
HAL Id: hal-04397673
https://hal.science/hal-04397673

Submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Design with low complexity fine-grained Dual Core
Lock-Step (DCLS) RISC-V processors

Pegdwende Romaric Nikiema, Angeliki Kritikakou, Marcello Traiola, Olivier
Sentieys, Olivier Sentieys

To cite this version:
Pegdwende Romaric Nikiema, Angeliki Kritikakou, Marcello Traiola, Olivier Sentieys, Olivier Sentieys.
Design with low complexity fine-grained Dual Core Lock-Step (DCLS) RISC-V processors. DSN 2023
- 53rd Annual IEEE/IFIP International Conference on Dependable Systems and Networks, Jun 2023,
Porto, Portugal. pp.224-229, �10.1109/DSN-S58398.2023.00062�. �hal-04397673�

https://hal.science/hal-04397673
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Design with low complexity fine-grained Dual Core
Lock-Step (DCLS) RISC-V processors

Pegdwende Romaric Nikiema, Angeliki Kritikakou, Marcello Traiola, Olivier Sentieys
Inria, Univ Rennes, CNRS, IRISA

pegdwende.nikiema@inria.fr, angeliki.kritikakou@irisa.fr, marcello.traiola@inria.fr, olivier.sentieys@inria.fr

Abstract—Embedded systems in critical domains require both
hard real-time and reliable execution. Real-time execution re-
quires bounds in the worst-case execution time, while reliable ex-
ecution is under threat, as systems are becoming more and more
sensitive to transient faults. Thus, systems should be enhanced
with fault-tolerant mechanisms with bounded error detection
and correction overhead. Such mechanisms are typically based
on redundancy at different granularity levels. Coarse-grained
granularity has low comparison overhead, but may jeopardize
timing guarantees. Fine-grained granularity immediately detects
and corrects the error, but its implementation has increased
design complexity. To mitigate this design complexity, we leverage
high-level specification languages to design intrusive fine-grained
lockstep processors based on the use of shadow registers and
rollback, with bounded error detection and correction time, being
appropriate for critical systems.

Index Terms—Transient faults, Reliability, Real-time, Fault-
tolerance, RISC-V, High level specification

I. INTRODUCTION

Embedded systems in critical domains, such as automotive,
aviation, space domains, often require both hard real-time and
reliable execution. Real-time execution is provided through
timing guarantees that ensure that the worst-case execution
time of the application can be bounded and it does not exceed
a given latency requirement [1]. However, reliable execution is
under threat due to the increased fault susceptibility of modern
electronic systems. Due to the reduced transistor sizes and
lower supply voltages of modern technologies [2], systems
are becoming more and more sensitive to environmental
sources [3], such as ionization, radiation, and high-energy
electromagnetic interference, leading to temporary reliability
violations, called transient faults. With the technology reduc-
tion, transient faults become dominant [3], occurring even
under normal operation conditions, which was not the case
with technology used a decade ago [4]. As systems become
more and more prone to transient faults during execution [5],
they should be enhanced with fault-tolerant mechanisms in
order to provide reliable execution.

Fault-tolerant mechanisms are typically based on redun-
dancy. To deal with faults occurring in the processors, the
same set of operations with same inputs is executed on
different processors. Such approach is promising, since the
probability of having the same fault concurrently occurring
on all processors is very small [6]. To detect/correct a fault,
the outputs of redundant operations must be compared. This
comparison can be performed at different granularity levels,

from coarse-grained granularity, defined at the memory and
I/O interface taking place at the end of application execution,
to fine-grained granularity, occurring at the instruction level
during the application execution. Although coarse-grained
granularity has low overhead in terms of comparison, error
detection/correction may occur long after the fault affects
the system, thus jeopardizing timing guarantees in hard real-
time systems [7]. On the contrary, fine-grained granularity
provides immediate error detection/correction. Non-intrusive
fine-grained approaches have typically high comparison over-
head, since the outcome of all instructions (i.e., values and
addresses) has to cross the shared communication network to
reach memory and I/O in order to be compared [7]. Therefore,
intrusive approaches are required, which, however, have in-
creased design complexity due to large processor modifications
required and the complex validation of the circuitry to perform
the across-core comparisons every cycle [8].

