definition of x∗, we then know that f is γ-strongly geodesically convex over a subset ofM
that includes x∗ and xk+1. Consider a geodesic segment contained in that subset of the form
c : [0, 1]→M with c(0) = xk+1 and c(1) = x∗ such that dist(xk+1, x

∗) ≤ ℓc = ∥c′(0)∥c(0), where
ℓc is the length of the geodesic path. Using that f is geodesically γ-strongly convex on the
segment c, owing to (Boumal, 2023, Theorem 11.21), we have

f(x∗) ≥ f(xk+1) +
〈
gradf(xk+1), c

′(0)
〉
xk+1

+
γ

2
L(c)2.

Using then f(x∗) ≤ f(xk+1) gives

γ

2
L(c)2 ≤

〈
gradf(xk+1),−c′(0)

〉
xk+1

≤ ∥gradf(xk+1)∥xk+1

∥∥c′(0)∥∥
xk+1

= ∥gradf(xk+1)∥xk+1
L(c).

Therefore, we have L(c) ≤ 2

γ
∥gradf(xk+1)∥xk+1

. To conclude, recall that we have ∥sk∥ ≤ νR

by assumption, thus Proposition 3.11 applies., and we obtain

dist(xk+1, x
∗) ≤ L(c) ≤ 2

γ
∥gradf(xk+1)∥xk+1

<
2

γ
∥gradf(xk)∥xk

<
2

γ

δγ

2
= δ,

proving the desired result.

We can now characterize local quadratic convergence properties of Algorithm 1. Our main
result is the following proposition.

Proposition 3.13. Suppose that A1, A2 and A3 hold. Let xk ∈ R3 be an iterate produced
by Algorithm 1 such that sk is a Newton step, and ∥sk∥ ≤ νR where νR is the constant from
Lemma 3.6. Suppose further that the kth iteration is successful. Then,

κRL̂H

2γ2
∥gradf(xk+1)∥xk+1

≤

(
κRL̂H

2γ2
∥gradf(xk)∥xk

)2

.

Proof. Using Lemma 3.7 and Lemma 3.9 gives

∥gradf(xk+1)∥xk+1
≤ κRL̂H

2
∥sk∥2xk

≤ κRL̂H

2γ2
∥gradf(xk)∥2xk

,

and multiplying both sides by
κRL̂H

2γ2
yields the desired conclusion.

15

The result of Proposition 3.13 guarantees quadratic convergence provided the Newton steps
are accepted. Our final result summarizes that of this section, and shows that local quadratic
convergence is triggered once the algorithm generates a point inR3 with a small enough gradient.

Finally, we provide conditions under which we enter a local quadratic convergence regime
in Proposition 3.14.

Proposition 3.14 (Local convergence of trust-region). Suppose that A1, A2 and A3 hold. Let
xk ∈ R3 be an iterate produced by Algorithm 1, and let x∗ ∈M be a local minimum of (P) such
that dist(xk, x

∗) ≤ δ and f is geodesically γ-strongly convex on {y|dist(y, x∗) ≤ 2δ}. Finally,
suppose that ∥sk∥ < νR and

∥gradf(xk)∥ < min{cQmin{γ, γδ, γ2}, γ∆k} (3.24)

where cQ = min

[
3(1− η1)

LH
, νR,

1

κS
,
1

2
,

2

κR L̂H

]
. Then, all subsequent iterations are successful,

and correspond to iterates in R3 as well as Newton steps. Moreover, the sequence of gradient
norms (∥gradf(xk)∥)k converges quadratically to zero.

Proof. First note that (3.24) implies in particular ∥gradf(xk)∥ < γ∆k. Applying Lemma 3.9,
we find that ∥sk∥ ≤ ∥gradf(xk)∥ /γ < ∆k, and thus sk must be the Newton step. In addition,
the condition (3.24) also implies (3.21), thus the kth iteration is successful per Proposition 3.10.
Similarly, it implies (3.22), which together with ∥sk∥ ≤ νR yields ∥gk+1∥ < ∥gk∥ (Proposi-
tion 3.11) and ∥xk+1 − x∗∥ < δ (Proposition 3.12).

Since ∥gk+1∥ < ∥gk∥ < γ∆k ≤ γ∆k+1, the same reasoning applies at iteration k + 1, and at
every subsequent iteration by induction, proving the first part of the result. Finally, quadratic
convergence follows from (3.24) implying ∥gradf(xk)∥ < γ2/(cRL) and repeated application of
Proposition 3.13. Indeed, for any index l ≥ k,, we have

L̂HκR
2γ2

∥gradf(xl)∥ ≤

(
L̂HκR
2γ2

∥gradf(xk)∥

)2l−k

≤
(
1

2

)2l−k

,

which characterizes quadratic convergence.

We again emphasize that the local quadratic convergence property is instrumental to deriving
global convergence rates in our setting, since the local convergence rate is a direct consequence
of the strict saddle property. Deriving global rates of convergence (or, equivalently, complexity
results) is the subject of the next section.

3.4 Complexity bounds

In this section, we combine the results from Sections 3.2 and 3.3 to obtain complexity bounds.
More precisely, we seek a bound on the number of iterations of Algorithm 1 required to reach
an iterate xK ∈M satisfying

∥gradf(xK)∥ ≤ εg and ⟨s,Hessf(xK) s⟩ ≥ −εH ∥s∥2 ∀s ∈ TxKM. (3.25)

Following Section 3.3, we can bound the number of iterations in a local phase necessary to
satisfy (3.25). The result below is a direct corollary of Proposition 3.14.

Theorem 3.15. Let the assumptions of Proposition 3.14 hold for xk ∈ R3 generated by Algo-
rithm 1. Then, the algorithm returns an iterate satisfying (3.25) in at most

log2 log2

(
2γ2

κRL̂Hεg

)
(3.26)

iterations following iteration k.

16

Proof. As in the proof of Proposition 3.14, we can show that for any l ≥ k, we have

L̂HκR
2γ2

∥gradf(xl)∥ ≤

(
L̂HκR
2γ2

∥gradf(xk)∥

)2l−k

≤
(
1

2

)2l−k

.

It follows that if ∥gradf(xl)∥ ≥ εg, then it must be that

l − k ≤ log2 log2

(
2γ2

L̂HκRεg

)
.

We are now in a position to establish our main complexity result, under the following
assumption.

