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Standing generalized modulating pulse solutions for a nonlinear wave equation in periodic media

Standing modulating pulse solutions consist of a standing pulse-like envelope modulating an underlying spatially and temporarily oscillating carrier wave. Using spatial dynamics, invariant manifold theory and normal form theory for periodic systems we construct such solutions on large domains in time and space for a nonlinear wave equation with spatially periodic coefficients. Such solutions play an important role in theoretical scenarios where photonic crystals are used as optical storage.
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Introduction

Photonic crystals consist of a dielectric material like glass with a periodic structure with a period comparable to the wavelength of light. They are suitable tools for the construction of all optical devices in photonics which is loosely speaking electronics with photons instead of electrons. There are various models describing the evolution of light and in particular in one-dimensional photonic crystals. The model mostly used in physics is given by (1.1)

∂ 2 x u = ∂ 2 t ((1 + α)u + βu 3 ),
with x-dependent coefficients α and β satisfying α(x) = α(x + L) and β(x) = β(x + L) for an L > 0, x ∈ R, t ≥ 0, and u(x, t) ∈ R. From a modeling point of view (see Appendix B) this quasi-linear equation is equivalent to the semi-linear model

(1.2) ∂ 2 t u = ∂ 2 x u -ρu + γru 3 ,
where ρ(x) = ρ(x + L), r(x) = r(x + L), and where γ = ±1 has only been introduced for the formulation of our result. For notational purposes we will take L = 2π w.l.o.g. in the following.

In principle, photonic crystals can be used as optical storage. Due to the periodicity, the linearized problem shows spectral gaps and curves of eigenvalues with horizontal tangencies, i.e., vanishing group velocities. In detail, ∂ 2 t u = ∂ 2 x u -ρu is solved by (1.3) e iωn(l)t e ilx w n (l, x)

with w n satisfying the eigenvalue problem

(∂ x + il) 2 w n -ρw n = -ω 2 n w n with w n (l, x) = w n (l, x + 2π)
for all l ∈ (-1/2, 1/2] and n ∈ Z/{0}. The curves of eigenvalues l → ω n (l) are ordered such that ω -n (l) = -ω n (l) and ω n (l) ≤ ω n+1 (l). The spectral picture shows horizontal tangencies for certain n's at Bloch wave numbers l ∈ {0, ±1/2}, i.e., vanishing group velocity, see Figure 1.

Hence, it is expected that a localised wave packet of light with a suitable chosen carrier wave will not propagate in the interior of the photonic crystal, see Figure 2. Therefore, it is the purpose of this paper to construct such standing modulating pulse solutions also called breather solutions rigorously for the second of the above models, namely (1.2). It cannot be expected that in general such solutions exist with finite energy according to the non-persistence of breathers result for nonlinear wave equations in homogeneous media [START_REF] Denzler | Nonpersistence of breather families for the perturbed sine Gordon equation[END_REF][START_REF] Birnir | The rigidity of sine-Gordon breathers[END_REF], i.e. in case ρ = r = 1. However, generalized breather solutions, i.e., localised standing waves with small tails for |x| → ∞ do exist. In the homogeneous situation such solutions have been constructed in [START_REF] Groves | Modulating pulse solutions for a class of nonlinear wave equations[END_REF] with the help of spatial dynamics, invariant manifold theory and normal form theory. In general for reasons explained below such solutions can only be constructed on large, but finite, intervals of R, cf. [START_REF] Groves | Modulating pulse solutions for quasilinear wave equations[END_REF][START_REF] Groves | Modulating pulse solutions to quadratic quasilinear wave equations over exponentially long length scales[END_REF]. Our paper is based on these three papers and is as already said devoted to the construction of these generalized breather solutions in periodic media.

Since our methods stem from various fields it was not possible to use the standard notation in all cases.

The method

The analysis which is used in order to prove the existence of generalized breathers is changed substantially from the spatially homogeneous to the spatially periodic case. For periodic media, as considered here, the spatial dynamics formulation is no longer autonomous, but periodic. A more serious consequence is the resulting spectral situation. In addition to the infinitely many eigenvalues, resp. Floquet exponents, on the imaginary axis there can be infinitely many Floquet exponents off the imaginary axis, see Figure 4. Moreover, normal form transforms and the non-resonance conditions have to be adjusted to the periodic situation.

We start by rewriting (1.2) in spatial dynamics form (1.4)

∂ 2 x u = ∂ 2 t u + ρu -γru 3 ,
i.e., x ∈ R is considered as evolutionary variable and the phase space consists of 2π/ω-time periodic solutions. Equation (1.4) is non-autonomous due to the 2π-periodic coefficients ρ = ρ(x) and r = r(x).

Breather solutions satisfy lim x→±∞ u(x, t) = 0, i.e., such solutions are homoclinic to the origin w.r.t. the evolutionary variable x. They lie in the intersection of the stable and unstable manifold of the origin. Very often they are constructed as bifurcating solutions from the origin via center manifold theory. In order to find the dimension of these manifolds we consider the linearized problem

(1.5) ∂ 2 x u = ∂ 2 t u + ρu, first. It is solved by (1.6) u(x, t) = e imωt e λ m,± x p m,± (x),
with p m,± (x) = p m,± (x + 2π) for m ∈ Z due to the periodic boundary conditions w.r.t. t. The λ m,± s are called Floquet exponents. They are only unique up to integer multiples of 2πi.

In order to compute the spectrum we use the fact that there is a one-to-one correspondence between the spectral pictures drawn in Figure 1 and Figure 4. This is obvious by comparing the representations of solutions of the linearized temporal problem in (1.3) and of solutions of the linearized spatial problem in (1.6). When an integer multiple of the basic temporal wave-number ω falls into a spectral gap drawn in Figure 1 there are two Floquet exponents off the imaginary axis in Figure 4. In the other case the Floquet exponents are on the imaginary axis. See also Section 2. For continuous or even smoother ρ the spectral gaps in

{ω n (l) | l ∈ (-1/2, 1/2], n ∈ Z \ {0}} ⊂ R
become smaller as n increases and, therefore, integer multiples mω of ω in general do not fall into spectral gaps. In detail, according to [START_REF] Eastham | The spectral theory of periodic differential equations[END_REF][START_REF] Ntinos | Lengths of instability intervals of second order periodic differential equations[END_REF], the size of the gaps which are found at ω ∼ n decays at least with 1/n s+1 for n → ∞ if ρ ∈ C s b , i.e., the more regular ρ is the faster the gaps close. Hence, in contrast to classical applications of spatial dynamics and center manifold theory [START_REF] Kirchgässner | Wave solutions of reversible systems and applications[END_REF], in general, in every neighbourhood of the imaginary axis there are infinitely many Floquet exponents and so the problem cannot be reduced via center manifold theory to a finite dimensional one. In the homogeneous case there are no spectral gaps at all and so close to the bifurcation point, except for two, all eigenvalues lie on the imaginary axis. In the spatially periodic case there are more possibilities. A typical example of a spectral distribution is drawn in Figure 4. Although the spectral pictures in the spatial homogeneous and the spatial periodic case look very different the overall idea of [START_REF] Groves | Modulating pulse solutions for a class of nonlinear wave equations[END_REF] for the construction of generalized breather solutions still can be used.

As already explained above, in order to find standing spatially localised modulating pulse solutions of Equation (1.2) we have to construct homoclinic solutions of the spatial dynamics formulation (1.4). We fix a temporal wavenumber ω 0 such that ω 0 is located at the edge of a gap in Figure 3. In this case the associated Floquet exponents are zero or ±i/2 where for expository reasons we restrict to the first case in the following. By shifting ω into this spectral gap, the two zero Floquet exponents leave the imaginary axis along the real axis as drawn in Figure 4. The distance of ε 2 = |ω 2 -ω 2 0 | defines a small bifurcation parameter 0 < ε ≪ 1.