To mitigate such complexity increase during the design
process, we leverage high-level specification languages to de-
sign intrusive fine-grained lockstep processors, with bounded
error detection and correction time, thus being appropriate for
critical systems. By using high-level specification languages,
such as C and C++, the processor design becomes less com-
plex, as the processor model can easily be modified, expanded
and verified, compared to HDL implementations [9]. With
the help of High-Level Synthesis (HLS) tools, such high-
level processor descriptions can be interpreted to create digital
hardware which implements the same functionality. More
precisely, we use an on open-source HLS implementation of a
32-bit RISC-V processor [9] as case study and we propose two
intrusive fine-grained lockstep approaches, with different area
and upper bound detection and correction time, , i.e., Partial
Shadow Register with Rollback (PSRR) and Full Shadow
Register (FSR). While dual Modular Redundancy (DMR) en-
ables only fault detection, Triple Modular Redundancy (TMR)
allows achieving error correction but also entails significant
area and power overhead. Thus, we extend a DMR approach
with fine-grained correction mechanisms – based on register
shadowing and rollback mechanisms – in order to perform
error correction, with reduced area overhead w.r.t. TMR.

II. RELATED WORK

Existing redundancy approaches applied for processors can
be categorized as non-intrusive and intrusive.

1

Non-intrusive approaches do not modify the processor archi-
tecture, and are typically used when the internal architecture
details are hidden or difficult to modify, e.g., Commercial Off-
The-Shelf (COTS) processors. Depending on the type of cores,
the approaches can be homogeneous or heterogeneous. For
instance, a homogeneous approach uses two MicroBlaze soft
cores to implement Dual Core LockStep (DCLS). When a core
mismatch is detected, a roll-forward correction is applied that
excludes temporary the faulty core, which is repaired through
reconfiguration. Meanwhile, the correct processor continues
execution and its state is copied as soon as faulty core is
reconfigured. A heterogeneous DCLS approach uses ARM
A9 as hard core and RISC-V as soft core [10]. Lockstep
execution is achieved by inserting checkpoints in the applica-
tion, where a synchronisation module is activated to check for
mismatch between the status of the cores and apply roll-back.
Heterogeneous approaches may have reduced performance,
due to the low-speed processor that sets an upper bound
to the DCLS performance. Note that, to perform lockstep
with hard cores, processors should have specific architecture
support. However, this functionality is not present on all
processors [10]. Non-intrusive approaches are less flexible as
they do not modify the internal processor architecture, leading
to higher communication overhead.

Intrusive approaches modify internally the processor archi-
tecture. Hence, when rollback mechanisms are applied, they
do not require to insert checkpoints at the application level.
For instance, the Dynamic Adaptive Redundancy Architecture
(DARA) is a homogeneous DCLS approach that was applied
to RISC ISA SH-2 processors and is based on rollback to
achieve error correction [11]. DARA adds additional hardware
to check the consistency of all pipeline stage registers, between
the lockstep cores. However, the proposed mechanism does
not support faults occurring in branch instructions. Interleaved
multithreated execution is used to implement a dual lockstep
approach using two virtual RISC-V cores [12]. Other ap-
proaches extend the pipeline registers with error detection and
correction codes, e.g., Duckcore extends a RISC-V core with
Single Error Correction Double Error Detection (SECDED) in
the pipeline stages [13]. However, such an approach can add
significant overhead due to the encode and decode time. Other
approaches apply triplicate components inside the RISC-V
core to enhance its repliability. For instance, Control and Sta-
tus Registers, Program Counter and the register file [14], FFs,
LUTs, BRAMS, and DSPs [15], and the arithmetic and logic
unit (ALU) are triplicated [16]. Furthermore, existing fine-
grained approaches are based on HDL implementations, which
are significantly more complex than high-level description, and
they do not focus on providing upper bounds regarding the
error detection and correction time of the applied fault-tolerant
hardware mechanisms.

