
HAL Id: hal-04397636
https://hal.science/hal-04397636

Preprint submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The rich phase diagram of the prototypical iridate
Ba2IrO4: Effective low-energy models and

metal-insulator transition
Francesco Cassol, Léo Gaspard, Michele Casula, Cyril Martins, Benjamin Lenz

To cite this version:
Francesco Cassol, Léo Gaspard, Michele Casula, Cyril Martins, Benjamin Lenz. The rich phase dia-
gram of the prototypical iridate Ba2IrO4: Effective low-energy models and metal-insulator transition.
2023. �hal-04397636�

https://hal.science/hal-04397636
https://hal.archives-ouvertes.fr


The rich phase diagram of the prototypical iridate Ba2IrO4:
Effective low-energy models and metal-insulator transition
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Abstract: In the quest of new exotic phases of matter due to the interplay of various interactions, iridates
hosting a spin-orbit entangled jeff = 1/2 ground state have been in the spotlight in recent years. Also in view
of parallels with the low-energy physics of high-temperature superconducting cuprates, the validity of a single-
or few-band picture in terms of the jeff states is key. However, in particular for its structurally simple member
Ba2IrO4, such a systematic construction and subsequent analysis of minimal low-energy models are still missing.
Here we show by means of a combination of different ab initio techniques with dynamical mean-field theory that
a three-band model in terms of Ir-jeff states fully retains the low-energy physics of the system as compared to
a full Ir-5d model. Providing a detailed study of the three-band model in terms of spin-orbit coupling, Hund’s
coupling and Coulomb interactions, we map out a rich phase diagram and identify a region of effective one-band
metal-insulator transition relevant to Ba2IrO4. Compared to available angle-resolved photoemission spectra, we
find good agreement of salient aspects of the calculated spectral function and identify features which require the
inclusion of non-local fluctuations. In a broader context, we envisage the three- and five-band models developed
in this study to be relevant for the study of doped Ba2IrO4 and to clarify further the similarities and differences
with cuprates.

I. INTRODUCTION

Over the last decade, iridates have attracted a lot of
interest, mainly due to their spin-orbit entangled jeff

ground state [1, 2]. It emerges as a consequence of the
interplay of strong spin-orbit coupling (SOC), electronic
Coulomb interactions and crystal field splitting and gives
rise to exotic phases of matter such as quantum spin liq-
uids, topological semimetals and spin-orbit entangled in-
sulators [3–13].
A particular focus has been set on Sr2IrO4, whose half-
filled jeff = 1/2 band suggests a description in terms
of a twisted one-band Hubbard model [10] with paral-
lels to isostructural high-temperature superconducting
cuprates. However, despite similarities in their magnetic
[14] and spectroscopic [15–17] properties, no supercon-
ductivity has been reported to date for doped Sr2IrO4.
Possible explanations for this absence are twofold. First,
rotations of the IrO6 octahedra lead to a spin-canting of
the Ir-momenta [18], which results in a Dzyaloshinsky-
Moriya term in the effective pseudospin model [8, 19],
absent in spin models of cuprates [20]. Secondly, the va-
lidity of a simple single-band picture has been cast into
doubt, questioning either the local [16, 21] or the single-
band nature [22] of the jeff = 1/2 state upon doping.
Instead, Ba2IrO4, a closely related material with the
same nominal 5d5 configuration on the iridium site, crys-
tallizes in a K2NiF4-type crystal structure (space group
I4/mmm)[14] like La2CuO4, see Figure 1. The combi-
nation of a tetragonal ligand-field splitting and strong
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spin-orbit coupling leads to the much-invoked jeff picture
inherited from Sr2IrO4. In this picture, the 5d5 config-
uration realised in Ba2IrO4 amounts to a single electron
in the jeff = 1/2 state, giving rise to a Mott insulating
state when accounting for the strong electron-electron
interactions within this half-filled band. The absence of
rotations of the IrO6 octahedra leads to an in-plane an-
tiferromagnet below a Néel temperature of TN ≈ 240
K [14]. This magnetic order is well described by a pseu-
dospin model dominated by Heisenberg terms [23, 24] and
thereby even closer to the situation realised in cuprates.
Both the magnetically ordered and the paramagnetic
phases of Ba2IrO4 are insulating [14, 25–27], the latter
up to at least 300 K [25, 26]. Angle-resolved photoemis-
sion studies have shed light on the band structure of both
phases [26, 27], but differed in their findings concerning
changes in spectral features at the transition tempera-
ture. Given the difference in the type of samples used -
thin films [27] and high-pressure synthesized bulk sam-
ples [26] - spectral signatures of antiferromagnetic order
in Ba2IrO4 still need to be firmly established. First theo-
retical studies including extensions of density functional
theory (DFT+U) [26, 27] and its combination with dy-
namical mean-field theory (DFT+DMFT) [28, 29] found
good qualitative agreement with the most salient aspects
of ARPES spectra, but focused mainly on its antiferro-
magnetic phase. These studies also suggested a half-filled
jeff = 1/2 ground state for Ba2IrO4, without rigorously
justifying the range of validity of this picture.
In order to assess the supposed parallels to the low-energy
physics realized in cuprates, the derivation of such min-
imal effective models for Ba2IrO4 is crucial. Whereas
this question has been addressed in case of the cuprates
mainly with respect to the role of oxygen atoms [30–32],
it needs to be asked here first of all with respect to the
impact of Ir-eg and jeff = 3/2 bands.
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FIG. 1. K2NiF4-type crystal structure of Ba2IrO4. The
IrO2 planes are responsible for its quasi-2D low-energy
physics and in contrast to Sr2IrO4, the elongated IrO6 oc-
tahedra are not rotated around the c-axis.

In this paper, we hence first study the electronic struc-
ture of Ba2IrO4 in detail and derive different ab initio
models to describe its low-energy properties. Following a
top-down approach, we motivate the use of a three-band
jeff model by comparing its properties to the one of a
complete five-band description in terms of total angular
momentum J states. Then focusing on the former and
restricting ourselves to paramagnetic phases, we investi-
gate the metal-insulator transition as a function of inter-
action strength, spin-orbit coupling and temperature to
establish a region of validity for a further reduction to
a single-band jeff = 1/2 model. Using DMFT, we map
out a phase diagram of our model to study the proxim-
ity of Ba2IrO4 to topological and Mott transitions. By
comparing the resulting spectral functions to available
angle-resolved photoemission spectroscopy data [26, 27]
we can finally identify signatures of short-range spatial
correlations that require a scheme going beyond a local
self-energy.

The remainder of the paper is organised as follows. In
section II we construct two effective low-energy models of
Ba2IrO4 from first principles, which we study by means
of DMFT in section III. The interplay of spin-orbit cou-
pling and Coulomb interaction and their impact on the
Mott transition is analyzed in section IV before compar-
ing ARPES data from literature to calculations done for
a parametrization of our model relevant to Ba2IrO4 in
section V. Finally, section VI summarizes the main con-
clusions of the paper and discusses the parallels to the
low-energy physics in cuprate.

II. MODEL CONSTRUCTION FROM FIRST
PRINCIPLES

In this Section we derive from first principles two low-
energy models for Ba2IrO4: a highly accurate five-band

Ir-5d model and an effective three-band Ir-t2g one, which
will then be solved by means of DMFT. The models are
defined by the following generic Hamiltonian:

Ĥ = Ĥ0 + ĤSOC + Ĥint, (1)

where the one-body terms Ĥ0 is defined by:

Ĥ0 =
∑
σ

∑
iR,jR′

tiR,jR′ ĉ
†
σiR ĉσjR′ , (2)

The indices R,R′ run over the Ir sites and σ denotes the
electron spin. The labels i, j refer to the five 5d orbitals
on each site or only to the three t2g states, depending

on the considered model. ĉ
(†)
σjR′ are electron (creation)

annihilation operators and tiR,jR′ are the tight-binding

(TB) parameters. Local on-site energies are included in
the kinetic term (Equation 2) for R = R′.

