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Abstract11

At TN ' 300 K the layered insulator BaCoS2 transitions to a columnar antifer-12

romagnet that signals non-negligible magnetic frustration despite the relatively13

high TN, all the more surprising given its quasi two-dimensional structure.14

Here, we show, by combining ab initio and model calculations, that the mag-15

netic transition is an order-from-disorder phenomenon, which not only drives the16

columnar magnetic order, but also the inter-layer coherence responsible for the17

finite Néel transition temperature. This uncommon ordering mechanism, actively18

contributed by orbital degrees of freedom, hints at an abundance of low energy19

excitations above and across the Néel transition, in agreement with experimental20

evidence.21

1 Introduction22

Frustrated magnets often display a continuous accidental degeneracy of the classical23

ground state that leads to the appearance of pseudo-Goldstone modes within the24

harmonic spin-wave approximation [1]. Since those modes are not protected by sym-25

metry, they may acquire a mass once anharmonic terms are included in the spin-wave26

Hamiltonian. This mass, in turn, cuts off the singularities brought about by the27

pseudo-Goldstone modes, in that way stabilising ordered phases otherwise thwarted28

by fluctuations. To put it differently, let us imagine that the classical potential has29
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a manifold of degenerate minima generally not invariant under the symmetry group30

of the Hamiltonian. It follows that the eigenvalues of the Hessian of the potential31

change from minimum to minimum. Allowing for quantum or thermal fluctuations is32

therefore expected to favour the minima with lowest Hessian determinant, although33

the two kinds of fluctuations not necessarily select the same ones [2]. Moreover, it34

is reasonable to assume that the minima with lowest Hessian determinant are those35

that form subsets invariant under a symmetry transformation of the Hamiltonian so36

that choosing any of them corresponds to a spontaneous symmetry breaking. Such a37

phenomenon, also known as order from disorder [3], emerges in many different con-38

texts [4], from particle physics [5, 6] to condensed matter physics [7, 8], even though39

frustrated magnets still provide the largest variety of physical realisations [1–3, 9–15].40

41

The layered insulator BaCoS2 might be legitimately included in the class of frus-42

trated magnets. Below a critical temperature TN, BaCoS2 becomes an antiferromagnet43

characterised by columnar spin-ordered planes, which we hereafter refer to as antifer-44

romagnetic striped (AFS) order, a classic symptom of frustration. The planes are in45

turn stacked ferromagnetically along the c-axis, so called C-type stacking as opposed46

to the antiferromagnetic G-type one. Inelastic neutron scattering (INS) experiments47

show that magnetic excitations below TN have pronounced two-dimensional (2D)48

character [16, 17] implying strong quantum and thermal fluctuations that join with49

magnetic frustration to further hamper magnetic order. In spite of all that, the Néel50

temperature of BaCoS2 is rather large, between 290 K [18] and 305 K [19], which is51

highly surprising. Indeed, a direct estimate of the spin exchange constants by neutron52

diffraction has been recently attempted in doped tetragonal BaCo0.9Ni0.1S1.9 subject53

to an uniaxial strain [17]. This compound undergoes a Néel transition to the C-type54

AFS phase at 280 K [17], not far from TN of undoped BaCoS2. The neutron data55

were fitted by a conventional J1 − J2 Heisenberg model [13] on each plane plus an56

inter-plane ferromagnetic exchange Jc, yielding J2 ∼ 9.3 meV, J1 ∼ −2.3 meV and57

0 < |Jc| < 0.04 meV, with the upper bound due to experimental resolution. The Néel58

temperature can be overestimated discarding J1 [20] and taking |Jc| equal to the upper59

bound. In that way, one obtains [21] TN ' 200 K, which, despite supposedly being an60

overestimate, is 2/3 smaller than the observed value. This discrepancy is puzzling.61

Another startling property is the anomalously broad peak of the magnetic suscepti-62

bility at TN [18, 19], which suggests a transition in the Ising universality class rather63

than the expected Heisenberg one [19]. A possible reason of this behaviour might be64

spin-orbit coupling [19]. Indeed, a Rashba effect due to the layered structure and65

the staggered sulfur pyramid orientation, see Fig. 1, has been found to yield sizeable66

band splittings at specific points within the Brillouin zone, at least in metallic tetrag-67

onal BaNiS2 [22]. The Rashba-like spin-orbit coupling strength may barely differ in68

BaCoS2, or be weakened by strong correlations [23]. In either case, its main effect is69

to introduce an easy plane anisotropy, as indeed observed experimentally [19], which,70

at most, drives the transition towards the XY universality class. It is well possible71

that the weak orthorhombic distortion in BaCoS2 may turn the easy plane into an72

easy axis, but the resulting magnetic anisotropy should be negligibly small and thus73

unable to convincingly explain the experimental observations.74
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Lastly, BaCoS2 shows a very strange semiconducting behaviour above TN, with acti-75

vated dc conductivity, no evidence of a Drude peak and, yet, an optical conductivity76

that grows linearly in frequency [24].77

78

The relatively high TN despite magnetic frustration and quasi-two dimensional79

character, as well as the abundance of low energy excitations above and across the80

Néel transition are pieces of evidence that some kind of order-from-disorder phe-81

nomenon takes place in BaCoS2, a scenario that we here support by a thorough82

analysis combining ab initio and model calculations.83

84

2 Results85

2.1 Phase diagram of BaCoS286

BaCoS2 is a metastable layered compound that, quenched from high temperature,87

crystallises in an orthorhombic structure with space group Cmme, no. 67 [25], charac-88

terised by in-plane primitive lattice vectors a 6= b. However, we believe physically more89

significant to consider as reference structure the higher-symmetry non-symmorphic90

P4/nmm tetragonal one (a = b) of the opposite end member, BaNiS2, and regard91

the orthorhombic distortion as an instability driven by the substitution of Ni with92

the more correlated Co. The hypothetical tetragonal phase of BaCoS2 is shown in93