III. PROPOSED FINE-GRAINED INTRUSIVE DCLS

This section describes the two proposed DCLS approaches,
i.e., Partial Shadow Register with Rollback (PSRR) and Full
Shadow Register (FSR), and reports the upper bound w.r.t.

== ?

== ?

== ?

== ?

== ?

Instruction
Fetch (IF)
Instruction

Decode (ID)
Execute

(EX)
Memory
Access
(MEM)

Write Back
(WB)

Instruction
Fetch (IF)
Instruction

Decode (ID)
Execute

(EX)
Memory
Access
(MEM)

Write Back
(WB)

Core 1 Core 2

Pipeline Register

Logic Logic

Pipeline Register

Pipeline Register

Logic Logic

Pipeline Register

== ?

Error

== ?

Error

Fig. 1. Dual Core Lock-Step principle illustration

their detection and correction time. In this paper, we assume
that register file, instruction memory, and data memory are
protected by an Error Correction Code (ECC) mechanism.

In both PSRR and FSR DCLS mechanisms, we use two
identical cores executing the same instruction at each clock
cycle. Each pipeline stage stores the result of its logic com-
putation in a pipeline register. At each cycle, the proposed
mechanism checks for execution consistency by comparing the
pipeline registers of the two cores, as sketched in Figure 1. If
no error is detected, the execution runs normally. Otherwise,
the detected error indicates that a fault impacted the logic,
which in turn generated a wrong result, or that a fault impacted
the pipeline register itself, flipping a bit in the result. In
this case, correction is applied, as described in the following
sections.

A. Partial Shadow Register with Rollback (PSRR)

When an error is detected, the PSRR approach re-executes
the instruction being processed in the faulty stage, i.e., it has
to be re-fetched and go through the whole pipeline again. To
be able to re-execute the instruction that was in the faulty
pipeline stage, we modified the micro-architecture to store in
each given pipeline stage the address of the current instruction
being processed in that stage. In this way, when a fault is
detected, we are able to retrieve the address of the instruction
to re-execute. Furthermore, the result of the previous and
current stages (that have already started processing the new
instructions) have to be discarded, e.g. if an error was detected
in the EX stage, the stages discarded are IF, ID and EX. As
for the next stages, we let them continue as their execution is
not impacted by the error, e.g., for an error detected in the EX
stage, we let MEM and WB to continue. Finally, No Operation
(NOP) instructions are introduced in the pipeline.

In the above described approach, the correctness of the
address of the instruction, being processed in each stage, is key
for the rollback mechanism to work correctly. A fault could
modify such address, jeopardizing the rollback procedure.
Therefore, we store a copy of such address for each pipeline
stage – this is why we refer to the approach as ’Partial Shadow
Register’. This allows us to retrieve the correct address to
rollback to, even when a fault impacts it in one core. To

2

Pipeline Register

IF logic IF logic

Pipeline Register

Pipeline Register

ID logic ID logic

Pipeline Register

== ?

== ?

PC PC

EX Logic EX Logic

Pipeline Register

IF logic IF logic

Pipeline Register

Pipeline Register

ID logic ID logic

Pipeline Register

== ?

== ?

PC PC

EX Logic EX Logic

Cycle n-1 Cycle n Cycle n+1

Transient
Fault

$5

$5

$5

$5

$6

$6

$6

$6

$4 $4

$3 $3

$5 $5

$4 $4

Pipeline Register Pipeline RegisterPipeline Register Pipeline Register

== ? == ?

Pipeline Register

IF logic IF logic

Pipeline Register

Pipeline Register

ID logic ID logic

Pipeline Register

== ?

== ?

PC PC

EX Logic EX Logic

$4 $4

NOP NOP

NOP NOP

Pipeline Register Pipeline Register

== ?