The SOC term ĤSOC is purely local and defined using
an isotropic spin-orbit coupling constant λ between the
spin-orbitals (i, σ) and (j, σ′) :

ĤSOC = λ
∑
σσ′

∑
ijR

〈iσ|L̂ · Ŝ|jσ′〉 ĉ†
σiR

ĉσ′jR. (3)

The Coulomb interaction Ĥint is also local and defined
in the extended Hubbard-Kanamori form [33, 34]:

Ĥint =
1

2

∑
σ

∑
ij

Uij n̂iσn̂jσ̄ +
1

2

∑
σ

∑
i 6=j

(Uij − Jij)n̂iσn̂jσ

− 1

2

∑
σ

∑
i6=j

Jij

[
ĉ†iσ ĉiσ̄ ĉ

†
jσ̄ ĉjσ − ĉ

†
iσ ĉ
†
iσ̄ ĉjσ ĉjσ̄

]
,

(4)

where, for the sake of readability, we omitted the sum
over R. The first two terms are the density-density
terms, representing the Coulomb repulsion between elec-
trons with antiparallel and same spin respectively. The
last one includes the spin-flip and pair hopping terms.

All parameters have been calculated from first prin-
ciples. In particular, starting from a standard DFT
reference calculation, we construct maximally localized
Wannier functions (MLWFs) [35] and we estimate the
spin-orbit coupling constant λ through a fitting proce-
dure [36]. From our localized basis set, we also evaluate
the resulting Coulomb parameters via constrained ran-
dom phase approximation (cRPA) [37]. Computational
details can be found in Appendix A.

A. Density functional theory band structure

The DFT calculations, using the PBE functional [38],
are performed starting from the experimental crystal
structure of Ba2IrO4 in the primitive cell [39]. The
atomic positions within the cell are then relaxed up to a
convergence factor of 10−3 a.u. on the forces, which leads
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FIG. 2. Kohn-Sham band structure of Ba2IrO4. DFT bands
calculated without (a) and with (b) spin-orbit coupling using
the PBE functional. The high-symmetry k-points chosen are
Z = (0, 0, π/c), Γ = (0, 0, 0), X = (π/a, 0, 0), and M =
(π/a, π/a, 0) in the Brillouin zone of the conventional unit-
cell. Colors represent the principal character of the bands
with respect to the Ir 5d orbitals.

to a small reduction of the Ir-O bond length along the
z direction (apical oxygen), enhancing the crystal field
anisotropy, see Appendix B.

The Kohn-Sham band structure is shown in Figure 2.
In order to facilitate the comparison to photoemission
spectra documented in literature, we refer here to the
high-symmetry points in the conventional cell, i.e. X=
(π/a, 0, 0), M=(π/a, π/a, 0) and Z=(0, 0, π/c). In the
non-relativistic band structure shown in panel (a), the
full d manifold is clearly separated into eg and t2g mani-
folds. Even if the eg bands are nearly empty, the dx2−y2
band crosses the Fermi level. A crystal-field anisotropy is
clearly evident in the band structure, with the dxy band
overall lower in energy and showing a wider dispersion.
Due to the layered structure, the Ir-5d bands are nearly
dispersionless along the kz direction.

Figure 2 (b) reports the electronic structure including
relativistic effects. The SOC splits the t2g states into two
lower jeff = 3/2 bands and a jeff = 1/2 band. The effect
of SOC on the eg manifold is rather small, but gives rise
to the slightly more entangled states ẽg. Still, four bands

cross the Fermi level, including the d̃x2−y2 , but, in con-
trast to DFT without SOC, the jeff = 1/2 band is nearly
half-filled (n1/2 = 1.23) and the jeff = 3/2 bands nearly
completely filled (n3/2,1/2 = 1.83 ;n3/2,3/2 = 1.89). Fo-
cusing only on the occupied t2g manifold, previous works
[26–29] then considered an effective three-band model.
However, the choice of such a low-energy model for
Ba2IrO4 requires rigorously to confirm the weak impact
of the ẽg manifold before integrating these degrees of free-
dom out. In the following, we will then define a full
five-band model and an Ir-t2g model and compare their
properties at every step of the calculation.

B. Parametrization of the models

We now detail the parametrization of the two models
built to describe the low-energy part of the electronic
band structure of Ba2IrO4 using MLWFs. We stress
that the Wannierization and subsequent cRPA calcula-
tions are different for the two models. This is in par-
ticular visible in the spread of the dxy Wannier function,
which is smaller in the five-band model than in the three-
band model (4.21 Å2 vs. 4.41 Å2), whereas the spread of
the other two t2g Wannier functions remains very similar

(4.18 Å2 vs. 4.19 Å2). This difference is explained by the
presence of the dx2−y2 Wannier function, which allows to
disentangle its contribution to the dxy Wannier function
and causes a smaller spatial extent of the latter.

Despite the different Wannierizations, the TB models
for both cases are very similar. In particular, the TB
parameters within the t2g manifold differ at most by
10−2 eV since the lattice symmetry leads to a nearly
absent t2g − eg hybridization without SOC. The hopping
intensities decrease quickly as the distance increases.
The main hopping intensities are the nearest and
next-nearest neighbor interactions.

For the five-band model, the local spin-resolved Hamil-
tonian H loc

d splits into a block-diagonal form consist-
ing of two 5×5 blocks and can be parametrized in
terms of only four parameters. In their respective ba-
sis {dxz±, dyz±, dxy∓, dz2∓, dx2−y2∓}, where we denoted
up (down) spins with + (−), the blocks read as:

H loc
d =



δ ∓λ2 i
λ
2 i ±

√
3λ
2 ∓λ2

±λ2 i δ ∓λ2 −
√

3λ
2 i −λ2 i

−λ2 i ∓λ2 0 0 ∓λi

±
√

3λ
2

√
3λ
2 i 0 ∆ + δ′ 0

∓λ2
λ
2 i ±λi 0 ∆


(5)

The three terms ∆, δ and δ′ are the so-called ligand field
terms. ∆ accounts for the t2g − eg splitting, δ (δ′) en-
codes the splitting of the states within the t2g (eg) sub-
manifold, see Figure 3. In general, δ and δ′ define an ef-
fective tetragonal field. The cubic (cub) case is recovered
for δ = δ′ = 0 eV. From our set of Wannier functions, we
obtain ligand field terms ∆ = 3.14 eV, δ = 0.24 eV, and
δ′ = 0.2 eV for the five-band model.

In the three-band model, the local Hamiltonian in
Equation 5 is restricted to the topmost 3× 3 block H loc

t2g .

Thus, ∆ and δ′ are not present in the local Hamiltonian,
and the computed value of δ = 0.25 eV is slightly en-
hanced compared the full 5d one. We note that the sign
of the ligand field component δ would correspond to the
crystal field of a compressed octahedron, in contrast to
the elongated IrO6 octahedron found in Ba2IrO4. This
difference between crystal field and ligand field is due to
the different environments of the apical and the in-plane
oxygen atoms [40].
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FIG. 3. Energy level diagram for Ba2IrO4. Ligand-field split-
ting and spin-orbit coupling lead to the formation of spin-orbit
entangled jeff and ẽg states. For ∆(cub) � λSOC , the SOC

can be applied to the t2g manifold only, leading to the j
(cub)
eff

states described in the text.

For the SOC constant, we find λ = 0.31 eV in both
models. Thus, λ is an order of magnitude smaller than
the crystal field splitting ∆. As a result, comparing the
full 5d model and the Ir-t2g one, we note that: (i) The
three eigenstates of jeff character contain only small ad-
mixtures of the dz2 and dx2−y2 orbitals. (ii) The ẽg states
are nearly cubic i.e. the effect of δ′ is very small. This jus-
tifies for Ba2IrO4 the so-called T-P approximation [41] or
jeff-picture, commonly used for Ir-based oxides [42, 43].
In the T-P approximation, initially introduced for cu-
bic crystal fields when λ � ∆, the t2g and eg blocks
are treated separately and the SOC is applied to the t2g
manifold only, giving rise to jcub

eff eigenstates by diagonal-
izing H loc

t2g . Given the d5 configuration in Ba2IrO4, this
scheme thereby motivates on a model level the use of a
three-band description.

