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Abstract 33 

With the development of autonomous vehicles, car sickness may affect increasing numbers of car 34 
occupants. Car manufacturers have a real need to understand the causes of these symptoms, which 35 
occur mainly when car occupants are not engaged in a driving task. This study is the first to 36 
evaluate, in real driving conditions, the impact of lateral acceleration level and vehicle path 37 
predictability on car sickness incidence and severity, and the potential relationship with 38 

physiological changes. 24 healthy volunteers participated as front seat passengers in a slalom 39 
session inducing lateral movements at very low frequency (0.2 Hz). They were continuously 40 
monitored via physiological recordings and provided subjective car sickness ratings (CSR) after 41 
each slalom, using a 5-point likert scale. CSR reveal that (i) the greater the lateral acceleration and 42 
(ii) the less predictable the vehicle path, the more severe the car sickness symptoms in real driving 43 

conditions. An increase in several physiological parameters is also found simultaneously with 44 
higher CSR, demonstrating activation of the sympathetic nervous system. Moreover, the linear 45 
regression applied to our data suggests that these physiological parameters can be used to indicate 46 

car sickness severity. Moreover, the linear regression applied to our data suggests that the 47 

evolution of these physiological parameters may reflect the CSR level indicated by participants. 48 
   49 
Keywords: Lateral acceleration, predictability, physiological measures, car sickness, real driving 50 
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1 Introduction 67 

Car sickness is very common, affecting about 60% of the population (Diels, 2014), mainly 68 

passengers, half of whom present high susceptibility and severe symptoms (Rolnick & Lubow, 69 

1991; Chen et al., 2010; Bos et al., 2018). Indeed, exposure to certain car motion can lead to car 70 

sickness symptoms ranging from mild stomach aches or headaches to dizziness, nausea, and 71 

ultimately vomiting (Dennison et al., 2016; Green, 2016). However, the development of 72 

autonomous vehicles, turning drivers into passengers (Sivak & Schoettle, 2015; Diels & Bos, 73 

2016; Kuiper, Bos, Diels, et al., 2020a), should sharply increase the numbers exposed to car 74 

sickness (Diels, 2014; Kuiper et al., 2018). This would run counter to the promise of enhanced 75 

driver comfort during transport (Diels & Bos, 2016; Salter et al., 2019). Thus, understanding what 76 

induces these symptoms is currently a major concern for car manufacturers, particularly when the 77 

car occupant is not engaged in a driving task.  78 

Studies with this objective have so far been mainly conducted in laboratories, rarely in real 79 

vehicles. However, it was demonstrated that the sensory context induced by laboratory stimuli will 80 

always diverge from that in a real car (Mühlbacher et al., 2020). For example, when a rotating 81 

chair is used, the stimuli are mainly force-related, inducing vestibular and somatosensory 82 

solicitations which may cause some motion sickness (eg. coriolis or somatogyral illusions 83 

(Lackner, 2014)). Conversely, with a virtual reality headset, the stimuli are only visual, leading to 84 

visually-induced motion sickness (VIMS) (Naqvi et al., 2015; Dennison et al., 2016; Kim & Park, 85 

2020). Some attempts have been made to create a more realistic driving environment using 86 

dynamic driving simulators (combination of virtual reality + physical motion) (Lin et al., 2007; 87 

Chen et al., 2010; Aykent et al., 2014). While this has the advantage of engaging multimodal 88 

sensory inputs, the latter can never precisely replicate cars’ movements (Mühlbacher et al., 2020). 89 

Therefore, no consensus on the exact origins of car sickness has been reached, principally due to 90 

the diversity of conditions and stimuli used in these studies.  91 

Studies on motion sickness tend to focus first on the vertical movements very common in 92 

situations inducing sea sickness and air sickness. The characteristics of the motion itself (e.g. 93 

acceleration, frequency, duration, speed, axis, etc.) are known to influence the occurrence and 94 

severity of motion sickness (Lawther & Griffin, 1987; Bos & Bles, 1998; Koohestani et al., 2019). 95 

Movements at very low frequency induce symptoms, especially when oscillating between 0.10 96 

and 0.50 Hz (Turner, 1999; Golding et al., 2001; Donohew & Griffin, 2004; Cheung & Nakashima, 97 

2006). In laboratory conditions investigating vertical movements, pioneering modeling work 98 

identified a critical threshold between 0.16 and 0.20 Hz inducing the highest incidence of motion 99 

sickness (O’Hanlon & McCauley, 1974). Since inertial forces tend to be interpreted by the 100 

vestibular system as translational above 0.20 Hz and as tilt below this value, such a frequency 101 

should be sufficient to create strong intravestibular conflict (Bos & Bles, 1998). In addition, 102 

Lawther and Griffin (1987) found a linear relationship between the magnitude of vertical 103 

accelerations on ships and the incidence of motion sickness (MSI). With a range of 0.0 to 5.4 m/s², 104 
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an adapted McCauley's (1974) model showed a sigmoidal relationship between vertical 105 

acceleration magnitude and MSI: the greater the vertical acceleration, the more rapid the onset and 106 

the more severe the symptoms (O’Hanlon & McCauley, 1974; Bos & Bles, 1998). In cars, 107 

however, horizontal accelerations caused by braking (longitudinal) and turning (lateral) were 108 

shown to play a greater role in sickness incidence than vertical accelerations (Cheung & 109 

Nakashima, 2006; Diels, 2014). A recent systematic review (Schmidt et al., 2020) found that the 110 

triggers of car sickness most frequently cited were those involving repeated lateral acceleration 111 

(multiple turns [71.8%], winding roads [70.5%]). It is actually lateral motion at very low 112 

frequency, around 0.2 Hz, that was found to be the principal component of car sickness (Wada & 113 

Yoshida, 2016; Kuiper et al., 2018; Henry et al., 2022). Strikingly however, no study so far has 114 

specifically investigated the impact of different levels of lateral acceleration on car sickness 115 

severity in real driving conditions. 116 

For car manufacturers, there is another key issue: the difference in passengers’ and drivers’ 117 

susceptibility to car sickness. This difference mainly arises from the driver’s ability to control and 118 

anticipate vehicle paths (Griffin & Newman, 2004; Perrin et al., 2013; Wada & Yoshida, 2016). 119 

Conversely, passengers are passively exposed to vehicle motion and have a limited knowledge of 120 

forthcoming actions (e.g., direction, speed, strength, duration etc.). Several studies conclude that 121 

the ability to predict future movements may reduce the level of motion sickness induced (Rolnick 122 

& Lubow, 1991; Feenstra et al., 2011; Levine et al., 2014). These observations are supported by 123 

the theory of sensory mismatch, which occurs when perceptual expectations from the internal 124 

model about upcoming sensory inputs do not match those actually perceived (Reason, 1978; 125 