Although for small ε > 0 there are still infinitely many eigenvalues arbitrary close to the imaginary axis, the problem can be reduced approximately to a two-dimensional one by the following procedure. See Section 4 for more details. We split u = q ⊕ w where q corresponds to the two zero Floquet exponents and w to the rest, i.e., we write (1.4) as

∂ x q = B 1 q + F (q, w), (1.7) ∂ x w = Lw + G(q, w) + H(q), (1.8)
with B 1 and L being linear operators and F, G, H nonlinear operators. We split the nonlinear terms in the second equation such that G(q, 0) = 0. If H(q) vanishes, {w = 0} is some invariant subspace and (1.9)

∂ x q = B 1 q + F (q, 0)
is a reduced two-dimensional system which possesses two solutions which are homoclinic to the origin. See Section 5 for a detailed discussion of (1.9). The bifurcating solutions q which are constructed via (1.9) will be of order O(ε).

Obviously, H(q) = O(|q| 3 ) = 0 originally, however, by a number of normal form transforms it can be made small. A term O(|q| N -1 ) can be eliminated in the equations for w by a normal form transform if the non-resonance condition (1.10) λ j ∈ iZ is satisfied for ω = ω 0 and j ∈ {3, 5, . . . , N -1}, see Section 4 for details. This assumption holds if for j ∈ {3, 5, . . . , N -1} the integer multiples jω 0 of the basic wave number ω 0 doesn't hit a band edge at l = 0.

As already explained by the non-persistence result for breathers even if there is no resonance it cannot be expected that the normal form transforms converge for N → ∞.

In order to prove the persistence of the bifurcating homoclinic solutions which have been found for H = 0, also in case H(q) = O(|q| N ) for an N ∈ N fixed we use reversibility arguments. In order to have the reversibility of the spatial dynamics formulation i.e. the invariance under (x, u, ∂ x u) → (-x, u, -∂ x u) the coefficient functions ρ and r have to be even w.r.t. x, i.e., ρ(x) = ρ(-x) and r(x) = r(-x). In general the reversibility argument is based on a transversal intersection of the stable manifold associated to the eigenvalue leaving zero in the direction of the negative real axis with the fixed space of reversibility {(u, ∂ x u) = (u, 0) | u : [0, 2π) → R}. Obviously, many dimensions are missing for a transversal intersection. However, the center-stable manifold, which also includes the wmodes and the fixed space of reversibility intersect transversally. Since w contains central modes polynomial growth of these modes is possible and so estimates for all x ∈ R cannot be expected. However, in case H(q) = O(|q| N ) for an N ∈ N fixed it can be shown that w = O(ε N -1 ) for all x ∈ [-ε 3-2N , ε 3-2N ]. For more details see Section 6. Therefore, the existence of generalized modulating pulse solutions, i.e., pulse solutions with small tails on large, but finite, intervals can finally be shown. See Figure 5.

The result

Motivated by the explanations of the previous section our result is as follows.

Theorem 1.1. Let ρ and r be in H 1 per , 2π-periodic, even functions. Assume that in the linearization of Equation (1.2) there is a band-gap which begins or ends at ω n 0 (0) and that for |j| < N the integer multiples jω n 0 (0) of the basic wave number hit no other band edge at l = 0.

Then under the validity of some non-degeneracy condition (cf. Remark 1.2) there exist an ε 0 > 0 and a C > 0 such that either for γ = 1 or γ = -1 and either for ω 2 -ω 2 n 0 (0) = ε 2 or ω 2 -ω 2 n 0 (0) = -ε 2 the following holds. For all ε ∈ (0, ε 0 ) Equation (1.2) possesses generalized modulating standing pulse solutions with period 2π/ω, i.e., there are solutions u :

[-ε 3-2N , ε 3-2N ] × R → R of (1.2) which satisfy u(x, t) = u(-x, t), u(x, t) = u x, t + 2π ω and sup x∈[-ε 3-2N ,ε 3-2N ] |u(x, t) -h(x, t)| ≤ Cε N ,
where lim |x|→∞ h(x, t) = 0 and

(1.11) sup

x,t∈R h(x, t) -εγ 1 sech(εγ 2 x)w n 0 (0, x)e iωt + c.c. ≤ Cε 2 with constants γ 1 , γ 2 defined in Section 5 and w n 0 defined in (1.3). Before we start to prove this result we close the introduction with a number of remarks.

O( ) ε O( ) ε N -N
Remark 1.2. Solutions of (1.2) can be approximated via the ansatz u(x, t) = εA(ε(x -c g t), ε 2 t)w n (l 0 , x)e il 0 x e iωn(l 0 )t + c.c.

with A(X, T ) ∈ C, c g = ω ′ n (l 0 ) ∈ R and 0 < ε ≪ 1 by a NLS-equation (1.12) ∂ T A = -i ω ′′ n (l 0 ) 2 ∂ 2 X A + iγ n (l 0 )γA|A| 2
where c g = 0 for l 0 = 0, ±π. The coefficient γ n (l 0 ) is given by

γ n (l 0 ) = 3 2ω n (l 0 ) 2π 0 r(x)|w n (l 0 , x)| 4 dx.
The function w n (l, x) is defined in (1.3). The NLS-equation possesses pulse solutions A(X, T ) = Ã(X)e iωT if ω ′′ n (l 0 )γ n (l 0 )γ < 0 of the form displayed in (1.11). In [START_REF] Busch | Justification of the Nonlinear Schrödinger equation in spatially periodic media[END_REF] an approximation result has been established that guarantees that solutions of (1.2) can be approximated on an O(ε -2 ) time scale via the solutions of this NLS-equation. The nondegeneracy condition for the validity of Theorem 1.1 is: γ n (l 0 ) = 0.

Remark 1.3. Since we have a finite speed of propagation for (1.2), the solutions of Theorem 1.1 exist for (1.2) also for all t ∈ [0, ε 3-2N ], i.e., much longer than the O(1/ε 2 )time scale guaranteed by [START_REF] Busch | Justification of the Nonlinear Schrödinger equation in spatially periodic media[END_REF].

Remark 1.4. If the non resonance condition (1.10) is satisfied for all j ∈ Z, then N can be chosen arbitrarily large, but has to be fixed. However, we have ε 0 → 0 if N → ∞ is chosen. The result of [START_REF] Groves | Modulating pulse solutions for quasilinear wave equations[END_REF] has been improved in [START_REF] Groves | Modulating pulse solutions to quadratic quasilinear wave equations over exponentially long length scales[END_REF] to exponentially small tails and exponentially long time intervals w.r.t. ε. It is not obvious that this last result can be transferred to the spatially periodic case. It is also not clear that the method from Reference [START_REF] Groves | Modulating pulse solutions for a class of nonlinear wave equations[END_REF] which uses the Hamiltonian structure of (1.2) to obtain x ∈ R can be transferred to the spatially periodic case.

Remark 1.5. If all integer multiples of the basic temporal wave-number ω fall in a suitable way into a spectral gap in Figure 1 the center manifold reduction can be applied and modulating pulse solutions for all x ∈ R of (1.2) with lim |x|→∞ v(x, t) = 0 can be shown. However, in this case ρ has to be very irregular. See [START_REF] Blank | Breather solutions in periodic media[END_REF].

Remark 1.6. The regularity assumption ρ ∈ H 1 per is used in the proof of the subsequent Lemma 3.2. This lemma can be proved directly in case of step functions. Hence Theorem 1.1 is also true in case of periodic step functions.

Remark 1.7. In case when ω 0 hits a band edge at l 0 = 1/2 Theorem 1.1 has to be modified as follows: Let ρ and r be in H 1 per , 2π-periodic, even functions. Assume that in the linearization of Equation (1.2) there is a band-gap which begins or ends at ω n 0 (1/2) and that for |j| < N the integer multiples jω n 0 (1/2) of the basic wave number hit no other band edge at l = 1/2. Then we have exactly the same conclusions as in Theorem 1.1 except that (1.11) has to be replaced by (1.13) sup

x,t∈R h(x, t) -εγ 1 sech(εγ 2 x)w n 0 (1/2, x)e ix/2 e iωt + c.c. ≤ Cε 2 .