Within the T-P approximation, the consequences of
the tetragonal crystal field on the eigenspectrum are also
shown in Figure 3. The main difference with respect to
the cubic case is that the jeff = 3/2 states are no longer
degenerate leading to three doubly degenerate jeff states.
In addition, the presence of finite δ implies a certain de-
gree of deviation in the eigenstates with respect to the
ones relative to a cubic field. For a general tetragonal
field, we can express the jeff states as:∣∣∣∣12 ,±1

2

〉
=

sin θ√
2

(|dyz∓〉 ± i |dxz∓〉)∓ cos θ |xy±〉∣∣∣∣32 ,±1

2

〉
=

cos θ√
2

(± |dyz∓〉+ i |dxz∓〉) + sin θ |xy±〉∣∣∣∣32 , 3

2

〉
=

1√
2

(∓ |dyz±〉 − i |dxz±〉) , (6)

where we still denote (up) down spins with (+) − and the
angle θ is determined from δ and λ . In particular, the

FIG. 4. k-resolved Wannier decomposition of the jeff states.
For the five-band model (full lines) and the three-band model
(dashed lines), the jeff states are decomposed in terms of the
Wannier orbitals of the Ir atoms.

cubic jcub
eff states are obtained for cos θ = 1/

√
3, giving

equal contributions of all three t2g orbitals to the jeff =
1/2 state. Instead, in Ba2IrO4 the finite value of δ leads

to cos θ ≈ 0.7/
√

3.

The departure from the cubic value of cos θ induces
a prominent dxy character of the |3/2,±1/2〉 state as
well as the uneven contribution of the t2g orbitals to
|1/2,±1/2〉. This can also be seen in Figure 4 (a-c),
which displays the k-resolved composition of the jeff

states in terms of Wannier orbitals of the Ir atoms for
the five-band Ir-5d model (solid lines) and the effective
three-band model (dashed lines). The two models nearly
perfectly agree within the xy plane. Along Γ-X-M
(Γ-Y-M) the main contribution to jeff = 1/2 is given by
the dxz (dyz) orbital. Due to their degeneracy, dxz and
dyz equally contribute along the Γ−M direction. Except
for the vicinity of M , the weight of the dxy orbital is
generally smaller than the one carried by the other two
orbitals. Similarly, the |3/2,±3/2〉 band is dominated by
dxz and dyz contributions. This non-trivial composition
of the pseudospin manifold has already been been
observed in iridates and similar materials [16, 44] and
is related to the crystal-field anisotropy. We finally
note that the eg states carry very small weight on the
jeff pseudospin states, except for the non-negligible
contribution along Z-Γ. There, we observe an increasing
contribution of the dx2−y2 orbital towards Z whereas
the one of dxz/dyz diminishes. Within the three-band
model, the absence of hybridization with the eg states
leads to a constant contribution of dxz/dyz along the
Z − Γ path.
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U (eV) dxy dyz dxz
dxy 2.49 1.81 1.81
dyz 1.81 2.39 1.86
dxz 1.81 1.86 2.39

J (eV) dxy dyz dxz
dxy 0.00 0.22 0.22
dyz 0.22 0.00 0.22
dz 0.22 0.22 0.00

TABLE I. Coulomb and exchange parameters obtained for
the three-band model of Ba2IrO4.

U (eV) dxy dyz dxz dx2−y2 dz2
dxy 2.41 1.73 1.73 2.16 1.73
dyz 1.73 2.31 1.78 1.83 2.01
dxz 1.73 1.78 2.31 1.83 2.01

dx2−y2 2.16 1.83 1.83 2.81 1.86
dz2 1.73 2.01 2.01 1.86 2.64

J (eV) dxy dyz dxz dx2−y2 dz2
dxy 0.00 0.22 0.22 0.22 0.27
dyz 0.22 0.00 0.22 0.26 0.21
dxz 0.22 0.22 0.00 0.26 0.21

dx2−y2 0.22 0.26 0.26 0.00 0.36
dz2 0.27 0.21 0.21 0.36 0.00

TABLE II. Coulomb and exchange parameters obtained for
the five-band model of Ba2IrO4

We finally turn to the local Coulomb interactions eval-
uated using cRPA, whose values are reported in Table I
and Table II. Note that in contrast to a recent study on
Ca5Ir3O12 [45], we here calculate the cRPA interactions
for the Wannier functions without SOC.

Comparing the Coulomb parameters obtained within
the five-band model and the three-band model, we ob-
serve that the t2g subspace of the five-band model has
∼ 0.08 eV smaller values. The Hund’s coupling J within
the t2g manifold is identical in the two models. On the
other hand, the t2g − eg part of the Coulomb matrix can
be substantial. In particular the dxy − dx2−y2 and the
dxz/yz − dz2 interactions are greater than 2 eV. We note
that the Coulomb matrices reflect that different Wannier
functions are used in the two models: If the Wannier
functions were the same, the larger screening via the eg
bands would lead to much smaller values for the inter-
actions within the three-band model, which is not the
case.

We finally stress that in both cases the ab initio
calculated Coulomb tensor deviates from a spherical
Hubbard-Kanamori representation [41], especially due to
the anisotropy of the density-density terms, which must
be seen as another footprint of the non-trivial crystal field
for this compound.

III. FIVE-BAND VS. THREE-BAND MODEL: A
DMFT-BASED COMPARISON

In this section, we present results of paramagnetic
DMFT calculations for the five-band model of Ba2IrO4

and compare them to results obtained for the three-

band model at the inverse temperature of β = 80 eV−1

(T = 145 K). For the calculations, we use the continuous-
time quantum Monte Carlo solver (CT-QMC) in the
hybridization expansion matrix formulation (CT-HYB)
[46–48] in order to keep all the off diagonal terms in the
Hamiltonian resulting from inter-site mixing. Other com-
putational details of the calculations can be found in Ap-
pendix A.

Figure 5 (a)-(d) compares the density of states of the
two models, expressed in terms of the jeff components,
which turn out to be in very good agreement in the elec-
tronic part of the spectrum. The three peak structure
of the jeff = 1/2 band is recovered in both models with
the three-band model jeff = 1/2 spectral function be-
ing closer to the Mott transition: lower and upper Hub-
bard band are better defined and the quasiparticle peak
is narrower than for the five-band model. This is cor-
roborated by the self energy shown in Figure 6. The
imaginary part of the jeff = 1/2 self-energy shows al-
ready a divergent behavior for iωn → 0 and only has
an upturn for the lowest six Matsubara frequencies ωn.
The quasiparticle mass of the band, m∗/m = Z−1,
is larger for the three-band model than for the five-
band model and the corresponding quasiparticle residue

Z = [1− ∂ω<Σ(ω + i0+)|ω=0]
−1 ≈ [1−=Σ(iω0)/ω0]

−1

is Z = 0.14 (Z = 0.18) respectively.
The filled jeff = 3/2 bands also exhibit a remark-

able agreement below the Fermi level, see Figure 5 (b)
and (c). Above the Fermi level, the jeff = 3/2 states
of the five-band model exhibit some weight due to the
hybridization with the eg states, which is absent in the
three-band calculation. As for the jeff = 1/2 band, we
observe a stronger renormalization due to the self-energy,
see Figure 6, where the bandwidth renormalization is 0.69
(0.71) for the mjeff = 3

2 component and 0.72 (0.76) for

the mjeff = − 1
2 component of the three-band (five-band)

model.
The k-resolved spectral functions plotted in Figure 5

(d) and (e) show remarkably good agreement. All fea-
tures in the jeff manifold are comparable, due to very
similar Σ(iωn) and nearly identical TB models in the
two cases. In particular, we observe that the jeff = 3/2
states are completely filled, consistently with panels (b,c)
and a strongly renormalized flat jeff = 1/2 band appears
at the Fermi level. Compared to the initial DFT simula-
tions, the ẽg bands are moved up above the Fermi level
and do not cross it anymore. This amounts nearly exclu-
sively to a Hartree shift, additional effects of correlations
and spin-orbit coupling on these bands are minimal, as
for instance shown by the very small broadening of the
bands. This result, although expected, has to our best
knowledge not been achieved before and is in agreement
with available experiments [26, 49].