Fig. 1(A). Each CoS a− b plane has two inequivalent cobalt atoms, Co(1) and Co(2),94

see Fig. 1(B), which are related to each other by a non-symmorphic symmetry.95

Below TN, an AFS magnetically ordered phase sets in. In the a− b plane it consists of96

ferromagnetic chains, either along a (AFS-a) or b (AFS-b), coupled antiferromagnet-97

ically, see Fig. 1(C). The stacking between the planes is C-type, i.e., ferromagnetic,98

thus the labels C-AFS-a and C-AFS-b that we shall use, as well as G-AFS-a and99

G-AFS-b whenever we discuss the G-type configurations with antiferromagnetic stack-100

ing. We mention that the orthorhombic distortion with b > a (a > b) is associated101

with C-AFS-a (C-AFS-b), i.e., ferromagnetic bonds along a (b) [19], at odds with the102

expectation that ferromagnetic bonds are longer than antiferromagnetic ones. This103

counterintuitive behaviour represents a key test for the ab initio calculations that we104

later present.105

Neutron scattering refinement and magnetic structure modelling in the low-106

temperature phase point to an ordered moment of µCo ∼ 2.63 − 2.9µB [19, 26],107

suggesting that each Co2+ is in a S = 3/2 spin configuration, in agreement with108

the high-temperature magnetic susceptibility [19]. Moreover, the form factor analysis109

of the neutron diffraction data [26] indicates that the three 1/2-spins lie one in the110

d3z2−r2 , the other in the dx2−y2 , and the third either in the dxz or dyz 3d-orbitals of111

Co. Since dxz and dyz, which we hereafter denote shortly as x and y orbitals, form in112

the P4/nmm tetragonal structure a degenerate Eg doublet occupied by a single hole,113

such degeneracy is going to be lifted at low-temperature. That hints at the existence of114

some kind of orbital order, besides the spin one, in the magnetic orthorhombic phase.115

Let us try to anticipate by symmetry arguments which kind of order can be stabilised.116

We observe that in the Cmme orthorhombic structure the cobalt atoms occupy117
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the Wyckoff positions 4g, which, for convenience, we denote as Co(1) ≡ (0, 0, z),118

Co(2) ≡ (1/2, 0,−z), Co(3) ≡ (0, 1/2,−z), Co(4) ≡ (1/2, 1/2, z), and have symme-119

try mm2. As a consequence, the hole must occupy either the x orbital or the y one,120

but not a linear combination, and the chosen orbital must be the same for Co(1) and121

Co(4), as well as for Co(2) and Co(3). Therefore, we denote as dn, d = x, y, the orbital122

occupied by the hole on Co(n), n = 1, . . . , 4, and as d1d2d3d4 a generic orbital con-123

figuration. Then, there are only four of them that are symmetry-allowed: xxxx, yyyy,124

xyyx and yxxy, see Fig. 2.125

We remark that xxxx is degenerate with yyyy in the tetragonal phase. The choice of126

either of them is associated with the same C4 → C2 symmetry breaking that charac-127

terises both the AFS-a or AFS-b spin order and the orthorhombic distortion, b > a or128

a > b. All these three choices can be associated with three Ising variables τ , σ and X129

such that τ = +1 corresponds to xxxx, σ = +1 to AFS-a, X = +1 to b > a, and vice130

versa. Since they all have the same symmetry, odd under C4, they would be coupled131

to each other should we describe the transition by a Landau-Ginzburg functional. We132

shall hereafter denote as Z2(C4) the Ising sector that describes the C4 → C2 symme-133

try breaking.134

The other two allowed orbital configurations xyyx and yxxy (see Fig. 2) are instead135

degenerate both in the tetragonal and orthorhombic phases, but break the non-136

symmorphic symmetry (NS) that connects, e.g., Co(1) with Co(2) and Co(3). We can137

therefore associate to those configurations a new Ising sector Z2(NS).138

We emphasise that the above conclusions rely on the assumption of a Cmme139

space group. A mixing between x and y orbitals is instead allowed by the Pba2 space140

group proposed in Ref. [27] as an alternative scenario for BaCoS2 at room temper-141

ature. As a matter of fact, the two symmetry-lowering routes, P4/nmm → Cmme142

and P4/nmm → Pba2, correspond to different Jahn-Teller-like distortions involving143

the dxz-dyz doublet and the Eg phonon mode of the P4/nmm structure at the M144

point, which is found to have imaginary frequency by ab initio calculations [27]. How-145

ever, latest high-accuracy X-ray diffraction data [18] confirm the Cmme orthorhombic146

structure even at room temperature, thus supporting our assumption.147

2.2 Ab initio analysis148

Using density functional theory (DFT) and DFT+U calculations, in the first place,149

we checked if the tetragonal phase is unstable towards magnetism, considering both a150

conventional Néel order (AFM) compatible with the bipartite lattice and the observed151

AFS. We found, using a Hubbard interaction of U = 2.8 eV and a Hund’s coupling152

constant J = 0.95 eV for the Co-3d orbitals as motivated by constrained random153

phase approximation (cRPA) [24], that the lowest energy state is indeed the AFS, the154

AFM and non-magnetic phases lying above by about 0.5 eV and 2.3 eV, respectively.155

Let us therefore restrict our analysis to AFS and stick to U = 2.8 eV. Note, however,156

that the ordering of the four configurations with lowest energy within our DFT+U157

simulations does not change within 2 eV around that value. The main assumptions158

entering our ab initio modelling are thereby not sensitive to the precise choice of U159

around the value motivated by cRPA calculations. We use an 8-site unit cell that160

includes two planes, which allows us to compare C-AFS with G-AFS. In addition, we161
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consider both the tetragonal structure with AFS-a, since AFS-b is degenerate, and162

the orthorhombic structure with b > a, in which case we analyse both AFS-a and163

AFS-b. For all cases, we investigate all four symmetry-allowed orbital configurations,164

xxxx, yyyy, xyyx and yxxy, assuming either a C-type or G-type orbital stacking165

between the two planes of the unit cell, so that, for instance, G(xxxx) means that166

one plane is in the xxxx configuration and the other in the yyyy one.167

168

In Table 1 we report the energies per formula unit of several possible configurations169

in the tetragonal structure, including those that would be forbidden in the orthorhom-170

bic one. All energies are measured with respect to the lowest energy state and are171

expressed in Kelvin. In agreement with experiments, the lowest energy state T0 has172

spin order C-AFS, a or b being degenerate. In addition, it has C-type antiferro-orbital173

order, C(xyyx). We note that its G-type spin counterpart T1 is only 2 K above, sup-174

porting our observation that TN = 290 K is anomalously large if compared to these175

magnetic excitations. The abundance of nearly degenerate ground states is consistent176

with the seminal DFT+U study by Zainullina and Korotin [28], where the importance177

of different orbital configurations for a given stripe magnetic phase was studied for a178

larger value of U .179

The energy differences between C-type orbital stacked configurations and their G-type180

counterparts are too small to allow obtaining a reliable modelling of the inter-plane181

orbital coupling. On the contrary, the energy differences between in-plane orbital con-182

figurations can be accurately reproduced by a rather simple modelling. We assume on183

each Co-site an Ising variable τ3 equal to the difference between the hole occupations184

of orbital x and of orbital y. The Ising variable on a given site is coupled only to185

those of the four nearest neighbour sites in the a − b plane, with exchange constants186