$4 $4

discard
(NOP)

discard
(NOP)

discard
(NOP)

discard
(NOP)

discard
(NOP)

discard
(NOP)

PC_BKP
$5

IF_PC
BKP

ID_PC
BKP

EX_PC
BKP

$5

$4

$3

PC_BKP
$6

IF_PC
BKP

ID_PC
BKP

EX_PC
BKP

$6

$5

$4 Vote

PC_BKP$4

IF_PC
BKP

ID_PC
BKP

EX_PC
BKP

$4

NOP

NOP

discard
(NOP)

discard
(NOP)

Fig. 2. PSRR error detection and rollback mechanism

achieve that, a vote among the addresses stored in the cores
and the copy is made before rolling back. Figure 2 sketches the
PSRR approach. To illustrate this mechanism, let us consider
the assembly code snippet in the listing 1.

$1 addi a5,a5,-16
$2 addi a5,a5,-16
$3 add a5,a4,a5
$4 sw a5,-32(s0)
$5 mv a4,a5
$6 jal target
$7 mv a4,a5
$8 mv a5,a0

<target>
$9 sw a5,-32(s0)
$10 mv a4,a5

Listing 1. Illustration example program assembly code

TABLE I
PIPELINE STATUS FOR FAULT-FREE EXECUTION

Execution cycle
Pipeline stage n-1 n n+1 n+2 n+3

IF 5 6 7 8 9
ID 4 5 6 7 NOP
EX 3 4 5 6 NOP

MEM 2 3 4 5 6
WB 1 2 3 4 5

Table I shows a snapshot of the processor pipeline stages
during a non-faulty execution of this program. NOP instruc-
tions at cycle n + 3 in ID and EX stages are due to the
jump instruction $6. Let us suppose that, at some point during
cycle n − 1, an error impacts the result of ID stage, which
is processing instruction $4. As already mentioned, the result
of ID stage can be impacted by a fault in the ID logic or
directly in the pipeline register between ID and EX stages

(IDtoEX). The mismatch is detected at cycle n by comparing
the IDtoEX pipeline registers of the two cores in the DCLS.
This makes invalid the instructions $4, $5, and $6 in IF, ID,
and EX stages. Hence, the rollback mechanism discards the
execution results of these stages; the MEM and WB results are
valid and instructions $3 and $2 will continue their execution,
since they are not impacted by the fault effect. Finally, the
Program Counter (PC) in cycle n + 1 will be assigned to
instruction $4, after a vote among current instruction addresses
stored in the cores and the copy (EX PC BKP in the figure).
After the correction, we obtain the pipeline state shown in
Table II. Finally, at cycle n + 2 we obtain the same pipeline

TABLE II
PIPELINE STATUS WITH PSRR CORRECTION

Execution cycle
Pipeline stage n-1 n n+1 n+2 n+3

IF 5 6 4 5 6
ID 4 5 NOP 4 5
EX 3 4 NOP NOP 4

MEM 2 3 NOP NOP NOP
WB 1 2 3 NOP NOP

state that we had at cycle n−1 when the fault occurred (except
for instructions $1, $2, and $3 that were not impacted by the
fault). Thus, in this example, the error detection and correction
overhead is three cycles (from n− 1 to n+ 1).

In general, the PSRR mechanism has a minimal error
detection and correction overhead of two cycles: the cycle
when the fault occurs and the cycle to detect the fault. Then,
the deeper the impacted stage is in the pipeline, the more extra
cycles are required. Thus, the upper bound in time for error
detection and correction is given by the pipeline depth.

B. Full Shadow Register (FSR)

In the Full Shadow Register approach, we create a backup
copy (BKP) of all the pipeline registers of the core, i.e.

3

Pipeline Register

IF logic IF logic

Pipeline Register

Pipeline Register

ID logic ID logic

Pipeline Register

== ?

== ?

PC PC

EX Logic EX Logic

Pipeline Register

IF logic IF logic

Pipeline Register

Pipeline Register

ID logic ID logic

Pipeline Register

== ?