See Figure 6.
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The spatial dynamics formulation

We write (1.2) as an evolutionary system w.r.t. x ∈ R and obtain in the space of time-periodic solutions u(x, t) = u(x, t + 2π/ω). Hence, we use Fourier series u(x, t) = m∈Z u m (x)e imωt leading to the system of countable many ODEs

(2.1) ∂ 2 x u = ∂ 2 t u + ρu -γr|u| 2 u. ω l 1/2 ω l 1/2 ω ω 0 0
(2.2) ∂ 2 x u m (x) = -m 2 ω 2 u m (x) + ρ(x)u m (x) -γr(x)g m (x), m ∈ Z, where (2.3) g m (x) := n∈Z 3 n 1 +n 2 +n 3 =m u n 1 (x)u n 2 (x)u n 3 (x), m ∈ Z.
Symmetries: The dimension of the problem can be reduced by using the symmetries of the problem. Real solutions of (1.2) satisfy u m = u -m . System (1.4) is invariant under the transform S : (t, u, ∂ x u) → (-t, -u, -∂ x u). Solutions invariant under this transform satisfy u m = -u -m . According to the fact that we have a cubic nonlinearity also the space of solutions whose even coefficients vanish, i.e. u 2m = 0, is an invariant subspace. Therefore, the intersection of all these subspaces

X = {(u m ) m∈Z : Re u m = 0, u 2m = 0, u m = -u -m , m ∈ Z}
is also invariant. In the following we restrict our analysis to those solutions of (1.2) which are in X for fixed x, i.e., it is sufficient to consider m ∈ N odd = {1, 3, 5, . . .} where u m ∈ iR.

Linear theory: The next step in the application of invariant manifold theory is the analysis of the linear system. The linear part of the spatial dynamics system (2.2) decouples into infinitely many linear second order ODEs with periodic coefficients, namely

(2.4) ∂ 2 x u m (x) = -m 2 ω 2 u m (x) + ρ(x)u m (x).
Equation (2.4) is written as first order system, namely

(2.5) ∂ x u m (x) = v m , ∂ x v m (x) = -m 2 ω 2 u m (x) + ρ(x)u m (x).
The fundamental matrix of (2.5) is denoted with Φ m = Φ m (x) where Φ m (0) = I. Floquet's theorem [START_REF] Eastham | The spectral theory of periodic differential equations[END_REF] shows that Φ m (x) = P m (x)e xMm with P m (x) = P m (x + 2π) and an x-independent matrix M m . For notational simplicity we suppress the subscript m in the following. Note that M is not unique according to e 2πin = 1 for n ∈ Z. The eigenvalues of M are called Floquet exponents. The eigenvalues of the so called monodromy matrix C = e 2πM are called Floquet multipliers. For our special system, cf. [START_REF] Eastham | The spectral theory of periodic differential equations[END_REF], we have two Floquet multipliers σ 1 and σ 2 satisfying σ 1 σ 2 = 1 and are either real or complex conjugated. Thus the associated Floquet exponents λ 1 and λ 2 are i) either real for positive σ, ii) real +i/2 for negative σ, or iii) purely imaginary for σ on the unit circle. Both i) and ii) correspond to a band gap and to exponentially decaying or growing solutions for |x| → ∞. iii) corresponds to a band and to uniformly bounded solutions.

Re Re Doubling the period: Considering the problem artificially in 4π-periodic setting instead of a 2π-periodic setting reduces the possible cases of Floquet exponents by one. Since (e iπ/2 ) 2 = 1 there are no longer negative Floquet multipliers σ and so the associated Floquet exponents λ 1 and λ 2 are i) either real for positive σ, or ii) purely imaginary for σ on the unit circle.

By this choice the reversibility becomes simpler, but the normal form transforms become a little bit more involved. Floquet's theorem then shows for the fundamental matrix Φ = Φ(x) of (2.5) that Φ(x) = P (x)e xM but now with P (x) = P (x + 4π) and an x-independent matrix M. 

ω l 1/2 ω l 1/4

A reversible change of variables

In this section we make a change of variables which makes the linear part autonomous and preserves the reversibility. In order to do so we rewrite (2.2) as

(3.1) ∂ x U m = Λ m U m + N m (U).
where

U m = (u m , v m ), (Λ m U m )(x) = v m (x) -m 2 ω 2 u m (x) + ρ(x)u m (x) , N m (U) = 0 -γr(x)g m (x)
The phase space: Fix s ≥ 0. Then for fixed x ∈ R the solution U = (U m ) m∈N odd will be in the space ℓ 1 (s) equipped with the norm

U ℓ 1 (s) = m∈N odd U m C 2 |m| s
with the extension U -m = U m and U 0 = 0. The space is closed under convolution, i.e.

U * V ℓ 1 (s) ≤ U ℓ 1 (s) V ℓ 1 (s) , where (U * V ) m = k∈Z U m-k V k .
As a consequence the nonlinearity N = (N m ) m∈N is a smooth trilinear mapping from ℓ 1 (s) to ℓ 1 (s). An operator Λ = (Λ m ) m∈N acting on U by

(ΛU) m = Λ m U m can be estimated by (3.2) ΛU ℓ 1 (s) ≤ ( sup m∈N odd Λ m C 2 →C 2 ) U ℓ 1 (s) .
Subsequently, we simply write ℓ 1 for ℓ 1 (s). If U ∈ ℓ 1 (s) then t → k∈Z U k e ikωt is s-times continuously differentiable.

The reversibility: The persistence of the approximate homoclinic solution w.r.t. higher order perturbations heavily relies on the reversibility of (3.1). Therefore, we define a reversibility operator R by

R(u m , v m ) m∈N odd = (u m , -v m ) m∈N odd .
The system is reversible, i.e., invariant under (x, u, v)

→ (-x, u, -v), which implies that with x → (u m , v m ) m∈N odd (x) a solution, also x → (u m , -v m ) m∈N odd (-x) is a solution.
Preserving the reversibility: Due to the above theorem of Floquet (see Section 2) the solutions of

∂ x U m = Λ m U m are given by U m (x) = P m (x)e xMm U m (0) with P m (x) = P m (x + 4π) and M m ∈ C 2×2 .
In order to make the linear part of the system autonomous we could make a change of variables U m (x) = P m (x)V m (x). However, this choice would destroy the reversibility. Therefore, we proceed as follows: First, we rewrite

U m (x) = P m (x)e xMm U m (0) = P m (x)S -1 m e xJm S m U m (0) = Q m (x)e xJm V m (0) such that V m (x) defined by (3.3) U m (x) = Q m (x)V m (x) satisfies ∂ x V m = J m V m
where J m is the Jordan normalform of M m and S m the assocoated transformation. According to the list of possibilities in Section 2 we have the following cases.

Case I: Assume first that the Floquet exponents for fixed m satisfy λ 1 = λ 2 . On the other hand the solutions of ∂ x U m = Λ m U m can be written as

U(x) = c 1 ψ 1 (x) + c 2 ψ 2 (x) = c 1 e λ 1 x φ 1 (x) + c 2 e λ 2 x φ 2 (x)
with constants c j and 4π-periodic φ j here and in the following. Since the systems are reversible with x → e λ 1 x φ 1 (x) also x → e -λ 1 x Rφ 1 (-x) is a solution. Hence we define the second fundamental solution

e λ 2 x φ 2 (x) = e -λ 1 x Rφ 1 (-x).
such that λ 2 = -λ 1 and φ 2 (x) = Rφ 1 (-x). We introduce the new variable

V (x) = (v 1 , v 2 )(x) by U(x) = v 1 (x)φ 1 (x) + v 2 (x)φ 2 (x) = (φ 1 (x), φ 2 (x)) v 1 (x) v 2 (x)
where by construction ∂ x V (x) = BV (x) with B = diag(λ 1 , λ 2 ). Hence, the above change of variables (3.3) and the last change of variables coincide, i.e. B = J m , and the new system is still reversible w.r.t. the transformed reversibility operator R defined through

R v 1 v 2 = v 2 v 1 .
Case II: Next assume that we have a Jordan block at λ = 0. Then

U(x) = c 1 ψ 1 (x) + c 2 ψ 2 (x) = c 1 φ 1 (x) + c 2 (xφ 1 (x) + φ 2 (x)).
Due to the reversibility φ 1 (x) = Rφ 1 (-x), and φ 2 (x) = -Rφ 2 (-x). We introduce the new variable

V (x) = (v 1 , v 2 )(x) by U(x) = v 1 (x)φ 1 (x) + v 2 (x)φ 2 (x) = (φ 1 (x), φ 2 (x)) v 1 (x) v 2 (x)
where by construction ∂ x V (x) = BV (x), with B = 0 1 0 0 . In this case the representation of the reversibility operator is preserved, i.e.