Dennison et al., 2016). In other words, passengers may experience discrepancies between their 126 

expectations and reality, whereas drivers planning their driving control actions can precisely 127 

anticipate vehicle motion (Griffin & Newman, 2004; Perrin et al., 2013; Wada et al., 2018). In 128 

addition, the magnitude of this discrepancy seems to impact the symptom severity of motion 129 

sickness (Dennison et al., 2016; Kuiper, Bos, Schmidt, et al., 2020b). While sensory mismatch is 130 

often suggested as a cause of car sickness, however, less is known about how vehicle path 131 

unpredictability may affect car sickness severity in real driving conditions.  132 

Accurate analysis of the impact of each factor inducing motion sickness requires a method of 133 

identifying and assessing the symptoms. Currently, the most widely used are questionnaires 134 

(MSSQ (Golding, 2006); MSAQ (Gianaros et al., 2003); SSQ (Kennedy, 1993) etc.) and subjective 135 

scales (MISC (Bos et al., 2006); Griffin and Newman’s scale, (2004) etc.). However, both depend 136 

on the individual's subjective feelings and on how the individual interprets the scale in reporting 137 

discomfort. Moreover, both tools suffer from low temporal and sickness resolution (Irmak, 2021). 138 

There is clearly a need for a more reliable and objective method of measuring motion sickness 139 

severity. 140 

Given the nature of the symptoms observed, physiological indicators could be a promising 141 

complement. In fact, motion sickness is considered a neuro-vegetative crisis that can initiate 142 
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physiological changes, also commonly observed during stressful events (Money, 1970; Gianaros 143 

et al., 2003; Muth, 2006). Attempts have been made to identify these changes for an objective 144 

measure of motion sickness, by exploring several physiological variables: electrocardiography 145 

(ECG), respiration (RSP), electrodermal activity (EDA), electrogastrogram (EGG), and 146 

electroencephalography (EEG). Multiple features have been extracted from each variable, most 147 

commonly: heart rate (HR) and heart rate variability (HRV) for ECG, breathing rate (BR) for RSP, 148 

mean skin conductance level (SCL) and response (SCR) for EDA, stomach contraction activity for 149 

EGG, and changes in frequency band content for EEG (Kim et al., 2005; Dahlman et al., 2009; 150 

Dennison et al., 2016; Koohestani et al., 2019; Henry et al., 2022). However, although most of the 151 

motion sickness studies were conducted in laboratory environments, their results were not 152 

consistent, possibly due to the wide variety of devices and stimuli used (Koohestani et al., 2019). 153 

For example, when measuring HR, some studies reported a decrease using a rotating optokinetic 154 

drum (Hu et al., 1991) and VIMS (VR (Nalivaiko et al., 2015; Dennison et al., 2016); Static driving 155 

simulator (Kim et al., 2005)), while others found an increase in HR with similar devices but 156 

different stimuli (rotating optokinetic drum (Dahlman et al., 2009); VR (Cheung, 2004; Himi et 157 

al., 2004). Between-study discrepancies in results were also observed for HRV, BR, and EDA 158 

measurements (Hu et al., 1991; Kim et al., 2005; Dahlman et al., 2009; LaCount et al., 2009; 159 

Nalivaiko et al., 2015; Dennison et al., 2016; Gavgani et al., 2017; Islam et al., 2020). Where car 160 

sickness symptoms are evaluated in real driving conditions, only one study measures physiological 161 

variables (Irmak, 2021), with results indicating a clear link between EDA features and symptom 162 

severity, as well as a slight increase in HR. It has been suggested that depending on the 163 

environments, stimuli, and induced movements, the nervous system may be stimulated to a 164 

variable degree (Harm, 2002). This could explain the divergence in physiological responses and 165 

the lack of consensus on the indicators that can be considered predictive of motion sickness. 166 

Individual reactions to motion thus vary in intensity and complexity with the movements to 167 

which participants are exposed. Seeking a more realistic assessment than that provided by 168 

laboratory conditions, this study was conducted in real car driving conditions using 0.2 Hz lateral 169 

movements. Our aim was to assess how (i) lateral acceleration level and (ii) ability to predict 170 

vehicle path impacted the severity of passengers’ car sickness. Based on the literature, we 171 

hypothesized that (i) the stronger the acceleration, the more severe the symptoms and (ii) inability 172 

to predict vehicle path also exacerbates symptoms in real driving conditions. Another major 173 

objective was to relate possible physiological responses to car sickness and to determine which 174 

variables might indicate car sickness severity in real driving conditions. We hypothesized that (i) 175 

the parameters of interest for each measure (cardiac, respiratory, and electrodermal) would 176 

increase gradually throughout the stimulation, reflecting the activation of the sympathetic nervous 177 

system, (ii) each of these parameters would be impacted during the post-test period, and (iii) their 178 

respective evolution should be linked to increasing symptom severity. 179 

 180 
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2 Materials and methods        181 

2.1 Participants    182 

Twenty-four healthy right-handed volunteers (12 women and 12 men, mean age: 39.3 ± 9 183 

years) with no neurological or vestibular disorders took part in the experiment, having drunk no 184 

stimulating or alcoholic drinks in the previous 24 hours. Minimum age was 20 years, with a 185 

driver’s license held for at least 2 years. As mentioned in the introduction, autonomous vehicles, 186 

by turning drivers into passengers, are likely to expose them to car sickness. Given that half the 187 

passengers affected by car sickness show high susceptibility, we therefore focused on this 188 

population (Bos et al., 2018). To guarantee sample homogeneity and limit inter-individual 189 

variability, participants were selected for their high susceptibility to motion sickness and car 190 

sickness, assessed by the Motion Sickness Susceptibility Questionnaire (mean percentile score: 191 

90.6 ± 9.2% (Golding, 2006)). Participants were informed of the study procedure and general 192 

objectives before signing a consent form warning them that they might experience car sickness 193 

during test sessions and that they could withdraw from the experiment at any time and for any 194 

reason. One participant became too sick to finish the experiment and quit the study. Participation 195 

was unpaid and no conflict of interest was declared. This study was approved by the local ethics 196 

committee of Aix-Marseille University in accordance with the ethical standards laid down in the 197 