A7 (lower bound). There exists f∗ > −∞ such that f(x) ≥ f∗ for all x ∈M.

The following theorem gives an upper bound on the number of successful steps for Algo-
rithm 1.

Theorem 3.16 (Number of successful iterations of Algorithm 1). Suppose that A1–A7 hold.
Algorithm 1 produces an iterate satisfying (3.25) in at most

C

min
{
α2β, αγ2, α2γ, βγ2, β2γ, β3, γ3, γ2δ

} + 1 + log2 log2

(
2γ2

κRL̂Hεg

)

successful iterations, where the constant C > 0 depends on κH , c∆,∆0, νR, κR, L̂H , η1, cQ, and
for any θ ∈ {α, β, γ, δ}, we define θ = min(1, θ).

Proof. Let K ∈ N such that Algorithm 1 has not produced an iterate satisfying (3.25) by
iteration K. Let S = {k ≤ K : ρk ≥ η1} denote the set of indices corresponding to successful
(and very successful) iterations. For convenience of exposition, we partition the set of iterations
as follows:

S1 = {k ∈ S : xk ∈ R1}
S2 = {k ∈ S : xk ∈ R2 \ R1}
S3 = {k ∈ S : xk ∈ R3 \ R1}.

We now bound the decrease in function value for all three sets.
Consider first an index k ∈ S1. Using Lemma 3.1 and Lemma 3.4, we obtain

f(xk)− f(xk+1) ≥ η1 (mk(0)−mk(sk)) ≥
η1
2

min

(
α

κH
,∆k

)
α ≥ η1

2
min

(
α

κH
,∆min

)
α. (3.27)

Consider now k ∈ S2. Combining Lemma 3.2 with Lemma 3.4, we arrive at

f(xk)− f(xk+1) ≥ η1 (mk(0)−mk(sk)) ≥
η1
2
∆2

kβ ≥
η1
2
∆2

minβ. (3.28)

Finally, consider k ∈ S3, and partition further this index into S l3 ∪ S
s,b
3 ∪ S

s,i
3 , where

S l3 = {k ∈ S3 : ∥sk∥ > νR}

Ss,b3 = {k ∈ S3 : ∥sk∥ ≤ νR, ∥sk∥ = ∆k}
Ss,i3 = {k ∈ S3 : ∥sk∥ ≤ νR, ∥sk∥ < ∆k}

17

ans νR is the quantity defined in Lemma 3.7.
If k ∈ S l3, Lemma 3.3 yields

f(xk+1)− f(xk) ≥
η1
2
∥sk∥2 γ ≥

η1
2
ν2Rγ. (3.29)

If k ∈ Ss,b3 , we use Lemma 3.3 together with Lemma 3.4 to obtain

f(xk+1)− f(xk) ≥
η1
2
∥sk∥2 γ =

η1
2
∆2

kγ ≥
η1
2
∆2

minγ. (3.30)

Finally, if k ∈ Ss,i3 , we partition further Ss,i3 into Ss,i,s3 ∪ Ss,i,l3 , where

Ss,i,l3 = {k ∈ Ss,i3 : ∥gk+1∥ ≥ min{cQ min{γ, γδ, γ2}, γ∆k}
Ss,i,s3 = Ss,i3 \ S

s,i,s
3 .

If k ∈ Ss,i,l3 , Proposition 3.8 implies

f(xk)− f(xk+1) ≥ η1γ
∥gk+1∥
L̂H κR

≥ η1

L̂H κR
min{cQ min{γ2, γ2δ, γ3}, γ2∆k}

≥ η1

L̂H κR
min{cQ min{γ2, γ2δ, γ3}, γ2∆min}. (3.31)

Finally, if k ∈ Ss,i,s3 , either xk+1 ∈ S3 and the local quadratic phase begins according to
Proposition 3.14. Otherwise, we must have xk+1 ∈ S1 ∪ S2, and as a result we have

∣∣∣Ss,i,s3

∣∣∣ ≤ |S1|+ |S2|+ 1 + log2 log2

(
2γ2

κRL̂Hεg

)
. (3.32)

It thus suffices to bound the cardinality of the other iteration indices to bound that of Ss,i,s3 .
Thanks to A7, we have

f(x0)− f∗ ≥ f(x0)− f(xK)

≥
∑
k∈S
k≤K

f(xk)− f(xk+1)

≥
∑
k∈S1
k≤K

f(xk)− f(xk+1) +
∑
k∈S2
k≤K

f(xk)− f(xk+1) +
∑
k∈Sl

3
k≤K

f(xk)− f(xk+1)

+
∑

k∈Ss,b
3

k≤K

f(xk)− f(xk+1) +
∑

k∈Ss,i,l
3

k≤K

f(xk)− f(xk+1).

Putting (3.27), (3.28), (3.29), (3.30) and (3.31) together, we obtain

f(x0)− f∗ ≥ |S1|
η1
2
min

(
α

κH
,∆min

)
α+ |S2|

η1
2
∆2

minβ + |S l3|
η1
2
ν2Rγ

+|Ss,b3 |
η1
2
∆2

minγ + |Ss,i,l3 | η1

L̂H κR
min{cQmin{γ2, γ2δ, γ3}, , γ2∆min}.

18

Since all quantities on the right-hand side are nonnegative, we can bound each cardinality
independently as follows:

|S1| ≤
2(f(x0)− f∗)

η1
max

{
κHα−2,∆−1

minα
−1
}

|S2| ≤
2(f(x0)− f∗)

η1
∆−2

minβ
−1

|S l3| ≤
2(f(x0)− f∗)

η1
ν−2
R γ−1

|Ss,b3 | ≤
2(f(x0)− f∗)

η1
∆−2

minγ
−1

|Ss,i,l3 | ≤ κRL̂H(f(x0)− f∗)

η1
max{c−1

Q max{γ−2, γ−2δ−1, γ−3}, γ−2∆−1
min}.

