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1. INTRODUCTION 

Today, optical sensors are widely used in various 
measurement scenarios, e.g. on-board laser lidar for au-
tonomous driving, structured light-based scanner for part 
measurement, and electronic total station for BIM appli-
cations. Compared with other techniques, the 3D recon-
struction measurement system based on vision (e.g. 
structured light) have superiority on obtaining much 
greater number of surface points, efficiency and ease of 
use [1]. The existing research on scan view planning prob-
lem with the known model and vision measurement tools 
usually uses only the visibility analysis on the CAD model 
of the part to determine the possible scan surface [1] 
while the studies ignore the parameters that affect the 
scan, which makes the possible scanned area and the real 
reconstructed region different. 

Indeed, lots of parameters affect the quality of the ac-
quired point cloud, such as the choice of the scanner poses 
including its orientation with respect to the surfaces to be 
scanned, the roughness of the surfaces, the material and 
so on. Understanding correctly how these parameters in-
fluence the quality of one scan is a difficult task because 
the parameters are coupled, and their influence cannot be 
summarized concisely by an explicit formula. The re-
search carried out in this paper focuses on the use of 
structured light-based scanning device, with the objective 
of identifying how a scanning configuration and its pa-
rameters affect the quality of the obtained point clouds. 

To assess the quality of the scanning configuration in-
cluding the pose of the scanner as well as the influencing 
parameters characterizing the way the part is scanned 

(e.g. exposure, light distribution, roughness and materi-
als), three problems should be solved: (1) how to measure 
the quality of a point cloud for a given configuration; (2) 
what are the parameters characterizing a configuration 
and considered as influencing parameters; (3) how to pre-
dict the quality of a configuration from its influencing pa-
rameters.  

For the first question, researchers proposed several in-
dictors to characterize the quality of the scanning results 
with respect to the adopted configuration. For instance, 
the measurement performance indicators and the statis-
tical indicators have been proposed and compared on ac-
quisitions from structured light device and from photo-
grammetry [2]. Based on this work, Li et al [3] summa-
rizes the existing assessment metrics and explored new 
metrics for a single scan. It was notably found that some 
indictors (such as density [4] or dispersion [2]) do not 
vary a lot when the poses change, while the coverage in-
dictor is more sensitive to the change and can thus be con-
sidered as a variable to be optimized when looking for an 
optimal scanning configuration. As a consequence, this 
work focuses on the a priori prediction of the coverage in-
dicator from various scan configurations, in order to be 
able to estimate the coverage that will be obtained but be-
fore really scanning. 

For the 2nd question, previous studies mainly analysed 
the influencing parameters in terms of the principle of re-
construction. In this paper, the influencing parameter are 
divided into three groups: (a) influencing factors brought 
about by the reconstruction method; (b) properties of the 
measured object; (c) parameters related to the scanning 
environment. Considering the group (a), two factors are 
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here considered: (I) the construction of the hardware, in-
cluding the layout of the cameras, the lens, the resolution 
of the cameras and the projector for projecting the pat-
tern series and so on; (II) the calibration error. It is notice-
able that much effort is put on the later. It experienced the 
evolution of the camera model, and the development of 
the 3D calibration objects to 2D calibration objects. For 
group (b), the properties of measure object consist of the 
material of parts, processing methods, surface treatment 
process, and geometric features. The distribution and in-
tensity of the environmental light, and the ambient tem-
perature are considered in group (c). 

To deal with the 3rd question with so many coupled in-
fluencing parameters, the use of neural network has been 
investigated in this paper to find a coverage estimator. 
Neural networks achieved much reputation on 2D tasks in 
classification and semitic segment, and it has been ex-
tended in various contexts now with its reputation that it 
can fit implicit functions to handle coupled multi-param-
eter tasks. Convolution neural network is widely used in 
structured data. LeNet-5 [8] was proposed in 1998 with 
class convolutional network structure: convolution-pool-
ing-fully connected. AlexNet [9] followed the strategy was 
validated in the ImageNet competition. Then, VGGNet [10] 
and GoogleNet [11] were proposed with more convolu-
tional layers but degradation problem was found that the 
accuracy of the network saturates or even decreases 
while the network depth increases. Kaiming He et al. [12] 
designed the residual block to solve this problem. Also, in-
ception block was designed with extracting features in 
different scale space. Attention mechanism and trans-
former [13] have been proposed one after another. Our 
work makes contributions on threefold: (a) a novel 3D re-
construction prediction framework able to evaluate the 
coverage of the scanning configurations with a deep seg-
mentation network; (b) several physical acquisition plat-
forms built together with the digital twins, able to operate 
the scanning task with auto-registration; (c) one database 
including real scan point clouds of parts, scanner configu-
rations, and scan data virtually generated from the CAD 
model, able to explore the methods of registration, analy-
sis related to point cloud and so on. The work could be 
used for scan view plan problem on binocular stereo 
measurement to optimize the pose of the scanner. 

The paper is organized as follows. Section 2 presents 
the overall framework of the work. The experimental val-
idation is detailed in Section 3 and Section 4 ends this pa-
per with conclusion and perspectives.  