1964 Declaration of Helsinki. 198 

2.2 General experimental set-up 199 

Test sessions were conducted in a closed area approximately 400 m long and 50 m wide, with 200 

no other traffic present, for controllability and safety reasons. The vehicle used for these tests was 201 

a medium-sized car popular in France (Citroën C4 Picasso), driven by one professional driver 202 

specifically trained to produce reproducible vehicle dynamics for all participants. During the test 203 

session, participants were seated in the front passenger seat of the vehicle in a predefined sitting 204 

position, safety belt fastened. We focused on the front passenger position to replicate as closely as 205 

possible what happens when a driver becomes a passenger (in autonomous vehicles), mainly in 206 

terms of the visual and vestibular experience. Car ventilation and temperature were monitored to 207 

provide a similar controlled environment for each participant. They were continuously equipped 208 

with physiological modules for electrocardiogram (ECG), respiration (RSP), and electrodermal 209 

activity (EDA) recordings (detailed further). A slider was positioned in front of volunteers to allow 210 

them to indicate their car sickness level during every test period (equipment detailed below). For 211 

synchronization, data from the physiological modules, the car sickness rating slider, and the 212 

vehicle's Controller Area Network (CAN) were recorded by a laptop in the rear seat of the vehicle. 213 

The experimental road consisted of two straight segments approximately 300 m long with 10m-214 

radius turning zones at both ends, forming an oval track. Three rows of twelve pylons spaced 20m 215 

apart were located along both straight segments, with a 6m gap between rows (Fig 1 - A). 216 
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2.3 Procedure 217 

Every test session began with one baseline period of 5 min in the parked car, during which 218 

resting physiological recordings were collected and signal quality was assessed visually (online 219 

check). Next came a slalom period of about 20 min to induce car sickness symptoms. If participants 220 

felt too sick to finish the test (i.e., maximum rating of 4 on the discomfort scale), the slalom period 221 

was interrupted, and the vehicle was parked. Once the vehicle stopped, there was a static recovery 222 

period of 5 min. During all periods, participants were instructed to look frontwards and to move 223 

as little as possible. Each participant took part in two test sessions on the same day, with a one-224 

hour lag between sessions, which lasted approximately 60 minutes (participant equipment, testing, 225 

and debriefing). At the end of their second test session, participants were given details of the 226 

study’s objectives and thanked for volunteering.   227 

 228 

Figure 1: Representation of (A) test set-up and timeline of the test session, in periods: baseline, slalom, recovery; (B) 229 
the five time intervals per session analyzed: baseline (Base), slaloms (comprising Sstart, Smid, Sstop,), and recovery (Recov). 230 
See Section 4 Data acquisition and processing. 231 

During the slalom period, the car was driven at a continuous speed of about 35 km/h and, in 232 

order to minimize additional lateral acceleration, the speed was limited to about 15 km/h during 233 

U-turns. The gap between pylons and the car speed ensured lateral movements of close to 0.2 Hz, 234 

recognized as a car-sickness-inducing frequency (Bos & Bles, 1998). 235 

Four conditions were designed to examine the effects of two independent variables. Two 236 

conditions assessed the influence of degree of lateral acceleration in regular slaloms, while two 237 

others assessed the influence of inability to predict vehicle path in both regular and unpredictable 238 

slaloms. The purely regular slalom conditions involved two levels of acceleration: high (5 m.s²) 239 

called Regular High (RH) and low (2 m.s²) called Regular Low (RL) (Fig 2 – A). These 240 

acceleration levels were based on the McCauley (1974) vertical model: low acceleration (2m/s²) 241 

causing 50% of MSI and the model’s highest acceleration (5m/s²) causing maximum MSI 242 

(O’Hanlon & McCauley, 1974;  Bos & Bles, 1998). During each regular slalom, the driver 243 

executed zigzags to the left and right of the pylons to induce reproducible lateral acceleration 244 

levels. In the unpredictable slalom conditions, the vehicle followed the path of a regular slalom 245 

but, at a given time, the driver added an unpredictable turn in an unexpected way. When the regular 246 

slalom path acceleration was high, the unpredictable turn was performed at low acceleration: this 247 
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is termed the Unpredictable High (UH) condition. In conditions with low regular slalom path 248 

acceleration, the unpredictable turn was performed at high acceleration: the Unpredictable Low 249 

(UL) condition (Fig 2 – B). Each participant took part in both a regular and an unpredictable 250 

condition at the same acceleration level. 251 

 252 

Figure 2: Representations of the four experimental conditions assessing the influence of lateral acceleration (High vs 253 
Low conditions) and inability to predict vehicle path (Regular vs Unpredictable conditions). 254 

2.4 Data acquisition 255 

2.4.1 CAN recordings 256 

The vehicle’s CAN data were recorded to obtain speed, lateral acceleration, and frequency of 257 

movement oscillations. Sampling frequency was set at 100 Hz. Each slalom (start and end) was 258 

automatically identified from the level of lateral acceleration, using MATLAB software 259 

(MathWorks, 2017). 260 

2.4.2 Car sickness rating recordings 261 

The test included regular subjective assessments of car sickness severity, used to analyze the 262 

evolution of symptoms from their very first occurrence and to compare it with the evolution of 263 

physiological recordings. To limit the time spent scoring, we therefore chose a short and 264 

continuous scale using a slider, which was easy to understand and to remember. Based on the first 265 

five levels of Griffin and Newman’s scale (2004), a 5-point likert scale was defined, graduated 266 

from 0 to 4: 0 = No symptom, 1 = Any symptom, however slight, 2 = Mild symptoms, for example, 267 

stomach awareness but no nausea, 3 = Mild nausea, 4 = Mild to moderate nausea (Green, 2016; 268 

Wada & Yoshida, 2016). The field was divided into 4 equal segments only indicated by colored 269 

dots, so that the participants were guided in evaluating their discomfort without being influenced 270 

by numbers. Each color corresponded to a rating: green for 0, white for 1 and 2, orange for 3 and 271 

red for 4. Participants rated their car sickness level via the slider in front of them. Only one score 272 

was recorded for baseline and one for the recovery period. In the slalom period, during the U-turns 273 

that followed each slalom, participants were instructed to give their rating based on the worst 274 

symptoms they experienced in the slalom just completed. Thus, since a slalom lasted about 30 sec, 275 

a score was obtained every 30 sec during the slalom period. One advantage of this method lies in 276 
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its immediate assessment of car sickness symptoms, without test interruption and with attention 277 

only diverted for a few seconds during U-turns (periods not analyzed). 278 

2.4.3 Physiological recordings 279 

Participants were continuously monitored to record physiological measurements with 280 

Bionomadix devices connected to a BIOPAC MP160 (BIOPAC Systems, Inc.). Physiological 281 

signals were amplified and recorded at a sample rate of 1000 Hz. Following a classical 282 

configuration, ECG was recorded with three disposable, pre-gelled Ag/AgCl 11mm surface 283 

electrodes (EL503, BIOPAC Systems, Inc.) located on the left and right collarbone and in the 7th 284 

intercostal space. EDA was detected using two disposable, pre-gelled Ag/AgCl 11mm electrodes 285 