To further quantify the agreement of the two models,
we report in Table III the band fillings obtained from
DMFT. The fillings of the jeff bands are nearly the same
for both models. The two jeff = 3/2 bands are slightly
less filled in presence of ẽg orbitals. In the d basis, this
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FIG. 5. Comparison of the results of the three- and five-band DMFT calculations. Contributions of the
∣∣ 1

2
;− 1

2

〉
(a),

∣∣ 3
2
;− 1

2

〉
(b) and

∣∣ 1
2
;− 3

2

〉
(c) states to the total density of states A(ω), which is shown in (d), for the five-band (solid line) and three-band

(dashed line) models. The k-resolved spectral function A(k, ω) for the three-band (e) and five-band (f) models is plotted along
the high-symmetry path (0, 0, π

c
)− (0, 0, 0)− (π

a
, 0, 0)− (π
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FIG. 6. Imaginary part of the self-energy in Matsubara space.
Comparison of the jeff components of the five-band (solid
lines) and three-band (dashed lines) models shows that the
three-band model is closer to the phase transition.

translates to a slightly less filled dxy orbital which trans-
fers some of its electrons to the eg orbitals. This charge
transfer is made possible due to the small coupling be-
tween the t2g and eg subspaces when adding SOC. We
note, however, that these fillings disagree with a previ-
ous RIXS and XAS study [49] where the authors mea-

jeff 3 band 5 band d 3 band 5 band

|3/2, 1/2〉 0.987 0.985 |dxz〉 0.814 0.803
|3/2, 3/2〉 0.990 0.989 |dyz〉 0.814 0.803
|1/2, 1/2〉 0.519 0.517 |dxy〉 0.868 0.856∣∣∣d̃x2−y2〉 / 0.003

∣∣dx2−y2〉 / 0.020∣∣∣d̃z2〉 / 0.006 |dz2〉 / 0.017

TABLE III. Band fillings within DMFT. For both models,
the fillings are reported with respect to the jeff basis (left)
and the orbital basis (right) respectively. The calculations
used cRPA values for the Coulomb tensor and β = 80 eV−1.

sured a larger hole filling in the dxy than in the dxz, dyz
states. Our results are though in qualitative agreement
with previous theoretical simulations [50, 51].

To summarize, both models agree to a large extent
in the jeff sector. Given the non-negligible interactions
in the t2g − eg sector of the Coulomb matrix, this
is a non trivial result. The rationale behind it is
that the eg bands are essentially empty within our
DMFT simulations, thus they do not have a notable
impact on the band structure of the jeff manifold. Our
comparison thereby validates the applicability of the
three-band model for the low-energy description of
Ba2IrO4. From a computational point of view this is
an important result since the three-band model is at
least one order of magnitude faster to solve numerically
with DMFT. We will focus on it for the rest of the paper.

The metallic solutions using the ab initio computed
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parameters are in contrast to experiment and might
at first glance seem surprising. However, it indicates
primarily an underestimation of the Coulomb tensor.
This is a well-known problem within cRPA, which tends
to over-screen the Coulomb interaction [52]. A partial
solution to this problem was found by treating the
dynamic part of U(ω), accessible by cRPA, whose static
limit gives the cRPA Coulomb tensor. It has been shown
that the static effective model obtained by taking into
account the frequency dependent U(ω) via a Lang-Firsov
transformation is more correlated than the one including
only the static limit of U [53]. The additional correlation
comes from an effective bandwidth reduction, provided
by the ZLF renormalization factor and estimated by the
Lang-Firsov approximation[54]. We computed the full
frequency dependence of the monopole term in cRPA
for the 3-band model, and we found that the resulting
bandwidth reduction factor is ZLF ≈ 0.84. This leads to
an absolute increase in UcRPA by a ∆U ≈ 0.4 − 0.5 eV.
As we show in the following, such an increase already
leads to an insulating solution within DMFT.

In the next Section, we are going to study the effect
of progressively increasing the interaction strength above
the cRPA values on the resulting phase diagram, and we
will evaluate it as a function of ∆U , λ, J and T to study
whether the effective model can be further reduced to a
single-band jeff = 1/2 model.

IV. SPIN-ORBIT COUPLING, HUND’S
EXCHANGE AND THE MOTT TRANSITION

In this Section, we study the ab initio three-band
model as a function of interaction strength U , spin-orbit
coupling λ, and Hund’s exchange J within DMFT. Com-
putational details are given in Appendix A. We will dis-
cuss the full phase diagram in order to carve out the
nature of the Mott transition in Ba2IrO4.

In order to calculate the phase diagram, we first in-
crease the density-density part of the Coulomb tensor by
an isotropic amount ∆U at a fixed temperature of T =
193.5 K (β = 60 eV−1). In terms of the traditional repre-
sentation through Slater integrals [55], this corresponds
to increasing the monopole term F0, leaving the higher-
order terms unchanged. In absolute values, the critical
transition line that marks the metal-insulator transition
(MIT) is expressed as Uc(λ) = UcRPA + ∆Uc(λ). To dis-
tinguish the metallic phase from the insulating one, we
analyze the density of states (DOS) at the Fermi level
and its evolution within the parameter space. The DOS
value A0(∆U, λ) as a function of ∆U and λ, by keeping
J equal to its cRPA value (Tab. I), determines the phase
diagram reported in Figure 7. We should note that it
is calculated for a temperature above the second-order
end point of the Mott transition. Therefore, for fixed λ
a crossover from a bad metal to a bad insulator is real-
ized as a function of U . The dashed line ∆Uc(λ) serves

FIG. 7. Metal-insulator transition in the three-band model
of Ba2IrO4. The U vs. λ phase diagram at T = 193.5 K with
a Hund’s coupling J = 0.22 eV is defined by the density of
states at the Fermi level, A0(∆U, λ). 1-band (3-band) metal
solutions are denoted by 1BM (3BM) and separated along
the transition line ∆Uc(λ) from the insulating solutions. We
denote insulators with one (two) of the bands split in lower
and upper Hubbard band by 1BI (2BI). We use a threshold
value of A0 ≡ 10−2 eV−1 to discriminate metallic from insu-
lating solutions. The dashed green line indicates a Lifshitz
transition in the metallic phase.

as a guide to the eye to identify a good insulator. In
particular, we chose a threshold value for A0, such that
∆Uc(λ) is defined by A0(∆Uc, λ) ≡ 10−2 eV−1. Further
details on the interpolation scheme used for plotting A0

are reported in Appendix C.

By inspection of the orbital-resolved spectral func-
tions, four distinct regions can be defined: a three-band
metal (3BM), a single-band metal (1BM), a two-band
insulator (2BI), and a single-band insulator (1BI). For
λ 6= 0 this characterization is done in the jeff basis. We
furthermore indicate in green a SOC-induced Lifshitz
transition [56], which transforms the system from 3BM
to 1BM and vice versa, i.e. between metals with a three-
sheet and a one-sheet Fermi surface, respectively. Most
interestingly, the overall phase diagram is qualitatively
similar to the one of a spin-orbit coupled, quarter-filled
two-band Hubbard model reported in Ref. 57.

The remainder of this section is divided in four Sub-
sections. First, we discuss the MIT line and the topologi-
cal Lifshitz transition (Secs. IV A and IV B). Afterwards,
Sec. IV C is dedicated to the impact of Hund’s coupling
on the MIT. Finally, fixing the SOC constant to its ab
initio value of λ = 0.31 eV, we will derive a U −T phase
diagram for Ba2IrO4 (Sec. IV D).
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FIG. 8. Characteristics of the metallic and insulating phases.
The diagonal density-matrix elements (filling) of the insulat-
ing state close to the transition line, i.e. along ∆Uc(λ), are
expressed in the jeff (a) and in the t2g (b) basis. The Fermi
surface of the model system at ∆U = 0.0 eV (i.e. U = UcRPA)
is shown for λ = 0.21 eV (c) and for λ = 0.31 eV (d).