Using that ∆min = c∆min{∆0, α, β, γ} ≥ c∆min{∆0, 1}min{α, β, γ} and bounding any θ ∈
{α, β, γ, δ} by θ yields the following upper bounds

|S1| ≤
2(f(x0)− f∗)

η1
max{κH , c−1

∆ ∆−1
0 , c−1

∆ }max{α−2, α−1β−1, α−1γ−1}

|S2| ≤
2(f(x0)− f∗)

η1
max{c−2

∆ ∆−2
0 , c−2

∆ }max{α−2β−1, β−3, β−1γ−2}

|S l3| ≤
2(f(x0)− f∗)

η1
ν−2
R γ−1

|Ss,b3 | ≤
2(f(x0)− f∗)

η1
max{c−2

∆ ∆−2
0 , c−2

∆ }max{α−2γ−1, β−2γ−1, γ−3}

|Ss,i,l3 | ≤ κRL̂H(f(x0)− f∗)

η1
max{c−1

Q , c−1
∆ ∆−1

0 , c−1
∆ }max{α−1γ−2, β−1γ−2, γ−3, γ−2δ−1}.

Combining these bounds with (3.32), the total number of successful iterations is bounded as

|S| = |S1|+ |S2|+ |S l3|+ |S
s,b
3 |+ |S

s,i,l
3 |+ |Ss,i,s3 |

≤ 2|S1|+ 2|S2|+ |Ss,b3 |+ |S
s,i,l
3 |+ 1 + log2 log2

(
2γ2

κRL̂Hεg

)
.

≤ Cmin{α2β, αγ2, α2γ, βγ2, β2γ, β3, γ3, γ2δ}−1 + 1 + log2 log2

(
2γ2

κRL̂Hεg

)
,

where

C := 2max{κH , c−1
∆ ∆−1

0 , c−1
∆ }+ 3max{c−2

∆ ∆−2
0 , c−2

∆ }+ ν−2
R +

κRL̂H max{c−1
Q , c−1

∆ ∆−1
0 , c−1

∆ }
2

. (3.33)

Since the bound on |S| holds for any K such that no iterate satisfying (3.25) was computed
prior to iteration K, the desired result holds.

Theorem 3.16 gives a complexity result related to the number of successful iterations (which
also corresponds to the number of derivative evaluations). To account for the total number of
iterations (or, equivalently, function evaluations) that are required to satisfy (3.25), we follow
a common strategy and show that this number is at most a constant multiple of the number of
successful iterations.

19

Lemma 3.17. Under the assumptions of Lemma 3.4, let K ∈ N and let SK denote the set of
successful steps of index k ≥ K. Then,

|SK | ≥
logτ2(1/τ1)

1 + logτ2(1/τ1)
(K + 1)

− 1

1 + logτ2(1/τ1)
max

(
0, logτ2

(
1

c∆

)
, logτ2

(
∆0

c∆α

)
, logτ2

(
∆0

c∆β

)
, logτ2

(
∆0

c3γ

))
.

Proof. The proof follows verbatim (Boumal, 2023, Lemma 6.23) with (3.13) replacing (Boumal,
2023, (6.26)) and τ1, τ2 replacing 1

4 and 2, respectively.

Combining Theorem 3.16 with Lemma 3.17 results in the following complexity result.

Theorem 3.18 (Iteration complexity of Algorithm 1). Under the assumptions of Theorem 3.16,
Algorithm 1 produces a point that satisfies (3.25) in at most

1 + logτ2(1/τ1)

logτ2(1/τ1)

[
C

min
{
α2β, αγ2, α2γ, βγ2, β2γ, β3, γ3, γ2δ

} + 1 + log2 log2

(
2γ2

κRL̂Hεg

)]
(3.34)

+
1

logτ2(1/τ1)
max

(
0, logτ2

(
1

c∆

)
, logτ2

(
∆0

c∆α

)
, logτ2

(
∆0

c∆β

)
, logτ2

(
∆0

c3γ

))
iterations, where C,α, β, γ, δ are defined as in Theorem 3.16.

The bound of Theorem 3.18 holds for any values εg > 0 and εH > 0, but is mostly of interest
when εg < α and εH < β. In that case, the iteration complexity (3.34) is an improvement over
the O

(
max(ε−2

g ε−1
H , ε−3

H)
)
bound of Riemannian trust-region methods for generic nonconvex

functions Boumal et al. (2019). In addition, our bound guarantees that Algorithm 1 reaches
xk ∈ R3 such that

∥gradf(xk)∥ ≤ εg and λmin(Hessf(xk)) ≥ γ, (3.35)

and moreover this point is at distance at most δ of a local minimum. In that sense, the strict
saddle property allows for obtaining stronger guarantees with improved complexity bounds.
This ensures that the algorithm finds an approximate minimizer. On the other hand, if εg ≥ α
and εH ≥ β, it is enough to find a point that is not in R1 ∪ R2 to satisfy the termination
criterion (1.2). Finally, if εg ≥ α or εH ≥ β, an (εg, εH)-critical point (1.1) might not belong
to R3. The following table indicates the possible regions in which Algorithm 1 can terminate
depending on the values of εg and εH .

Convergence of Algorithm 1 α > εg α ≤ εg
β > εH R3 R1 ∪R3

β ≤ εH R2 ∪R3 R1 ∪R2 ∪R3

In principle, it is always possible to lower εH and εg to ensure convergence to a minimizer. This
does not have a meaningful impact on the worst-case iteration complexity (3.34).

To end this section, we translate our complexity results on our examples of strict saddle
functions from Section 2.

Example 3.1. Suppose that M = Rn, and that f : Rn → R is a γ-strongly convex function
with global minimum x∗. Choose α = 1 so that the function is (1, 1, γ, 2

γ)-strict saddle, and let
εg ∈ (0, 1). Then, by Theorem 3.18, Algorithm 1 computes an iterate such that ∥∇f(xk)∥ ≤ εg

20

in at most O(γ−3) + log log(γ2ε−1
g) iterations. In comparison, a standard analysis of Newton’s

method with Armijo backtracking linesearch requires at most O(γ−5) + log log(γ3ε−1
g) iterations

to find such point (Boyd and Vandenberghe, 2004). Although our bound appears better in terms
of dependencies on γ, we believe it to be an artifact of the line-search analysis, that could possibly
be improved by changing the line-search condition.

Example 3.2. Suppose thatM is the unit sphere in Rn, denoted by Sn−1 and let f : Sn−1 → R
be defined by f(x) = xTAx, where A ∈ Rn×n is a symmetric matrix with eigenvalues λ1 > λ2 ≥
· · · ≥ λn−1 > λn. Then, Theorem 3.18, Algorithm 1 computes an iterate satisfying (3.25) in at
most

O
(
max

{
1, (λ1 − λn)

−3, λ2
1(λ1 − λn)

−3
})

+ log log
(
(λ1 − λn)

−2ε−1
g

)
.