R v 1 v 2 = v 1 -v 2 .
Remark 3.1. By the 4π-periodic setting we avoid Jordan-blocks with eigenvalue i/2.

For such Jordan-blocks the new representation R of the reversibility operator then would depend on x which would not be very useful for the subsequent analysis. The x-dependency of R could also be avoided by doubling these coordinates but using Jordan-blocks with the equivalent (in term's of Floquet's theorem) eigenvalue -i/2. However, the overall construction would be much more complicated than the chosen one.

Conjugation of the old and new reversibility operator: The old reversibility operator R and the new reversibility operator R are conjugated w.r.t. the transform

U = QV , i.e., Q R = RQ which implies Q -1 R = RQ -1 .
The reversibility of the old nonlinearity N means RN(U) = N(RU). The reversibility of the transformed nonlinearity Ñ

(V ) = Q -1 N(QV ) means R Ñ (V ) = Ñ ( RV ). This holds according to R Ñ (V ) = RQ -1 N(QV ) = Q -1 RN(QV ) = Q -1 N(RQV ) = Q -1 N(Q RV ) = Ñ ( RV ).
The reversible change of variables:

With U m (x) = Q m (x)V m (x) we find (3.4) ∂ x V m (x) = B m V m (x) + Ñm (V ) with Ñm (V ) = (Q m (x)) -1 N m (x, (Q j (x)V j (x)) j∈N odd ).
For ε = 0 we have by assumption that B 1 is a Jordan block of size 2 with associated eigenvalue 0. All other B m with m ≥ 3 possess either one positive and one negative eigenvalue or two conjugated purely imaginary eigenvalues or a Jordan block with eigenvalues 0 or ±i/2. Due to the closing of the spectral gaps for m → ∞ the eigenvalues are on or converge towards the imaginary axis.

By our construction System (3.4) is reversible w.r.t. the transformed reversibility operator.

The change of variables is bounded in the following sense.

Lemma 3.2. Let Q m =
q 11,m q 12,m q 21,m q 22,m . Then there exists a C > 0 such that

sup m∈N odd sup x∈[0,2π] (|q 11,m (x)| + |q 12,m (x)|) < C and sup x∈[0,2π] (Q m (x)) -1 C 2 →C 2 < C.
Proof. See Appendix C.

Remark 3.3. Although a periodic step function ρ does not satisfy ρ ∈ H 1 per the validity of this lemma can be computed explicitely for such ρ.

Corollary 3.4. For fixed x the transformed nonlinerity Ñ is a smooth trilinear mapping from ℓ 1 to ℓ 1 where the estimates hold uniformly in x.

Proof. Since in N m only the first coordinates of the U m occur, after the transforms U m = Q m V m only q 11,m and q 12,m occur in the transformed nonlinearity. Since q 11,m , q 12,m and Q -1 m are uniformly bounded from Lemma 3.2, estimate (3.2), and the fact that ℓ 1 is closed under convolutions the result follows.

The normal form transform

The next step is to rewrite the infinite dimensional system (3.4) in the form (1.7)-(1.8) We set q = V 1 and w = (V 3 , V 5 , . . .). Then (q, w) satisfy

∂ x q = B 1 q + F (q, w) , (4.1) ∂ x w = Lw + G(q, w) + H(q) , (4.2) 
with L = diag(B 3 , B 5 , . . .), and

F (q, w) = Ñ1 , G(q, w) + H(q) = (0, Ñ3 , Ñ5 , . . .),
where G is chosen such that G(q, 0) = 0.

We proceed as described in the introduction. By a number of normal form transforms the term H(q) can be made small in terms of q. Since G depends at least linearly upon w we expect that the lowest order of H in terms of q gives the size of w. The smallest possible order w.r.t q depends on the validity of some non resonance condition. We first assume that we have the situation described in Theorem 1.1, i.e. we make the following assumption.

Assumption 4.1. For ε = 0 there exist N ∈ N such that λ j ∈ iZ for 3 ≤ j < N. This is the assumption for a 2π-periodic system and ω 0 touching a band edge at l = 0. The 4π-periodic case and that ω 0 touches a band edge at l = 1/2 is handled subsequently. Remark 4.2. It is well known that in autonomous systems in diagonalized form, a term V m 1 V n -1 can be eliminated in the equation for V j if the non-resonance condition

λ j -mλ 1 -nλ -1 = 0
is satisfied. The condition for time-periodic systems is different from the one for autonomous systems (see the end of the proof of the next lemma), namely

λ j -mλ 1 -nλ -1 ∈ iZ.
Since λ 1 = λ -1 = 0 for ε = 0 this condition reduces in our case to λ j ∈ iZ. Due to e iωt 3 = e 3iωt , terms of order O( q 3 ) only occur in the equation for U 3 and U -3 .

Hence the condition for eliminating the terms of order O( q 3 ) in H is λ 3 , λ -3 / ∈ iZ. Similarly removing the terms of order O( q 5 ) in H requires λ 3 , λ -3 , λ 5 , λ -5 / ∈ iZ. Thus, if Assumption 4.1 is valid all terms of order O( q n ) with 3 ≤ n < N can be eliminated in the equation for w by a finite-dimensional transformation.

We prove Lemma 4.3. Under the validity of Assumption 4.1 there is a 2π-periodic, near-identity and finite-dimensional change of variables w = Φ(q, w) in a neighborhood of (q, w, ε) = (0, 0, 0) which transforms the coupled system (4.1)-(4.2) into ∂ x q = B 1 q + F (q, w) , (4.3)

∂ x w = L w + G(q, w) + H(q) (4.4)
where the nonlinear term H is of order O( q N ) and where G(q, 0) = 0.

Proof. The statement is proved by induction. First (4.1)-(4.2) is completed with ∂ x ε = 0 such that all terms with ε can be handled as nonlinear. Let us assume H(q) = O( q p ) for a p ∈ N with p < N. We construct a near identity change of variables which removes the homogeneous terms of degree p w.r.t. q in H. As explained in Remark 4.2 H(q) has only components in the equations for w k with 3 ≤ k ≤ p.

We make the finite dimensional change of variables wk = w k + J k (x, q, . . . , q p ), J k : p -linear w.r.t. q, 3 ≤ k ≤ p, wk = w k , k > p.

Differentiating wk w.r.t. x yields for 3 ≤ k ≤ p that q) ′ where we used the abbreviation • ′ = (d/dx)•. Then expressing w k in terms of wk gives w′ k = B k ( wk -J k (x, q)) + G k (x, q, w -J(x, q)) + H k (x, q) + J k (x, q) ′ where J k (x, q) ′ = ∂ x J k (x, q) + j≤p J k (x, q, . . . , B 1 q pos. j , . . . , q) + h.o.t..

w′ k = w ′ k + J k (x, q) ′ = B k w k + G k (x, q, w) + H k (x, q) + J k (x,
The higher order terms h.o.t. contain the terms J k (x, q, . . . , F pos. j , . . . , q) which are at least of order p + 2 w.r.t. q and thus h.o.t. contains no term to be removed in this step.

In order to eliminate the homogeneous terms H k,hom of degree p of H(q) we have to choose J k (x, q) to satisfy (4.5)

B k J k (x, q) = ∂ x J k (x, q) + j≤p J k (x, q, . . . , B 1 q pos. j , . . . , q) + H k,hom (x, q).
The term H k,hom is of the form

H k,hom (x, q) = H k1 H k2 , H kj = n h jn (x)y n (q)
where y n (q) = q n 2 q p-n 1 is a homogeneous polynomial in q of order p. Since q is twodimensional there are p + 1 of them. Hence we choose J k to be of a similar form, namely J k (x, q) = j 1k (x, q) j 2k (x, q) , j lk = n q ln (x)y n (q), l ∈ {1, 2}

For ε = 0 we have B 1 = 0 1 0 0 so that y n (q, . . . , B 1 q pos. j , . . . , q) = 0 if (B 1 q) 2 is involved, i.e., for j ≤ n and y n (q, . . . , B 1 q pos. j , . . . , q) = y n+1 (q) if (B 1 q) 1 is involved, i.e., for j > n.