Γ1a = Γ1 + σ δΓ1 and Γ1b = Γ1 − σ δΓ1 along a and b, respectively. In addition, the187

Ising variables feel a uniform field Bτ σ. Here, σ is the Ising Z2(C4) order parameter188

that distinguishes AFS-a, σ = +1 from AFS-b, σ = −1. We find that the spectrum is189

well reproduced by the parameters in Table 2. It is worth noticing that the in-plane190

antiferro-orbital order is unexpected in light of the nematic columnar spin order that191

would rather suggest the ferro-orbital xxxx or yyyy configurations to have lowest192

energy. The explanation is that the antiferro-orbital order yields within DFT+U a193

larger insulating gap than the ferro-orbital order, see Fig.3.194

195

We now move to the physical orthorhombic structure, assuming b > a with196

b/a = 1.008 [25], and recalculate all above energies but considering only the orbital197

configurations allowed by the Cmme space group. In this case, we have to distinguish198

between AFS-a and AFS-b, which are no longer degenerate. The results are shown in199

Table 3.200

The calculated magnetic moment per Co atom in the lowest energy state, O0 in201

Table 3, is µAFS ∼ 2.65 µB , in quite good agreement with experiments [19, 26]. We202

remark that the ab initio calculation correctly predicts that the lowest energy state O0203

has ferromagnetic bonds along a despite b > a, which, as we mentioned, is an impor-204

tant test for the theory. The energy difference between AFS-a and AFS-b, i.e., O0 and205

O3, is about 20 K, and gives a measure of the spin-exchange spatial anisotropy in the206
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a and b directions due to the orthorhombic distortion. This small value implies that207

the Néel transition temperature TN ' 290 K is largely insensitive to the orthorhom-208

bic distortion that exists also above TN [18, 19]. In particular, the energy difference209

between C-type and G-type stacking, O0 and O1 in Table 3, remains the same tiny210

value found in the tetragonal phase. Table 3 thus suggests that the spin configurations211

C-AFS-a, C-AFS-b, G-AFS-a and G-AFS-b are almost equally probable at the Néel212

transition, and that despite the orthorhombic structure.213

The orbital arrangementt of the C-AFS-a configuration is also important to describe,214

e.g., the pressure-induced metal-insulator transition in BaCoS2, see Supplementary215

Note 1.216

2.2.1 Orthorhombic distortion.217

A further evidence of the marginal role played by the orthorhombic distortion at218

the Néel transition comes from the total energy as function of the parameter d =219

2(a− b)/(a+ b) that quantifies the distortion, shown in Fig. 4 for different orbital con-220

figurations assuming AFS-a magnetic order. We note that for all orbital configurations221

the energy gain due to a finite d is tiny with respect to d = 0. For instance, the lowest-222

energy orbital configuration xyyx reaches a minimum at about dxyyxmin ∼ −0.5%, not223

far from the experimental value dexp ∼ −0.8% [25], which reduces to dexp ∼ −0.4%224

under high pressure synthesis [18]. However, the energy gain with respect to d = 0 is225

less than 3 K. This result suggests that, despite the hypothetical P4/nmm structure226

of BaCoS2 being inherently unstable to an orthorhombic Jahn-Teller distortion, the227

latter plays almost no role in stabilising the AFS magnetic order in contrast to näıve228

expectations.229

2.2.2 Wannierisation230

To gain further insight into the mechanisms that drive the Néel transition, we generate231

two tight-binding Hamiltonians with maximally-localised Wannier functions for Co-232

d-like and Co-dxz/yz-like orbitals, respectively. Both tight-binding models reproduce233

overall well the DFT band structure of the PM phase in the orthorhombic structure,234

see Fig. 5. Whereas the fit of the 5-orbital model is nearly perfect, the 2-orbital model235

shows small deviations along the M − Γ direction due to missing hybridisation with236

the other Co-d orbitals. Table 4 shows the leading hopping processes of the 5-band237

model restricted to the
(
dxz, dyz

)
subspace.238

We note that, because of the staggered shift of the Co atoms out of the sulfur basal239

plane, the largest intra-layer hopping is between next-nearest neighbour (NNN) cobalt240

atoms instead of nearest-neighbour (NN) ones. Moreover, the stacking of the sulfur241

pyramids and the position of the intercalated Ba atoms makes the inter-layer NN242

hopping negligible, contrary to the NNN one that is actually larger than the in-plane243

NN hopping , but still smaller than the in-plane NNN one (tinterNN � tintraNN < tinterNNN <244

tintraNNN ).245

We finally remark that the orthorhombic distortion has a very weak effect on the inter-246

layer hopping, which is consistent with the tiny energy difference between C-AFS and247

G-AFS being insensitive to the distortion, compare, e.g., the energies of T1 and O1248

in Tables 1 and 3, respectively.249
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2.3 Effective Heisenberg model250

Armed with all the above ab initio results, we are now ready to address the main251

questions of this work, i.e., why TN is so high and why the Néel transition looks Ising-252

like.253

We already mentioned that the largest energy scales that emerge from the ab initio254

calculations are the magnetic ones separating the lowest-energy AFS configuration255

from the Néel and non-magnetic states. Therefore, even though BaCoS2 seems not to256

lie deep inside a Mott insulating regime, we think it is worth discussing qualitatively257

the spin dynamics in terms of an effective S = 3/2 Heisenberg model. If we assume that258

the leading contribution to the exchange constants derives from the hopping processes259

within the dxz − dyz subspace, then Table 4 suggests the Heisenberg model shown260

in Fig. 6. According to this figure, the exchange constants J1x/y, J2, and J3x/y are261

related to the hopping terms T(±1,0,0)/(0,±1,0), T±(1,−1,0)/±(1,1,0), and T(±1,0,1)/(0,±1,1),262

reported in Table 4. This model consists of frustrated J1−J2 planes [13, 29–32] coupled263

to each other by a still frustrating J3 coupling, see Fig. 6(b). In order to be consistent264

with the observed columnar magnetic order, the exchange constants have to satisfy265

the inequality 2J2 > |J3| + |J1|. Moreover, J3 forces to deal with a two sites unit266

cell, highlighted in yellow colour in Fig. 6(a) where the non-equivalent cobalt sites are267

referred to as Co(1), in blue, and Co(2), in red, respectively. The reason is that Co(1)268

on a plane is only coupled to Co(2) on the plane above but not below, and vice versa269

for Co(2).270

To simplify the notation, we write, for a = 1, 3, Jax = Ja
(
1−δa

)
and Jay = Ja

(
1+δa

)
,271

where, in analogy with the single-layer J1 − J2 model [13], δa 6= 0 are Ising order272

parameters associated with the C4 → C2 symmetry breaking. Moreover, we define the273

in-plane Fourier transforms of the spin operators274

S`,n(q) =
∑

R

e−iq·R S`,n,R , (1)

where R labels the N unit cells in the a− b plane, ` = 1, 2 the two sites (sublattices)275

within each unit cell, and n = 1, . . . , L the layer index. With those definitions, the276

Hamiltonian reads277

H =
1

N

∑

nq

{
J2(q)

(
S1,n(q) · S1,n(−q) + S2,n(q) · S2,n(−q)

)

+ J1

(
γ(q, δ1) S1,n(q) · S2,n(−q) +H.c.