A. The metal insulator transition

Analyzing the behavior of ∆Uc(λ) with respect to the
spin-orbit coupling strength, we can distinguish three
regions: weak, intermediate and strong SOC.

The weak SOC region is defined for λ . 0.1 eV. There,
small variations of the coupling constant massively de-
crease the value of ∆Uc. Moreover, the MIT is very
sharp. We gain further insights from looking at the diag-
onal elements of the density matrix of the insulating state
for U ∼ Uc, see Figure 8 (a) and (b). Excluding the com-
pletely filled bands, we obtain either one or two partially
filled bands that are split by the electron-electron interac-
tions into upper and lower Hubbard bands (UHB/LHB).
In other words, the 2BI phase is realized when we only
have one band completely filled, while the 1BI is found
when two bands are filled. Consistently with the indi-
cated dashed line in the phase diagram, we find a 2BI for
λ . 0.1 eV and strong interactions, U > Uc(λ).

The sharpness of the metal-insulator transition can
be explained as follows. Since the SOC is small, a
representation in terms of t2g orbitals should still be
a good description. The phase transition occurs when
the interaction strength is large enough to move one
band below the Fermi level via the relative Hartree

shift. Being the one with lower local energy, this turns
out to be the band of dominant dxy character. At the
non-interacting Kohn-Sham level, the difference in local
energies δ is compensated by larger inter-site hoppings
in the xy plane that yield nearly isotropic filling. In
DMFT, the band anisotropy determines different Hartree
shifts ∆xy < ∆xz = ∆yz, thus effectively enhancing
the difference in the local energies, until the band dxy
becomes completely filled. Once this occurs, the system
can be effectively described by a two-band model with
an average filling of 〈n〉 ≈ 3/4 in the t2g representation.
In that frame, the amount of correlation is already
sufficient to realize a Mott insulating state for the dxz
and the dyz bands.

In the opposite limit of large SOC, λ & 0.6 eV, we
observe a different situation. There, the critical line
Uc(λ) is flat, nearly independent of λ. We can reveal
the reason for this behavior by looking at the model in
the non-interacting limit. For λ & 0.6 eV the jeff = 1/2
band is half-filled, thereby being the only one crossing
the Fermi energy. Due to strong SOC, the jeff = 3/2
states are already completely filled by construction,
even without interaction. Still, we will refer to this
situation as an effective single-band problem, since there
is a non negligible mixing in the non-local part of the
TB Hamiltonian between the |3/2; 1/2〉 and |1/2; 1/2〉
states. Thus, we are in an effective single-band jeff = 1/2
problem at half-filling, whose Mott transition is entirely
driven by interactions. We finally note that the critical
value of λc to realize this effective single-band problem
is in quantitative agreement with previous studies for
similar model systems [58, 59]. Any further increase
in λ > λc does not change this situation qualitatively,
which is why the critical interaction strength Uc is
only mildly affected. Also this result turns out to
be qualitatively in line with previous studies on the
Bethe lattice in the strong SOC regime [59]. Since the
jeff = 3/2 bands are already below the Fermi level due
to strong SOC, the critical interaction strengths are
lower than in the case of weak SOC.

In the intermediate range, for 0.1 . λ . 0.6 eV, the
insulating state still involves a single half-filled band,
but a finite interaction strength is needed to push the
jeff = 3/2 band below the Fermi level via a Hartree
shift. The consequences of this are particularly evident
in the range 0.1 . λ . 0.2 where ∆Uc(λ) develops a
slope similar to the one in the weak SOC regime and,
on the metallic side, the transition goes directly from a
3BM to a 1BM by increasing ∆U .

Given this analysis we can draw some partial conclu-
sions. (i) As a consequence of the orbital polarization
induced by the ligand field δ, the transition is always
orbital selective. (ii) Due to the orbital polarization,
the transition occurs over the entire phase diagram
for values of U which are moderate, considering the
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electronic filling and the number of orbitals involved.
(iii) In the strong SOC regime, we have an effective
single-band problem, which justifies the construction of
jeff = 1/2 models. For intermediate SOC, however, such
an effective single-band model is only valid close to the
metal-insulator transition.

Finally, Figure 8 (b) also provides some insights with
respect to the natural basis to formulate the problem.
Most importantly, a single-orbital, selective transition in
the jeff basis is a pure Mott transition involving all states
from the t2g viewpoint. Moreover, upon increasing λ the
entanglement of the t2g orbitals increases and the elec-
tronic distribution is reshaped within the orbital mani-
fold, potentially leading to a perfectly isotropic jeff = 1/2
state in terms of the t2g orbitals in the limit λ→∞.

B. Spin-orbit induced Lifshitz transition

Besides the MIT, we investigate now the nature of
the metallic phase, distinguishing the two topologically
different regions 3BM and 1BM. The dotted green line in
Figure 7 marks this SOC-driven Lifshitz transition [56].
At ∆U = 0 eV the transition occurs at 0.2 < λ < 0.3
eV as shown in Figure 8 (c) and (d). For λ = 0.21 eV,
we have a clear jeff = 1/2 sheet dispersing around the Γ
point, but we can recognize as well poles coming from
the two jeff = 3/2 bands at M = (π/a, π/a, 0). Those
poles disappear for λ = 0.31 eV, consistently with the
electronic structure shown in Figure 5 (e). Interestingly,
for 0.09 ≤ λ ≤ 0.16 eV, the Lifshitz transition line
merges with the metal-insulator transition line. In that
region, the transition is the narrowest of the entire phase
diagram and we pass from a 3BM to a 1BI. By slightly
tuning λ and ∆U in this section of the phase diagram, all
phases of the system can be reached. Despite the value
of λ being in the typical order of magnitude observed
for heavy 4d compounds [44, 60], a real material with
these properties does not exist so far. Nevertheless, it
could show an intriguing and exotic variety of competing
phenomena as a function of λ, U and δ. However,
decreasing the interactions will increase the value of λ
necessary to induce the change of topology. Finally, at
λ = 0.6 eV the Lifshitz transition happens already in
the non-interacting limit U = 0 eV.

In this perspective, the three regions identified by the
dispersion of ∆Uc(λ) can be characterized in terms of a
more general argument: The large SOC regime is where
the single band problem is realized without any correla-
tion by SOC. The intermediate SOC region is where this
mapping onto the single band problem in correspondence
to the transition line occurs thanks to cooperation of
spin-orbit coupling and interactions. Ba2IrO4 and most
of the iridium compounds of the Ruddlesden-Popper
series are actually placed in this intermediate coupling
region [7, 26]. On the other hand, for the weak SOC

FIG. 9. Phase diagram for Hund’s coupling J = 0.0 eV in
(a) and for J = 0.43 eV in (b). The phase diagrams are
qualitatively similar to the one shown in Figure 7 at J =
0.22 eV.

regime, a single-band picture is not valid, not even close
to Uc. Instead, within the intermediate and strong SOC
region, a single-band paramagnetic Mott transition is
found, induced by spin-orbit coupling.

C. The Role of Hund’s coupling

Before investigating the impact of Hund’s coupling on
the picture derived so far, we note that despite J having
been formally introduced as a tensor on the correlated
manifold, the cRPA calculations yield the isotropic value
of 0.22 eV on the full t2g subset. Thereby, we can refer
to it as a scalar with no ambiguity.

We derived three U − λ phase diagrams depending on
the J value, the first being the one with respect to the
ab initio value (J = 0.22 eV) explained in detail in the
previous sections. In addition, we considered a vanish-
ing Hund’s coupling and finally, we doubled the ab initio
value. The resulting phase diagrams are shown in Fig-
ure 9. In analogy to Figure 7, each of them is composed
by the four regions 3BM, 1BM, 2BI, 1B1. Based on λ,
the three regimes identified for J = 0.22 eV still hold and
the dispersion of ∆Uc(λ) is qualitatively the same in all
cases.