According to the non-resonance condition the B k for k ≥ 3 are diagonal with eigenvalues ±λ k or a Jordan block with eigenvalue ±i/2. Equation (4.5) transforms in the first case into λ k q 1n = q ′ 1n + (n + 1)q 1(n+1) + h 1n , -λ k q 2n = q ′ 2n + (n + 1)q 2(n+1) + h 2n .

for 0 ≤ n ≤ p with the convention q j(n+1) = 0. Since we have 2π-periodic coefficients h ln we use Fourier series f = m fm e imx and obtain λ k q1n,m = im q1n,m + (n + 1)q 1(n+1),m + ĥ1n,m -λ k q2n,m = im q2n,m + (n + 1)q 2(n+1),m + ĥ2n,m which is solved recursively starting at n = p by (4.6) q1n,m = ĥ1n,m + (n + 1)q 1(n+1),m

λ k -im , q2n,m = ĥ2n,m + (n + 1)q 2(n+1),m -λ k -im
For k ≤ p < N the denominator never vanishes according to Assumption (4.1). The second case, i.e. B k a Jordan block, can be handled similarly and we find the same conditions. In Appendix A the computations are made for an example. Therefore, we are done.

In the 4π-periodic situation the non-resonance condition λ j ∈ iZ for l 0 = 0 obviously has to be replaced by 2λ j ∈ iZ.

The additional resonances which occur by doubling the period come from the eigenvalues λ j = ±i/2 of the 2π-periodic case. In the 4π-periodic case they correspond to λ j = 0. The eigenfunctions to these new zero eigenvalues are odd in the 4π-periodic setting, whereas the eigenfunctions of the original zero eigenvalues are even in the 4πperiodic setting. Hence in case of a vanishing denominator in (4.6) also the nominator, which is the projection of an even function on an odd function vanishes. Hence, we get back the original non-resonance condition λ j ∈ iZ.

A similar argument holds in case l 0 = 1/2. In this case an odd power of an odd function is projected on an even function which also gives zero.

Construction of a reversible homoclinic solution in case H = 0

The ultimate goal of the normalform transforms would be to get a finite-dimensional system for q alone. As explained in the introduction this ultimate goal cannot be reached.

After applying the normalform transforms we still have a system of the form

∂ x q = B 1 q + F (q, w), (5.1) ∂ x w = Lw + G(q, w) + H(q), (5.2)
but now with H = O( q N ). Since G is at least linear w.r.t. w we expect that the lowest order of H in terms of q gives the size of w, i.e. we expect that for the bifurcating solutions w = O( q N ) at least for a large interval w.r.t. x.

The idea is now to consider H as a small perturbation. In case H = 0 the space {w = 0} is some invariant subspace and we have a two-dimensional reduced system (5.3) ∂ x q = B 1 q + F (q, 0), but still with 2π-periodic x-dependent coefficients. By averaging methods and truncation a reversible x-independent system can be derived for which the existence of two homoclinic orbits can be established by phase plane analysis. These homoclinic solutions will not persist if H = 0, but they will be the basis of our subsequent analysis.

In a first step in (5.3) for the homogeneous polynomials w.r.t q of degree < N we transfer the x-dependent coefficients in x-independent ones. Lemma 5.1. There is a reversible near-identity change of variables which transforms (5.3) into (5.4) ∂ x q = B 1 q + F 1 (q, 0) + F 2 (x, q, 0), with F 2 = O( q N ) and F 1 not depending explicitly on x.

Proof. This fact is well known for periodic systems. The proof goes along the lines of the one for Lemma 4.3. The major difference to that proof is that in the denominator of the right hand sides of (4.6) now λ k = 0. Hence, the zeroth Fourier coefficient cannot be removed, i.e., the x-dependent part remains.

We will handle F 2 similarly to H as a small perturbation. Hence, our final reduced system is given by (5.5)

∂ x q = B 1 q + F 1 (q, 0).
Since B 1 is a Jordan block of size two for q = (a, b) System (5.5) has the form

∂ x a = b + O(|ε 2 a|, |ε 2 b|, |a 3 |, . . . , |b 3 |), ∂ x b = O(|ε 2 a|, |ε 2 b|, |a 3 |, . . . , |b 3 |)
for small (a, b). Introducing A and B by

a(x) = εA(εx) and b(x) = ε 2 B(εx) yields (5.6) ∂ X A = B + O(ε), ∂ X B = s 1 A + γs 3 A 3 + O(ε), with constants s 1 , s 3 ∈ R. Since s 1 ∼ |ε -2 (ω 2 -ω 2 n 0 )| = O(1) > 0, if γs 3 < 0 the truncated system (5.7) ∂ X A = B, ∂ X B = s 1 A + γs 3 A 3 ,
possesses a pair of homoclinic solutions q hom = (A hom , B hom ) which is given by

A hom (X) = ± 2s 1 -γs 3 sech ( √ s 1 X) , ∂ X A hom = B hom .
These solutions lie in the intersection of the stable and unstable manifold of the origin.

The persistence of these homoclinic solutions which lie in the intersection of the stable and unstable manifold of the origin under the perturbations of order O(ε) follows with the usual reversibility argument, namely the transversal intersection of the homoclinic orbit with the fixed space of reversibility {B = 0} for ε = 0. By the transversal intersection for ε = 0 the unstable manifold intersects the fixed space of reversibility also for ε > 0. The solution for (-∞, 0] is reflected by the reversibility operator to a solution for [0, ∞). Hence, we have established the existence of a pair of homoclinic solutions for (5.5). See Figure 10. The dotted line is the unstable manifold intersecting the fixed space of reversibility also transversally in the full system (5.5). The next panel shows the reversible reflection of this manifold and the last panel the associated symmetric solution.

Counting the dimensions

Although the homoclinic solutions q hom constructed in the last section will not persist if H = 0, it will be the basis of our subsequent analysis for the full system which we write as

∂ x q = B 1 q + F 1 (q, 0) + δ(F 1 (q, w) -F 1 (q, 0) + F 2 (q, w)), (6.1) ∂ x w = Lw + δ(G(q, w) + H(q)), (6.2) 
where the perturbation terms are indicated with δ. The unperturbed system is given for δ = 0 and the perturbed system is given for δ = 1.

In order to prove the persistence of the bifurcating homoclinic solutions which have been found for H = 0, also in case H = 0, when {w = 0} is no longer an invariant subspace, we would have to proceed as in previous section, i.e. we would have to use reversibility arguments. The reversibility argument in general is based on a transversal intersection of the stable manifold associated to the eigenvalue leaving zero in the direction of the negative real axis with the fixed space of reversibility {(u, ∂ x u) = (u, 0) | u : [0, 2π/ω) → R} in (2.1). Obviously, many dimensions are missing for a transversal intersection. However, the center-stable manifold (which also includes the w-modes) and the fixed space of reversibility intersect transversally. Lemma 6.1. For δ = 0 the fixed space of reversibility and the center-stable manifold intersect transversally, i.e. span the complete phase space ℓ 1 at the intersection point.

Proof. For the subspace to m = 1, i.e. for q, we have the transversal intersection by the analysis of the last section. For all other m it is sufficient to prove that the (restricted) fixed space of reversibility and the (restricted) center stable subspace at w = 0 span R 2 . For the m-th subspace the fixed space of reversibility in case of Floquet exponents In case of λ 1 , λ 2 ∈ iR the center-stable manifold part is all of R 2 . Hence we have a transversal intersection in the diagonal and Jordan block case. In the remaining case λ 1 < 0 < λ 2 the center-stable part is given by {µ 1 0 | µ ∈ R} which intersects the fixed space of reversibility which is given in this case by {µ

λ 1 = λ 2 is given by {µ 1 1 | µ ∈ R}
1 1 | µ ∈ R} transversally.
Hence the direct sums of the fixed spaces of reversibility and the direct sums of the center-stable subspaces together span the complete phase space ℓ 1 .