(EL507, BIOPAC Systems, Inc.) placed on the index and middle finger of the non-dominant hand. 286 

This electrode location was chosen with a view to participants’ comfort; moreover, several studies 287 

previously reported significant correlations between skin conductance recorded at the palmar 288 

finger site and motion sickness severity (Hu et al., 1991; Kim et al., 2005; LaCount et al., 2011; 289 

Sclocco et al., 2016; Irmak, 2021). RSP was recorded by a sensor band wrapped around the 290 

participant’s chest (Fig 3).   291 

 292 

Figure 3: Configuration of physiological measurement. (A) ECG and respiration belt measures: electrode 293 
configuration (white = VIN+, black = VIN-, red= ground) and position to obtain ECG. (B) EDA measures: electrode 294 
placement used to obtain EDA signals. The ground electrode (black) was placed on the middle finger and the active 295 
electrode (red) on the index finger on each participant’s non-dominant hand. Leads (115 Series, BIOPAC Systems, 296 
Inc.) with light-weight pinch clips connected to thin wires were attached to all electrodes and plugged into wireless 297 
transmitters adhering to the chest (ECG, respiration belt) or wrist (EDA) of the participant. 298 

2.5 Physiological data processing 299 

For data processing, six different phases of recordings common to all participants were selected 300 

for further analyses [(1) baseline (Base- first 120 s), (2) the first slalom (Sstart - 30s), (3) the middle 301 

slalom (Smid  - 30s), (4) the last slalom (Sstop  - 30s), (5) the highest-CSR slalom (Smax - 30s), and 302 

(6) recovery (Recov - middle 120 s) (Fig. 1 - B)]. Reference measurements were obtained from 303 

the baseline period. One car sickness rating was obtained for each slalom and each was linked to 304 
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corresponding physiological recordings. For each participant, Smax was the highest car sickness 305 

level reported, as suggested by Chen et al. (2010) and Keshavarz et al. (2022). Finally, post-306 

stimulation reactions were assessed via a rating recorded after 120s of recovery. 307 

Recording physiological parameters under ecological conditions is a technological challenge. 308 

A method of pre-processing and physiological feature extraction therefore had to be developed 309 

and adapted to our data, which contained more artifacts than average because of noise induced by 310 

the vehicle’s and the participants’ movements. This required several operations to obtain clean and 311 

useful signals. In addition, for the sake of clarity, only relevant physiological features were used. 312 

Our method involved the following steps. 313 

2.5.1 Pre processing 314 

Physiological raw signals were pre-processed on the selected periods of interest (Base, Sstart, 315 

Smid, Smax, Sstop, and Recov) (Fig. 1 - B). As physiological signals are time series, it is common to 316 

use wavelets to decompose them into frequency and time-frequency representations, with the 317 

wavelet coefficients chosen as characteristics (Shoeb & Clifford, 2005; Li & Chung, 2013; 318 

Pukhova et al., 2017). An advantage of wavelet features is their ability to encode a time and 319 

frequency resolution trade-off allowing signal responses to car sickness to be captured in different 320 

time windows. More specifically, we used soft and Daubechies 4 tap (Db4) wavelets obtained 321 

respectively from discontinuous and continuous base functions (Mother Wavelet: db4; Mode: Soft; 322 

Method: Sure Shrink; Level: 5). The chosen SureShrink method is an automatic procedure that, 323 

from decomposition coefficients at level 5, minimizes the unbiased estimate of mean square error. 324 

Once this step was completed, each physiological signal was filtered and cleaned using artifact 325 

removal techniques. Our method for ECG signals involved unsupervised artifact detection using 326 

an Isolation Forest model applied to 5-second signal intervals. Any abnormal intervals detected 327 

were replaced with the closest clean segment of the signal. To avoid overlap between the replaced 328 

signal and the PQRST waves in the previous and subsequent intervals, we applied two rules: i) if 329 

the interval between the two R waves was less than 600ms, one of the waves was removed; ii) if 330 

the interval between the two R waves was greater than 1100ms, a new R wave was inserted 331 

between them (Salahuddin et al., 2007; Nunan et al., 2010). Furthermore, we used the Python 332 

NeuroKit library (Carreiras et al., 2015; Makowski, 2016) to apply two classical filtering methods 333 

addressing baseline slow drift and power line interference. More precisely, each ECG signal 334 

underwent 50 Hz power-line noise-filtering that involved smoothing the signal with a moving 335 

average kernel having a one-period width of 50 Hz. In addition, a Butterworth high pass filter with 336 

a cut-off frequency of 0.5Hz was applied to remove baseline slow drifts. To process the respiratory 337 

signal, we applied a classical filtering technique using Python NeuroKit library (Carreiras et al., 338 

2015; Makowski, 2016). A Butterworth band-pass filter with a low-cut frequency of 0.05Hz and a 339 

high-cut frequency of 0.35Hz was used to remove baseline drift and high frequency noise from the 340 

respiratory signal. Concerning EDA signals, supervised artifact removal was performed via an 341 

SVM-based model (Taylor et al., 2015). The binary model was already trained on a dataset of 5-342 
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second EDA signals labeled ‘normal’ or ‘abnormal’ (Taylor et al., 2015). We used this model on 343 

our EDA samples, replacing the artifacts by the mean of the current 5-second signal. In addition, 344 

any remaining artifacts were dealt with by a second removal applied to each 1-second signal 345 

interval via a second derivative model. Finally, the EDA signal underwent Butterworth low pass 346 

filtering at 3Hz using Python NeuroKit library (Carreiras et al., 2015; Makowski, 2016).  347 

2.5.2 Feature extraction 348 

Once signals were pre-processed, physiological features were calculated from ECG, RSP, and 349 

EDA signals, using Python software (Python Software Foundation) with BioSPPy and NeuroKit 350 

libraries (Carreiras et al., 2015; Makowski, 2016). Features were computed for all signals on every 351 

30-second window without overlapping. Key to ECG signal processing is analyzing and 352 

understanding the QRS complex waveform representing the ventricular depolarization (Yan et al., 353 

2003). A QRS detection algorithm was used to extract ECG features using the BioSPPy library. 354 

We selected from the analyses performed slalom by slalom (30s) the features mean heart rate 355 

('Hr_mean') and standard deviation of heart rate ('Hr_std'); the other features depending on 356 

frequency domain analysis require longer temporal analysis windows and could not be calculated 357 