4 A strict saddle Riemannian trust-region with inexact sub-
problem solutions

In this section, we design a Riemannian trust-region with inexact minimization of the subprob-
lems which exploits the strict saddle structure. Near critical points, the smallest eigenvalue of
the Hessian is bounded away from zero. These subproblems reduce to one of two much simpler
tasks: computing a direction of negative curvature or solving a strongly convex subproblem.
Away from critical points, the gradient norm is large and it is cheap to approximately minimize
the subproblem by computing a direction that ressembles a gradient descent step.

The solution of the subproblems is based on the well-known truncated CG framework (Toint,
1981; Steihaug, 1983). The strict-saddle property (Definition 2.4) with knowledge of the strict
saddle parameters α, β, γ allows to refine this procedure and select steps that are appropriate
for the local landscape, which leads to improved complexity bounds. In order to achieve local
quadratic convergence towards minimizers, we use a stopping criterion for tCG with a squared
norm of the gradient:

∥rj+1∥ ≤ ζmin{∥gk∥2 , κ ∥gk∥ , γ ∥yj+1∥} (4.1)

for some ζ ∈ (0, 1), where rj = ∇mk(yj) is the residual of the CG algorithm after j iterations.
If all the directions generated by CG are γ-strongly convex, the sufficient decrease condi-

tion (4.1) is satisfied in at most kmax iterations. If kmax iterations of CG are performed and
that (4.1) is not met, it means that the condition Hk ⪰ γ Id does not hold and xk /∈ R3. Sim-
ilarly if CG detects a direction of curvature smaller than γ, this is a certificate that xk /∈ R3.
For those iterations, if ∥gk∥ ≥ α, the direction that has been computed by CG will do at least
as well as the Cauchy point, which ensures a decrease of (3.6). However when ∥gk∥ < α, it must
be that xk ∈ R2 and we wish to compute a direction of negative curvature at least −β/2. It is
possible to compute a full eigenvalue decomposition of the Hessian using n Hessian-vector prod-
ucts. We want to avoid this and used a randomized iterative procedure to estimate the smallest
eigenvalue of the Hessian. We use the Lanczos method which finds the smallest eigenvalue of
a symmetric matrix in a Krylov subspace according to an initial random vector. If the initial
vector is random, the dimension of the Krylov subspace increases by one at each iteration with
high probability (Royer et al., 2020, Appendix B).

We run Krylov for sufficiently many iterations such that the probability of failure is very
small. For a chosen probability of failure p ∈ (0, 1), the number of iterations requires by Lanczos
to find a direction of curvature −β/2 with probability at least 1 − p is given in Lemma 4.1.
If Lanczos fails to compute the negative curvature, we choose to use the direction previously
computed by CG, which at least guarantees a decrease in the model. When Lanczos fails, one
could restart Lanczos with a different initial random vector until it finds the curvature −β/2;

21

Algorithm 2 Strict saddle RTR with inexact subproblem minimization

1: Given: Tolerance εg < α, εH , Constants α, β, γ of the strict saddle function, x0 ∈ Rn,
trust-region radius ∆0 > 0, ∆̄ > 0, constants 0 < η1 < η2 < 1 and 0 < τ1 < 1 < τ2.

2: for k = 1, 2, . . . do
3: Use truncated CG (Algorithm 3) to

sk ← minimize
s∈Txk

M
mk(s) such that ∥s∥ ≤ ∆k. (4.2)

4: if ∥gk∥ < εg or (outputCG ∈ {max iter,not strongly convex} and ∥gk∥ < α) then
5: sk ← MEO(Hk, sk) ▷ Negative curvature Algorithm 4
6: end if
7: Compute

ρ =
f(xk)− f(Rxk

(sk))

mk(0)−mk(sk)

8: Set

xk+1 =

{
xk if ρ < η1

xk + sk if η1 ≤ ρ
(4.3)

9: Update

∆k+1 =


τ1∆k if ρ < η1 [unsuccessful]

∆k if η1 ≤ ρ ≤ η2 [successful]

τ2∆k if ρ > η2 [very successful]

(4.4)

10: k ← k + 1
11: end for

22

or compute a full eigenvalue decomposition directly. We do neither of those things. Instead,
our complexity guarantees for convergence to a second-order critical point hold under the high
probability event that Lanczos does not fail.

When the minimum eigenvalue oracle is called and the step is unsuccessful, it is possible
to store the vectors generated by the Lanczos algorithm to avoid recomputing them until a
successful step is found, see (Curtis et al., 2021).

Algorithm 3 truncated CG for strict saddle function (case 2 and 3)

Input: Nonzero gk ∈ Txk
M and Hk, accuracy parameters κ ∈ (0, 1), ζ ∈ (0, 1)

Output: trial step s and flag outputCG indicating termination type
Set gk = gradf(xk) and Hk = Hessf(xk)
Set kmax ← Equation (4.22)
y0 ← 0, r0 ← gk, p0 ← −gk, j ← 0
while j < kmax do

if ⟨yj , Hkyj⟩ < γ ∥yj∥2 then
Set d = ∆kyj/ ∥yj∥ and terminate with outputCG = not strongly convex

end if
if ⟨pj , Hkpj⟩ < γ ∥pj∥2 then

Set d = ∆kpj/ ∥pj∥ and terminate with outputCG = not strongly convex

end if
αj ← ∥rj∥2 / ⟨pj , Hkpj⟩ ▷ Begin standard tCG procedure
yj+1 = yj + αjpj
if ∥yj+1∥ ≥ ∆k then

Compute ᾱj ≥ 0 such that ∥yj + ᾱjpj∥ = ∆k

return s← yj + ᾱjpj and outputCG = boundary step

end if
rj+1 ← rj + αjHkpj
if ∥rj+1∥ ≤ ζmin{∥gk∥2 , κ ∥gk∥ , γ ∥yj+1∥} then

return s← yj+1 and outputCG = small residual

end if
βj+1 ← ∥rj+1∥2 / ∥rj∥2
pj+1 ← −rj+1 + βj+1pj ▷ end standard tCG procedure
j ← j + 1

end while
return s← ykmax and outputCG = max iter

A minimum eigenvalue oracle

Lemma 4.1 (Lemma 2 from Royer et al. (2020)). Suppose that the Lanczos method is used to
estimate the smallest eigenvalue of Hk starting with a random vector uniformly generated on the
unit sphere, where ∥Hk∥ ≤ κH . For any δ ∈ [0, 1), this approach finds the smallest eigenvalue
of Hk to an absolute precision of β/2, together with a corresponding direction v, in at most

Nmeo := min

{
n, 1 +

⌈
1

2
ln(2.75n/p2)

√
κH
β

⌉}
(4.5)

iterations, with probability at least 1− p, where dim (M) = n.