For δ = 1 the transversality of the center-stable manifold and of the fixed space of reversibility follows with some perturbation argument using the subsequent estimates.

7 Estimates for the solutions on the center-stable manifold

In the last section we have seen that there is a transversal intersection of the fixed space of reversibility and the center stable-manifold for δ = 0. By a perturbation argument we can prove that there is a transversal intersection also for δ = 1. By our construction with the reversible reflection the solutions we are intersted in lie in the center-stable manifold for x ∈ [0, ∞) and in the center-unstable manifold for x ∈ (-∞, 0]. For x → ∞ solutions on the center-stable manifold converge towards the center manifold. Hence for x → ∞ polynomial growth of these modes is possible and so estimates for all x ∈ R cannot be expected. However, in case H(q) = O( q ) N for an N ∈ N fixed it can be shown that w = O(ε N -1 ) for a very large interval, first for all x ∈ [0, ε 3-2N ] and then by the reversible reflection for all x ∈ [-ε 3-2N , ε 3-2N ]. Moreover, q will be of homoclinic form.

In order to prove such bounds for w and q we make the ansatz

(q, w) = (q hom + ε N -1 R 1 , ε N -1 R) and define Q hom := q hom /ε.
The deviation R = (R 1 , R) from the homoclinic orbit in the transformed systems (6.1) and (6.2) satisfies (7.1)

∂ x R 1 = B 1 R 1 + Ň1 (R), ∂ x R = L R + Ň(R),
where

Ň1 (R) = ε 1-N F (εQ hom + ε N -1 R 1 , ε N -1 R) -F (εQ hom , 0) , Ň (R) = ε 1-N G(εQ hom + ε N -1 R 1 , ε N -1 R) + H(εQ hom + ε N -1 R 1 )
.

We define projections P 1,s , P 1,u on the stable and unstable eigenspaces E 1,s , E 1,u and (P m,cs , P m,u ) m>1 , on the center-stable and unstable eigenspaces Ẽcs , Ẽu associated to all eigenvalues with Reλ m ≤ 0 and Reλ m > 0 respectively.

The projections are uniformly bounded and well-defined since they are defined componentwise for B m ∈ C 2×2 . For the construction of a center-stable manifold the nonlinearity has to be multiplied with some cut-off function ψ being C ∞ 0 with values in [0, 1], satisfying ψ(ρ) = 1 for ρ ≤ 1, and ψ(ρ) = 0 for ρ ≥ 2. For C ρ ≥ 0 sufficiently large, but fixed, independent of 0 ≤ ε ≪ 1, we define a new nonlinearity by multiplying Ň1 (R), Ň(R) with ψ( R ℓ 1 /C ρ ). We keep the same notations for the truncated nonlinearity.

We define Φ = (Φ 1,s , Φ 1,u , (Φ m,cs , Φ m,u ) m∈N ) by (7.2)

                               Φ 1,s (x) = e B 1 (x-x 0 ) P 1,s R 1 (0) + x 0 e B 1 (x-ξ) P 1,s Ň1 ((R j (ξ)) j∈N )dξ, Φ 1,u (x) = - 1/ε 2N-3
x e B 1 (x-ξ) P 1,u Ň1 ((R j (ξ)) j∈N )dξ, Φ m,cs (x) = e Bm(x-x 0 ) P m,cs R(0)

+ x 0 e Bm(x-ξ) P m,cs Ň ((R j (ξ)) j∈N )dξ, Φ m,u (x) = - 1/ε 2N-3
x e Bm(x-ξ) P m,u Ň ((R j (ξ)) j∈N )dξ.

As usual the center-stable manifold is constructed by solving the equation R = Φ(R) with a fixed point argument in the space Y (1/ε 2N -3 ) where

Y (x) = {w ∈ C 0 ([0, x], ℓ 1 ) | sup t∈[0,x] w(t) ℓ 1 < ∞}.
Since there exists a C > 0 such that for all m ∈ N odd 

(7.3)        e B 1 x P 1,s C 2 →C 2 ≤ Ce -εx/2 , ∀x ≥ 0, e B 1 x P 1,u C 2 →C 2 ≤ Ce -ε|x|/2 , ∀x ≤ 0, e Bmx P m,cs C 2 →C 2 ≤ C, ∀x ≥ 0, e Bmx P m,u C 2 →C 2 ≤ C, ∀x ≤ 0,
       S 1,s (x) ≤ C init + CεS(x) + C pulse , S 1,u (x) ≤ CεS(x) + C pulse , S m,cs (x) ≤ C init + C(ε + ε 2N -2 x)S(x) + C pulse , S m,u (x) ≤ C(ε + ε 2N -2 x)S(x) + C pulse .
The constant C init is associated with |w 1,s (0)|, w m,cs (0) ℓ 1 and C pulse with |q(0)|. We have used the subsequent estimates:

1. Due to Corollary 3.4 and due to the use of the cut-off function we find

max( Ň1 (R) R 2 , ( Ň(R)) ℓ 1 ) ≤ C ε 2 Q hom 2 C 2 R ℓ 1 + ε N Q hom C 2 R 2 ℓ 1 + ε 2N -2 R 3 ℓ 1 + ε Q hom N C 2
with C just depending on N.

2. Using (7.3) shows that for the first mode that

x 0 e B 1 (x-ξ) P 1,s f (ξ)dξ

C 2 ≤ Cε -1 sup ξ∈[0,x] f (ξ) C 2
and similarly for e B1 x P 1,u on [x, ε 3-2N ].

Since

Q hom (ξ) R 2 = O(e -ε|ξ| ) for |ξ| → ∞ one has x 0 ε Q hom N R 2 dξ ≤ C, x 0 ε 2 Q hom (ξ) 2 R 2 R(ξ) ℓ 1 dξ ≤ Cε R Y (x) , x 0 ε N Q hom (ξ) R 2 R(ξ) 2 ℓ 1 dξ ≤ Cε N -1 R 2 Y (x) .
4. Finally we have

x 0 ε 2N -2 R(ξ) 3 ℓ 1 dξ ≤ Cxε 2N -2 R 3 Y (x) .
From (7.4) we have for all x ∈ [0, 1/ε 2N -3 ] and ε > 0 sufficiently small that

S(x) ≤ 10(C init + C pulse ).
This shows that that Φ maps a ball with radius 10(

C init + C pulse ) in Y (1/ε 2N -3 ) in itself.
Similarly the contraction property of the map Φ for ε > 0 sufficiently small can be shown.

Hence for sufficiently small P 1 R 1 (0) and P m,cs R(0) there exists a fixed point R * = Φ(R * ).

The local center-stable manifold W cs (ε) is now defined as union of all points R * (0) to the P 1 R 1 (0) and P m,cs R(0) satisfying R * Y (1/ε 2N-3 ) ≤ 10(C init + C pulse ). Since we have a non-autonomous system the center-stable manifold depends on the starting time x. However, since our system is only reversible for x = 0 we restricted ourselves to starting time x = 0. Exactly as in [11, Section 6], see also [START_REF] Groves | Modulating pulse solutions for a class of nonlinear wave equations[END_REF][START_REF] Groves | Modulating pulse solutions to quadratic quasilinear wave equations over exponentially long length scales[END_REF], the transversal intersection of W cs and the fixed space of reversibility follows. We refrain from repeating this proof and only make the following remark: In the proof of Lemma 6.1 in the two-dimensional subspaces the restrictions of the center stable manifold and of the fixed space of reversibility are all of R 2 or have at least an angle of π/4 for δ = 0. By the above estimates on R * for δ = 1 this picture is perturbed of order O(ε N -1 ). Hence the overall picture is not destroyed. However, the detailed proof would be much more involved. Remark 7.1. In case that no Floquet exponents are on the imaginary axis and in case that they are uniformly bounded away from this axis the semigroups e Bmx P m,s for x ≥ 0 and e Bmx P m,u for x < 0 show exponential decay rates. Then the estimates in (7.4) can be improved and no x occurs. Hence in this case the estimates can be proved for all x ∈ R. The decay to zero for |x| → ∞ can be shown by introducing some exponential weight. Hence in this case true breather solutions do exist. See [START_REF] Blank | Breather solutions in periodic media[END_REF]. .3). A band edge (dashed line) was found at ω 2 n 0 ≈ 1.6173. We chose ω 2 = 1.6079 so that it falls into the first spectral gap.