(60s at least - Shaffer & Ginsberg, 2017). RSP features were calculated using the BioSPPy library, 358 

based on a detection algorithm for respiratory cycles, amplitudes, and phases (inspirations and 359 

expirations). Following the pre-test phase, it was observed that the frequency of the car movements 360 

at 0.2Hz imposed a specific respiration rate, which is precisely why additional features not 361 

impacted by the car movements were calculated and investigated. With respiratory amplitude, the 362 

magnitude of each breathing phase was calculated by measuring the difference between the peak 363 

and trough of each breath in the respiration signal. Maximum inspiration (‘In_max’) and expiration 364 

(‘Out_max’) were chosen for analysis. The overall EDA signal was obtained from the fluctuation 365 

of two underlying components: one is a slower and steady baseline tonic component (skin 366 

conductance level (SCL)) and the other is a faster or reactive phasic component (skin conductance 367 

response (SCR)). Using the NeuroKit library, two SCR features were extracted through the phasic 368 

component: peak indexes and SCR amplitudes. SCR amplitude was a change relative to the 369 

deflection in the signal from onset to peak response. Mean SCR amplitude (‘SCR_mean’) and 370 

standard deviation (‘SCR_std’) were chosen for analysis. For each channel and feature, the mean 371 

and standard deviations were extracted over the different recording periods of interest to examine 372 

changes over time in the sample. 373 

6.  Statistical analysis 374 

Several dependent variables were analyzed at full sample level: (i) car sickness ratings (CSR), 375 

(ii) features of the ECG recordings (‘Hr_mean’ and ‘Hr_std’), (iii) features of the RSP recordings 376 

(‘In_max’ and ‘Out_max’), and (iv) features of the SCR recordings (‘SCR_mean’ and ‘SCR_std’). 377 

The evolution of each dependent variable was compared against three independent variables: 378 

‘acceleration level',  'path predictability', and ‘period’. For the ‘period’ variable, 6 periods were 379 
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defined: baseline period (Base), slalom period (Sstart, Smid, Sstop + Smax), and recovery period 380 

(Recov).  381 

First, car sickness ratings and the time to reach maximum CSR were analyzed during the Smax 382 

period using a 2-level (‘acceleration level': high and low) × 2-level ('path predictability': regular 383 

and unpredictable) repeated measures ANOVA. Secondly, the dynamics of changes in car sickness 384 

ratings and physiological features were analyzed using a 2-level (‘acceleration level': high and 385 

low) × 2-level ('path predictability': regular and unpredictable) × 5-level (‘period’: Base, Sstart, Smid, 386 

Sstop  and Recov) repeated measures ANOVA.  387 

As a prior for all collected data, the condition of sphericity was also tested (Mauchly’s test). 388 

The p-value levels were corrected for possible deviations from sphericity by means of the Huynh–389 

Feldt epsilon (ε) (Kim et al., 2005; Ohyama et al., 2007; Benedek & Kaernbach, 2010; Dennison 390 

et al., 2016). When significant differences were observed (p < 0.05), post-hoc analysis was 391 

performed using a Fisher–Snedecor least significant difference test, allowing the results to be 392 

refined by comparing the modalities two by two. For each significant effect, the effect size was 393 

estimated using the partial eta squared (ηp²).  394 

Following these analyses, two-tailed Pearson correlation coefficients were calculated between 395 

physiological measurements and maximum CSR for all conditions. Physiological measurements 396 

were drawn from the Smax period and normalized from the Base period. Finally, stepwise multiple 397 

linear regression analysis was performed to determine which physiological changes contributed to 398 

the maximum CSR assessment. Only variables whose correlations with maximum CSR were 399 

greater than 0.2 were selected for regression analysis.  400 

All statistical analyses were performed using Statistica software® v.10 (Statsoft Inc, France). 401 

Data are presented as mean ± SEM for each assessment and significance levels as *p < 0.05, **p 402 

< 0.01 and ***p < 0.001. 403 

3 Results  404 

3.1 CAN recordings 405 

      All participants were subjected to a maximum of 26 slaloms during the slalom period. The 406 

mean time for one slalom, the mean time for the whole slalom period, and the mean of the resulting 407 

lateral oscillation frequencies and accelerations were calculated for each condition (Table 1).   408 

Conditions 
Mean time 

for 1 slalom 

(sec) 

Mean time for 

slalom period 

(min) 

Mean 

number of 

slaloms 

Minimum 

number of 

slaloms 

Lateral 

oscillation 

frequencies 

(Hz) 

Lateral 

oscillation 

accelerations 

(m.s²) 

Regular Low (RL) 32 ± 1  20 ± 1  26 ± 0.3 26 0.20 ± 0.04 2.0 ± 0.1 
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Unpredictable 

Low (UL) 
32 ± 1  19 ± 3  25 ± 1.2 14  

0.20 ± 0.04 3.0 ± 0.45 

Regular High 

(RH) 
35 ± 1  10 ± 7  13 ± 2.5 3 

0.19 ± 0.04 5.5 ± 0.19  

Unpredictable 

High (UH) 
34 ± 1  11 ± 7 13 ± 2.9 2 

0.19 ± 0.04 5.2 ± 0.28 

 409 

Table 1: Main characteristics of Regular Low (RL), Unpredictable Low (UL), Regular High (RH), and Unpredictable 410 
High (UH) slaloms experienced by the participants (mean ± SD). Note that the same ranges of mean lateral oscillation 411 
frequency and accelerations were applied in Regular and Unpredictable conditions. 412 

3.2 Car sickness ratings (CSR) 413 

3.2.1 Maximum CSR 414 

During the test, all participants reported at least some degree of car sickness and reached their 415 

maximum CSR during the Smax period. The maximum ratings distribution for each condition is 416 

shown in Figure 3. High conditions led to a distribution with more high scores [3-4] than Low 417 

conditions (RH: +75% vs RL and UH: +39% vs UL). Unpredictable conditions had a distribution 418 

with more high scores than Regular conditions for both acceleration levels (UH: +8% vs RH and 419 

UL: +45% vs RL) (Fig 4). For an approximately similar level of acceleration (≈ 5 m.s²), there were 420 

more high scores in the UH condition than in the RH condition. 421 

 422 

 423 

Figure 4: Distribution of maximum CSR reached by participants during the Smax period: green [0-1], yellow [>1-2], 424 
orange [>2-3], and red [>3-4] (n=23). 425 

Statistical analysis indicated a significant interaction effect between ‘acceleration level' and 'path 426 

predictability' on maximum CSR measured in the Smax period (F(1,21) = 9.03; ε = 1.0; p < 0.01; ηp² = 427 

0.30). Post-hoc analyses revealed higher ratings in High conditions than in Low conditions (p < 428 

0.001) and higher ratings in UL than in RL (p < 0.05) (Fig 5 A). In addition, a significant effect of 429 

'acceleration level' was observed on the time taken to reach maximum CSR (F(1,21) = 7.09; ε = 1.0; p 430 