23

Algorithm 4 A minimum eigenvalue oracle

Input: Nonzero gk ∈ Txk
M and Hk, trust-region radius ∆k, failure probability tolerance

p ∈ (0, 1) and M ∈ [∥H∥ ,∞), direction computed by tCG sk.
Run the Lanczos algorithm on the matrix Hk with random initial vector to find a direction
of curvature at most −β/2. Run at most (4.5) iterations so that the probability of failure is
at most p.
if Lanczos find vector v such that ∥v∥ = 1 and ⟨v,Hkv⟩ ≤ −β/2 then

return w = ±∆kv satisfying

⟨gk, w⟩ ≤ 0, ⟨w,Hkw⟩ ≤ −
1

2
β ∥w∥2 , and ∥w∥ = ∆k,

else
return sk ▷ MEO failed to find −β/2 curvature

end if

4.1 Complexity analysis for inexact subproblems

We analyse the decrease in the model for each possible scenario that triggers the termination
of the truncated CG algorithm 3.

Proposition 4.2 (tCG small residual). Let iteration k be successful with ∥sk∥ ≤ νR and Algo-
rithm 3 terminate with outputCG=small residual, then

mk(0)−mk(sk) ≥
γ

4
∥sk∥2 . (4.6)

If additionally ∥sk∥ ≤ νR, then

mk(0)−mk(sk) ≥
γ

4
∥sk∥2 ≥

1

2(κ2R + 2LκR)
min(∥gradf(xk+1)∥2 γ−1, γ3). (4.7)

Proof. The final iterate of CG—written sk or yj+1—satisfies the small residual condition (4.1).
We have

⟨sk, Hksk⟩ = ⟨yj + αjpj , Hk(yj + αjpj)⟩
= ⟨yj , Hkyj⟩+ αj ⟨yj , Hkpj⟩+ αj ⟨pj , Hkyj⟩+ α2

j ⟨pj , Hkpj⟩
= ⟨yj , Hkyj⟩+ α2

j ⟨pj , Hkpj⟩ , (4.8)

where the last line follows from yj =
∑j−1

i=0 αipi and ⟨pj , Hkpi⟩ = 0 for i ̸= j, which implies
⟨pj , Hkyj⟩ = 0. Since Algorithm 3 certifies ⟨pj , Hkpj⟩ ≥ γ ∥pj∥2 and ⟨yj , Hkyj⟩ ≥ γ ∥yj∥2, this
gives

⟨sk, Hksk⟩ ≥ γ ∥yj∥2 + γ ∥αjpj∥2

≥ γ

2
∥sk∥2 , (4.9)

where we use ∥u∥2 + ∥v∥2 ≥ 1

2
∥u+ v∥2 for all vectors u, v ∈ Txk

M. This allows to deduce a

24

model decrease

mk(0)−mk(sk) = −⟨sk, gk⟩ −
1

2
⟨sk, Hksk⟩

= −⟨sk,−Hksk + rj+1⟩ −
1

2
⟨sk, Hksk⟩

=
1

2
⟨sk, Hksk⟩ − ⟨rj+1, sk⟩

≥ γ

4
∥sk∥2 , (4.10)

where we used that rj+1 = Hkyj+1+gk, ⟨rj+1, yj+1⟩ =
〈
rj+1,

∑j
i=0 αipi

〉
= 0 since for all i < j,

rj+1 ⊥ span(p0, . . . , pj) and finally Equation (4.9). Mimicking the proof of Lemma 3.7 gives

∥gradf(xk+1)∥ ≤ κR

∥∥∥∇f̂k(sk)− gradf(xk) + gradf(xk)
∥∥∥ (4.11)

= κR

∥∥∥∇f̂k(sk)− gradf(xk)−Hkyj+1 + rj+1

∥∥∥ (4.12)

≤ κR

∥∥∥∇f̂k(sk)− gradf(xk)−Hksk

∥∥∥+ κR ∥rj+1∥ (4.13)

≤ L̂HκR
2
∥sk∥2 + κRγ ∥sk∥ , (4.14)

where the last line follows from the Lipschitz-type inequality of Lemma 3.5 and the small
residual condition (4.1). We consider the univariate quadratic

LκR
2
∥sk∥2 + κRγ ∥sk∥ − ∥gk+1∥ ≥ 0

as a function of ∥sk∥. The convex quadratic has two real roots of opposite signs. The only
feasible values for ∥sk∥ are positive and therefore greater than the positive root; this gives

∥sk∥ ≥
−κRγ +

√
κ2Rγ

2 + 2LκR ∥gk+1∥
LκR

=

−κR +
√
κ2R + 2LκR ∥gk+1∥ γ−2

LκR

 γ

≥

−cR +
√

c2R + 2LcR

LcR

min{∥gk+1∥ γ−2, 1}γ

=

 2

cR +
√
κ2R + 2LκR

min{∥gk+1∥ γ−1, γ},

where we used that −a +
√
a2 + bt ≥ (−a +

√
a2 + b)min(t, 1) with a = cR, b = 2LcR and

t = ∥gk+1∥ γ−2. The constant in brackets can be simplified further by using that for any e > 0,
2/(1 +

√
1 + e) ≥ 1/

√
1 + e. Combining (4.9) and (4.10) we conclude

mk(0)−mk(sk) ≥
1

4
γ ∥sk∥2

≥ 1

2(κ2R + 2LκR)
min

(
∥gk+1∥2 γ−1, γ3

)
.