Overall, increasing the Hund’s exchange term delays
both the MIT and the Lifshitz transition, and can be
interpreted as a footprint of its competition with both U
and λ. Considering J = 0.43 eV, our calculations reveal a
larger intermediate 1BM metallic state between the 3BM
and the 1BI for ∆U = 0.3 eV and λ = 0.16 eV. Thus, the
transition line directly separating 3BM from 1BI shortens
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FIG. 10. Temperature-dependence of the metal-insulator transition. (a) U-T phase diagram for Ba2IrO4 with λ = 0.31 eV and
J = 0.22 eV. (b) Selected cuts at fixed temperature T for A0(∆U, T ) showing the metal-insulator transition (crossover) at low
(high) temperature. Red crosses and black dots indicate the positions of the inflection point, ∆Um, and the iso-value line at
A0 ≡ 10−2 eV, ∆Uiso, respectively. The evolution of the spectral function A(ω) projected on the jeff = 1/2 state for different
temperatures at ∆U = 0.1 eV (c) and ∆U = 0.2 eV (d). The color schemes are the same as in (b).

for larger J . For λ = 0.31 eV, as in Ba2IrO4, the MIT
occurs at ∆U = 0.1 eV (0.3 eV) for J = 0.0 eV (0.43
eV) respectively. The sensitivity of the phase diagrams
with respect to J shows that a multi-orbital treatment is
required to describe the physics properly. In particular
in the intermediate SOC regime, the coupling of different
orbitals through the exchange term can be substantial.
This fact and the presence of non-negligible mixing terms
between the different pseudospin states renders Ba2IrO4

a multi-orbital compound in its essence.

D. U-T phase diagram

After having discussed the effects of spin-orbit cou-
pling and exchange, we now focus on values relevant to
Ba2IrO4, i.e. λ = 0.31 eV and J = 0.22 eV. Figure 10 (a)
shows the corresponding phase diagram as a function
of temperature and interaction strength ∆U . We again
quantify the metal-insulator transition by the value of
the spectral function at the Fermi level, A0(∆U, T ), now
expressed as a function of correlation strength and tem-
perature.

In analogy with section IV A, the transition is gener-
ally broad, with a crossover region between the insulating
and metallic phases. We mark the middle of the crossover
region, Um, as well as the iso-value line of the spectral
weight at the Fermi level, ∆Uiso = ∆Uc(λ). The latter
can serve as a guide to identify the insulating phase and

thereby an end of the crossover region, similar to ∆Uc in
the previous section. On the other hand, ∆Um defines
the inflection point of the spectral function with respect
to ∆U , ∂2

∆UA0(∆U, T )|∆Um
=0. Within the crossover re-

gion, the spectral weight at the Fermi level is suppressed
with respect to the metallic phase, but it is still non-
vanishing due to thermal excitations.

The size of the crossover region, and the reference val-
ues ∆Um, ∆Uiso, depend on the temperature. At high
temperature, 290 . T . 190 K, the smooth and contin-
uous metal-insulator crossover extends over several hun-
dreds of meV. For lower temperatures, the crossover re-
gion gets narrower and turns into a sharp transition line
at T . 150 K. This is consistent with the picture of a
second order end point of the first-order metal-insulator
transition line known from the Mott transition [61, 62].
We report this temperature effect in more detail in Fig-
ure 10 (b), which displays the evolution of A0(∆U, T ) at
different temperatures.

Panels (c) and (d) show the evolution of the spectral
function A(ω) for different temperatures, projected on
the jeff = 1/2 state for fixed ∆U . The quasi-particle
peak for ∆U = 0.1 eV is more pronounced for lower tem-
perature indicating the formation of a well-defined Drude
peak in the metallic phase. Increasing the Coulomb inter-
action strength to ∆U = 0.2 eV, we observe the opposite
behavior: At T = 290 K the system is a bad insulator,
with the spectral weight very strongly suppressed, but
not exactly vanishing. The insulating gap forms upon
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FIG. 11. Spectral function of Ba2IrO4. (a) Comparison between DFT and DMFT density of states as well as the orbital-
resolved spectral function of the latter in the jeff basis (b) and in the t2g basis (c). The total k-resolved spectral function is
shown in (d), its jeff = 1/2 component in (e). The DFT band structure of the jeff bands is shown in white lines; orange and
blue points correspond to intensity maxima of energy distribution curves extracted from the ARPES measurements of Ref. 27.
All DMFT calculations were done for ∆U = 0.2 eV at β = 80 eV−1.

decreasing temperature such that at T = 145 K the sys-
tem is insulating.

The moderate value of Uiso is actually very close to the
cRPA value, UcRPA, and well inside the estimated error
margin due to the known overestimation of screening pro-
cesses within cRPA [52]. Most importantly, at ∆U = 0.2
eV, we observe a gap at low temperature, which is in
agreement with experiments [25–27]. Given the experi-
mental evidence of the insulating state in Ba2IrO4, we
take ∆U = 0.2 eV to compare our calculations in the
next section with experiments.

V. THE ELECTRONIC STRUCTURE OF
Ba2IrO4

In this Section we compare the electronic properties
of Ba2IrO4 evaluated within DMFT with existing liter-
ature, focusing in particular on the spectral function.
Based on the conclusions of the previous sections, the
calculations here are performed on the three-band model
at the inverse temperature β = 80 eV−1 (T = 145 K)
with a SOC constant λ = 0.31 eV, and the Coulomb
parameters U defined in Table I increased by an isotropic
amount ∆U = 0.2 eV. Computational details of the
DMFT calculations and analytic continuations can be
found in Appendix A.
As already mentioned in section IV, the MIT occurs
there as a selective Mott transition with filled jeff = 3/2
bands and half-filled jeff = 1/2 states, which have
well-defined lower and upper Hubbard bands (LHB,
UHB).

The DOS of the DFT and DMFT calculations are
shown in Figure 11 (a-c). Overall, the DMFT bandwidth
is larger than the DFT reference. The additional cor-
relations within DMFT open the Mott gap, leading to
vanishing spectral weight at the Fermi energy. Panel (b)
reports the different states in the jeff basis, revealing the
opening of the Mott gap in the jeff = 1/2 band. The dis-
tance between the maxima of the DOS of the jeff = 1/2
UHB and the LHB (jeff = 3/2 bands) is about 1.3 eV
(1.9 eV). Optical conductivity measurements showed two
pronounced peaks in the absorption coefficient, α and
β, which were interpreted as stemming from excitations
from the jeff = 1/2 LHB and the jeff = 3/2 bands to the
UHB respectively [25]. Comparing these peak positions
to our DMFT results, we find that their distance within
DMFT is ∼ 0.5 eV too large with respect to experiments.
As we will see below, the overestimation of the energy gap
can be traced back to an overestimation of the binding
energy at the X-point. Studying the composition of the
jeff = 1/2 UHB, the contribution of the dxy orbital is
found to be lesser than the one of the dxz, dyz orbitals,
see panel (c). In particular, we have nxz = nyz = 0.807
and nxy = 0.887. This anisotropy is consistent with the
DFT and cRPA findings discussed in section II B. For
more details on the t2g-projected spectral function, see
Appendix D.

Figure 11 (d) shows the total k-resolved spectral
function, compared to bands extracted from ARPES
measurements in Ref. 27. We focus first on our DMFT
results. Consistently with panel (a), the flat bands
around the Fermi level in Figure 5 at ∆U = 0 eV have
been split into Hubbard bands, opening an indirect
band gap between Γ and M . The UHB exhibits a clear
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FIG. 12. Details of the spectral function. Electron distribu-
tion curves (EDC) of ARPES measurements from Refs. 26 and
27 are compared to the DMFT spectral function at the high-
symmetry k-points X (a) and M (b). Dots mark maxima of
the intensity; in case of the DMFT spectra, contributions of
the jeff states are shown separately.

and coherent dispersion over the full k-path. With
respect to the DFT Kohn-Sham band structure, the
jeff = 3/2 bands show a negligible renormalization,
resulting from a nearly flat imaginary self energy
at low frequencies. The LHB of the jeff = 1/2 state
shows instead a rather incoherent behavior, see panel (d).