< 0.05; ηp² = 0.25). Participants reached their maximum score faster in High conditions than in 431 

Low conditions (Fig 5 B). All results (mean ± SEM) obtained for each feature by test period (Smax, 432 
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Base, Sstart, Smid, Sstop, and Recov) can be found in supplementary material (Table 1). Details of all 433 

associated statistics are reported in Table 2 and supplementary material. 434 

 435 

Figure 5: (A) Maximum CSR observed for each condition in Smax period (B); time to reach maximum CSR (mean ± 436 

SEM; n=23). Statistical differences between conditions are shown by black stars and full lines. * significant difference 437 
(p < 0.05), *** significant difference (p < 0.001). 438 

 439 

Three-factor ANOVA  ACCEL PATH PERIOD PATH*ACCEL PERIOD*ACCEL PATH*PERIOD PATH*PERIOD*ACCEL 
CSR F(1,21) F(1,21) F(3.63) F(1.21) F(3.63) F(3.63) F(3.63)  20.19*** 9.08** 60.45*** 4.76* 10.60*** 2.90* 5.61**         
 F(1,21) F(1,21) F(4.84) F(1.21) F(4.84) F(4.84) F(4.84) 
HR_mean 0.00 0.17 20.02*** 0.28 5.60*** 3.41* 1.04 
HR_std 1.65 0.61 2.44 0.60 3.21* 1.04 0.72 
In_max 9.44** 2.50 17.34*** 9.22** 3.60** 1.47 1.71 
Out_max 9.00** 2.60 20.65*** 9.55** 5.42*** 3.13* 3.64** 
SCR_mean 0.06 1.91 4.87** 0.43 1.92 1.05 0.47 
SCR_std 0.65 3.93 6.51*** 0.51 0.27 0.26 1.03 
 440 

Table 2: Results of ANOVA analysis for each feature and each test period (Base, S start,Smid, Sstop, and Recov) in each 441 
condition (mean ± SEM; n=23). The three independent variables are: ACCEL=acceleration level, PATH=path 442 
predictability, and PERIOD=test period. 443 

3.2.2 CSR dynamics 444 

A significant interaction between 'test period', 'acceleration level', and 'path predictability' was 445 

observed on car-sickness rating dynamics (F(3,63) = 5.61; ε = 0.91; p < 0.01; ηp² = 0.49). Post-446 

hoc analyses revealed that ‘Base’ and 'Sstart' were not significantly affected. As illustrated in Figure 447 

6, each participant began the experiment symptom-free (‘Base’) and ratings did not significantly 448 

differ between conditions at 'Sstart'. However, during the slalom period, ratings increased more or 449 

less sharply depending on conditions. There were significant differences between Low and High 450 

conditions (p < 0.001), with significantly higher ratings at 'Smid', 'Sstop', and ‘Recov’ in the High 451 
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conditions than in the Low conditions. In addition, there were significant differences between 452 

Regular and Unpredictable conditions (p < 0.05) (Table 2 – 3). Ratings were significantly higher 453 

at 'Smid' and 'Sstop' in the UL conditions than in the RL conditions, and were also higher at 'Smid' in 454 

the UH conditions than in the RH conditions (Table 2 – 3). Whatever the condition, none of the 455 

ratings returned to baseline level at ‘Recov’.   456 

 457 

Figure 6: CSR observed for each test period (Base, Sstart, Smid, Sstop, and Recov) in each condition (mean ± SEM; 458 
n=23). Statistical differences between test periods in a condition are shown by dollar symbols and lines color-coded 459 
by condition: (i) Regular Low: dark blue solid line, (ii) Unpredictable Low: light blue dashed line, (iii) Regular High: 460 
dark orange solid line, and (iv) Unpredictable High: light orange dashed line. Statistical differences between conditions 461 
are shown by black stars and full lines. * and $ significant difference (p < 0.05), ** significant difference (p < 0.01), 462 
*** and $$$ significant difference (p < 0.001).  463 

3.3 Physiological measurements 464 
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3.3.1 ‘Hr_mean’ dynamics 465 

A significant interaction between 'test period' and 'acceleration level' was observed on mean 466 

heart rate (‘Hr_mean’) values (F (4,84) = 5.56; ε = 0.46; p < 0.01; ηp² = 0.21). Post-hoc analyses 467 

revealed a significant increase in all values during the slalom period compared to baseline (Figure 468 

7A). During the recovery period, only Low condition values returned to baseline level (Table 2-469 

3). Another significant interaction was observed between 'test period' and 'path predictability' on 470 

mean heart rate (‘Hr_mean’) values (F(3,63) = 5.61; ε = 0.36; p < 0.05; ηp² = 0.14). Post-hoc 471 

analyses revealed a significant increase in all values during the slalom period compared to baseline 472 

(Figure 7B). In addition, there was a significant difference between Regular and Unpredictable 473 

conditions for the recovery period (p < 0.01) (Table 2 – 3), with higher values in Unpredictable 474 

conditions than in Regular conditions. Only Regular condition values returned to baseline level.  475 

Figure 7: Representation of ‘HR_mean’ values (mean ± SEM ; n=23) for (A) interaction between 'test period' and 476 
'acceleration level' and (B) interaction between 'test period' and 'path predictability’ in each test period (Base, Sstart, 477 
Smid, Sstop, and Recov). Statistical differences between test periods in a condition are shown by dollar symbols and 478 
lines color-coded by condition: (i) Regular: black full line, (ii) Unpredictable: black dashed line, (iii) Low: light blue 479 
full line, and (iv) High: light orange full line. Statistical differences between conditions are shown by black stars. * 480 
and $ significant difference (p < 0.05), *** and $$$ significant difference (p < 0.001).  481 

3.3.2 ‘Hr_std’ dynamics  482 

A significant interaction between 'test period' and 'acceleration level' was observed for standard 483 

deviation of the heart rate (‘Hr_std’) values (F (4,84) = 3.21; ε = 0.40; p < 0.05; ηp² = 0.07). For 484 

the High conditions, post-hoc analyses revealed a significant increase during the slalom period 485 

compared to baseline (p < 0.01) (Figure 8). During Recov, values returned to baseline level 486 

(Supplementary Table 1). 487 
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 488 

Figure 8: ‘Hr_std’ values observed for each test period (Base, Sstart, Smid, Sstop and Recov) according to ‘acceleration 489 
level’, regardless of ‘path predictability’ (mean ± SEM; High conditions n =12; Low conditions n =11).  Statistical 490 
differences between test periods in High conditions are indicated by a light orange dollar symbol and full lines. $ 491 
significant difference (p < 0.05) 492 