25

Proposition 4.3 (tCG Boundary step). If outputCG = boundary step, then

mk(0)−mk(sk) ≥
γ

4
∆2

k (4.15)

Proof. Let Hk = Hessf(xk) and note that ∥rj∥2 = −⟨rj , pj⟩ = −⟨gk, pj⟩. The direction is
sk = yj + ᾱjpj with ∥sk∥ = ∆k for some

0 ≤ ᾱj ≤ αj = −⟨gk, pj⟩ / ⟨pj , Hkpj⟩ , (4.16)

where αj is the conjugate gradients stepsize that leaves the trust-region, ∥yj + αjpj∥ ≥ ∆k.
Algorithm 3 ensures that ⟨pj , Hkpj⟩ ≥ γ ∥pj∥2. Equation (4.16) gives

−ᾱj ⟨gk, pj⟩ ≥ ᾱ2
j ⟨pj , Hkpj⟩ ,

from which we deduce

mk(0)−mk(ᾱjpj) = −ᾱj ⟨gk, pj⟩ −
ᾱ2
j

2
⟨pj , Hkpj⟩ (4.17)

≥ ᾱ2
j ⟨pj , Hkpj⟩ −

ᾱ2
j

2
⟨pj , Hkpj⟩ (4.18)

=
ᾱ2
j

2
⟨pj , Hkpj⟩ (4.19)

≥ γ

2
∥ᾱjpj∥2 . (4.20)

Equation (4.10) with ⟨yj , Hkyj⟩ ≥ γ ∥yj∥2 gives mk(0) − mk(yj) ≥
γ

2
∥yj∥2. Equation (4.8)

implies mk(sk) = mk(yj) +mk(ᾱjpj) and we conclude

mk(0)−mk(sk) = mk(0)−mk(yj) +mk(0)−mk(ᾱjpj)

≥ γ

2
∥yj∥2 +

γ

2
∥ᾱjpj∥2

≥ γ

2

(
∥yj∥2 + ∥ᾱjpj∥2

)
≥ γ

4
∥sk∥2 ,

where we use ∥u∥2 + ∥v∥2 ≥ 1

2
∥u+ v∥2 for all vectors u, v ∈ Txk

M.

Lemma 4.4 (Lemma 11 in Royer and Wright (2018)). Let xk ∈ R3 with ∥gk∥ > εg. Assume A6
such that γ Id ⪯ Hk ⪯ κH Id. The conjugate gradient algorithm applied to the linear system
Hks = −gk computes a vector sk ∈ Txk

M such that

∥Hksk + gk∥ ≤ ζmin
{
∥gk∥2 , κ ∥gk∥ , γ ∥sk∥

}
(4.21)

for some ζ ∈ (0, 1) in at most

kmax := min

{
n,

1

2

√
κH
γ

ln

(
2
√
κH

ζ
√
γ

max
(
ε−1
g , κ−1, κH/γ

))}
(4.22)

iterations, where ϱ = κH/γ.

Proof. The result follows from (Royer and Wright, 2018, Lemma 11).

26

Proposition 4.5 (Not convex tCG). Assume that Algorithm 3 terminates with flag not strongly convex,
then

mk(0)−mk(sk) ≥
1

4
min

{
∆2

kβ,min(∆k,
α

κH
)α

}
(4.23)

with probability at least 1− p.

Proof. If ∥gk∥ ≥ α, the step sk (given by tCG) decreases the model at least as much as the

Cauchy step, mk(0) −mk(sk) ≥
1

2
min(∆k, α/κH)α. If ∥gk∥ < α, Algorithm 4 returns a unit-

norm direction v ∈ Txk
M such that ⟨v,Hkv⟩ ≤ −

1

2
β. Using Lemma 3.2, we have (4.23) with

probability at least p.

4.2 Local convergence of inexact RTR

We analyse the local convergence of Algorithm 2 towards minimizers using strong geodesic
convexity. If Hk ⪰ γ Id, the tCG step sk is smaller in norm than any global minimizer of the
trust-region subproblem. Using (3.20) gives∥∥∥stcgk

∥∥∥ ≤ ∥∥sexactk

∥∥ ≤ ∥gk∥ /γ. (4.24)

Proposition 4.6. Let xk ∈ R3 with ∥sk∥ ≤ νR and

∥gk∥ ≤ min {ξ2, γ∆k} , (4.25)

where νR comes from Proposition 3.6 and ξ2 = min(cQ, 2/(κR(L̂H +2)). Algorithm 3 returns a
point in R3 with gradient norm below εg in at most

log2 log2

(
2γ2

κR(L+ 2)εg

)
(4.26)

iterations.

Proof. Consider x∗ ∈ R3, a local minimizer of f such that dist(xk, x
∗) ≤ δ. Since ∥gk∥ ≤ γ∆k,

the Newton step is inside the trust region. Therefore, the tCG step sk satisfies (4.1) and
is no greater in norm than the exact subproblem minimizer. To show a successful step, the
proof of Proposition 3.10 holds mutatis mutandis with the realisation that ∥sk∥ ≤ ∥gk∥ /γ and

m(0)−m(sk) ≥
1

2
γ ∥sk∥2 comes from Proposition 4.2. We then proceed from (4.13), using (4.24)

and (4.1)

∥gk+1∥ ≤ cR

∥∥∥∇f̂k(sk)− gk −Hksk

∥∥∥+ cR ∥rj+1∥ (4.27)

≤ κR
L

2
∥sk∥2 + κR ∥gk∥2 (4.28)

≤ LκR
2γ2
∥gk∥2 + κR ∥gk∥2 (4.29)

≤ κR
L+ 2

2γ2
∥gk∥2 . (4.30)

Using (4.25) shows that ∥gk+1∥ ≤
1

2
∥gk∥. Using that fact, the proof of Proposition 3.12 with

the appropriate minor adjustments ensures that dist(xk+1, x
∗) < δ. Furthermore, ∥gk+1∥ <

27

∥gk∥ < γ∆k ≤ γ∆k+1; and, by induction, all subsequent iterates will be at distance at most δ
of x∗, and each iteration will be a successful step with tCG terminating with a small residual.
To show quadratic convergence, we have

κR
(L+ 2)

2γ2
∥gk+1∥ ≤

(
κR

(L+ 2)

2γ2
∥gk∥

)2

. (4.31)

Following the proof of Theorem 3.15, we reach a point xℓ ∈ R3 with ∥gradf(xℓ)∥ in a number
of iterations upper bounded by (4.26).

4.3 Complexity of inexact RTR

Lemma 4.7 (Lower bound on TR radius). As long as Algorithm 2 as not returned, the trust
region radius satisfies ∆k ≥ O(∆0, α, β, γ).