== ?

PC PC

EX Logic EX Logic

Cycle n Cycle n+1

Transient
Fault

$6

$6

$6

$6

$7

$7

$7

$7

$5 $5

$4 $4

$6 $6

$5 $5

Pipeline Register Pipeline RegisterPipeline Register Pipeline Register

== ?
== ?

BKP_IFtoID

BKP_IDtoEX

BKP_EXtoMEM

BKP_IFtoID

BKP_IDtoEX

BKP_EXtoMEM

BKP_PC BKP_PC

Pipeline Register

IF logic IF logic

Pipeline Register

Pipeline Register

ID logic ID logic

Pipeline Register

== ?

== ?

PC PC

EX Logic EX Logic

Cycle n+2

$6

$6

$6

$6

$5 $5

$4 $4

Pipeline Register Pipeline Register

== ?

BKP_IFtoID

BKP_IDtoEX

BKP_EXtoMEM

BKP_PC

BKP

discarded

discarded

discarded

discarded

discarded

discarded

restore

restore

restore

restore

backup

backup

backup

backup

Fig. 3. FSR error detection and correction mechanism

for all the stages. The error detection and correction logic
is the following: in each clock cycle n, we compare the
pipeline registers of the two cores, containing the results of
the computation of cycle n − 1. If no error is detected, all
the pipeline registers are copied to the backup copy BKP.
When an error is detected in the comparison, a flag is raised,
the results of the current computation are discarded and the
pipeline registers of both cores are restored with the values in
BKP. In this way, in the next cycle n + 1, the pipeline will
re-execute the cycle that was impacted by a fault. Figure 3
sketches the described FSR approach. Let us use again listing
1 as an example. As shown in Table III, let us suppose that,

TABLE III
PIPELINE STATUS WITH FSR CORRECTION

Execution cycle
Pipeline stage n-1 n n+1 n+2 n+3

IF 5 6 7 6 7
ID 4 5 6 5 6
EX 3 4 5 4 5

MEM 2 3 4 3 4
WB 1 2 3 2 3

at the end of cycle n − 1, the computation had no errors. In
cycle n, the pipeline registers are compared and, since there
was no error, the content of the pipeline is copied to the BKP
register. Let us now suppose that a fault impacts the ID stage
in cycle n. In cycle n + 1, the pipeline registers of the two
cores are compared and an error is detected, due to the fault
in cycle n. Thus, the results of the computations is discarded
and the content of BKP is copied back. Finally – in cycle
n + 2 – the cycle impacted by the fault can be re-executed
and the computations goes back to normal. The FSR approach
entails a constant overhead of two clock cycles, namely the
one where the fault occurred, and one to detect it and restore
the BKP register. Therefore, compared to PSRR, FSR entails
higher overhead to copy all the pipeline registers, but reduces
the upper bound for the error detection and correction to two

cycles.

C. Enhancement w.r.t. state of the art

Thanks to the high-level description of the proposed ap-
proaches and the RISC-V processor, we are able to perform
fast iterations of both designing and evaluated through fault
injection and to expose some drawbacks of the state-of-the-art
approaches from which we derived our DCLS.

To give an example, the proposed PSRR approach has been
inspired by DARA [11], where we were able to find and fix
some shortcomings. To illustrate that, let us consider again
the assembly code snippet in the listing 1 and the pipeline
status in Table I. At cycle n + 2 instruction $6 – a jump
– is in the EX stage. This will set the PC of the next cycle
(n+3) to address $9. Let us imagine that at cycle n+1 a fault
impacted the results of the fetch stage, executing instruction
$7. The rollback approach used in DARA (and presented in
section III-A) would detect the error in cycle n + 2 and re-
execute – in cycle n + 3 – instruction $7. However, this
instruction was not meant to be executed, since instruction
$6 was an immediate jump to instruction $9. We were able
to spot this condition thanks to the proposed high-level DCLS
implementation enabling fast design iterations and fault in-
jections. Without any countermeasure, this condition would
lead to wrong program execution, i.e., executing instructions
that were not meant to be in the pipeline, ignoring the jump
instruction. Thus, as a countermeasure, we added a further
condition: if an error happens in a pipeline stage processing
an instruction that will be discarded due to a jump being
processed in the EX stage, we do not initiate the rollback
procedure.