3.3.3 ‘In_max’ dynamics 493 

A significant interaction between 'acceleration level' and 'path predictability' was observed for 494 

maximum inspiration (‘In_max’) values (F(1,21) = 9.22; ε = 0.96; p < 0.01; ηp² = 0.30). Post-hoc 495 

analyses revealed higher values in the RH conditions than in the others (Figure 9). There was 496 

another significant effect of interaction between 'test period' and 'acceleration level' on maximum 497 

inspiration (‘In_max’) values (F (4,84) = 3.60; ε = 0.82; p < 0.01; ηp² = 0.15). For both acceleration 498 

levels (Low and High), post-hoc analyses revealed a significant increase in all values during the 499 

slalom period compared to baseline (Figure 9). The increase was significantly higher in High 500 

conditions than in Low conditions for all slalom periods; values were also higher during the 501 

recovery period in High than in Low conditions. In High conditions, the values peaked at 'Sstop' 502 

and decreased during Recov but remained higher than baseline values. In Low conditions, no 503 

difference between slalom periods (Sstart, Smid, Sstop) was observed but values returned to baseline 504 

level during Recov. 505 
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 506 

Figure 9 : ‘In_max’ values observed for each test period (Base, Sstart, Smid, Sstop, and Recov) according to  acceleration 507 
level, regardless of path predictability (mean ± SEM; High conditions n =12; Low conditions n =11). Statistical 508 
differences between test periods in a condition are shown by dollar symbols and lines color-coded by condition: (i) 509 
Low : light blue full line and (ii) High : light orange full line. Statistical differences between conditions are shown by 510 
black stars. * and $ significant difference (p < 0.05), *** and $$$ significant difference (p < 0.001).  511 

3.3.4 ‘Out_max’ dynamics 512 

A significant effect of interaction between 'test period', 'acceleration level', and 'path 513 

predictability' was observed on maximum expiration (‘Out_max’) values (F(4,84) = 3.64; ε = 1.0; 514 

p < 0.01; ηp² = 0.30). Post-hoc analyses revealed that ‘Base’ values were not significantly affected 515 

by the factors (Figure 10). In contrast, during the slalom period, all values increased similarly 516 

compared to baseline, except in RH conditions, where significantly higher values were observed 517 

during slaloms and Recov than in the other conditions (Table 2 – 3). During Recov, only RH 518 

condition values did not return to baseline level. 519 
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 520 

 521 

Figure 10: ‘Out_max’ values observed for each test period (Base, Sstart, Smid, Sstop, and Recov) in each condition (mean 522 
± SEM; n=23). Statistical differences between test periods in a condition are shown by dollar symbols and lines color-523 
coded by condition: (i) Regular Low : dark blue full line, (ii) Unpredictable Low : light blue dashed line, (iii) Regular 524 
High : dark orange full line, (iv) Unpredictable High : light orange dashed line. For the Regular High condition, 525 
statistical differences between test periods and from other conditions are shown by dark orange stars and full lines. 526 
Statistical differences between conditions are shown by black stars. * and $ significant difference (p < 0.05),  ** and 527 
$$ significant difference (p < 0.01), *** and $$$ significant difference (p < 0.001).  528 

3.3.5 ‘SCR_mean’ dynamics 529 

A significant main effect of 'test period' was observed on mean values for skin conductance 530 

response ('SCR_mean') (F(4, 84) = 4.87; ε = 0.71; p < 0.01; ηp2 = 0.19). Post-hoc analyses revealed 531 

a significant increase during Smid and Sstop compared to baseline (Figure 11 A). Finally, stopping 532 

the slalom during Recov induced a significant decrease in values, which returned to baseline level. 533 

3.3.6 ‘SCR_std’ dynamics 534 

A significant effect of 'test period' was observed on the standard deviation of skin conductance 535 

response (‘SCR_std’) (F(4, 84) = 6.51; ε = 0.91; p < 0.001; ηp2 = 0.24). Post-hoc analyses revealed 536 

significant increases throughout the slalom period compared to baseline (Figure 11 B). Stopping 537 

the slalom during Recov induced a significant decrease in values, which returned to baseline level. 538 
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 539 
 540 

Figure 11: (A) ‘SCR_mean’ and (B) ‘SCR_std’ values observed for each test period (Base, Sstart, Smid, Sstop, and Recov) 541 
regardless of path predictability (mean ± SEM; n =23). Statistical differences between test periods are shown in black. 542 
$$$ significant difference (p < 0.001). 543 

3.4 Relationship between car sickness ratings and physiological measurements  544 

Significant correlations were observed between maximum CSR (CSR_max) and physiological 545 

parameters (Table 4 A). There were significant correlations between CSR_max and ‘HR_mean’ 546 

and ‘Out_max’ values (greater than 0.4 for both), as well as with ‘HR_std’, and ‘In_max’ (greater 547 

than 0.2 for both). These results suggest that the changes observed in cardiac and respiratory 548 

measurements and car-sickness symptoms are linked. In order to confirm this hypothesis, a 549 

regression analysis was performed to determine which physiological changes could be used to 550 

estimate maximum CSR during Smax. 'HR_mean', 'HR_std', 'In_max', and 'Out_max' showed 551 

adequate predictive power for inclusion in the regression. It was found that increases in car-552 

sickness symptoms can be estimated from changes in cardiac and breathing activities. Indeed, 553 

'HR_mean', 'HR_std', and 'Out_max' explained 41.4% (adjusted R² = 0.372) of the variance in 554 

maximum CSR values, (F(3,42) = 9.899, σest = 0.898, p < 0.001) (Table 4 B). 555 

A HR_mean HR_std In_max Out_max SCR_mean SCR_std 

CSR_max 0.466* 0.294* 0.359* 0.442* 0.171 -0.081 

       

B β t  Std. Error p     

HR_mean 0.454 3.762 0.012 0.001   

HR_std 0.238 1.860 0.054 0.070   

Out_max 0.299 2.331 0.045 0.025   

Table 4: Results of (A) Pearson correlations between maximum CSR and physiological measurements and (B) 556 
Stepwise regression of physiological measurements on maximum CSR (Criterion to enter = 0.2). (n=23) * p < .05 557 
(two-tailed) 558 
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4 Discussion        559 