Proof. The proof from Proposition 3.4 hold mutatis mutandis. If xk ∈ R1, then the Cauchy
decrease holds (3.6). If xk ∈ R2 ∪ R3, then the decrease is either (4.6) (small residual), (4.15)
(boundary step) or (4.23).

Theorem 4.8 (Successful steps of inexact RTR). For any realization of a run of Algorithm 2,
the number of successful iterations performed before termination is at most

KS := O
(
max(1/α2, 1/β3, 1/γ3) + log log(γε−1

g)
)
. (4.32)

with probability (1− p)KS .

Proof. If xk ∈ R1, for any value of outputCG, the step sk does at least as well as the Cauchy
step (3.6). If outputCG = boundary step, sk satisfies (4.15). Let outputCG = not strongly convex

and xk ∈ R2. The MEO is called and sk satisfies (4.23) with probability at least p. By (Curtis
et al., 2021, Theorem 4.6), the MEO avoids failure for K iterations with probability at least
(1− p)K .

If outputCG = small residual, we consider large steps and small steps separately accord-
ing to Lemma 3.7. If ∥sk∥ > νR, then mk(0)−mk(sk) ≥ γν2R/4 by (4.6). If ∥sk∥ ≤ νR, then (4.7)
gives

mk(0)−mk(sk) ≥ O
(
min(∥gk+1∥ γ−1, γ3)

)
. (4.33)

We proceed similarly to the proof of Theorem 3.16. If ∥gk+1∥ ≥ min(ξ2, γ∆k), then mk(0) −
mk(sk) ≥ O

(
min(ξ2γ

−1,∆k, γ
3)
)
. If ∥gk+1∥ < min(ξ2, γ∆k) and xk+1 ∈ R3, then local conver-

gence starts at xk+1 towards a minimizer by Proposition 4.6. The number of iterations such
that ∥gk+1∥ < min(ξ2, γ∆k) and xk+1 ∈ R1 is bounded by the number of iterations in R1, la-
belled |S1|. If, on the other hand, ∥gk+1∥ < min(ξ2, γ∆k) and xk+1 ∈ R2, then we cannot have
a sufficient guarantee of decrease until the MEO is called or another termination triggers the
end of CG. There can be at most (4.26) iterations in a row that remain in R2 and where tCG
terminates with small residual, before another type of iteration occurs (producing a guaranteed
decrease) or the gradient norm drops below εg, which triggers the call to a MEO, which will
produce a decrease or ensure that the iterate is a (εg, εH)-SOCP (1.1). We put every type of

28

decrease together until the start of the local phase. For any K̄ ∈ N:

f(x0)− f∗ ≥ f(x0)− f(xK) =

K̄−1∑
k=0

f(xk)− f(xk+1)

≥
∑
k∈B

f(xk)− f(xk+1) +
∑

k∈MEO

f(xk)− f(xk+1) +
∑

k∈small residual

f(xk)− f(xk+1)

≥ |K| · 1
2
η1min

{
α2

κH
,∆minα, β∆

2
min, γν

2
R, ξ2γ

−1,∆min, γ
3

}
= |K| · 1

2
η1min

{
κ−1
H , cQ,∆0,∆

2
0, ν

2
R

}
min

{
α2, βα2, β3, δ, βγ2, γ3

}
.

We account for iterations that may terminate with a small residual of CG when a call to the
MEO is required to show a decrease. We find that the number of successful steps before the
local phase begins is at most

KS =
2(f(x0)− f∗)

η1min
{
κ−1
H , cQ,∆0,∆2

0, ν
2
R

} max
{
α−2, β−1α−2, β−3, δ−1, β−1γ−2, γ−3

}
(4.34)

successful iterations.

Lemma 4.9 (Number of unsuccessful steps for inexact RTR). Let x0, . . . , xn be n iterates
generated by Algorithm 2. Define the set of successful steps as

Sn = {j ∈ {0, . . . , n} : ρj ≥ η1} (4.35)

and let Un designate the unsuccessful steps, so that Sn and Un form a partition of {0, . . . , n}. If
none of them satisfy the termination conditions, it holds that

|Sn| ≥ (1− τ2)(n+ 1)− τ2max

(
0, logτ2

(
∆0

c1α

)
, logτ2

(
∆0

c2β

)
, logτ2

(
∆0

c3γ

))
(4.36)

Proof. The proof follows (Boumal, 2023, Lemma 6.23) and rests on the lower-bound for ∆k

from Lemma 4.7.

Theorem 4.10. Algorithm 2 returns a (εg, εH)-critical point (1.1) with probability at least
(1− p)KS in at most

KS(1− τ2)
−1 + τ2max

(
0, logτ2

(
∆0

c1α

)
, logτ2

(
∆0

c2β

)
, logτ2

(
∆0

c3γ

))
(1− τ2)

−1 (4.37)

iterations, where KS is defined in Theorem 4.8.

Proof. See (Curtis et al., 2021, Theorem 4.6).

Since tCG performs at most kmax iterations and the MEO performs at most Nmeo iterations,
the number of Hessian-vector products is bounded by (kmax +Nmeo) |K| = where the total
number of iterations |K| is bounded by Theorem 4.10, kmax is defined in (4.22) and Nmeo

in (4.5). Thus, we have the following result.

Theorem 4.11 (Complexity of Algorithm 2). For any realization of Algorithm 2, the total
number of Hessian-vector products performed before producing a (εg, εH)-critical point (1.1) is
at most

Õ
(
min

(
n, β−1/2, γ−1/2

)
max

{
α−2, β−1α−2, β−3, δ−1, β−1γ−2, γ−3

}
+ log log(ε−1

g γ)
)
. (4.38)

29

5 Discussion

We have shown that worst-case complexity guarantees of Riemannian trust-region algorithms
on nonconvex functions improve significantly when the function satisfies a strict saddle prop-
erty. In particular, an algorithm with exact subproblem minimization does not require any
modification from its standard version in order to benefit from these improved guarantees. Our
analysis crucially relies on the fast quadratic local convergence of Newton’s method, and can
be adapted to inexact subproblem solves by incorporating knowledge of the strict saddle con-
stants in the problem. Although those parameters are known for a variety of problems, adaptive
schemes have been proposed to estimate them as the algorithm unfolds (O’Neill and Wright,
2023). Investigating the numerical performance of these algorithms, along with their multiple
possibilities for implementation, will be the subject of future work.