Recall from Section 3 the system within the new coordinate frame has the form:

V ′ m = B m V m + N m .
For illustrative purposes, we list the first few terms of the nonlinearity Ñm :

N 1 = q12 n 1 q22 n 1 N 3 = q3 12 n 3 q3 22 n 3
where

n 1 = -r(|aq 11 + bq 12 | 2 (aq 11 + bq 12 ) + |a 3 q 3 11 + b 3 q 3 12 | 2 (aq 11 + bq 12 ) + • • • ) n 3 = -r((aq 11 + bq 12 ) 3 + |aq 11 + bq 12 | 2 (a 3 q 3 11 + b 3 q 3 12 ) + • • • )
Here was used the fact that

g 1 = |u 1 | 2 u 1 + |u 3 | 2 u 1 + • • • g 3 = (u 1 ) 3 + |u 1 | 2 u 3 + • • • ,
where the occurrences of u . have been replaced by the appropriate (a . q .,. + b . q .,. ). The term above that is boldfaced plays an important role in later computations.

We are now ready to perform the normal form transform. We set q = V 1 = (a, b) which corresponds to the first mode, and w = (V 3 , V 5 , ...), which corresponds to the remaining modes. Recall from Section 4 that (q, w) satisfy ∂ x q = B 1 q + Ñ1 (x, q, w), (A.5) ∂ x w = Lw + G(x, q, w) + H(x, q). (A.6) The terms in the nonlineartiy Ñm , m ≥ 3, that only depend on the first mode, q are contained in H(x, q). This corresponds to the bold part of n 3 above. The rest belongs to G(x, q, w). As stated in Section. 4 the goal is to make the term H(x, q) small. This done iteratively for each m > 1. We perform the first iteration of this calculation which starts at p = 3. Thus we consider w 3 = V 3 , and we try to eliminate H 3 (x, q) which corresponds the first block diagonal entry of H(x, q). We set w3 = w 3 + J 3 (x, q, q, q), where J 3 satisfies (A.7) B 3 J 3 (x, q) = d dx J 3 (x, q) + H 3 (x, q). J 3 and H 3 have the form:

H 3 (x, q) = h 1 h 2 , h i = 4 k=1 h i,k (x)y k (q) (A.8) J 3 (x, q) = j 1 j 2 , j i = 4 k=1 j i,k (x) 
y k (q), (A.9) and in this example where

A =             λ 3 -3λ 1 0 0 0 0 0 0 0 -3c 1 λ 3 -λ 1 0 0 0 0 0 0 0 -2c 1 λ 3 + λ 1 0 0 0 0 0 0 0 -c 1 λ 3 + 3λ 1 0 0 0 0 c 3 0 0 0 -λ 3 -3λ 1 0 0 0 0 c 3 0 0 -3c 1 -λ 3 -λ 1 0 0 0 0 c 3 0 0 -2c 1 -λ 3 + λ 1 0 0 0 0 c 3 0 0 -c 1 -λ 3 + 3λ 1            
, where λ 1 = 0.0681 + 0.5i and λ 3 = 0.2326i are eigenvalues corresponding to B 1 and B 3 respectively, c 1 = 0.4657, and c 3 = -0.1632 (see Eq. A.4). We solve these equations in Fourier space, see the left panel of Figure 13.

Section 5 describes how to compute an approximate modulating pulse solution, which has the form

A(x) = ± 2s 1 -s 3 sech( s 1 |c 1 |x)
where s 1 = λ 2 1 /ε and s 3 is the coefficient of the |A| 2 A term in Equation (5.7). In this example, it is

s 3 = 1 2π 2π 0 -r q22 |q 11 | 2 q 11 dx
See the right panel of Figure 13.

B From the physical equations to the studied model

The equation

(B.1) ∂ 2 x E = ∂ 2 t ((1 + α)E + β|E| 2 E)
with L-periodic α and β for an L > 0, is one of the most used models in the description of electromagnetic waves in one-dimensional photonic crystals. From a mathematical point of view (B.1) has the disadvantage of being a quasi-linear system. In this section we will Figure 13: Left: The first element of the matrix J 3 (x, q) which satisfies (A.12) and is used to eliminate H 3 (x, q) which corresponds to the first block element of the matrix H(x, q) in Equation (A.6). Right: Approximate solution to Equation (A.1). explain that from a modeling point of view (B.1) is equivalent to the semi-linear wave equation (B.2)

∂ 2 t E = ∂ 2 x E + ρ(x)E + r(x)|E| 2 E
again with L-periodic ρ, r which is more tractable by analytic and numerical methods.

In this section we use variables like P, M, etc. for different objects than in the previous sections in order to keep the standard notation since there is no possibility of interchanging the objects.

Maxwell's equations (cf. [START_REF] Feynman | Mainly electromagnetism and matter[END_REF]) in media are given by where E is the electric, B the magnetic field, P the polarization, M the magnetization, j the electric current density, and ρ the electric charge density, where by rescaling all coefficients have set to one.

In photonic crystals there are no free charges, no electric current, and no magnetization, i.e., ρ = 0, j = 0 and M = 0. For polarized light, i.e., in the one-dimensional situation especially into (B.8)

∂ 2 x E = ∂ 2 t E + ∂ 2 t P.
In order to close (B.8) the polarization P has to be expressed in terms of E.

In the simplest model the nuclei of the atoms are fixed and the centers q of the electrons move like a nonlinear oscillator, namely m d 2 q dt 2 + mω 2 q + mr q|q| 2 = q e E with constants m, ω, r, and q e . For each atom we find a polarization p = q e q. From the polarization for one atom we come to the polarization for the full system by multiplying p with the number N of oscillators per unit cell and by averaging this induced spatially highly varying field. Therefore, the polarization is modeled as the solution of The argument to come to (B.1) is as follows. For E = E 0 e iωt , Equation (B.11) possesses solutions P j = P 0j e iωt with (B.12)

∂
-ω 2 P 0j + ω 2 j P 0j + r j P 0j |P 0j | 2 = d j E 0 .

For photonic crystals the parameters ω 2 j , r j , and d j depend periodically on x. Thus, for small E 0 we have a constitutive law (B.13) P 0j (x, ω) = α j (x, ω)E 0j (x, ω) + β j (x, ω)E 3 0j (x, ω) + . . . .

For ω in the optical window the changes in α j (x, ω) are negligible w.r. 

Figure 1 :

 1 Figure 1: The eigenvalue problem of (∂ x +il) 2 w n -ρw n = -ω 2 n (l)w n with periodic boundary conditions w n (x + 2π) = w n (x) possesses countably many eigenvalues -ω 2 n (l) for fixed l. Here the first four curves l → ω n (l) for a possible situation are shown. The right panel shows the spectrum with the spectral gaps as a subset of C.

Figure 2 :

 2 Figure 2: A standing light pulse (line) in a photonic crystal (solid bars). The wavelength of the carrier wave and of the photonic crystal are of a comparable order.

Figure 3 :

 3 Figure3: Curves of eigenvalues of the temporal formulation (left panels) and corresponding Floquet exponents of the spatial formulation (right panels). If the dotted line l → mω "falls into a spectral gap" then two Floquet exponents lie off the imaginary axis (top panels). Otherwise both are on the imaginary axis (bottom panels).

Figure 4 :

 4 Figure 4: Examples of an eigenvalue and of a Floquet exponent distribution corresponding to the spatial dynamics formulation in the homogeneous case (left) and the spatially periodic case (right).

Figure 5 :

 5 Figure 5: Left: the envelope of a modulating pulse solution with u → 0 for |x| → ∞. Right: the envelope of a generalized modulating pulse solution with O(ε N -1 ) tails for |x| large up to O(1/ε 2N -3 ) as constructed in Theorem 1.1.