2. METHODOLOGY 

This section introduces the acquisition platform for the 
creation of the database and the novel coverage predic-
tion framework. The former offers the required data with 
scanning configurations for training the latter. 

2.1. Acquisition platform 

Several equipments have been set up and integrated 
within the acquisition platform, to perform the scan tasks 

required to build the database used for the learning step. 
It consists of a CNC machine DMU 50 with an integrated 
probe, a structured light-based scanner GOCATOR 3210 
by LMI, an UR5 robot, the PC to control the whole platform, 
a thermometer and a luminometer. The acquisition plat-
form includes two parts: CNC platform (Figure 1) and ro-
bot platform (Figure 2). Each platform take part to the ac-
quisition tasks, and the two platforms can be merged into 
one semi-automatic platform (Figure 3). 

According to Li et al. [3], the coverage of a scan charac-
terizes the way the surface of the geometric model of a 
part being digitized is covered. This metric is evaluated 
for each facet j of the triangle mesh associated to the CAD 

model of the scanned part. If the number of points ��
���

 of 

the scanned point cloud associated to the j-th facet is over 
a threshold, the facet is considered as covered (1). Other-
wise, the j-th facet is not covered and it is considered as a 
zero (0) facet in this paper. Thus, the computation of this  

 

Figure 1 – CNC platform 

 

Figure 2 - Robot platform 

 

Figure 3 - Semi-automatic acquisition platform 



 

18ème Colloque national S.mart 3 Carry-le-Rouet, 4-6 avril 2023 

indicator requires the point cloud to be aligned to the as-
sociated CAD model. To do so, the digital twin of the entire 
platform is established to record the position and orien-
tation details, especially the registration matrices 
needed for the calculation of the coverage indicator. 

The essence of the digital twin is more related to the 
coordinate system transformation. For the CNC platform, 
the matrix ��� defines the transformation from the global 

coordinate system (CSYS) ����� to the one of the rotat-

ing table ����� (Figure 4) and its values can be found in 
the user manual or measured. Then, the transformation 
matrix  ��� between the workpiece and the global coor-

dinate system can be calibrated by the probe of the CNC 
machine (Figure 5), and indirectly acquired ��� by Equa-

tion (1). After scanning and doing registration with regis-
tration matrix ���  (point cloud to part transformation), 

the scanner can be positioned in the digital twin with 
Equation (2). Finally, the digital twin is set up as in Figure 
6. Once the calibration performed, the acquisitions can 
start, the table is successively rotated, and the acquisi-
tions obtained for each position of the table, each acquisi-
tion being then located in the digital twin using the trans-
formation matrices.  

��� =  ������ (1) 

��� =  ������  (2) 

 

Figure 4 – The rotation table and global coordinate system 

 

Figure 5 – Position the workpiece in the CNC CSYS 

 

Figure 6 – Digital twin of the CNC acquisition platform 

For the robot acquisition platform (Figure 7), it has 4 
coordinate systems: robot base coordinate system �����,  
end coordinate system ����� , scanner coordinate sys-
tem ����� , and workpiece coordinate system ����� . 

Firstly, the transformation ��� (scanner to robot end) can 
be obtained by eye-in-hand calibration [14]. Similar to the 
CNC platform, the position and orientation of the part 
(���) can be analyzed after one registration of the scan 

result ���
(�������)

 using Equation (3). For each robot pose, 

the pose of the robot end under ����� (���
(�)

) is obtained 

from the robot control panel and the registration matrix 

for each pose acquisition ���
(�)

 is calculated by Equation 

(4). 
 

��� =  ���
(�������)

���(���
(�������)

) �� (3) 

���
(�)

= (���)�����
(�)

��� (4) 

At the end of the calibration step, all transformation 

matrices are known and can be used to reposition the 

numerous scanned point clouds onto the corresponding 

CAD models and thus be able to build the database auto-

matically labelled with coverage information. 

 

Figure 7 – Position the workpiece in the robot base CSYS 

2.2. Prediction model construction 

Using the previously acquired labelled database, the 
prediction model can be trained and tested. This subsec-
tion briefly details the structure of the model. 

In this paper, only a subset of the influencing factors 
has been considered: parameters of the workpiece, man-
ufacturing aspects through the texture and part of the 
configuration. Other aspects related to the material, to the 
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lightning, to the ambient temperature and so on have not 
been considered in this study. The flowchart used to cre-
ate the dataset is shown in Figure 8, wherein one labelled 
sample of the dataset (bottom right) is created from a real 
scan (bottom left) and from the CAD model (top left). The 
standardized mesh is obtained after CAD meshing (step A) 
while controlling the length of the edges considering the 
resolution of the scanner. In this work, the point cloud 
representation is chosen for its convenience, so bary-
center is used instead of the facet (step B). After com-
pressing the representation, hidden point removal algo-
rithm and field of view (FOV) is used to segment redun-
dant points and thus obtain the theoretical point cloud in 
Step C. The visual characteristics of the real workpiece are 
also considered using textures in Step D. In step E, the  
coverage is calculated with the real point cloud, transfor-
mation matrices, and the standardized mesh. It should be 
pointed out that the mesh is translated into the scanner 
coordinate system. Finally, all the features are merged 
into the descriptors and label for each facet/barycenter. 
The descriptors used in this paper are shown in Figure 9, 
where the count of values of each feature are 3, 3, 43 re-
spectively. 