)

+ J3

(
γ(q, δ3) S1,n(q) · S2,n+1(−q) +H.c.

)}

≡ H2 +H1 +H3 ,

(2)

where Ha is proportional to Ja, a = 1, 2, 3, and278

J2(q) = 2J2 cos qx cos qy ,

γ(q, δ) = eiqx
[(

1− δ
)

cos qx +
(
1 + δ

)
cos qy

]
.

(3)

The classical ground state corresponds to the three-dimensional modulation wave279

vector (π, 0, Qz) ≡ (0, π,Qz), which describes an antiferromagnetic order within each280

sublattice on each layer, and where the inter-plane Qz is the value that minimises the281
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classical energy per site, E(Qz) = −2J2 − 2
√
J2
1 δ

2
1 + J2

3 δ
2
3 + 2J1J3δ1δ3 cosQz . The282

expression of E(Qz) shows that inter-layer magnetic coherence sets in only when the283

two Ising-like order parameters, δ1 and δ3, lock together. Specifically, J1J3δ1δ3 > 0284

stabilises C-AFS, Qz = 0, otherwise G-AFS, Qz = π. We already know that the285

former is lower in energy, though by only few Kelvins, see Table 3. Moreover, an286

orthorhombic distortion b > a favours AFS-a, which implies J1 δ1 + J3 δ3 > 0, even287

though AFS-b is higher by only 20 K according to DFT+U, see O3 in Table 3.288

289

Using our J1−J2−J3 model to fit the INS data of [17] at 200 K, we estimate J2 ' 9.3290

meV, J1+J3 ' −2.34 meV, J1δ1+J3δ3 ' 0.53 meV, and 0 <
√
J1J3δ1δ3 < 0.14 meV,291

where, we recall, the upper bound is due to experimental resolution. Such small bound292

suggests that the two order parameters δ1 and δ3 are already formed at 200 K, whereas293

their mutual locking is still suffering from fluctuations. We finally observe that the294

ferromagnetic sign of J1 and J3 is consistent with the diagonal hopping matrices in the295

corresponding directions (see Table 4) and the antiferro-orbital order. Estimations of296

the exchange constants based on the DFT+U energies can be found in Supplementary297

Note 2.298

299

2.3.1 Spin-wave analysis of the C4 symmetric model300

To better understand the interplay between the Z2 (C4) Ising degrees of freedom and301

the magnetic order at TN, we investigate in more detail the Hamiltonian (2) with302

δ1 = δ3 = 0, thus J1x = J1y = J1 and J3x = J3y = J3. Since J2 > 0 is the dominant303

exchange process, the classical ground state corresponds to the spin configuration304

Si,n(q) = NS n3,i,n δq,Q , i = 1, 2 , n = 1, . . . , L , (4)

where S = 3/2 is the spin magnitude, n3,i,n is a unit vector, and Q =
(
π, 0) ≡ (0, π),305

the equivalence holding since G = (π, π) is a primitive in-plane lattice vector for the306

two-site unit cell. In other words, each sublattice on each plane is Néel ordered, and307

its staggered magnetisation n3,i,n is arbitrary. We therefore expect that quantum and308

thermal fluctuations may yield a standard order-from-disorder phenomenon [3].309

Within spin-wave approximation, the spin operators can be written as310

Si,n(q) · n3,i,n ' NS δq,Q −Πi,n(q−Q) ,

Si,n(q) · n1,i,n '
√
NS xi,n(q) ,

Si,n(q) · n2,i,n '
√
NS pi,n(q−Q) ,

(5)

where n1,i,n, n2,i,n and n3,i,n are orthogonal unit vectors, x†i,n(q) = xi,n(−q) and311

p†i,n(q) = pi,n(−q) are conjugate variables, i.e.,312

[
xi,n(q) , p†j,m(q′)

]
= i δi,j δn,m δq,q′ , (6)

and313

Πi,n(q−Q) =
1

2

∑

k

(
x†i,n(k)xi,n(k + q−Q)

+ p†i,n(k) pi,n(k + q−Q)− δq,Q
)
.

(7)
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The three terms of the Hamiltonian (2) thus read, at leading order in quantum314

fluctuations, i.e., in the harmonic approximation,315

H2 ' E0 + S
∑

i,nq

(
J2(q)− J2(Q)

)(
x†i,n(q)xi,n(q)

+ p†i,n(q−Q) pi,n(q−Q)
)
,

H1 ' SJ1
∑

n,q

(
γ(q) X1,n(q) ·X2,n(−q) +H.c.

)
,

H3 ' SJ3
∑

n,q

(
γ(q) X1,n(q) ·X2,n+1(−q) +H.c.

)
,

(8)

where E0 = 2NLS(S + 1) J2(Q), γ(q) = γ(q, δ = 0), and316

Xi,n(q) = n1,i,n xi,n(q) + n2,i,n pi,n(q−Q) . (9)

We note that H2 does not depend on the choice of n3,i,n, reflecting the classical acci-317

dental degeneracy, unlike H1 +H3. We start treating H1 and H3 within perturbation318

theory. The unperturbed Hamiltonian H2 can be diagonalised and yields the spin-wave319

dispersion320

ω2(q) = 2S
√
J2(0)2 − J2(q)2 . (10)

321

322

2.3.2 Free energy in perturbation theory and quadrupolar coupling323

The free energy in perturbation theory can be written as F =
∑

` F`, where F` is of324

`-th order in H1 +H3, and F0 is the unperturbed free energy of the Hamiltonian H2.325

Notice that only even-order terms are non vanishing, thus ` = 0, 2, 4, . . . . Given the326

evolution operator in imaginary time,327

S(β) = Tτ

(
e−

∫ β
0
dτ
(
H1(τ)+H3(τ)

) )
=
∑

`

S`(β) , (11)

where Ha(τ), a = 1, 3, evolves with the Hamiltonian H2, the second order correction328

to the free energy is readily found to be329

F2 = −T 〈S2(β) 〉

= −Ξ2(T )

J2

∑

n

[
J2
1

(
n3,1,n · n3,2,n

)2
+ J2

3

(
n3,1,n · n3,2,n+1

)2
]
,

(12)

where330

Ξ2(T ) = J2 S
2
∑

q

T
∑

λ

∣∣γ(q)
∣∣2 J2(0)− J2(q)

J2(0) + J2(q)

(
ω2(q)

ω2
λ + ω2(q)2

)2

> 0 , (13)

with ωλ = 2πλT , λ ∈ Z, bosonic Matsubara frequencies. Even without explicitly331

evaluating Ξ2, we can conclude that the free-energy gain at second order in H1 +332

H3 is maximised by n3,1,n · n3,2,m = ±1, with m = n, n + 1, which reduces the333

classical degeneracy to 4L configurations, where L is the total number of layers in334
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the system. Such residual degeneracy is split by a fourth order correction to the free335

energy proportional to J2
1 J

2
3 that reads336

F4 = −J
2
1 J

2
3

J3
2

Ξ4(T )
∑

n

(
n3,1,n · n3,2,n

)

[(
n3,1,n · n3,2,n+1

)
+
(
n3,1,n−1 · n3,2,n

)]
,

(14)

where337

Ξ4(T ) = 2S4 J3
2 T

∑

λ

∑

q

∣∣γ(q) γ(q + Q)
∣∣2 ω2

λ(
ω2
λ + ω2(q)2

)3 > 0 . (15)

We remark that, despite ω2(q) vanishes linearly at q = 0,Q, both Ξ2(T ) and Ξ4(T )338

are non-singular.339

The fourth order correction F4 in Eq. (14) has a twofold effect: it forces n3,1,n ·n3,2,n340

to be the same on all layers and, in addition, stabilises a ferromagnetic inter-layer341

stacking. Therefore, the ground state manifold at fourth order in H1 +H3 is spanned342

by n3,1,n = n3 and n3,2,n = σn3, where n3 is an arbitrary unit vector reflecting the343

spin SU(2) symmetry, and σ = ±1 is associated with the global C4 → C2 symmetry344

breaking.345

346

Similarly to the single-plane J1 − J2 model [13], the above results imply that an347

additional term must be added to the semiclassical spin action. Specifically, if we348

introduce the Ising-like fields σn(R) = n3,1,n(R) · n3,2,n(R) and σn+1/2(R) =349

n3,1,n(R) · n3,2,n+1(R), Eqs (12) and (14) imply that, at the leading orders in J1350

and J3, the effective action in the continuum limit includes the quadrupolar coupling351

term [13]352

AQ '−
∑

n

∫
dR

{
Ξ2(T )

TJ2

(
J2
1 σn(R)2 + J2

3 σn+1/2(R)2
)

+
Ξ4(T )J2

1J
2
3

TJ3
2

σn(R)
(
σn+1/2(R) + σn−1/2(R)

)}
.

(16)

We expect a 3D Ising transition to occur at a critical temperature Tc, below which353

〈σn(R)〉 = m1, 〈σn+1/2(R)〉 = m3, with m1m3 > 0. In turn, the Ising order should354

bring along the 3D AFS one below a finite Néel temperature bounded from above355

by Tc [20]. To get a rough estimate of the latter, based on Eq. (16) we assume that,356

upon integrating out the spin degrees of freedom, the classical action describes an357

anisotropic three-dimensional ferromagnetic Ising model with exchange constants I1358

on layers n, I3 on layers n + 1/2, and I⊥ < I1, I3 between layers. Hereafter, we take359

for simplicity J1 = J3, thus I1 = I3 ≡ I‖.360

We then note that, for the J1 − J2 − J3 model with J2 ' 9.3 meV and361

J1 = J3 ' −1.17 meV, the 2D Ising critical temperature with S = 3/2 of each layer n362

and n + 1/2 is about 0.4 (S + 1/2)2J2 ' 173 K [30]. This critical temperature corre-363

sponds to I‖ ' 6.6 meV in the 2D Ising model. The 3D Ising critical temperature Tc364

grows with I⊥, reaching 280 K and 345 K at I⊥ = 0.5I‖ and I⊥ = I‖, respectively [33],365

which are reassuringly of the same order of magnitude as TN.366

367
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However, BaCoS2 remains orthorhombic above TN, which implies that the structural368

C4 → C2 symmetry breaking occurs earlier than magnetic ordering upon cooling.369

Therefore, even though the effects of the orthorhombic distortion on the electronic370

structure are rather small, see Table 4, it is worth repeating the above discussion371

assuming from the start that σn(R) = n3,1,n(R) · n3,2,n(R) = 1 (AFS-a), so that372

σn+1/2(R) = n3,1,n(R) · n3,2,n+1(R) = n3,1,n(R) · n3,1,n+1(R). It follows that the373

quadrupolar term (16) becomes374

AQ ' −
∑

n

∫
dR

{
K(T )

(
n3,1,n(R) · n3,1,n+1(R)

)2

+h(T )n3,1,n(R) · n3,1,n+1(R)

}
, (17)

with K(T ) � h(T ) > 0. The term proportional to K(T ) is bi-quadratic in the orig-375

inal spin operators and, alone, it would drive an Ising-like transition either towards376

C-AFS, n3,1,n · n3,1,n+1 = 1 or G-AFS, n3,1,n · n3,1,n+1 = −1. On the contrary, the377

term proportional to h(T ) is quadratic and yields an inter-layer ferromagnetic coupling378

that stabilises C-AFS, though by only two kelvins according to our DFT+U calcula-379

tions. Therefore, (17) corresponds to an unusual model of coupled Heisenberg layers380

in which the dominant inter-layer coupling is bi-quadratic. We believe that this term381

is responsible of the higher TN than the estimate obtained assuming just the small382

ferromagnetic exchange, as earlier discussed, as well as of the pronounced Ising-like383

character of the Néel transition. We also remark that which among C-AFS and G-AFS384

is lower in energy does depend on the orbital configurations, see Table 3. Therefore,385

we expect that the neglected coupling between spins and orbital fluctuations should386

further reduce the already small energy difference between C-AFS and G-AFS.387

3 Conclusion388

BaCoS2 is a frustrated magnet with a pronounced two-dimensional character of the389

magnetic excitations that, nonetheless, orders magnetically at a Néel temperature of390