Acknowledgments The authors are grateful to Coralia Cartis for useful discussions regarding
local convergence of trust-region methods, and for sharing reference Shek (2015). Funding for
this research was partially provided by Agence Nationale de la Recherche through program
ANR-19-P3IA-0001 (PRAIRIE 3IA Institute).

References

Absil, P.-A., Baker, C., and Gallivan, K. (2007). Trust-Region Methods on Riemannian Mani-
folds. Foundations of Computational Mathematics, 7(3):303–330.

Absil, P.-A., Mahony, R., and Sepulchre, R. (2008). Optimization Algorithms on Matrix Mani-
folds. Princeton University Press.

Agarwal, N., Boumal, N., Bullins, B., and Cartis, C. (2021). Adaptive regularization with
cubics on manifolds. Mathematical Programming, 188(1):85–134.

Boumal, N. (2023). An Introduction to Optimization on Smooth Manifolds. Cambridge Univer-
sity Press.

Boumal, N., Absil, P.-A., and Cartis, C. (2019). Global rates of convergence for nonconvex
optimization on manifolds. IMA Journal of Numerical Analysis, 39(1):1–33.

Boumal, N., Voroninski, V., and Bandeira, A. S. (2020). Deterministic Guarantees for Burer-
Monteiro Factorizations of Smooth Semidefinite Programs. Communications on Pure and
Applied Mathematics, 73(3):581–608.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. (2018). Accelerated Methods for Non-
Convex Optimization. SIAM Journal on Optimization, 28(2):1751–1772.

Cartis, C., Gould, N. I. M., and Toint, P. L. (2012). Complexity bounds for second-order
optimality in unconstrained optimization. Journal of Complexity, 28(1):93–108.

Criscitiello, C. and Boumal, N. (2019). Efficiently escaping saddle points on manifolds. In
Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.

Curtis, F. E. and Robinson, D. P. (2021). Regional complexity analysis of algorithms for
nonconvex smooth optimization. Mathematical Programming, 187(1):579–615.

30

Curtis, F. E., Robinson, D. P., Royer, C. W., and Wright, S. J. (2021). Trust-Region Newton-
CG with Strong Second-Order Complexity Guarantees for Nonconvex Optimization. SIAM
Journal on Optimization, 31(1):518–544.

Ge, R., Lee, J. D., and Ma, T. (2016). Matrix Completion has No Spurious Local Minimum.
In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors, Advances
in Neural Information Processing Systems 29, pages 2973–2981. Curran Associates, Inc.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan, M. I. (2017). How to escape saddle
points efficiently. In International Conference on Machine Learning, pages 1724–1732. PMLR.

Lee, J. D., Panageas, I., Piliouras, G., Simchowitz, M., Jordan, M. I., and Recht, B. (2019).
First-order methods almost always avoid strict saddle points. Mathematical programming,
176(1):311–337.

Li, Q., Zhu, Z., and Tang, G. (2019). The non-convex geometry of low-rank matrix optimization.
Information and Inference: A Journal of the IMA, 8(1):51–96.

Liu, Y. and Roosta, F. (2023). A Newton-MR algorithm with complexity guarantees for non-
convex smooth unconstrained optimization.

Luo, Y. and Trillos, N. G. (2022). Nonconvex Matrix Factorization is Geodesically Convex:
Global Landscape Analysis for Fixed-rank Matrix Optimization From a Riemannian Per-
spective.

Moré, J. J. and Sorensen, D. C. (1983). Computing a trust region step. SIAM Journal on
scientific and statistical computing, 4(3):553–572.

O’Neill, M. and Wright, S. J. (2023). A Line-Search Descent Algorithm for Strict Saddle
Functions with Complexity Guarantees. Journal of Machine Learning Research, 24(10):1–34.

Paternain, S., Mokhtari, A., and Ribeiro, A. (2019). A Newton-Based Method for Nonconvex
Optimization with Fast Evasion of Saddle Points. SIAM Journal on Optimization, 29(1):343–
368.

Qu, Q., Zhai, Y., Li, X., Zhang, Y., and Zhu, Z. (2019). Analysis of the optimization landscapes
for overcomplete representation learning. arXiv preprint arXiv:1912.02427.

Royer, C. W., O’Neill, M., and Wright, S. J. (2020). A Newton-CG algorithm with complexity
guarantees for smooth unconstrained optimization. Mathematical Programming, 180(1):451–
488.

Royer, C. W. and Wright, S. J. (2018). Complexity analysis of second-order line-search algo-
rithms for smooth nonconvex optimization. SIAM Journal on Optimization, 28(2):1448–1477.

Shek, P. (2015). Local convergence of cubic regularisation methods for unconstrained non-convex
optimisation problems. Part C Master dissertation (supervisor: C. Cartis), Mathematical
Institute, University of Oxford.

Steihaug, T. (1983). The Conjugate Gradient Method and Trust Regions in Large Scale Opti-
mization. SIAM Journal on Numerical Analysis, 20(3):626–637.

Sun, J., Qu, Q., and Wright, J. (2015). When are nonconvex problems not scary? arXiv
preprint arXiv:1510.06096.

31

Sun, J., Qu, Q., and Wright, J. (2017a). Complete Dictionary Recovery Over the Sphere I:
Overview and the Geometric Picture. IEEE Transactions on Information Theory, 63(2):853–
884.

Sun, J., Qu, Q., and Wright, J. (2017b). Complete Dictionary Recovery Over the Sphere II:
Recovery by Riemannian Trust-Region Method. IEEE Transactions on Information Theory,
63(2):885–914.

Sun, J., Qu, Q., and Wright, J. (2018). A geometric analysis of phase retrieval. Foundations of
Computational Mathematics, 18(5):1131–1198.

Sun, Y., Flammarion, N., and Fazel, M. (2019). Escaping from saddle points on Riemannian
manifolds. In Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Toint, P. (1981). Towards an Efficient Sparsity Exploiting Newton Method for Minimization.
In Duff, I. S., editor, Sparse Matrices and Their Uses, pages 57–88. Academic press, London.

Wright, J. and Ma, Y. (2022). High-Dimensional Data Analysis with Low-Dimensional Models:
Principles, Computation, and Applications. Cambridge University Press.

Wright, S. J. and Recht, B. (2022). Optimization for Data Analysis. Cambridge University
Press.

Zhang, H. and Sra, S. (2016). First-order Methods for Geodesically Convex Optimization. In
Conference on Learning Theory, pages 1617–1638.

32