Comparing with experimental data of Refs. 26 and 27,
we find a nearly perfect agreement around the M point,
where the bands have a prominent jeff = 3/2 character.
The corresponding binding energy of 0.35 eV matches
well with experiment (0.4 eV [26] and 0.26 eV [27]). The
good agreement holds for the full dispersion of the jeff =
3/2 band.

The situation is different for the jeff = 1/2 band. In
the experimental spectrum, the jeff = 1/2 band has a
peak at X with a binding energy in between 0.21 eV [26]
and ∼ 0.3 eV [27], leading to the gap opening at the X
point. In our DMFT simulations, however, the binding
energy at that point corresponds to 0.71 eV. We attribute
this mismatch to the absence of antiferromagnetic fluc-
tuations and local moment formation: A cooperation of
band folding due to the doubling of the unit cell and
modifications of the band structure due to the inclusion
of short-range correlations should suppress the jeff = 1/2
peak at M , and shift the peak at X to smaller binding en-
ergy. Including non-local correlations in a cluster-DMFT
treatment of the paramagnetic phase might improve the
agreement with experiment as it was for instance shown
for Sr2IrO4 [63, 64]. On the other hand, the completely
filled jeff = 3/2 bands are rather insensitive to these ef-
fects.

Selected k-resolved spectra at the X and M points
are shown in Figure 12, where we also plot ARPES
data from Ref. 26. Compared to the thin film samples
measured in Ref. 27, the band structure of bulk samples
from Moser et al.[26] is shifted to larger binding energies,
and the energy difference of the features at X and M is
smaller. Our difference to experiment consists mainly in

FIG. 13. Iso-energy maps of the spectral function. (a)
Color plot of A(k, E = −0.3 eV) in the large BZ indicated
in blue. In violet, we indicate the small BZ relevant for the
antiferromagnetic phase. (b-c) CE map with backfolding into
the small BZ at E = −0.3 eV and −0.7 eV respectively. (d)
Focus on the jeff = 1

2
projection for E = −0.7 eV. To mimic

an emerging antiferromagnetic order, panels (b-d) show the
spectral weight of 25% of the folded bands and 75% of the
unfolded ones.

two aspects: (i) We overestimate the binding energy at
X. (ii) The corresponding intensity of the two peaks is
quite different, due to the broadening of the jeff = 1/2
state. In addition to the total spectral function of our
DMFT calculation, we also show its decomposition
into jeff states. Due to the incoherent nature of the
jeff = 1/2 LHB, and despite the binding energy at X
having a prominent jeff = 1/2 character, the intensity
coming from the jeff = 3/2 bands is dominating the total
spectral intensity. Both peaks at X and M are thus
essentially of jeff = 3/2 character. For additional plots of
the spectral function that allow for a direct comparison
with Ref. 26, we refer the reader to Appendix E.

To compare our calculations in more detail with ex-
periment, we show some constant energy (CE) maps in
Figure 13. For an energy of −0.3 eV we only observe
large spectral weigth at M , consistently with Figure 11.
In analogy with the previous discussion, this feature is
consistent with Ref. [27]. However, the peak observed in
ARPES spectra at X is absent in our calculations.

In Ref. 26 a backfolding of the bands is reported with
less intensity in the antiferromagnetic BZ. To compare
with the spectra in the antiferromagnetic phase, we have
to define two different BZs depending on the magnetic
state, see Figure 13. There, the different high-symmetry
k-points are indicated as Γ∗ = {Γ,M}, M∗ = X in the
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corresponding colors as well.
Even though our DMFT calculations are paramag-

netic, we now mimick the effect of antiferromagnetism
via backfolding of the bands into the small BZ. In order
to reproduce an emerging antiferromagnetic ordering, we
show in panels (b) and (c) spectra with 25% spectral
weight of backfolded and 75% original bands. With re-
spect to ARPES spectra in Ref. 26, our calculation still
misses the peak at X (M∗) for low-energy states, but
increasing the binding-energy of the energy cuts leads to
a better agreement. In the total spectral function, how-
ever, the features stemming from the jeff = 1/2 band are
heavily suppressed. This is due to the large incoherence
of the jeff = 1/2 LHB, causing a large difference in in-
tensity with respect to contributions from the jeff = 3/2
bands. We therefore show in panel (d) the projection on
the jeff = 1

2 band separately. Substantiating the previous
discussion, spectral weight is visible in a square around
X for the CE map at E = −0.7 eV.

VI. CONCLUSIONS

In this work, we simulated the electronic structure of
Ba2IrO4 by performing realistic dynamical mean-field
theory (DMFT) calculations based on models derived
from ab initio density functional theory (DFT) and con-
strained random phase approximation (cRPA) simula-
tions. In particular, we presented two models of Ba2IrO4

including Ir-t2g and Ir-5d Wannier functions respectively.
We solved both models within the DFT+DMFT scheme,
using a full Coulomb tensor U evaluated from cRPA.
To the best of our knowledge, the five-band Ir-5d cal-
culation is the first presented in literature for com-
pounds with strong spin-orbit coupling (SOC). Within
this framework, we found a good agreement between the
two DMFT solutions, validating the use of the simpler
t2g model that fully retains the low-energy physics of the
system.

Limitations of the Ir-t2g model must be searched
in the empty part of the spectrum, populated by the
upper jeff = 1/2 Hubbard band only. According to our

five-band model, the Ir-d̃x2−y2 band is situated close in
energy, which limits the predictive power of the Ir-t2g
model when it comes to the description of spectroscopies
that probe the hole sector of the spectrum. This might
be the case for optical conductivity measurements at
energies in the ∼ eV range [25] , time-resolved ARPES
experiments [65] or for probing inelastic excitations,
for instance via resonant inelastic x-ray spectroscopy [49].

Using the Ir-t2g model, we studied the interplay be-
tween SOC, Coulomb interaction and Hund’s exchange,
showing how SOC influences the physics of compounds
with a 5d5 configuration and the ligand-field of Ba2IrO4.
To that aim, we varied the monopole term of the ab initio
Coulomb tensor U , the SOC strength λ and the Hund’s
exchange J . The resulting phase diagram is remarkably

rich. Three different regions were identified: In the weak
SOC regime, for 0 ≤ λ < 0.1 eV, the t2g physics domi-
nates and small variations of λ imply large changes of the
critical interaction strength of the metal-insulator tran-
sition, Uc. In contrast, in the large SOC regime, i.e. for
λ > 0.6 eV, an effective single-band jeff = 1/2 model is
realized even with no interactions, and the critical inter-
action strength Uc(λ) for the Mott transition stays nearly
constant. The Mott transition is thereby U -driven. At
intermediate SOC, i.e. 0.1 eV ≤ λ ≤ 0.6 eV, a finite value
of U with the resulting Hartree shifts is needed to yield
an effective single-band jeff = 1/2 picture. Furthermore,
λ plays an important topological role: We identified two
distinct regions in the metallic regime, characterized by
a SOC-induced topological (Lifshitz) transition. Overall,
the transition towards the insulating phase can therefore
be referred to as spin-orbit Mott transition.

Ba2IrO4 is located in the intermediate SOC region
with λ = 0.31 eV. This proximity to both the metal-
insulator transition and phases with different band
topology is intriguing and could guide material design in
the future. Even though in practice, changing the spin-
orbit coupling constant λ via chemical substitution goes
in hand with modifications of the electronic structure
and Coulomb interaction as well, we note that reducing
λ would drive the system to such an interesting point of
phase competition. This could be in principle realised
by substituting Ir by 4d transition metal atoms like Ru
(λRu ≈ 0.1 eV [66]). In Sr2IrO4, however, it is still
debated whether a Ru substitution can be interpreted
via a reduction in the effective SOC of the material
[67, 68].