For the first time in real driving conditions, our results show that sickness-inducing stimuli 560 

such as increased lateral acceleration and vehicle path unpredictability induce (i) an increase in 561 

symptom severity and (ii) specific physiological changes reflecting the activation of the SNS. CSR 562 

results reveal that the greater the lateral acceleration and the less predictable the vehicle path, the 563 

stronger the symptoms. Moreover, an increase in several physiological parameters is observed 564 

simultaneously with the increase in CSR, with moderate positive correlations between CSR 565 

evolution and physiological changes. Furthermore, linear regression results suggest that these 566 

physiological parameters can be used to detect car sickness, thus demonstrating a link between car 567 

sickness symptoms and physiological changes. 568 

4.1 Triggers of car sickness  569 

While the impact of acceleration in the vertical and longitudinal axes has been thoroughly 570 

documented, few studies have investigated the lateral axis. Yet lateral acceleration has been 571 

identified as the most nauseating in cars (Cheung & Nakashima, 2006; Diels, 2014; Smyth et al., 572 

2021). Indeed, our finding that the higher the level of lateral acceleration, the stronger the car 573 

sickness symptoms extends those of previous work (Turner, 1999; Feng, 2017; Irmak, 2021), this 574 

time in the lateral axis and in real driving conditions. During the slalom period, participants 575 

exhibited a greater distribution of high CSR in High conditions than in Low conditions (RH: +75% 576 

vs RL and UH: +39% vs UL). In addition, participants recorded higher maximum CSR and reached 577 

this maximum earlier in High conditions (both Regular and Unpredictable) than in Low conditions. 578 

These results are consistent with previous findings on longitudinal acceleration. By increasing 579 

acceleration level in a dynamic simulator, Irmak et al. (2022) showed that maximum ratings not 580 

only increased but also were reached earlier, since their dropout rates increased. Regarding CSR 581 

dynamics, a significant increase was observed with time from Smid onwards, reaching a maximum 582 

at ‘Sstop’. Furthermore, the symptoms that developed during the slalom period, although attenuated, 583 

persisted into the recovery period (CSR≠0). These results extend results of previous papers 584 

showing that car sickness severity increases throughout testing (Kuiper et al., 2018; Irmak, 2021; 585 

Henry et al., 2022) and that symptoms can persist from minutes to hours after stimulation (Kim et 586 

al., 2005; Golding, 2006; Diels & Bos, 2016). However, we showed more specifically that high  587 

acceleration levels lead to a sharper increase in symptom severity, which remains higher during 588 

the post-stimulation recovery period. Our results demonstrate that there is a strong relationship 589 

between levels of lateral acceleration in cars and increased car sickness (timing and severity).  590 

Determining what kind of lateral movements to avoid in future autonomous vehicles means 591 

exploring their separate impacts and parameters (acceleration, direction, frequency etc.). Our study 592 

employed the frequency known to induce maximum nausea in cars (Wada et al., 2012; Wada & 593 

Yoshida, 2016; Henry et al., 2022) regardless of acceleration level. Here, we show that increasing 594 

the level of acceleration in cars with sinusoidal lateral movements at this 0.2 Hz frequency leads 595 
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to more severe symptoms. This extends results obtained with the Mc Cauley (1974) model applied 596 

to sinusoidal vertical movements (O’Hanlon & McCauley, 1974; Bos & Bles, 1998).  At 0.2 Hz, 597 

Bos and Bles (1998) obtained more than 80 % MSI at 5m/s², as opposed to around 60 % at 2 m/s². 598 

Our similar observations appear to suggest that acceleration level has a similar impact in the three 599 

axes (lateral, longitudinal, and vertical) at 0.2 Hz. Likely, the otolith tilt/translation ambiguity 600 

(Wood, 2002; Clément, 2011) induced at this 0.2 Hz frequency is amplified by the increase in 601 

acceleration level, whatever the direction of application. The vestibular system is known to be 602 

particularly sensitive to changes in velocity, i.e., accelerations (Mayne, 1974; Reason & Brand, 603 

1975; Kuiper, Bos, Schmidt, et al., 2020b). When the acceleration level increases, the vestibular 604 

system thus becomes highly engaged and may be largely responsible for the worsening of the 605 

sensory conflict causing car sickness.  606 

Our study also investigated, for the first time in real driving conditions, the impact of car 607 

path unpredictability on symptom severity. Interestingly, our results show that inability to predict 608 

vehicle path also exacerbates symptoms. Unpredictable conditions had a CSR distribution with 609 

more high scores than Regular conditions. More precisely, high scores appeared more frequently 610 

in UH conditions than in RH conditions at almost the same levels of acceleration (≈5m.s²). In 611 

addition, maximum CSR were greater in Unpredictable than in Regular at low acceleration levels. 612 

Furthermore, CSR were higher in ‘Smid’ and ‘Sstop’ for UL conditions than for RL conditions and 613 

higher in ‘Smid’ for UH conditions than for RH. Thus, inability to predict vehicle trajectories 614 

induced a gradual increase in symptom severity during the stimulation period. These results from 615 

real car lateral accelerations are in line with those obtained in the laboratory along the longitudinal 616 

axis using repeated fore-aft motion on a sled (Kuiper, Bos, Schmidt, et al., 2020b). Movements in 617 

response to events unpredictable either in timing or direction caused more severe motion sickness 618 

symptoms than when the same events occurred in a predictable way. In contrast, other studies on 619 

movement predictability have focused on the effectiveness of countermeasures allowing 620 

participants to anticipate future movements based on auditory (Kuiper, Bos, Diels, et al., 2020a; 621 

Maculewicz et al., 2021), visual (Hendricks & Tumpey, 1990) or multimodal cues (Sweeney & 622 

Bartell, 2017). Overall, they report less severe motion sickness symptoms when participants are 623 

able to anticipate future movements with help. However, these studies manipulated the 624 

participants’ ability to anticipate events, whereas our study manipulated the events themselves so 625 

as to make them unpredictable for the participants.  626 

Nevertheless, both mechanisms depend on the updating of internal models according to the 627 

theory of sensory mismatch (Bos & Bles, 2002; Bos et al., 2008, 2010; Dennison et al., 2016). 628 

This theoretical framework explains why drivers do not experience motion sickness, whereas 629 

passengers do (Bos et al., 2008). Drivers can predict vehicle path (acceleration, speed, direction), 630 

which allows them to update their internal models and predict self-motion using efference copies 631 

(Reason & Brand, 1975; Bles et al., 1998; Bos & Bles, 1998; Bos et al., 2008). Typically, when 632 

the forward internal model is correctly tuned, the expected movements coincide with the perceived 633 

movements. Passengers however, in the absence of external help (anticipatory cues), are unable to 634 
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predict upcoming movements. In addition, when passengers expect regular movements and the 635 

driver performs unpredictable movements, the mismatch between expected and real movements is 636 

amplified, and the internal model cannot be properly tuned. This may explain why our study found 637 

that participants became sicker in unpredictable conditions, consistent with the idea that a major 638 

cause of motion sickness is a mismatch between perceived and expected motion (Reason & Brand, 639 

1975; Bles et al., 1998; Kuiper, