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We present a matrix-product state (MPS) based band-Lanczos method as solver for quantum
cluster methods such as the variational cluster approximation (VCA). While a näıve implementation
of MPS as cluster solver would barely improve its range of applicability, we show that our approach
makes it possible to treat cluster geometries well beyond the reach of exact diagonalization methods.
The key modifications we introduce are a continuous energy truncation combined with a convergence
criterion that is more robust against approximation errors introduced by the MPS representation
and provides a bound to deviations in the resulting Green’s function. The potential of the resulting
cluster solver is demonstrated by computing the self-energy functional for the single-band Hubbard
model at half filling in the strongly correlated regime, on different cluster geometries. Here, we find
that only when treating large cluster sizes, observables can be extrapolated to the thermodynamic
limit, which we demonstrate at the example of the staggered magnetization. Treating clusters sizes
with up to 6× 6 sites we obtain excellent agreement with quantum Monte-Carlo results.

I. INTRODUCTION

Exploring the quantum states of matter of two-di-
mensional strongly correlated electron systems is inher-
ently difficult. Prime examples are the cuprate high-
temperature superconductors [1], whose salient features
are frequently described within a single-band Hubbard-
type model on a square lattice geometry [2–4]. More
recently, two-dimensional materials have attracted sub-
stantial interest in a variety of systems, like bilayer
graphene and other multi-layered materials [5–7], trans-
fer metal dichalcogenides (TMDCs) [8], or kagomé met-
als [9, 10]. Experiments on these materials have revealed
unconventional phases of matter, e.g., a Wigner-crystal
quantum Hall phase [11], or interesting superconducting
phases [5–7, 12–14], for which the role of flat bands and
correlation effects is investigated. Hence, there is an ur-
gent need to further develop numerical methods to treat
2D systems.

Important progress in describing strongly correlated
two-dimensional systems has been achieved by the de-
velopment of methods, which help to investigate quan-
tum phases and quantum critical behavior directly in
the thermodynamic limit. The fundamental insight is
that the challenge of solving systems in the thermody-
namic limit can be simplified by replacing it with an
equivalent problem that is defined on a finite cluster,
only. This is the foundation of so-called cluster-em-
bedding techniques (CETs) such as dynamical mean-
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field theory (DMFT) [15–17], cluster-perturbation theory
(CPT) [18, 19] or VCA [20–23]. These approaches are of-
ten formulated in terms of Green’s functions of the finite
cluster and the embedding is defined such that the cluster
Green’s function describes best that of the actual physi-
cal system. Despite others, the success of these methods
is based on the intimate relation between Green’s func-
tions and experimental observables, for instance spectral
functions, which allows for the direct comparison between
theory and experiment [24].

With the development of CETs, which contain the
mapping of lattice problems to finite clusters, the fo-
cus has shifted to determine the cluster Green’s function,
which still constitutes a computational highly non-triv-
ial problem. Important classes of methods to approach
this task are wave function-based methods, like exact
diagonalization (ED) [25, 26] or tensor-network state
(TNS) methods [27, 28], and sampling-based methods,
like quantum Monte Carlo (QMC) [29–31]. ED cluster
solvers are conceptionally the most simple approach and
despite the fact that an extreme degree of optimization
has been achieved, incorporating various symmetries and
exploiting massive parallelization [32], they suffer drasti-
cally from the exponential growth of the Hilbert space,
limiting the practically doable number of cluster sites for
single band Hubbard models to ∼ O(20). On the other
hand, TNS realized as MPS [33] are extremely success-
ful in one dimension, but the area law of entanglement
or the entanglement barrier in non-equilibrium situations
highly limits their applicability to two-dimensional sys-
tems [34]. From a quantum information perspective,
finite projected entangled-pair states (PEPS) [28, 35]
should be optimal. However, these algorithms have been
shown to exhibit only extremly slow convergence for Hub-
bard-type systems [36]. Finally, QMC methods have
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their limitations due to the fermionic sign problem [37],
which restricts the class of solvable cluster Hamiltonians.

In this paper, we introduce an efficient MPS-based
scheme for calculating the cluster Green’s function and
apply it within the context of VCA. It turns out that
a näıve treatment of established Krylov-based methods
in a MPS framework would barely improve the range of
applicability of the VCA. However, when combining the
MPS with a band Lanczos scheme as well as an energy
truncation, it is possible to treat cluster geometries well
outside the reach of ED solvers and without principal
limitations on the Hamiltonian.

The remainder of the paper is structured as follows: In
Sec. II we introduce the single-band Hubbard model and
the basic idea of cluster methods, such as the VCA. In
Sec. III we discuss in detail our band-Lanczos ansatz for
MPS, including the energy truncation scheme, an error
estimate using the Hochbruck-Lubich bound [38], a useful
energy rescaling, and a discussion of the loss of orthogo-
nality of the Lanczos vectors within the MPS framework.
Furthermore, Sec. III B discusses further aspects of the
VCA as relevant for this paper, and Sec. III C discusses
our choice of clusters, including Betts clusters. Sec-
tion IV presents the main results of this paper obtained
with our band-Lanczos MPS+VCA-ansatz, including a
detailed analysis of the scaling of the results with the
MPS bond dimension and a comparison of the staggered
magnetization after scaling to infinite cluster size with
numerically exact QMC results, as well as results for the
spectral function. In Sec. V we conclude and provide
an outlook to further applications of our method. The
appendix presents technical details of the calculations.

II. MODEL AND NUMERICAL TECHNIQUE

The model for which we benchmark our solver is one of
the most common ones to study strongly correlated elec-
tron systems in two dimensions, the one-band Hubbard
model with nearest-neighbor hopping [39]. The corre-
sponding Hamiltonian reads

Ĥ = −t
∑

⟨i,j⟩,σ

(
ĉ†i,σ ĉj,σ + h.c.

)
+ U

∑
i

n̂i,↑n̂i,↓ , (1)

where ĉ
(†)
j,σ are the annihilation (creation) operators of

electrons of spin σ and n̂j,σ = ĉj,σ ĉ
†
j,σ is the particle

number operator for a given spin σ on site j.
For our band Lanczos solver we have quantum cluster

techniques in mind, for which a finite-size scaling in clus-
ter size is known to be notoriously difficult in 2D [3, 4].
In particular embedding the cluster into an effective en-
vironment, various factors need to be considered, such
as the ratio between cluster-bulk and cluster-boundary
sites, the connectivity of boundary sites or the cluster
geometry. Given these complications, which we discuss
in more detail in Sec. III C, the main goal of our band-
Lanczos solver is to provide a tool that can handle var-

ious cluster geometries while increasing the cluster sizes
as much as possible. A prime example for a quantum
cluster technique is CPT [18, 19], which can be derived
from strong-coupling perturbation theory [40, 41], and
which allows to calculate the spectral function based on
the cluster Green’s function. In CPT, the lattice is tiled
into a super-lattice of – most of the time identical – clus-
ters. The inter-cluster hopping terms are then collected
into a matrix V and treated in lowest-order perturbation
theory when constructing the CPT Green’s function:

GCPT(k̃, ω) =
(
(Gcluster(ω))−1 −V(k̃)

)−1

. (2)

Here k̃ are reduced wave-vectors corresponding to the
partial Fourier transform with respect to the superlattice
vectors. In the following, we will omit the superscript and
refer to the cluster Green’s function as G(ω).

The error of the perturbative treatment within CPT
is expected to reduce when enlarging the ratio of clus-
ter ’bulk’ to cluster boundary, for instance when scaling
up clusters of fixed geometry. In addition to the cluster
size, different geometries allow to precisely account for
the spectral function at different wave vectors k.

CPT has been used not only for model calculations
on the Hubbard [19], t-J [42] and pure spin models [43],
but also for more realistic modeling of materials, e.g.,
in the context of Mott insulators such as NiO [44] or
(doped) cuprates [41, 45–47]. It can also be extended to
non-local interactions [48], electron-phonon coupling [49],
non-equilibrium problems [50] or even be used to calcu-
late two-particle responses [51]. CPT is thereby not only
conceptually simple, but also one of the most versatile
quantum cluster techniques.

However, CPT is limited in that it does not allow
to study symmetry-broken phases. An extension of
the technique mends this deficiency by including sym-
metry-breaking Weiss fields on the cluster, which are
determined according to a variational principle. The
variational cluster perturbation theory, more commonly
known as VCA [20, 21], will be introduced in more detail
in section III B.

For benchmarking purposes, we add here a Weiss field
term on the cluster corresponding to a staggered mag-
netic field,

ĤAF = hz
∑
l

eiQ·Rl(n̂Rl,↑ − n̂Rl,↓), (3)

where l denotes cluster sites and the Néel ordering wave
vector is Q = (π, π). A detailed VCA study of antifer-
romagnetism (AF) in the 2D Hubbard model using this
Weiss field can be found in Ref. 52. For the following, it
is important to note that the (cluster) Green’s function

of Ĥ + ĤAF needs to be determined.
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III. METHOD

In this section we introduce the band Lanczos algo-
rithm for calculating the cluster Green’s function us-
ing MPS. Several routes have been pursued so far to
employ MPS-based cluster solvers for CET. This in-
cludes time-evolution based solvers obtaining the clus-
ter Green’s function from real or in imaginary time evo-
lution [53–57], expanding the resolvent in terms of or-
thogonal polynomials [58–60], reformulating the deter-
mination of the resolvent as optimization problem us-
ing correction vectors [61, 62], or evaluating the Green’s
matrix elements explicitly by means of a global Lanzcos
approach [63].

Nevertheless, despite each of these methods being
considerably successful in the past, their applicability
to VCA is rather limited. Standard time-evolution based
solvers require considerable system sizes to avoid too fast
entanglement growth, due to reflections of excitations at
the cluster boundary. Evaluating the resolvent in terms
of orthogonal polynomials on the other hand, typically
requires a large number ∼ O(100) of basis states, each
of which is obtained by applying the Hamiltonian to its
predecessor, and thereby rapidly increases the state’s en-
tanglement. This limitation is partially overcome by a
direct Lanczos expansion of each Green’s matrix element,
which typically requires only ∼ O(10) applications of the
Hamiltonian, per matrix element. However, a lot of in-
formation about the low-energy states is generated re-
peatedly, since each matrix element is constructed inde-
pendently of every other. Furthermore, the reduced nu-
merical precision using MPS arithmetics typically causes
severe orthogonality problems after more than 10 appli-
cations of the Hamiltonian. The necessary application of
further reorthogonalization techniques common to global
Krylov methods [64] deteriorates the computational effi-
ciency such that cluster sizes beyond those doable using
exact methods can only hardly be reached.

In sight of these complications, the band Lanczos [65,
66] offers a promising approach to evaluate the cluster
Green’s function in a global Krylov-subspace representa-
tion, employing various initial states. In the following,
we first summarize the general idea of the band Lanczos
and introduce the necessary steps to obtain a meaningful
convergence criterium. Afterwards, we recapitulate the
necessary theory of the VCA, in order to use the band
Lanczos algorithm as its cluster solver.

A. Band Lanczos with MPS

The quantity of interest of most CETs is the cluster
Green’s function in frequency space, which can be written
componentwise for electrons in real space as

G
(e)
µµ′(ω) = ⟨ψ|ĉµ

(
Ĥ − E0 − ω

)−1

ĉ†µ′ |ψ⟩ , (4)

where we combined site and spin labels into greek letters
µ = (i, σ), µ′ = (j, σ′) and the superscript (e) indicates
that here we are describing the electron part. The cluster
Green’s function for holes, indicated by a superscript (h),
can be written in a similar manner by exchanging the cre-
ation and annihilation operators and replacing ω → −ω.
In the band Lanczos method, the Green’s function is cal-
culated by constructing a Krylov subspace using several
electron and hole excitations, which serve as initial states.
Representing the initial states as MPS and the Hamil-
tonian as matrix-product operator (MPO), the Krylov
subspace construction can be performed in principle us-
ing standard MPS arithmetics. The particular choice of
the set of initial states can depend on the cluster symme-
tries, but for the sake of simplicity we restrict ourselves in
the following to the simplest case and ignore symmetries.

Consider the ground state |ψ⟩ of a cluster, given by the

Hamiltonian Ĥ acting on L ∈ N cluster sites, where each
site j can host electronic degrees of freedom described by

annihilation (creation) operators ĉ
(†)
j,σ. We define a set of

initial states |φ(e)
j,σ⟩ = ĉ†j,σ |ψ⟩ and introduce the spin-σ

electron Krylov subspace KD
σ with D = N ·L, generated

from N − 1 applications of Ĥ to the L initial states with
spin σ:

K0
σ = span

{
|φ(e)

1,σ⟩ , . . . , |φ
(e)
L,σ⟩

}
, (5)

KD
σ = KD−1

σ ∪ span
{
ĤN |φ(e)

1,σ⟩ , . . . , ĤN |φ(e)
L,σ⟩

}
. (6)

Note that replacing the creation operators with the an-

nihilation operators ĉ†j,σ → ĉj,σ, we obtain another set

of initial states |φ(h)
j,σ⟩ = ĉj,σ |ψ⟩, from which we con-

struct the spin-σ hole Krylov subspace K̄D
σ . For each

Krylov subspace, an orthonormal basis is obtained from
an iterative orthogonalization scheme. Thereby, given
a set of orthogonal Krylov vectors |kα,ν⟩ ∈ KD

σ with

α ∈
{
1, . . . , L̃

}
(L̃ ≤ L) and ν ∈ {0, . . . , N − 1}, a new

set of candidate states {|kα,N ⟩} is generated by apply-
ing the Hamiltonian to all states {|kα,N−1⟩}. Just as
in the conventional Lanczos scheme [67], every candidate
state |kα,N ⟩ is then reorthogonalized against its 2L prede-
cessors |kα,N−1⟩ and |kα,N−2⟩. Furthermore, candidate
states have to be orthogonalized against each other, i.e.,
upon adding a new candidate state |kα,N ⟩, it needs to be
orthogonalized against all |kα′<α,N ⟩. It may occur that
the states |kα,N ⟩ generated by this recursion are not lin-
early independent. This situation is typically solved by
applying a so-called deflation scheme, reducing the range
L̃ of the α’s until all Krylov states |kα≤L̃,N ⟩ are linearly

independent [65].

Following this strategy, a global Krylov basis is con-
structed that allows for a representation of the Green’s
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function Eq. (4) in a Krylov subspace

G
(e)
µµ′(ω) ≈

∑
ν,αν

∑
ν′,α′

ν′

⟨ψ|ĉµ|kαν ,ν
⟩ ⟨kα′

ν′ ,ν
′ |ĉ†µ′ |ψ⟩

× ⟨kαν ,ν
|
(
Ĥ − E0 − ω

)−1

|kα′
ν′ ,ν

′⟩ . (7)

In absence of deflated states, the effective Hamiltonian
⟨kα,ν |Ĥ|kα′,ν′⟩ is block tri-diagonal with a maximum
block size 2L+1 and can be diagonalized easily, to eval-
uate the operator inverse. In contrast, the usual Lanczos
recursion corresponds to the case L = 1: The block size
is 2 · 1 + 1 = 3, which reflects the fact that only a sin-
gle matrix element of the cluster Green’s function can be
evaluated per Krylov expansion.

The overall dimension of the generated Krylov sub-
space is given by N · L, which amounts to N − 1 ap-
plications of the Hamiltonian, and we refer to N as the
Krylov order. This, however, comes at the cost of ad-
ditional, global MPS arithmetics when reorthogonalizing
the candidate states. The resulting approximations gen-
erally introduce instabilities in the band Lanczos recur-
sion. Instabilities most prominently manifest in form of
a loss of the block tri-diagonal structure of the effective
Hamiltonian. In other words, weight of the basis states
accumulates in the orthogonal complement of the tar-
geted Krylov subspace.

The loss of accuracy of the Krylov subspace expan-
sion leads in particular to two problematic issues. First,
the loss of orthogonality amongst the basis states in the
Krylov subspace cannot be completely compensated in
practice: Due to the large number of basis states, a
(full) reorthogonalization would not be efficient numeri-
cally. Second, a convergence criterion that relates error
bounds of the cluster Green’s function to the approxima-
tion quality of the Krylov subspace is required: Standard
convergence criteria such as the relative change in the en-
ergy spectrum are numerically unstable. Our methodi-
cal developments target both convergence issues with the
goal of a numerically stable band Lanczos recursion us-
ing MPS-arithmetics that work at a finite, yet controlled
approximation quality.

1. Energy truncation

Constructing Krylov spaces of higher order, an increas-
ing number of highly excited states has to be captured by
the MPS representations of the Krylov vectors. Unfortu-
nately, states from the bulk of the many-body Hamilto-
nian’s spectrum typically satisfy a volume law of entan-
glement [68] and are therefore the main reason for the ex-
ponentially increasing computational complexity. While
this is a problem in general, here, we are interested in a
faithful approximation of the poles of the Green’s matrix,
i.e., their positions and weights. Hence, we can exploit a
strategy introduced previously in the context of expand-
ing the resolvent in terms of Chebyshev polynomials [58].
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FIG. 1. (a) Schematic representation of the energy trun-

cation. Overlaps ϵn = ⟨Ẽn|ψ⟩ < δ are neglected when con-
structing the sublattice projection (marked red). (b) Effect
of the truncation threshold on the (lattice) density of states
N(ω) for a 4 × 4 cluster in the AF phase, see Sec.III B for
details. The results for δ = 10−2, 10−3 are shifted for clarity.

The general idea is to construct local Krylov spaces at
each lattice site and iteratively project the state’s site
tensors into a sequence of local Krylov subspaces. How-
ever, in contrast to projecting the site tensors into a cer-
tain energy window as described in [58], we use the local
Krylov space expansion to construct a projector to the
subspace containing the most relevant eigenstates, up to
a defined threshold δ:

|ψ⟩ =
∑
n

⟨Ẽn|ψ⟩︸ ︷︷ ︸
εn

|Ẽn⟩ ≈
∑
εn>δ

εn |Ẽn⟩ (8)

where

|Ẽn⟩ =
K∑
l=0

cl |νl⟩ , lim
K→dimH

Ĥ |Ẽn⟩ = En |En⟩ (9)

and |νl⟩ ∈ HK Lanczos vectors in Krylov space HK =

span
{
|ψ⟩ , Ĥ |ψ⟩ , . . . , ĤK |ψ⟩

}
. A schematic illustration

of the energy truncation is shown in Fig. 1a. The red
shaded bars correspond to those eigenstates that have a
weight ⟨Ẽn|ψ⟩ < δ and are hence discarded. Refering to
the expansion of the Green’s function in the Krylov sub-
space Eq. (7), we can identify the weights with the expan-
sion of the matrix elements ⟨kα′

ν′ ,ν
′ |ĉ†µ|ψ⟩ in the energy

eigenbasis. The energy truncation thus simply discards
those eigenstates, whose contribution to the total Green’s
function are O(δ2).
In Fig. 1b we illustrate the effect of the energy trun-

cation on the calculated lattice density of states using
the CPT Green’s function for a 4 × 4 cluster in the an-
tiferromagnetically ordered state. Setting the truncation
threshold too high results in a breakdown of the sub-
space projection. Here, this is the case for δ = 10−2,
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where the erroneous subspace projection leads to a den-
sity of states, which neither captures correctly the gap
nor the high-frequency part of the spectrum. However,
already for moderate values of δ ≲ 10−3 the spectrum is
well reproduced, in particular the gap and the low-energy
part of the spectrum, and only small deviations from the
exact result are visible for higher excitation energies. A
truncation threshold of δ ≤ 10−4 finally leads to results
which are for practical purposes essentially exact. In this
case, only states with negligible weight for the density of
states are truncated. The systematic improvements of
the high-energy part of the spectrum can be related to
the fact that the Green’s function is computed from lo-
cally exciting the ground state, such that the weight of
higher-energy eigenstates decreases rapidly. For the fol-
lowing calculations, we avoid any ambiguity by using an
energy truncation threshold of δ = 10−5.

The computational costs of this energy truncation are
not negligible. The complexity per local update scales as
O(Km3wd) + O(Km2w2d2) where K is the number of

applications of the local representation of Ĥ. Refering to
standard notation, here we denote the MPS bond dimen-
sion by m, the MPO bond dimension by w and the local
Hilbert space dimension by d. Thus, we use the energy
truncation only for the large clusters with L ≥ 16 sites
and apply it in the process of creating a new candidate
state only once, namely after the global application of
Ĥ. However, the goal is not to achieve a speed up at
constant m. Instead, we aim for a reduction of orthogo-
nality losses that occur when orthogonalizing candidate
states with respect to each other. Here, the effect of the
energy truncation is to remove highly entangled contri-
butions allowing for signficantly higher precision in the
orthogonalization procedure, while keeping the bond di-
mension fixed. We found that building up a reasonably
large Krylov space of dimension D ∼ 100 for the larger
clusters using computationally feasible bond dimensions
m = 1024 − 2048 was possible only when employing an
energy truncation. Otherwise, orthogonality could not be
maintained and the construction procedure would break
down due to orthogonality losses.

2. Hochbruck-Lubich criterion

Controlling the convergence of the band Lanczos in
the MPS representation is a suprisingly delicate problem.
The unavoidable loss of numerical precision, caused by
performing global operations using MPS arithmetics, as
well as finite truncation errors, render standard conver-
gence criteria such as the relative change in the ground-
state energy in the constructed Krylov subspace not suit-
able. For instance, initially one observes a steep decrease
of the relative error δE = (ED+α+1 − ED+α)/ED+α,
where ED+α is the ground state energy after adding
the αth candidate state to the Krylov subspace KD

σ .
However, δE exhibits rather drastic jumps over more
than an order of magnitude, paired with iterations where

0 50 100 150
10−8

10−7

10−6

10−5

10−4

10−3

Krylov subspace dimension D

co
n
v
er
g
en

ce
cr
it
.

ED

δE

ϵD −0.98

−0.97

−0.97

−0.96

E
D

FIG. 2. Comparison of convergence critera. The blue curve
(right y-axis) shows the lowest eigenvalue ED of the effective
Hamiltonian in the Krylov subspace as a function of the di-
mension D for a 4 × 6-site Hubbard cluster at U = 8t and a
staggered magnetic field hz = 0.09t. The conventional con-
vergence criterion δE = ED+1 − ED is given by the red line
(left y-axis), exhibiting strong fluctuations over several or-
ders of magnitude. In contrast, oscillations in the suggested
Hochbruck-Lubich critertion ϵD shown by the green line are
significantly smaller, overlaying a systematic decrease w.r.t.
the number of iterations.

δE = 0 w.r.t. the energy resolution, which is bounded by
the MPS truncation error. This phenomenon is shown at
the example of a 4 × 6-Hubbard cluster in Fig. 2 where
the red curves represent δE.

There are two major sources for an erroneous con-
vergence indication in δE. First, whenever Ĥ is ap-
plied to a complete sequence of candidate states (here,
N · 2L = N · 48 marked by the dashed lines), the Krylov
order N increases. Given a fixed Krylov order, the band
Lanczos generates a sequence of states that optimize the
approximation of the ground state, which, however, is
constraint by the Krylov order. Therefore, δE decreases
within a sequence of candidate states, which leads to a
false indication of overall convergence. Second, candidate
states |kα,N ⟩ have a different relevance for the ground
state approximation. Most prominently, states that are
created from initial excitations located at the boundary
of the system converge more quickly.

Besides these technical problems, in practise the en-
ergy gain is not the most relevant quantity: In the end,
the goal is to approximate the poles and weights of the
cluster Green’s function up to a certain precision. For
that purpose, here we pursue a different approach using
a convergence criterion that directly measures the desired
approximation quality. The idea is to relate an error mea-
sure δRD(τ), which can be derived for the approximation

of the action of the operator exponential e−iĤτ |ψ⟩ to
the Green’s function. The detailed derivation is given
in App. B, here we only quote the resulting bound for
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the error in approximating the Green’s function in the
Krylov subspace with dimension D:

|δG(e,h)
µν (ω)| ≤ 2π2δRD(τ) . (10)

δRD(τ) can be approximated by the generalized residual
introduced by Hochbruck and Lubich [38, 69, 70], which
bounds the actual approximation error of the operator
exponential ϵD ≤ δRD(τ). An estimation for ϵD is given
by the Hochbruck-Lubich bound [38]

ϵDτ ≤ 40

τ
e−

τ
4

( eτ
4D

)D

, (11)

relating the approximation error of the cluster Green’s
function to the Krylov space dimension D and the chosen
time step τ . In our computations, we choose ϵ ≤ δRD(τ)
as error threshold, which can be evaluated at negligible
numerical costs from the matrix representation of the ex-
ponential of the effective Hamiltonian ĤD [34, 70] (see
also App. B). We furthermore fix the time step by relat-

ing it to the spectral width W of Ĥ via τ = 2π
κW where

typically we choose the energy window fraction κ ≈ 1.
We can now argue why we expect this error measure to

be more reliable than only considering the relative change
in the ground-state energy: δRD(τ) is not a relative mea-
sure and while we also found it to exhibit fluctuations in
our numerics, these are less severe than those in δE. The
stability of δRD(τ) against fluctuations comes from the
fact that increasing the Krylov space dimension D, the
residual in approximating the time evolution is monoton-
ically decreasing, which follows directly from Eq. (11).
Thus, fluctuations can only be generated from approxi-
mation errors caused by the MPS arithmetics and trun-
cation errors. The main effect of these errors is to de-
stroy the block-tridiagonal form of the effective Hamil-
tonian, which, however, can be monitored by the preci-
sion of the MPS arithmetics and the truncation errors.
We choose the corresponding thresholds to be sufficiently
small and thereby obtain a significantly more stable con-
vergence criterion than using δE. It should be noted that
strictly speaking, Eq. (11) is valid only after a complete
sequence of Lanczos states for the set of initial states

|φ(e)
j,σ⟩ has been constructed, i.e., the Krylov space di-

mension has to fulfill D = N · L. We discuss this issue
in App. B but from our numerical experience we found
that the violation of monotonicity while constructing a
new set of L candidate states is not too severe.

3. Orthogonality loss

A major source for numerical instabilities in Krylov
subspace methods is the loss of orthogonality of Krylov
vectors. While in the commonly used exact state-repre-
sentations the loss of orthogonality is in general caused by
round-off errors due to finite-precision arithmetics [71],
the use of MPS introduces additional error sources. On
the one hand, generating a new set of candidate states in

the Nth iteration of the band Lanczos recursion requires
to act with the Hamiltonian on MPS representations of
Lanczos vectors |kα,N ⟩: |kα,N ⟩ 7−→ Ĥ |kα,N ⟩. Performing
this operation by a näıve MPO-MPS application is nu-
merically very costly so that we resort to a variational ap-
plication scheme with a zipup-preconditioner [34]. While
this allows us to achieve convergence of the MPO-appli-
cation typically after two sweeps, we are still limited by
the growth of the MPS bond-dimension, requiring a finite
truncated weight. On the other hand, the orthogonaliza-
tion of new candidate vectors Ĥ |kα,N ⟩ against previous
Lanczos states has to be done using a variational update
scheme at finite truncated weight, too. This introduces
a further loss of numerical precision if the variational op-
timization can get stuck in local minima. We precondi-
tioned the optimization using an optimized initial guess
state generation by mixing small contribution of higher
and lower order Krylov states into the candidates. Nev-
ertheless, the band Lanczos recursion inevitably is going
to loose orthogonality, and the rate at which this loss
occurs crucially depends on the maximally allowed trun-
cated weight.
In order to keep the recursions stable as long as

possible, we exploit the energy truncation, which re-
moves poles, i.e., eigenstates, with small weights in the
Green’s function from the Lanczos states. This trun-
cation then allows us to use small truncated weights
δtrunc ∼ O(10−10) at moderate bond dimensions. We
typically allow for up to χmax = 1024 states and only for
the very large clusters increased that value to χmax =
2048. Throughout the band Lanczos recursion, we then
monitor the violation of the anti-commutation relations

Ij,σ;j′,σ′ =
∑
α,ν

⟨0|ĉ†j,σ|kα,ν⟩ ⟨kα,ν |ĉj′,σ′ |0⟩

+ ⟨0|ĉj′,σ′ |kα,ν⟩ ⟨kα,ν |ĉ†j,σ|0⟩ . (12)

We consider a deviation

δol =

√∑
j,j′

∑
σ,σ′

∥Ij,σ;j′,σ′ − δj,j′δσ,σ′∥2 < 10−3 , (13)

which is of the order of the total truncation error ∼
L ·

√
δtrunc, as acceptable and terminate the Lanczos re-

cursion if that threshold is exceeded. For all practical
applications discussed in this paper, the energy trunca-
tion allowed us to perform ∼ O(100) Lanczos iterations
without facing numerical instabilities caused by the or-
thogonality loss. Importantly, this number was sufficient
to converge also the largest clusters and obtain faithful
approximations of the relevant poles and weights of the
cluster Green’s function w.r.t. the convergence criterion
introduced in Sec. III A 2.

4. Energy rescaling

In order to conveniently use the error bound Eq. (11)
we always rescale the Hamiltonian such that the spectral
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width is given by W ≡ 1. Furthermore, the rescaling al-
lows us to introduce another tool to control the quality of
the constructed Krylov subspace. In fact, a severe loss of
orthogonality in the band Lanczos is typically signalled
by an artificial drop of the lowest eigenvalue ẼD

0 of the
effective Hamiltonian in the Krylov space KD below the
ground-state energy. For these reasons we rescale and
shift the Hamiltonian Ĥ throughout our computations,
which of course needs to be compensated for in the eval-
uation of the cluster Green’s function. The first step of
the rescaling is to obtain the spectral width

W = |E0 − Emax| (14)

of Ĥ by calculating the ground-state energy E0 and the
energy of the highest excited state Emax. Afterwards, the
Hamiltonian is rescaled and shifted,

Ĥ → ˆ̃H =
Ĥ − Emax

|E0 − Emax|
, (15)

to force the spectrum to be located within the inter-
val [−1, 0]. Thus, the lowest eigenvalue of the effective
Hamiltonian serves as additional proxy to the conver-
gence of the Krylov-space by monitoring whether the con-
dition ẼD

0 > −1 holds true. We also note that using the
rescaled Hamiltonian, the Hochbruck-Lubich time step is
related trivially to the energy window fraction τ = 2π/κ.

B. VCA

The VCA [20] is an established quantum-cluster tech-
nique, which is well-suited to probe correlated systems
for symmetry-breaking fields [21, 22]. It is based on the
self-energy-functional (SEF) theory [72–74] and consists
of determining the stationary points of the SEF Ωt[Σ],
which is related to the Baym-Kadanoff-Luttinger-Ward
functional [75, 76], with respect to trial self-energies of a
reference system Σ(t′):

Ωt [Σ (t′)] =Ω′ +Tr ln
(
−
(
G−1

0 −Σ (t′)
)−1

)
− Tr ln (−G′) . (16)

Here, TrA = T
∑

ω,αAα,α(iω), Ω′ denotes the grand

potential, and G′ the Green’s function of the reference
system. Since the theory requires the reference system to
have the same interaction terms as the original system,
the cluster self-energies can be varied via their one-body
terms t′. At a stationary point, the SEF represents an
approximation of the grand potential of the original sys-
tem in the variational space of available self-energies of
the reference system.

To investigate symmetry-broken phases, a (fictitious)
symmetry-breaking Weiss field term can be added to the
cluster Hamiltonian. The Weiss field strength is then
one of the one-body terms, which are determined via the
variational principle that leads to stationarity of the SEF
with respect to the cluster self-energy.

Here, we focus on zero temperature, T = 0, and per-
form the summation over frequency ωm in Eq. (16) ana-
lytically. In this case one obtains [23]

Tr ln
(
G−1

0 −Σ
)−1

=
∑
m

ωmΘ(−ωm)−R (17)

Tr lnG′−1
=

∑
m

ω′
mΘ(−ω′

m)−R , (18)

with the Heaviside function Θ(ω), a contribution R from
the poles of the self-energy, the poles ω′

m of the cluster
Green’s function G′, and the poles ωm of the VCA
Green’s function (G−1

0 − Σ)−1. It is therefore useful
to work with a Lehmann representation of the Green’s
function since it explicitly includes the information
about its poles ωm; for more details see appendix A.

In order to limit the variational space of cluster self-
energies, a limited set of one-body parameters of the
cluster Hamiltonian are varied in practice: The hop-
ping strengths tclusterij can be determined from the vari-
ational principle to account for cluster boundary effects
[20], whereas the cluster chemical potential µ′ should be
optimized to obtain a thermodynamically stable electron
filling n [77]. Additional one-body terms can be added
to the cluster Hamiltonian to account for symmetry-
broken phases such as magnetic order [52], superconduc-
tivity [78] or charge order [48].
In the half-filled two-dimensional Hubbard model with
isotropic nearest-neighbor hopping, the chemical poten-
tial is at µ = U/2 and µ′ does not need to be determined
in the variational search. Furthermore it was shown that
optimizing the cluster hopping terms did not lead to sig-
nificant improvement of the approximation of the grand
potential [20]. To capture the essential physics of anti-
ferromagnetic ordering, it is therefore sufficient to apply
a staggered magnetic field of strength hz on the cluster,
see Eq. (3), and use it as the sole one-body parameter
throughout the variational search.

C. Choice of clusters

The choice of a cluster is a centerpiece of most quan-
tum cluster techniques be it for accessing specific cluster
momenta or for performing a finite-size scaling. Besides
the size of the cluster, its geometry is of crucial impor-
tance in two-dimensional systems and the seminal papers
of Betts et al. [79, 80] introduced a set of evaluation cri-
teria for the suitability of clusters with periodic bound-
ary conditions, which were based on the completeness of
near-neighbor shells.
Within CPT and VCA one uses open boundary con-

ditions on the clusters and a systematic study of Betts
clusters is missing. Nevertheless, we resort here to the la-
belling and characterization scheme introduced by Betts
et al. [81], in particular to parameters such as the ge-
ometrical imperfection J and the bipartite imperfection
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6x4
24h5
24h7
24h9
24d4
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24s0 0.96 12 2

24h5 1.04 0 0

24h7 0.98 8 0

24h9 0.99 6 0

24d4 1.01 6 0

σ

(B)

FIG. 3. (A) Illustration of the geometries of different clusters
with N = 24 sites labeled according to Betts et al. [81]. Red
arrows indicate the superlattice vectors that tile the lattice
with the respective cluster, dashed lines indicate inter-cluster
hopping terms and the Néel-type sublattice structure is indi-
cated by different tones of grey. The clusters differ in their
squareness σ, geometrical imperfection J and bipartite im-
perfection IB , see (B). (C) Points in the Brillouin zone that
are multiples of reciprocal superlattice vectors, which are in-
dicated by arrows. The corresponding reduced (superlattice)
Brillouin zones are marked by parallelograms.

IB to identify clusters of high geometrical and topological
quality. Apart from more traditional rectangular clus-
ters, we also test our solver on skewed Betts clusters. We
limit ourselves to clusters that can tile bipartite lattices
and focus on those which have zero bipartite imperfec-
tion. By combining calculations of several cluster geome-
tries, we can access different points of the lattice Brillouin
zone via reciprocal vectors of the superlattice. In Fig. 3
we illustrate this for lattice tilings using different 24-site
clusters that fulfil the condition IB = 0.

IV. RESULTS AND DISCUSSION

In the following, we study the antiferromagnetic
(AF) ordering within the half-filled single-band Hubbard
model to benchmark our solver. We focus here at the
challenging point in parameter space U/t = 8, i.e., an
on-site interaction equal to the band-width of the non-
interacting dispersion, where the system is already in the
Mott insulating regime.

Translated to the self-energy functional, this leads
to one stationary point, a maximum, at hz = 0 cor-
responding to a non-magnetic solution and to two
minima at hz = ±hcz ̸= 0 corresponding to a phase with
antiferromagnetic order, see Fig. 4. Since Ω is symmetric
in hz, we plot it in the following only for positive values
of hz.
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FIG. 4. The self-energy functional Ω as a function of stag-
gered Weiss field strength for a 2×4 cluster. Stationary points
of Ω are indicated by arrows. Dots denote results obtained
with the matrix-product state (MPS)-based solver, in the in-
set shown for different maximal MPS bond dimension χmax

around the minimum of Ω; the results obtained with an exact
diagonalization (ED) solver are shown as a line.

Compared to numerically exact solvers, the MPS-
based solver introduces additional approximations, in
particular since the MPS bond dimension is bound to a
maximal value χmax and since perfect orthogonality be-
tween the Krylov vectors is lost faster at large iteration
numbers within the band-Lanczos procedure. Compar-
ing the self-energy functional computed with our MPS-
based solver to the benchmark using an exact diagonal-
ization (ED) based solver, we see excellent agreement in
Fig. 4 if the maximal MPS bond dimension is chosen
large enough. For the small cluster used here, χ can be
increased until the MPS representation is essentially ex-
act. However, for too small bond dimension, deviations
from the exact curve are visible. In that case, the self-
energy functional is systematically evaluated to be too
large. Except for extreme cases, e.g. χ = 128 in Fig. 4,
Ω shows even for moderate bond dimension correct func-
tional behavior as a function of the Weiss field, which
allows for an interpolation around the stationary points.
As we show in Sec. IV 1, fitting the self-energy functional
to determine its stationary points allows to calculate ob-
servables for different bond dimension in order to perform
an extrapolation to χmax → ∞.

To illustrate the effects of cluster geometry on Ω, we
plot in Fig. 5 the self-energy functional of the 24-site
clusters introduced in Fig. 3. Even though the rough
functional forms of Ω do not differ qualitatively, their
stationary points vary notably. We also note that clus-
ters with similar geometric properties, as for instance
quantified in terms of their geometrical and bipartite
imperfection, see Fig. 3(B), generate quite similar
self-energy functionals, whereas different imperfection of
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FIG. 5. Impact of the cluster geometry on the self-energy
functional. Ω is calculated with χmax = 1024 for different
24-site clusters shown in Fig. 3. Minima of Ω are indicated
by arrows, lines are only a guide to the eye. The inset shows
Ω for two different 1D mappings of the 24s0 cluster, ’4 × 6’
and ’6× 4’, calculated with χmax = 1024, 2048.

two clusters leads to significantly different Ω.

Another consequence of using a MPS representation of
the quantum states is that even for a given cluster geom-
etry, the obligatory mapping of the 2D cluster onto a 1D
chain introduces a degree of freedom which has a direct
impact on the precision with which the SEF is calculated.
In the inset of Fig. 5 we illustrate this effect by calculat-
ing the cluster Green’s function of the rectangular 24s0
cluster for two different 1D mappings. The correspond-
ing self-energy functionals agree in the χ→ ∞ limit, but
differ for finite χ. Whereas the mapping minimizing long-
range hopping (’4× 6’) leads to well converged results at
χmax = 1024, the longer-ranged mapping (’6 × 4’) leads
to a larger build-up of entanglement and would require a
χmax > 2048.

In presence of nearly degenerate quantum states,
different symmetry-breaking orders on the cluster can be
easily picked up within MPS based approaches when not
providing a sufficiently large bond dimension. This is for
instance the case for the ’4 × 6’ mapped 24s0 cluster at
hz ≈ 0.11, see inset of Fig. 5. Hence, scaling the position
of the stationary points of Ω in the maximal MPS bond
dimension instead of individual points of the self-energy
functional proved to be more robust.
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FIG. 6. Scaling of the self-energy functional Ω in the max-
imal MPS bond dimension χmax for the Betts cluster 22h5.
Around the stationary point Ω(hc

z) the functional can be fit-
ted as a function of the Weiss field, shown as a line (A); the
corresponding minima are indicated by black circles. For dif-
ferent χmax, the SEF shows similar functional dependence on
hz. The staggered magnetization ⟨m⟩ on the lattice (B) and
the Weiss field strength hc

z (C) are then scaled as a function
of inverse bond dimension 1/χmax.

1. SEF scaling with bond dimension

In Fig. 6, the value of the Weiss field hcz as well as
the staggered magnetization on the lattice, ⟨m⟩, are
scaled in the inverse bond dimension. The staggered
magnetization scales linear in 1/χmax and gives a lower
estimate of the expectation value for the χmax → ∞
limit. Since at some critical χc the MPS representation is
exact, we expect a constant value of ⟨m⟩ for χmax > χc.
The value of ⟨m⟩ at the largest calculated χmax there-
fore sets an upper bound for the staggered magnetization.

However, the dependence of hcz and ⟨m⟩ on 1/χ is mild
(O(10−3)) and of the same order as the estimated error
such that it can be neglected in practice for most appli-
cations as long as a sufficiently large bond dimension χ is
used. In the case of the shown 22-site Betts cluster, this
would be the case for χmax ≳ 1000. Given the large com-
putational cost of evaluating the cluster Green’s function
via the MPS-based band Lanczos solver, systematically
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FIG. 7. (a) Density of states N(ω) of the 4×4 (top) and 22h5
(bottom) clusters for different maximal MPS bond dimension
χmax. (b) shows the k−resolved spectral function A(k, ω) of a
6× 6 cluster for two different maximal bond dimensions. All
calculations were done in the antiferromagnetically ordered
state, i.e. at the stationary point of the SEF for the respective
clusters.

scaling expectation values in the MPS bond dimension
should remain the exception. Instead, it offers the pos-
sibility to calculate spectral functions or observables for
large clusters (e.g. using cluster perturbation theory),
for which symmetry breaking terms can be included via
VCA. The rather mild dependence of the functional form
of the SEF and the related expectation values on the cho-
sen MPS bond dimension is important in this context.

2. Spectral functions

Next, we discuss the mild influence of the maximal
MPS bond dimension χmax on the spectral function, see
Fig. 7.

For comparatively small clusters, the spectral function
A(k, ω) and the density of states (DOS) N(ω) can be
converged in χmax. We illustrate this in the case of the
4× 4 cluster for N(ω) in Fig. 7(a). The results obtained

from restricting the bond dimension to χmax = 512 show
already good agreement for excitation energies close to
the gap, but the density of states still shows differences
at larger excitation energies around ω ∼ ±6. For χmax ≳
1024, the density of states and spectral function of the
4× 4 cluster are converged and do not change any more
when increasing the bond dimension.
For larger clusters like the 22h5 cluster discussed pre-

viously in Fig. 6, scaling hcz and ⟨m⟩ still leads to mi-
nor changes when increasing the bond dimension up to
χmax = 2048. However, tracking the changes of the den-
sity of states as a function of χmax reveals that only
small changes close to the outmost band edges far from
the gap are visible. The DOS for excitation energies
|ω| ≲ 5 is already converged for χmax = 1536 and even for
χmax = 1024 the deviations from the converged solution
are for most purposes negligible.
In Fig. 7(b) we finally show the k−resolved spec-

tral function A(k, ω) along the high symmetry path
(0, 0)−(π, 0)−(π, π)−(0, 0) for one of the largest clusters
we systematically studied, the 6 × 6 cluster. The spec-
tral function was calculated from the CPT Green’s func-
tion, Eq.(2), using the periodization scheme proposed in
Ref. 19. In contrast to small and intermediate clusters,
the SEF of the 6 × 6 cluster still shows notable differ-
ences as a function of the MPS bond dimension up to
χmax = 2048. They translate to the spectral function in
form of small differences in the low-energy excitations,
most visible around the X point, k = (π, 0). Neverthe-
less, the most salient features of the spectral function
are already converged in the bond dimension for a re-
markably small χmax = 1536. This can be seen as an
advantageous feature of the MPS solver, which enforces
due to the energy truncation scheme first the conver-
gence of poles of the Green’s function that contribute
most spectral weight. The present MPS solver therefore
even allows to interpret spectral functions of large clus-
ters for which a full convergence in terms of the MPS
bond dimension cannot be achieved.

3. Finite size scaling

In order to perform a finite-size scaling of the stag-
gered magnetization, calculations need to be performed
using different cluster sizes. However, even for fixed clus-
ter size, the cluster geometry has an impact on the self-
energy functional since the corresponding cluster Green’s
functions include long-range correlations to a different ex-
tent. To include this information for the finite-size scal-
ing, we use the quality factor introduced by D. Sénéchal
in Ref. 83. It amounts to comparing the intra-cluster
hopping terms N cl

t to the number of hopping terms per
site in the infinite lattice and therefore takes into account
both the cluster size and geometry. In the square lattice,
this amounts to q = N cl

t /2L. The scaling factor q thereby
contrasts with other commonly used scaling parameters
like 1−1/L, which include only information of the cluster
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FIG. 8. Finite-size scaling of VCA data for different rectan-
gular and Betts clusters. The staggered magnetization ⟨m⟩
and the magnetic Weiss field on the cluster hz (inset) are
scaled as a function of the parameter q described in text.
The reference data from auxiliary-field quantum Monte Carlo
(AFQMC) is taken from Ref. [82]. The staggered magnetiza-
tion extrapolated from the band-Lanczos results for rectan-
gular clusters (highlighted in red) using a non-linear ansatz is
shown as dashed blue line and the shaded area indicates the
1σ confidence interval, containing the AFQMC result.

size.
When using this quality factor, the extrapolation of

the Weiss field strength hcz to the thermodynamic limit
leads to a vanishing field strength whereas the expecta-
tion value of the staggered magnetization on the lattice
⟨m⟩ extrapolates to a finite value, see Fig. 8. In the
infinite-cluster-size limit, q = 1 and we will not need
the symmetry-breaking field since the symmetry will be
broken spontaneously. There, the value of the staggered
magnetization ⟨m⟩|q=1 simply corresponds to the order

parameter on the lattice. At half-filling, ⟨m⟩ can be cal-
culated numerically exactly using auxiliary-field quan-
tum Monte Carlo simulations (AFQMC) [84–89].

Comparing to the AFQMC result (dashed black line)
of Seki and Sorella [82] we see that the linear scaling in
q (dashed, violet graph) would lead to an overestimation
by ∼ 20% of the staggered magnetization, i.e., the linear
dependence ⟨m⟩ on q seems to hold only for small and
intermediate cluster sizes. Indeed, for the largest clusters
calculated with our MPS band-Lanczos solver, we already
observe a significant deviation from linear scaling (c.f.
the red highlighted symbols in Fig. 8). We believe that
besides others, the non-linear q-dependence is generated
from the fact that in the presented calculations we did not

vary the hopping amplitudes at the cluster boundaries.
In that case, an extrapolation would still be possible even
though the exact functional dependency is unknown.
We attempt to account for the non-linear behavior

by: (1) Linearly extrapolating ⟨m⟩ (q → 1, q0) for the
largest rectangular clusters (c.f. the red highlighted
symbols in Fig. 8) on a domain [q0, 1] where we varied
q0 ∈ [0.775, 0.8125]. The obtained linear extrapolations
are indicated by the colored dashed lines in Fig. 8. (2)
We then make the simplest non-linear ansatz for the func-
tional dependency on q0

⟨m⟩ (q → 1, q0) = α(q0 − 1)2 +m∞ . (19)

This ansatz has a stationary point at q0 = 1, resembling
the expected asymptotic behavior of the magnetization
when scaling the number of cluster sites to the thermo-
dynamic limit. The extrapolated value of the magneti-
zation is m∞ = 0.607 ± 0.009, which is shown in Fig. 8
as blue dashed line and the shaded area indicates the 1σ
confidence interval of the extrapolation. Note that this
value agrees with the AFQMC-result mQMC

∞ = 0.5982
within the confidence interval and the deviation is only
about 1.5%. We therefore find that with the cluster sizes
accessible via the VCA+MPS ansatz, it is possible to es-
timate values for local observables in the thermodynamic
limit to a very high precision, even without exploring all
possible variational parameters within VCA.

V. CONCLUSIONS AND OUTLOOK

We introduce a band-Lanczos solver based on MPS
for quantum cluster methods such as the VCA. While
a näıve implementation of MPS as cluster solver does
not lead to a substantial improvement over using ED
techniques, we showed that significantly larger cluster
sizes can be treated with high accuracy by combining
the MPS+band-Lanczos solver with a suitable energy
truncation, controlling the loss of orthogonality of the
Lanczos states and introducing a robust convergence cri-
terion.
We demonstrate the potential of the approach by com-

puting the staggered magnetization ⟨m⟩ of a single band
Hubbard model on a 2D square lattice. Treating differ-
ent cluster sizes and shapes (regular rectangular as well
as Betts clusters), we extrapolate our MPS data in the
bond dimension χ, which we show to yield a systematic
improvement of the approximation quality of the Green’s
function and its derived quantities. In this way we can
exploit the increased number of accessible cluster sizes
and geometries to extrapolate observables such as the
staggered magnetization into the thermodynamic limit.
We show that at half filling and for intermediate inter-
action strengths U/t = 8 (i.e., in the Mott insulating
regime, where the interaction strength is of the order of
the bandwidth of the noninteracting system) an anoma-
lous finite-size scaling with a crossover length scale is ob-
served. Only for rectangular cluster sizes that are large
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enough, i.e., 4× 4 and larger, a deviation from an other-
wise linear scaling is obtained, which can be extrapolated
towards the correct result in the thermodynamic limit.
The resulting value of ⟨m⟩ in the thermodynamic limit
agrees with numerically exact QMC data within an er-
ror margin of 1.5%. In contrast, with the smaller cluster
sizes amenable to ED, the extrapolation in cluster size
leads to a value, which overestimates the QMC result by
∼ 20%.

Given the significant increase of the number of cluster
sites, we envisage that our approach has the potential
to substantially improve the investigations in multi-band
Hubbard-like models. Here, Hund’s coupling leads to an
interplay between orbital, spin, and electronic degrees of
freedom [90, 91], which affects material properties like
superconductivity in nickelates and iron based supercon-
ductors, orbital selectivity in iron chalcogenides or opto-
electronic and photovoltaic properties [92–99]. Although
the interactions are local in nature, the higher complexity
of these 2D systems poses an even stronger challenge to
their theoretical description. While it is essentially im-
possible for ED-based solvers to treat cluster sizes large
enough to perform meaningful studies on such multi-or-

bital systems, the MPS+band-Lanczos approach makes
it possible to treat also systems with larger local Hilbert
spaces in a controlled way, so that it appears natural to
extend our approach to such multi-band situations.
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uschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer,
P. Werner, and S. Wessel, Journal of Magnetism and
Magnetic Materials 310, 1187 (2007), proceedings of
the 17th International Conference on Magnetism, The
International Conference on Magnetism.
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approaches

Appendix A: Q-matrix formulation of the cluster
Green’s function

To rewrite the cluster Green’s function, we use the
Q-matrix formulation of the Lehmann representation in-
troduced in Ref. [100]:

G′
α,β(ω) =

∑
m

Qα,mQ
†
m,β

ω − ω′
m

, (A.1)

with α, β being compound site and spin indices, and ex-
cited states m. The Q-matrix is defined as the concate-
nation of the electron and hole matrices

Qα,m =
(
Q(e)

α,r, Q
(h)
α,s

)
, (A.2)

Q(e)
α,r = ⟨0|ĉα|r⟩ , (A.3)

Q(h)
α,s = ⟨s|ĉα|0⟩ , (A.4)

where |0⟩ is the ground state with energy E0. The cor-
responding excitation energies needed in Eq. (18) read

ω′
m =

(
ω
(e)
r , ω

(h)
s

)
= (Er − E0, E0 − Es). To obtain the

poles ω for Eq. (17) we rewrite the VCA Green’s function
as

G =
1

G−1
0 − Σ

=
1

(G′)−1 −V
(A.5)

= Q
1

g−1 −Q†VQ
Q† , (A.6)

where g−1 = ω−Λ with Λm,l = δm,lω
′
m so that the poles

ωm are nothing but the eigenvalues ofΛ+Q†VQ. TheQ-
matrix and the one-particle excitations ω′ are calculated
via the band Lanczos algorithm.

Appendix B: Hochbruck-Lubich convergence
criterion

We consider the Greens function in its time integral
representation

GAB(ω + iη) = i

∫ ∞

0

dt ⟨φA|e−i(Ĥ−ω−iη)t|φB⟩ (B.1)

for some Hamiltonian Ĥ and local perturbations of an
initial state |ψ⟩ generated from operators Â, B̂:

|φA⟩ = Â |ψ⟩ and |φB⟩ = B̂ |ψ⟩ , (B.2)

where η > 0 is a finite broadening. The error estimation
by Hochbruck and Lubich is based on approximating the

action of an operator exponential e−tÂ in a Krylov sub-
space KD where D ∈ N denotes the dimension of the
Krylov subspace

∥e−tÂ |φ⟩ − e−tÂD |φ⟩∥ ≈ t
∣∣∣βD ⟨fD|e−tÂD |φ⟩

∣∣∣ = tδRD(t) ,

(B.3)

where βD is the usual Lanczos residual afterD iterations,
ÂD denotes the projection of Â to KD and δRD(t) can be
estimated by the generalized residual [38, 69, 70]. Here,
|fD⟩ is the component of the initial state |φ⟩ projected
into the orthogonal complement KD

⊥ = H \ KD of the
Krylov subspace

|φ⟩ = P̂D |φ⟩+ P̂D
⊥ |φ⟩ ≡ P̂D |φ⟩+ |fD⟩ , (B.4)

with P̂D
(⊥) being the projector into KD (H \ KD). The

estimation is based on a finite time argument in the ex-
ponent, hence we use the following decomposition of the
integration domain∫ ∞

0

dtF (t) =

[∫ τ

0

dt+

∫ 2τ

τ

dt+ · · ·
]
F (t)

=

∞∑
p=0

∫ τ

0

dtF (t+ pτ) . (B.5)

Decomposing the expectation value F (t) = ⟨φ|e−iĤτ |φ⟩
into its components the Krylov subspace and the orthog-
onal complement using Eq. (B.4)

F (t) = ⟨φ|e−iĤDτ |φ⟩+ ⟨fD|e−iĤDτ |φ⟩ , (B.6)

and abbreviating ÛD(t, ω) = e−i(ĤD−ω)t, we can rewrite
the time integration as

GAB(ω + iη) = i

∫ ∞

0

dt ⟨φA|ÛD(t, ω)e−ηt|φB⟩+ δGD
AB ,

(B.7)

with the residual

δGD
AB = i

∞∑
p=0

∫ τ

0

dt ⟨fDA |ÛD(t+ pτ, ω)|φB⟩ e−η(t+pτ) .

(B.8)

We can now apply Eq. (B.3) to estimate the residual

|δGD
AB | ≈

∫ τ

0

dt

∞∑
p=0

(t+ pτ)δRD(t+ pτ)e−η(t+pτ)

≤ δRD(τ)

∫ τ

0

dt

∞∑
p=0

(t+ pτ)e−η(t+pτ)

= δRD(τ)
1− e−ητ (1 + ητ)

η2
, (B.9)

where we used the monotonicity of the generalized resid-
ual δRD(t) ≤ δRD(t+pτ) ≤ 1 for t ≤ τ . In our numerical



2

calculations we usually set τ = 2π such that we can de-

termine the correction term J(η) ≡ 1−e−2πη(1+2πη)
η2 in the

limit η → 0

lim
η→0

J(η) = lim
η→0

1− (1− 4π2η2)− 2π2η2

η2
+O(η)

= 2π2 , (B.10)

and thus we arrive at the error bound

|δGD
AB | ≤ 2π2δRD(τ) ≈ 20 · δRD(τ) . (B.11)

The generalized residual δRD(τ) can be computed at no
additional cost using the approximation of the exponen-
tial in the Krylov subspace

δRD(τ) = βD ⟨fD−1|e−iĤDτ |fD⟩ . (B.12)

While these considerations provide a reliable bound for
the usual Lanczos procedure, they are exact in case of the
band Lanczos only, if the Krylov dimension D and the
Krylov order N , i.e., the number of applications of Ĥ to
the set of L initial states, are related via D = N ·L. The
reason behind this limitation is that in Eq. (B.6) we as-
sumed that the residual Krylov vector |fD⟩ has a Krylov

order N+1 while ĤD is approximated with Krylov order
N , only. In princple this means that Eq. (B.11) can only
be applied after a whole sequence of L candidate states
has been constructed. However, in practise we observed
that also within such a sequence, Eq. (B.11) yields sat-
isfying error estimations with fluctuations in the error
estimation being of an order of magnitude, at the most.