TN ∼ 300 K [18, 19] through a second order phase transition more similar to an391

Ising than a Heisenberg one. We have shown that these puzzling features can be392

pieced together within an order-from-disorder scenario that we have uncovered by a393

thorough ab initio analysis demonstrating the critical role of the specific Co d-orbitals394

involved in magnetism. Although specific to BaCoS2, our results might be relevant395

to other spin-frustrated transition metal compounds that also crystallise in the non-396

symmorphic P4/nmm space group, like, e.g., the iron pnictides. In many (mainly397

electron-doped) iron-based superconductors the disordered phase at high temperature398

first spontaneously breaks C4 symmetry when cooling below a critical temperature399

Tnem, thus entering a nematic phase [34]. Only at a lower temperature TN < Tnem, also400

spin SU(2) is broken and a stripe-ordered magnetic long-range order emerges [34, 35].401

The Néel temperature can be quite large as in BaCoS2 or even vanishing within402

experimental accuracy as in FeSe, where TN 6= 0 is observed only under pressure [36].403

Also from a model point of view, our description of BaCoS2 fits into the modelling of404
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these materials. Indeed, the key role played by several order parameters in BaCoS2405

has parallels to the phenomenological Landau free energy description of FeSC [34].406

Besides itinerant multi-orbital Hubbard models [37–39], also spin-1 Heisenberg models407

conceptually similar to ours have been proposed for iron-based superconductors and408

FeSe [40, 41]. There, however, instead of achieving the C4 symmetry breaking via an409

order-from-disorder phenomenon, it is often assumed from the start [42] or by explicitly410

adding bi-quadratic spin exchanges [40] that mimic the quadrupolar terms (16).411

Moreover, our ab initio simulations for BaCoS2 predict that the lowest-energy phase412

has not ferro-orbital order, as often discussed in the context of FeSC, but rather413

an anti-ferro orbital ordering that breaks the non-symmorphic symmetry instead of414

C4. Therefore, BaCoS2 seems to realise a situation where collinear magnetism and415

orthorhombicity do not imply orbital nematicity, unless for specific crystal structures416

under pressure.417

4 Methods418

Ab initio calculations419

We carried out ab initio DFT and DFT+U calculations using the Quantum420

ESPRESSO package [43, 44]. The density functional is of generalized gradient approx-421

imation type, namely the Perdew-Burke-Ernzerhof functional [45], on which local422

Hubbard interactions and Hund’s coupling terms were added to the Co atoms in case423

of the DFT+U within a fully rotational invariant framework [46, 47]. If not stated424

otherwise, the geometry of the unit cell and the internal coordinates of the atomic425

positions in the orthorhombic structure were those determined experimentally, taken426

from Ref. [25]. For non-magnetic calculations, the relative atomic positions were kept427

fixed and the in-plane lattice constants a = b chosen such that the unit cell volume428

matched the one of the orthorhombic structure. Co and S atoms are described by429

norm-conserving pseudopotentials (PP) with non-linear core corrections, Ba atoms430

are described by ultrasoft pseudopotentials. The Co PP contains 13 valence electrons431

(3s2,3p6,3d7), the Ba PP 10 electrons (5s2,5p6,6s2), and S PPs are in a (3s2,3p3)432

configuration. The plane-waves cutoff has been set to 120Ry and we used a Gaussian433

smearing of 0.01Ry. The k-point sampling of the electron-momentum grid was at434

least 8× 8× 8 points in the 8 Co atom supercell.435

436

Wannier interpolation437

To determine the band structure and derive an effective low-energy model, we per-438

formed a Wannier interpolation with maximally localised Wannier functions [48, 49]439

using the Wannier90 package [50]. We constructed Wannier fits based on the non-440

magnetic DFT+U calculation using a 4 × 4 × 4 k-grid with a doubled in-plane unit441

cell comprising 4 Co atoms.442
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Fig. 1 Crystal structure of BaCoS2. (a) Three-dimensional view of tetragonal BaCoS2. Ba
atoms are the large green spheres, while S atoms are shown in yellow. The cobalt atoms sit inside the
blue square-based pyramids. (b) Top and lateral view of the structure, respectively. Note that, since
the apexes of nearest neighbour pyramids point in opposite directions, there are two inequivalent Co
atoms, shown as blue and grey spheres, with opposite vertical displacements from the a − b plane,
which are connected by the non-symmorphic symmetry. (c) Magnetic order in the low-temperature
orthorhombic phase. Dots represent Co atoms, arrows their spins and blue triangles indicate the
orientation of the surrounding sulfur pyramids. Within each a − b plane the spins form a striped
antiferromagnet (AFS) with ferromagnetic chains coupled antiferromagnetically. The ferromagnetic
chains can be either along a (AFS-a) or along b (AFS-b). The planes are stacked ferromagnetically,
C-type stacking, thus the two equivalent configurations C-AFS-a and C-AFS-b.
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C-AFS-a

FIG. 1. (Color online) (A) Three-dimensional view of BaCoS2

tetragonal crystal structure. Ba atoms are the large green
sphere, while S atoms are in yellow. The cobalt atoms sit in-
side the blue square based pyramids. (B) Top and lateral view
of the structure, respectively, top and bottom panels. Note
that, since the apexes of nearest neighbours pyramids point
in opposite directions, there are two inequivalent Co atoms,
shown as blue and grey spheres in the bottom panel, with op-
posite vertical displacements from the a � b plane, which are
connected by the non-symmorphic symmetry. (C) Magnetic
order in the low-temperature orthorhombic phase. Within
each a � b plane the spins form a striped antiferromagnet
(AFS) with ferromagnetic chains coupled antiferromagnetic.
The ferromagnetic chains can be either along a (AFS-a) or
along b (AFS-b). The planes are stuck ferromagnetically, C-
type stacking, thus the two equivalent configurations C-AFS-a
and C-AFS-b.