IV. EXPERIMENTAL RESULTS

A. Experimental setup

The open-source 32-bit RISC-V processor [9] consists of a
standard 5-stage pipeline, i.e., Instruction Fetch (IF), Instruc-
tion Decode (ID), EXecute (EX), MEMory (MEM), Write-

4

Back (WB), including a forwarding mechanism, a hardware
multiplier in its execution stage, and a Register File (RF) with
32 registers in the write-back stage.

Fig. 4. RISC core with 5-stage pipeline, forward mechanisms, and data and
instruction caches [9].

We perform Fault Injection (FI) experiments on four
benchmarks, i.e., Matmult, Qsort, Gaussian Filter,
Moving Average. We compare the FI results of three
different configurations i) PSRR ii) FSR iii) the unprotected
RISC-V. The FI campaign is achieved through a FI tool using a
cycle-accurate bit-accurate (CABA) simulator for PSRR, FSR
and the unprotected RISC-V processor versions. Prior to any
fault injection, we execute the benchmark under study, without
faults, in order to obtain a set of golden references: i) the
application output, ii) the system state (processor registers),
and iii) the number of cycles required for the execution of the
application. Then, the core simulator executes the benchmark
and injects faults to the registers, while the benchmark runs.
The cycle to inject the faults is chosen randomly between
the first cycle and the total number of cycles needed for the
fault-free execution. The fault injection location is selected
randomly following a uniform distribution. The injected fault
is a bit-flip. After the fault injection and upon benchmark
termination, the results are compared to the golden references,
and the impact of faults is categorized as follows:
• Execution Cycles Mismatch (ECM): the execution cycles are

different from those of the golden reference.
• Hang (H): the execution time of the application has ex-

ceeded a waiting threshold, and thus, it is assumed that it
has entered an infinite loop. For these experiments, we set
the threshold to eight times the golden number of cycles.

• Crash (C): the execution of the application has terminated
unexpectedly and an exception has been thrown (out of
bound memory access, misaligned PC, hardware trap, etc.)

• Application Output Mismatch (AOM): the application output
is different from the golden reference.

• Internal State Mismatch (ISM): The system state (processor
registers) are different from the golden reference.

• Functionally Masked (FM): The application has finished
execution, with no difference w.r.t. the golden application.
In order to evaluate the proposed approaches, we follow

the statistical fault injection approach [17] for each bench-

mark and processor version. The number of injected faults
needed to obtain statistically meaningful results is given by
fault injections = N

1+e2× N−1

t2×0.25

, where N is the number of

possible injection points (pipeline register bits × clock cycles),
e is the desired error margin (1%), and t depends on the
desired confidence level (t=3.1 for 99.8% confidence level).
This leads to 25,000 injections per benchmark and processor
version, giving a total of 300,000 injections.

B. Results

The Table IV shows the vulnerability metrics obtained by
the FI campaign for the unprotected version and the two
proposed DCLS mechanisms. The injected fault impacts sig-
nificantly the unprotected processor, compared to the protected
versions. When the fault is not masked, usually the application
ends, but produces incorrect result (represented by the AOM).
On the contrary, the DCLS RISC-V versions with the PSRR
and FSM mechanisms are able to detect and correct the error.