 

Figure 9 - Elements of one descriptor for training 

The architecture of the developed prediction model 
is based on U-Net and can be divided into 2 parts: encoder 
(block B of Figure 10) and decoder (block C of Figure 10). 
In the encoder, the input of each layer will successively be 
applied with a channel attention mechanism, and then a 
convolution operation, and next it will be merged with the 
original input into a new feature map. This process is de-
scribed as the block A of Figure 10. Finally, the result of 
previous layer will take pooling operation to get a new 
feature as the input of the next layer. One layer of the 
model includes the one-layer encoder and one-layer de-
coder, shown as the block D. The input of the decoder con-
sists of the up-sampling result of the previous layer and 
the output of the encoder in the same model layer. Each 
layer of the decoder does like encoder, applying the block 

A and convolution. The up-sampling is done to prepare 
the input for the next layer. 

 

Figure 10 – Coverage prediction model 

3. EXPERIMENTS AND RESULTS 

To populate the database, several workpieces have 
been designed, manufactured and then scanned according 
to multiple poses and scanner settings. In this paper, two 
parts have been considered: pocket and stair-like (Figure 
11) and the exposure is set to 6000µs. The multiple poses 
are visible in Figure 12 for the pocket workpiece. 

 

Figure 11 – Considered workpieces 

 
Figure 12 – Scanner poses for the pocket workpiece 

Figure 8 - Flowchart of generating dataset for training 
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The neural network inputs are prepared following the 
dataset generation steps in Section 2. To train the net-
work, a subset of the acquisitions on the pocket are used 
and the remaining ones are used for testing. The stochas-
tic gradient descent (SGD) with momentum is taken as op-
timization strategy to optimize the cross entropy as the 
loss function. The evolution of the loss function is shown 
in Figure 13. 

 

Figure 13 – Evolution of the loss function when training the network 

After 150 epochs, the loss tends to be stable and the 
training ends. The model is then tested on the remaining 
acquisitions from the pocket, as well as on the acquisi-
tions from the stair-like part that have never been used 
for training. F1-score is used to evaluate the training of the 
model, defined as Equation (5). Precision is defined as the 
percentage of the real covered triangles among the whole 
predicted covered triangles while Recall is defined as the 
percentage of the real covered triangles among the whole 
scanning covered triangles.  

�� − ����� =  
2 × ��������� × ������ 

��������� + ������
 (5) 

The test results are shown in Table 1 and one example 
of the pocket and stair-like are shown in Figure 14, where 
the green region means the region that model and ground 
truth both take it as covered (1), blue corresponding to the 
model and ground truth zero (0), red associated to one 
ground truth zero but model covered, and the yellow de-
termining ground truth covered but model zero. For in-
stance, on Test4, 93687 triangles that have been covered 
when scanning the stair-like are identified as covered by 
the network, and 23705 triangles that have not been cov-
ered are indeed identified as zero by the network, which 
is good. In yellow, the 18152 triangles that were covered 
but for which the network did not predict it properly, and 
in red the 6213 triangles that were not covered but which 
have been identified as covered by the system. This last 
case is certainly the worst case when considering the 
overall objective of optimizing the scanner position be-
fore scanning the manufactured part. Indeed, if the opti-
mizer uses triangles estimated to be covered and which 
are not after the scan, there is a risk of not obtaining a 
good scan in reality. However, red triangles are few, and 
these results validate the model and its capacity to predict 
a priori the coverage, i.e. before scanning.  

With the help of our work, the proposed large number 
of scanning configurations (including poses and exposure) 

can be assessed in advance in the digital twin and opti-
mized to obtain maximum coverage as few acquisitions 
with optimal configurations as possible. 

Tableau 1 – Results obtained on five test cases 

Pose Accuracy Precision Recall F1-score 
Test1 0.8560 0.8167 0.8818 0.8480 
Test2  0.9052 0.8979 0.8905 0.8942 
Test3 0.8920 0.9001 0.9121 0.9060 
Test4 0.8281 0.9378 0.8377 0.8849 
Test5 0.8823 0.8157 0.9409 0.8738 

 

(a) Result of Test4 on the stair-like 

 

(b) Result of Test5 on the pocket 

Figure 14 –Testing examples: stair-like (a) and pocket (b) 

4. CONCLUSION  

This work firstly analyses the influencing factors that 
have effects on scanning and the evaluation metrics that 
can be used to optimize the scanning. Based on this, the 
data collection platforms set up to prepare the data for the 
neural network have been presented. Then, the model for 
coverage prediction has been proposed and trained on 
two datasets. In the end, the method is validated, and it 
accurately predicts the coverage in advance of the scan-
ning. The next steps concern the integration of this pre-
diction model within and optimizing loop so as to identify 
the optimal poses and parameters of the scanner before 
scanning. The way light reflects on the object when scan-
ning will also be studied, and specific features are to be 
identified through texture mapping.  
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