Figure 6 :

 6 Figure 6: The left panel shows the situation in Theorem 1.1. The right panel shows the situation in Remark 1.7

Figure 7 :

 7 Figure 7: The left panel shows a curve of Floquet multipliers. The right panel shows the associated curve of Floquet exponents.

Figure 8 :

 8 Figure 8: The left panel shows a sketch of the curves of eigenvalues in the 2π-periodic setting. The right panel shows a sketch of the associated curves of eigenvalues in the artificial 4π-periodic setting. Horizontal tangencies can only occur at l = 0. They correspond in the spatial dynamics formulation to Jordan blocks.
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 910 Figure9: The phase portrait of the reduced system in the (A, B)-plane with the homoclinic orbits.

  and in case of Jordan block with eigenvalue zero by {µ 1 0 | µ ∈ R}.

  we find by(3.2) that(e Bmx P m,cs ) m∈N odd ℓ 1 →ℓ 1 ≤ C, ∀x ≥ 0,and(e Bmx P m,u ) m∈N odd ℓ 1 →ℓ 1 ≤ C, ∀x ≤ 0, for S 1,s (x) = sup ξ∈[0,x] V 1,s (ξ) R 2 , .. ., and S(x) = R Y (x) we find with the subsequent estimates the inequalities(7.4) 

Figure 11 :

 11 Figure 11: Eigenfunctions (solid lines) of the linear problem (A.3). A band edge (dashed line) was found at ω 2 n 0 ≈ 1.6173. We chose ω 2 = 1.6079 so that it falls into the first spectral gap.

Figure 12 :

 12 Figure 12: The 2π period functions corresponding to the elements of the matrix Q 1 (x) are shown. Those from the first row are in the left panel and those from the second are shown in the right panel.

  q) = a 4-k b k-1 , k = 1 . . . 4. (A.11) After substituting (A.8) and (A.9) into (A.7), and making use of the fact that a ′ (x) = λ 1 a(x) + c 1 b(x) + h.o.t and b ′ (x) = -λ 1 b(x) + h.o.t. and collecting in terms of a and b gives us a natural choice for eight linear ODEs: (A.12) d dx j = A j + h

∇

  • (E + P ) = ρ, (B.3) ∇ × E = ∂ t (B + M), (B.4) ∇ × B = -∂ t (E + P ) + j, (B.5) ∇ • (B + M) = 0, (B.6)

  Using ∇ × ∇ × u = -∆u + ∇(∇ • u) system (B.3)-(B.6) simplifies into (B.7) ∆E -∇(∇ • E) = ∂ 2 t E + ∂ 2 t P.

  2 t P + ω2 P + rP |P | 2 = dE, with another constant d. The model can be extended by considering various oscillators. ∂ 2 t P j + ω 2 j P j + r j P j |P j | 2 = d j E. (B.11)

	This simple modeling finally leads to a system	
	(B.9)	∂ 2 x E = ∂ 2 t E + ∂ 2 t P,
	(B.10)	P =	N j=1 P j ,

  t. ω, i.e., the relation (B.[START_REF] Guckenheimer | Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[END_REF]) is modeled independently of ω, or equivalently ω =: ωj is fixed. Then multiplying (B.12) by e iωt yields the relation(-ω 2 j + ω 2 j + r j |P j | 2 )P j = d j E,which can be inverted for small E, i.e., Inserting this into (B.8) yields (B.1). On the other hand, we can proceed as follows. We replace first ∂ 2 t P in (B.8) via (B.10) and (B.11), i.e., (B.15)∂ 2 x E = ∂ 2 t E + N j=1 (d j E -ω 2 j P j -r j P j |P j | 2 ).Using (B.14) to replace P j in (B.15) yields (B.2). linearly on p k 0 and p -k 0 they can be written as M p k 0 p -k 0 = 0. We find nontrivial solutions if we choose µ in such a way that the determinant of M vanishes. We find |µ| ≤ O(1/m)O(|ρ 2k 0 | + |ρ -2k 0 |) Hence we found for the time-periodic part in case of no Jordan-block that p(x) = (e ik 0 x + h.o.t.)c 1 + (e -ik 0 x + h.o.t.)c 2 where h.o.t. means O(1/m) in ℓ 1 . This leads to the transformation U(x) = ik 0 (e ik 0 x + h.o.t.) e ik 0 x + h.o.t. v 1 (x) + -ik 0 (e -ik 0 x + h.o.t.) e -ik 0 x + h.o.t. v 2 (x) and finally to Q m (x) = ik 0 (e ik 0 x + h.o.t.) -ik 0 (e -ik 0 x + h.o.t.) e ik 0 x + h.o.t. e -ik 0 x + h.o.t. . This immediately gives the assertion since k 0 ∼ m.

	(B.14)	P j =	d j ω 2 j -ω 2 j	E -r j	d j ω 2 j -ω j

3

|E| 2 E + . . . .

The reversible reflection

Then, we use the reversibility property of (3.1) to find a solution of homoclinic form for all x ∈ [-1/ε 2N -3 , 1/ε 2N -3 ]. Since the center-stable manifold intersects the fixed space of reversibility transversally, the application of the reversibility operator allows us to extend all solutions on the center-stable manifold given for x ∈ [0, 1/ε 2N -3 ] to a solution of homoclinic form for all x ∈ [-1/ε 2N -3 , 1/ε 2N -3 ]. Except of the fact that we have a 2πperiodic system this last step is exactly as in [START_REF] Groves | Modulating pulse solutions for quasilinear wave equations[END_REF]Section 6]. This concludes the proof of Theorem 1.1.

A An example

In this section we perform the calculations described in Sections 3-5 for a particular choice of the periodic coefficients ρ and r. Namely, we consider the equation

After casting (A.1) as an evolutionary system and taking its Fourier series, we arrive at a system of infinitely many ODEs

, where g(u) is defined in Equation (2.3) for m ∈ Z. In this example we make the calculations for the first two modes, m = 1 and m = 3, since these modes have the largest contribution to the solution and calculations for higher modes are similar. The corresponding band gap structure can be found by solving the linear problem,

6079 where ω 2 n 0 ≈ 1.6173 is the first band edge and ε is chosen to be small enough so that ω falls in a gap. Here ε 2 = 0.094 is suitable. See Figure 11. Using solutions of the linear problem, we are able to make a change of coordinates such that the linear problem is autonomous, see Section 3. After fixing ω 2 = 1.6079 we can obtain the corresponding fundamental matrix to the first order system associated to (A.2) which has the form C m = Q m (x)e Mmx for each mode m. We transform M m with a matrix S m in tridiagonal form. We set B m = (S m ) -1 M m S m and we define the new coordinate U m = Q m V m = P M m S m V m . In this example we find

See Figure 12 to see the corresponding P m (x) matrices. We make use of the following notation

q 11 q 12 q 21 q 22 P 3 (x)S 3 = q 3 11 q 3 12 q 3 21 q 3 22 (P 1 (x)S 1 ) -1 = q11 q12 q21 q22 (P 3 (x)S 3 ) -1 = q3 We consider ∂ 2

x u -ρu = -m 2 ω 2 u. By Floquet's theorem the solutions are given by u(x) = e λx p(x) with p(x) = p(x + 2π). We use Fourier series

and obtain

We have to find λ in such a way that this infinite-dimensional system of equations possesses non-trivial solutions (p k ) k∈Z . In case ρ = 0 we find the solutions

Hence for ρ = 0 we have a two-dimensional kernel. We choose λ such that |Imλ| ≤ 1/2, i.e., there is a k 0 such that

By this choice we have that m and k 0 are proportional. In order to handle the situation ρ = 0 we use a Lyapunov-Schmidt like reduction. We introduce the deviation µ of λ + by

By construction λ = λ + + µ and λ = λ --µ. We obtain for k = ±k 0 that

For m sufficiently large the last set of equations can be resolved w.r.t. p k for k = ±k 0 as a function of µ, p k 0 and p -k 0 with norm of order O(1/m). More precisely, the implicit function theorem can be applied in the space ℓ 1 and

Note that ρ ∈ H 1 per implies (ρ k ) k∈Z ∈ ℓ 1 . This resolution can be inserted in the bifurcation equations (C.1) and (C.2) which now only include µ, p k 0 and p -k 0 . Since they depend