TABLE IV
VULNERABILITY METRICS

Benchmark AOM ECM ISM Crash Hang
Unprotected version

Matmult 2,977 1,466 1,093 566 609
Qsort 930 1,687 1,451 737 629

Gaussian Filter 2,359 1,209 768 423 497
Moving Average 2,867 1,454 908 507 517

PSRR mechanism
Matmult 0 18,165 0 0 0
Qsort 0 18,412 0 0 0

Gaussian Filter 0 16,819 0 0 0
Moving Average 0 17,568 0 0 0

FSR mechanism
Matmult 0 22,141 0 0 0
Qsort 0 20,015 0 0 0

Gaussian Filter 0 18,034 0 0 0
Moving Average 0 18,948 0 0 0

A fault may significantly impact the timing behavior of the
application, as highlighted by the number of ECM observed
during the FI campaign in Table IV. For the unprotected
version, the timing impact of the fault may be unpredictable,
jeopardizing the timing bounds computed considering a
fault-free system. Table VI depicted the maximum number
of clock cycles when an ECM occured. For instance, for
the Gaussian Filter the maximum observed cycles
is 350, 636, whereas the fault-free execution is 59, 084
cycles, which is almost 6× more. On the contrary, the
proposed DCLS approaches bound the timing impact of the
fault by detecting and correcting with a bounded overhead.
From the experimental result, we have verified that the
time to perform error detection and correction with FSR
mechanism is constantly two execution cycles, whereas
with the PSRR mechanism is bounded by 5 clock cycles.
Note that, the ECM value of Table IV highlights how many
times the proposed mechanisms have performed a rollback.
The ECM difference between PSRR and FSR is the result
of the selective protection of the PSRR, which performs

5

rollback from a mismatch, only if the value is going to be used.

TABLE V
ERROR DETECTION AND CORRECTION OVERHEAD

Approach Max cycles observed Additional bits
PSRR 5 160
FSR 2 716

Table V also shows the area overhead per protection mech-
anism. With the PSRR mechanism, we have achieved similar
results compared to the FSR one, with lower area overhead.

TABLE VI
ECM VALUE FOR UNPROTECTED VERSION

Benchmark Max cycles observed Baseline cycle
Matmult 82,859 12,887
Qsort 33,125 4,429

Gaussian Filter 350,636 59,084
Moving Average 38,962 10,314

TABLE VII
PER PLACE IMPLICATION, NO PROTECTION

Pipeline register (%)
Benchmark Error Type FtoDc IDtoEX ExtoMem MemtoWb

Matmult
AOM 18.61 34.53 14.58 10.14
ISM 14.64 21.41 7.50 4.85
ECM 23.47 36.43 13.23 8.66

HANG 10.67 14.45 2.46 0.49
CRASH 13.07 30.74 8.30 4.06

Qsort
AOM 20.22 33.98 13.87 6.13
ISM 13.71 28.46 14.40 8.06
ECM 21.64 37.05 16.54 7.94

HANG 9.38 23.37 8.90 6.20
CRASH 12.21 38.94 15.06 5.70

Gaussian Filter
AOM 19.92 39.38 12.80 4.92
ISM 15.10 17.32 4.43 4.95
ECM 24.32 41.85 11.00 4.05

HANG 10.46 13.08 1.41 0.4
CRASH 14.89 31.91 15.37 1.65

Moving Average
AOM 19.99 38.47 12.98 8.06
ISM 15.20 18.94 7.38 6.06
ECM 23.04 37.48 14.31 9.35

HANG 10.25 8.90 1.55 1.16
CRASH 12.62 38.86 11.64 2.76

Furthermore, the participation of each faulty pipeline regis-
ter in each observed vulnerability class is shown in Table VII.
For instance, for the Gaussian Filter, 1, 209 injections
have produced ECM , and 41.85% of the 1, 209 (which
corresponds to 506 injections) the injection occurred in the
IDtoEX pipeline register. We notice also the the IDtoEX
has a higher implication to the different error types.

V. CONCLUSION

This work focuses on critical systems that require high
reliability and real-time execution, such as aerospace and
defense systems, automotive, medical devices. Two fine-
grained lockstep designs have been proposed for a RISC-
V architecture using high-level specification language. Note
that, the use of RISC-V architecture provides an open-source
and customizable solution, which, along with HLS, allow the

designers to quickly obtain reliable processors that can also be
adapted to suit different reliability and timing needs, even for
fine-grained intrusive approaches. The proposed mechanisms
are based on shadow registers and rollback and ensure the
correct execution of instructions by comparing the results of
two identical processors at the end of each clock cycle. The
mechanisms have been implemented and evaluated using a FI
tool based on a CABA simulator and the results showed that
they are able to quickly detect and correct errors with bounded
performance overhead, whereas the consistency check is be-
ing done in parallel to the pipeline normal execution flow.
Especially the PSRR approach has showed to be effective
for dependable system while providing significant low area
overhead compared to a TMR version.

Our future work directions include the implementation of
the proposed DCLS designs on a FPGA and perform FI
and extend the proposed approaches for Multiple Bit Upset
(MBU).

ACKNOWLEDGMENT

This work has been funded by the French National Research
Agency (ANR) through the FASY research project (ANR-21-
CE25-0008).

REFERENCES

[1] S. Skalistis et al., “Timely fine-grained interference-sensitive run-time
adaptation of time-triggered schedules,” in IEEE RTSS, 2019.

[2] A. Dixit et al., “The impact of new technology on soft error rates,” in
Int. Reliability Physics Symp., Apr. 2011, pp. 5B.4.1–5B.4.7.

[3] S. Rehman et al., Reliable Software for Unreliable Hardware: A Cross
Layer Perspective. Springer Publishing, 2016.

[4] F. Catthoor et al., “Will chips of the future learn how to feel pain and
cure themselves?” IEEE Design & Test, vol. 34, no. 5, pp. 80–87, 2017.

[5] S. Hamdioui et al., “Reliability challenges of real-time systems in
forthcoming technology nodes,” in IEEE/ACM DATE, March 2013, pp.
129–134.

[6] M. Cui et al., “Fault-tolerant mapping of real-time parallel applications
under multiple dvfs schemes,” in IEEE RTAS, 2021, pp. 387–399.

[7] C. Hernandez et al., “Timely error detection for effective recovery in
light-lockstep automotive systems,” IEEE TCAD, vol. 34, no. 11, pp.
1718–1729, 2015.

[8] J. Abella et al., “Security, reliability and test aspects of the risc-v
ecosystem,” in IEEE ETS, 2021, pp. 1–10.

[9] S. Rokicki et al., “What you simulate is what you synthesize: Designing
a processor core from c++ specifications,” in IEEE/ACM ICCAD, 2019,
pp. 1–8.

[10] Ã. B. de Oliveira et al., “Lockstep dual-core arm a9: Implementation
and resilience analysis under heavy ion-induced soft errors,” IEEE TNS,
vol. 65, no. 8, pp. 1783–1790, 2018.

[11] J. Yao et al., “Dara: A low-cost reliable architecture based on unhardened
devices and its case study of radiation stress test,” IEEE TNS, vol. 59,
no. 6, pp. 2852–2858, 2012.

[12] M. T. Sim et al., “A dual lockstep processor system-on-a-chip for fast
error recovery in safety-critical applications,” in IEEE IECON, 2020,
pp. 2231–2238.

[13] J. Li et al., “Duckcore: A fault-tolerant processor core architecture based
on the risc-v isa,” Electronics, vol. 11, no. 1, 2022.

[14] L. Blasi et al., “A RISC-V fault-tolerant microcontroller core architec-
ture based on a hardware thread full/partial protection and a thread-
controlled watch-dog timer,” in APPLEPIES, 2019, pp. 505–511.

[15] A. E. Wilson et al., “Neutron radiation testing of fault tolerant risc-v soft
processor on xilinx sram-based fpgas,” in IEEE SCC, 2019, pp. 25–32.

[16] D. A. Santos et al., “A low-cost fault-tolerant risc-v processor for space
systems,” in DTIS, 2020, pp. 1–5.

[17] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in IEEE/ACM DATE, 2009, pp. 502–506.

6