At low temperature, we find an insulating state match-
ing with experiment for U = UcRPA + 0.2 eV. Investigat-
ing the Mott transition of Ba2IrO4 at higher temper-
ature, we obtain a crossover resembling the one above
the second-order end-point of the Mott transition in the
single-band Hubbard model. We expect the correspond-
ing first order Mott transition to appear for T . 150 K.

Nevertheless, a treatment within a three-orbital
framework is essential to properly describe the spectro-
scopic properties of the system. This is rooted in the
non-negligible orbital mixing within the tight-binding
model and the proximity of jeff = 3/2 bands to the Fermi
level, consistent with the strong inter-twining of the
jeff = 1/2 and jeff = 3/2 manifolds observed in optical
conductivity measurements [25]. Similar to recent stud-
ies for Sr2IrO4 [21, 69], this in particular casts doubts
on the validity of the single-band jeff = 1/2 picture
upon doping. Coming back to the parallel of Ba2IrO4

with cuprates, we note that the general question on the
validity of an effective one-band model upon doping
has been intensely discussed for these systems, i.a. in
context of the Zaanen-Sawatzky-Allen diagram [30] and
the Zhang-Rice band [31, 70, 71]. Even though these
models rather address the question of the hybridization
with oxygen orbitals and the resulting charge-transfer,
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the hierarchy of different ab initio multi-band models
with respect to the energy scales that can be correctly
captured is similar [32, 72, 73].

Comparing the spectral function with existing ARPES
experiments, our DMFT solution shows good agreement
within the jeff = 3/2 bands. On the other hand, our
results do not match perfectly the experimental charac-
terization of the jeff = 1/2 band. Especially at the X
point of the BZ the calculated binding energy is overes-
timated by ∼ 0.5 eV. We interpret this difference as a
consequence of the absence of non-local correlations and
antiferromagnetic fluctuations, which could be included,
for instance, via cluster extensions of DMFT. We also
envision the effective three- and five-band models devel-
oped in this study to be important for investigating the
change of the Ba2IrO4 spectral function upon doping.
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Appendix A: Computational details

The DFT calculations were performed with Quantu-
mEspresso v6.8 [74, 75] using a 8×8×8 Monkhorst-Pack
k-point grid centered at Γ and a 90 Ry energy cutoff
for the wavefunction expansion with the PBE functional
[38] for Ba2IrO4. We used Optimized Norm Conserving
Vanderbilt (ONCVPSP) pseudopotentials [76] from the
PseudoDojo database [77] with (fully relativistic) scalar
relativistic corrections for the (non) spin-orbit calcula-
tions.

The cRPA calculations were performed using
RESPACK v20200103 [78]. The Wannier functions
were obtained for the t2g subspace with a 0.8 coefficient
on the initial guess gaussians. The disentanglement
was constrained within the t2g bands energy range and
a frozen window spanning from 10.40 eV to 12.55 eV
was chosen. The polarization function was computed
using a cutoff of 3.6 Ry and 100 bands. The imaginary
broadening of the Green’s functions was set to 0.1 eV
for the cRPA calculations.

The DMFT calculations were performed using the
TRIQS software [46], in particular the DFTTools pack-
age [48] for the k-point summations and the CTHYB
impurity solver [47]. The calculations of the five-band
model in section III were converged using 28× 106 mea-
surements and 86 × 106 measurements were performed
at the last iterations. For the three-band model in Sec.
III, IV and V we sampled with 72× 106 counts over the
DMFT loop and we converged the last iterations with
96 × 106 measurements. The k-point summations were
performed using the Wannier Hamiltonian on the same
8× 8× 8 Monkhorst-Pack grid as the DFT calculations.
In our study we investigated a temperature range from
T = 145 K to 290 K. For the insulating phase, espe-
cially within the transition region, convergence has been
achieved for 30− 40 iterations.

The analytic continuations were performed using the
Maximum Quantum Entropy Method [79] with a smear-
ing factor between 5× 10−3 eV and 1× 10−2 eV.

Appendix B: Optimized atomic coordinates

In the following, we list the atomic positions within the
experimental primitive unit cell, which were optimized
using the PBE functional, see Table AI.

Unit cell vectors x y z
v1 -2.015 2.015 6.667
v2 2.015 -2.015 6.667
v3 2.015 2.015 -6.667

Atom v1 v2 v3

Ba 0.6456 0.6456 0.0000
Ba 0.3544 0.3544 0.0000
Ir 0.0000 0.0000 0.0000
O 0.1553 0.1553 0.0000
O 0.8447 0.8447 0.0000
O 0.5000 0.0000 0.5000
O 0.0000 0.5000 0.5000

TABLE AI. Crystal structure of Ba2IrO4. Unit cell vectors
(in Å) from Ref. 14 and optimized atomic positions in reduced
coordinates.
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FIG. A1. Spectral function in the t2g basis. We plot the k-
resolved spectral function shown in Fig. 11 of the main text,
projected onto the t2g orbitals. Experimental data points
from ARPES measurements of Ref. 27 corresponding to the
jeff = 1/2 contribution to the spectrum are shown by orange
dots.

Appendix C: Interpolation details for the phase
diagrams

In section IV of the manuscript we used an interpo-
lation scheme to obtain the two phase diagrams shown.
To that aim, we started from A0(λ,∆U) on a finite grid
(λ,∆U), which contains points at the edges of the dia-
grams and across the transition line. Then, for each λ
we fitted the profile of A as:

A0(λ,∆U) =
a(λ̄)

1 + eb(λ̄)(∆U−∆Um(λ̄))
(A1)

Then, by fitting the parameter a(λ),b(λ) and ∆Um(λ)
on a denser grid of λ, we reconstructed the correspond-
ing Fermi function for each value of a,b and ∆Um on the
denser grid. We stress that by construction ∆Um is ex-
actly the inflection point of the Fermi function. Critical
iso-value lines are found for a given threshold value by
false position method.

Appendix D: DMFT spectral function projected on
t2g states

Figure A1 displays the k-resolved spectral function for
∆U = 0.2 eV projected onto the t2g basis. To high-
light the contribution of the orbital basis with respect to
the jeff = 1/2 band, we also report data extracted from
Ref. [27]. We note strong hybridization between the t2g
states, especially between dxz and dyz, which is expected
from SOC, see Equation 5. Here, we can see that at X
(Y) the main contribution to the jeff = 1/2 state comes
from the the dxz (dyz) orbital. In analogy with Figure 4,

FIG. A2. Additional plots of the spectral function of Ba2IrO4.
(a) Sketch of the different BZ for the paramagnetic (blue) and
antiferromagnetic structure (violet). (b-e) k-resolved spectral
function along different high-symmetry paths, allowing a di-
rect comparison with the spectra published in Ref. 26.

the contribution from the dxz (dyz) orbital is only rele-
vant in the path X-M-X (Y-Γ-Y) and vanishes otherwise.

Appendix E: Additional plots of the k-resolved
spectral function A(k, ω)

In this appendix, we report the k-resolved spectral
function along additional high-symmetry paths of the
BZ, in analogy to the ones reported in Ref. 26. We per-
formed backfolding to simulate the effect of antiferromag-
netic order and mimicked an emerging magnetic order by
mixing the intensities of unfolded and backfolded spectra
in analogy with section V.

Panel (a) of Figure A2 shows the two BZ corresponding
to the paramagnetic BZ (blue line) antiferrmomagnetic
BZ (in violet). We folded the bands in the smaller BZ
and mixed 25% of the backfolded bands to 75% of the
unfolded ones in analogy with section V. Comparing di-
rectly to the experimental data of Ref. 26, we obtain very
good agreement concerning the jeff = 3/2 bands, but the
peak at X (M∗) stemming from the jeff = 1/2 band is
both underestimated in spectral weight and shifted to
too high binding energy. As discussed in the main text,
we attribute this to the absence of antiferromagnetic fluc-
tuations in our DMFT calculations.



16

[1] J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita,
H. Takagi, and T. Arima, Science 323, 1239 (2009).

[2] S. Boseggia, R. Springell, H. C. Walker, H. M. Rønnow,
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