Low-energy degrees of freedom

Let us now discuss more detail some features of
BaCoS2 that are useful to uncover and model its low
energy properties.
Neutron scattering refinement and magnetic structure
modelling in the low-temperature phase point to an or-
dered moment of µCo ⇠ 2.63� 2.9µB [15, 19], suggesting
that each Co2+ is in an S = 3/2 spin configuration, in
agreement with high-temperature magnetic susceptibil-
ity data [15]. Moreover, the form factor analysis of the
neutron di↵raction data [19] indicates that the three 1/2-
spins lie one in the d3z2�r2 , the other in the dx2�y2 , and
the third either in the dxz or dyz 3d-orbitals of Co. Since
dxz and dyz, which we hereafter denote shortly as x and
y orbitals, form in the P4/nmm tetragonal structure a
degenerate Eg doublet occupied by a single hole, such
degeneracy is going to be resolved at low-temperature.
That hints at the existence of some kind of orbital or-
der, besides the spin one, in the magnetic orthorhombic
phase. Let us try to anticipate by symmetry arguments
which kind of order can be stabilised.
We observe that in the Cmme orthorhombic structure
the cobalts occupy the Wycko↵ positions 4g, which, for
convenience, we denote as Co(1) ⌘ (0, 0, z), Co(2) ⌘
(1/2, 0,�z), Co(3) ⌘ (0, 1/2,�z), Co(4) ⌘ (1/2, 1/2, z),

x x

xx

y y

yy

y x

yx

x y

xy

xxxx yyyy

xyyx yxxy

= Co(1)

= Co(2)

= Co(3)

= Co(4)

FIG. 2. Orbital arrangements allowed by the Cmme space
group. Co(1), Co(2), Co(3) and Co(4) correspond to the 4g
Wycko↵ positions occupied by the cobalt atoms. The label
x(y) indicates that the hole occupies the dxz(dyz) orbital of
the 3/4-filled dxz/dyz doublet of the corresponding cobalt.

and have symmetry mm2. As a consequence, the hole
must occupy either the x orbital or the y one, but not a
linear combination, and the chosen orbital must be the
same for Co(1) and Co(4), as well as for Co(2) and Co(3).
Therefore, if we denote as dn, d = x, y, the orbital occu-
pied by the hole on Co(n), n = 1, . . . , 4, and as d1 d2 d3 d4

a generic orbital configuration, then there are only four
of them that are symmetry-allowed: xxxx, yyyy, xyyx
and yxxy, see Fig. 2. We remark that the density matrix
of a unit cell in the lattice model can have finite diagonal
components for all four configurations, while o↵-diagonal
terms are prohibited by symmetry. We further note that
xxxx is degenerate with yyyy in the tetragonal phase.
The choice of either of them is associated with the same
C4 ! C2 symmetry breaking that characterise both the
AFS-a or AFS-b spin order and the orthorhombic dis-
tortion, b > a or a > b. All those three choices can be
associated with three Ising variables ⌧ , � and X such
that ⌧ = +1 corresponds to xxxx, � = +1 to AFS-a,
X = +1 to b > a, and viceversa. Since they all have
the same symmetry, odd under C4, they would be cou-
pled to each other should we describe the transition by a
Landau-Ginzburg functional. We shall hereafter denote
as Z2(C4) the Ising sector that describes the C4 ! C2

symmetry breaking.
The other two allowed orbital configurations xyyx and
yxxy, see Fig. 2, are instead degenerate both in the
tetragonal and orthorhombic phases, but break the non-
symmorphic symmetry (NS) that connects, e.g., Co(1)
with Co(2) and Co(3). We therefore associate to those
configurations a new Z2(NS) symmetry, and denote as m
the symmetry-breaking order parameter, assuming that
m > 0 means prevailing xyyx and m < 0 the opposite.

Fig. 2 Illustration of the orbital arrangements within BaCoS2 allowed by the Cmme
space group. Co(1), Co(2), Co(3) and Co(4) correspond to the 4g Wyckoff positions occupied by
the cobalt atoms. The label x(y) indicates that the hole occupies the dxz(dyz) orbital of the 3/4-filled
dxz/dyz doublet of the corresponding cobalt atom.
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and xxxx (dashed blue line) as well as for the orbital ordered configuration xyyx (dashed orange
line), which is found to be lowest in energy within Hubbard-U corrected density functional theory
(DFT+U) calculations.
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smaller than the in-plane NNN one.
We finally remark that the orthorhombic distortion has a
very weak e↵ect on the inter-layer hopping, which is con-
sistent with the tiny energy di↵erence between C-AFS
and G-AFS being insensitive to the distortion, compare,
e.g., the energies of T1 and O1 in Tables I and III, re-
spectively.

III. EFFECTIVE HEISENBERG MODEL

21

J2
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J1x

J1y
J3x

J3y

zx
y
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FIG. 6. Top panels: Heisenberg model for BaCoS2. The left
panel shows the J1 � J2 model on the a � b plane, while the
right panel show how nearest neighbour planes are coupled to
each other by the exchange J3. The latter forces to deal with
a two-site unit cell, highlighted in yellow in the left panel.
This model is actually equivalent to the Heisenberg model on
a bcc lattice shown in the bottom panel.

We already mentioned that the largest energy scales
that emerge from the ab initio calculations are the mag-
netic ones separating the lowest-energy AFS configura-

tion from the Néel and paramagnetic states. Therefore,
even though BaCoS2 seems not to lie deep inside a Mott
insulating regime, we think it is worth discussing qualita-
tively the spin dynamics in terms of an e↵ective S = 3/2
Heisenberg model. If we assume that the leading contri-
bution to the exchange constants derives from the hop-
ping processes within the dxz � dyz subspace, then Ta-
ble IV suggests the Heisenberg model shown in Fig. 6. It
consists of frustrated J1 � J2 planes [15, 46–49] coupled
to each other by a still frustrating J3. The exchange con-
stants satisfy the inequality 2J2 > |J3| + |J1|, consistent
with the observed columnar magnetic order. Moreover,
J3 forces to deal with a two sites unit cell, highlighted in
yellow in the left panel of Fig. 6 where ` = 1 and ` = 2
refer to Co(1), in blue, and Co(2), in red, respectively.
The reason is that Co(1) on a plane is only coupled to
Co(2) on the plane above but not below, and vice versa
for Co(2).
We write, for a = 1, 3,

Jax = Ja

�
1 � �a

�
, Jay = Ja

�
1 + �a

�
, (1)

where, in analogy with the single-layer J1�J2 model [15],
�a 6= 0 are Ising order parameters associated with the
C4 ! C2 symmetry breaking. Moreover, we define the
in-plane Fourier transforms

S`,n(q) =
X

R

e�iq·R S`,n,R , (2)

where R labels the N unit cells in the a � b plane, ` =
1, 2 the two sites (sublattices) within each unit cell, and
n = 1, . . . , L the layer index. Similarly, we introduce the
three-dimensional Fourier transforms

S`(q, qz) =
X

n

e�iqzn S`,n(q) ,

as well as the spinor

S(q, qz) =

 
S1(q, qz)

S2(q, qz)

!
.

With those definitions, the Hamiltonian reads

H =
1

N

X

nq

⇢
J2(q)

⇣
S1,n(q) · S1,n(�q) + S2,n(q) · S2,n(�q)

⌘
+ J1

⇣
�(q, �1)S1,n(q) · S2,n(�q) + H.c.

⌘

+ J3

⇣
�(q, �3)S1,n(q) · S2,n+1(�q) + H.c.

⌘�
⌘ H2 + H1 + H3

=
1

NL

X

q,qz

S†(q, qz)

 
J2(q) J1 �(q, �1)

⇤ + J3 �(q, �3)
⇤ e�iqz

J1 �(q, �1) + J3 �(q, �3) eiqz J2(q)

!
S(q, qz)

⌘ 1

NL

X

q,qz

S†(q, qz) Ĵ(q, qz)S(q, qz) ,

(3)

(a) (b)

Fig. 6 Effective Heisenberg spin model for BaCoS2. Panel (a) shows the J1 − J2 model on
the a − b plane, while panel (b) shows how nearest neighbour planes are coupled to each other by
the exchange J3. The latter forces to deal with a two-site unit cell, highlighted in yellow in panel (a).
Blue and red balls indicate the two different Co sites of the unit cell.

spin and orbital configurations E(Kelvin) #
C-AFS-a-C(xyyx) 0 T0
G-AFS-a-C(xyyx) 2 T1
C-AFS-a-G(xyyx) 14 T2
G-AFS-a-G(xyyx) 22 T3
G-AFS-a-G(xyxy) 50 T4
C-AFS-a-G(xyxy) 52 T5
C-AFS-a-C(xyxy) 52 T6
C-AFS-a-C(yyyy) 57 T7
G-AFS-a-C(xyxy) 64 T8
G-AFS-a-C(yyyy) 73 T9
C-AFS-a-G(xxyy) 79 T10
C-AFS-a-G(yyyy) 86 T11
G-AFS-a-G(yyyy) 89 T12
G-AFS-a-C(xxyy) 89 T13
C-AFS-a-C(xxyy) 93 T14
G-AFS-a-G(xxyy) 95 T15
G-AFS-a-C(xxxx) 171 T16
C-AFS-a-C(xxxx) 176 T17

Table 1 Ab initio energies of the tetragonal
phase. Hubbard-U corrected density functional theory
(DFT+U) energies (U = 2.8 eV) in Kelvin and per
formula unit of the low-lying spin and orbital
configurations in the tetragonal structure with an 8-site
unit cell, assuming an antiferromagnetic stripe order
along a (AFS-a), being degenerate with AFS-b. The
lowest energy state sets the zero of energy. Note that
some states are doubly degenerate, for instance C(xyyx)
is degenerate with C(yxxy) as well as G(yyyy) is
degenerate with G(xxxx), and thus we just indicate one
of them. Moreover, the table includes also configurations
not allowed by the Cmme orthorhombic space group,
which, nonetheless, represent alternative
symmetry-breaking paths from the tetragonal structure.
Each state is labelled by Tn, T referring to the tetragonal
phase and n being the ascending order in energy.
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(a)

orbital configuration E ∆E
xyyx −2Γ1 0
xyxy −2σδΓ1 2Γ1 − 2σδΓ1

xxyy 2σδΓ1 2Γ1 + 2σδΓ1

xxxx 2Γ1 − σ Bτ 4Γ1 − σ Bτ
yyyy 2Γ1 + σ Bτ 4Γ1 + σ Bτ

(b)

Γ1(K) δΓ1(K) Bτ (K)
C-AFS 33± 4 10 60
G-AFS 31± 4 6 49

Table 2 Ising model for the
tetragonal phase. The energies of the
different orbital configurations within
an assumed nearest neighbour
antiferromagnetic Ising model with
exchange constants Γ1 + σ δΓ1 along a,
Γ1 − σ δΓ1 along b, and uniform
pseudo-magnetic field σ Bτ are listed in
(a). The values of those parameters
extracted through Table 1 for
antiferromagnetic stripe (AFS) ordering
are shown in (b). We just consider the
C-type orbital stacked configurations,
since the G-type ones do not allow
fixing Bτ .
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spin and orbital configurations E(Kelvin) #
C-AFS-a-C(xyyx) 0 O0
G-AFS-a-C(xyyx) 2 O1
C-AFS-a-G(xyyx) 14 O2
C-AFS-b-C(xyyx) 20 O3
G-AFS-a-G(xyyx) 22 O4
G-AFS-b-C(xyyx) 22 O5
C-AFS-b-G(xyyx) 34 O6
G-AFS-b-G(xyyx) 42 O7
C-AFS-b-C(xxxx) 50 O8
G-AFS-b-C(xxxx) 65 O9
C-AFS-b-G(xxxx) 79 O10
G-AFS-b-G(xxxx) 82 O11
C-AFS-a-C(yyyy) 85 O12
C-AFS-a-G(xxxx) 93 O13
G-AFS-a-G(xxxx) 96 O14
G-AFS-a-C(yyyy) 101 O15
G-AFS-a-C(xxxx) 160 O16
C-AFS-a-C(xxxx) 165 O17
G-AFS-b-C(yyyy) 203 O18
C-AFS-b-C(yyyy) 209 O19

Table 3 Ab initio energies of the orthorhombic
phase. Same as in Table 1 but for the orthorhombic
structure with b > a, b/a = 1.008. In this case,
antiferromagnetic stripe order along a (AFS-a) and AFS-
b are not degenerate, and thus both have been studied.
Only the orbital configurations allowed by symmetry are
shown. The states are labelled by On, where O refers to
the orthorhombic phase and n is the order.

bond direction hopping matrix (meV)

T(1,1,0) = T(−1,−1,0)

(
96 102
102 94

)
T(1,−1,0) = T(−1,1,0)

(
96 −102
−102 94

)
T(1,0,0) = T(−1,0,0)

(
2 0
0 −43

)
T(0,1,0) = T(0,−1,0)

(
−48 0

0 2

)
T(1,0,1) = T(−1,0,1)

(
−68 0

0 18

)
T(0,1,1) = T(0,−1,1)

(
20 0
0 −69

)
Table 4 Hopping amplitudes within the
two-orbital submanifold. Leading hopping
processes T(nx,ny,nz), where r = (nx, ny , nz)

identifies the bond connecting Co(1), see Fig. 2,
to another cobalt at distance r. The bonds
emanating from Co(2) are obtained by the
non-symmorphic symmetry, which, in particular,
implies nz → −nz . All hopping processes are
written as matrices in the subspace

(
dxz , dyz

)
.

The values, in meV, are obtained by the 5-orbital
model restricted to the

(
dxz , dyz

)
subspace.
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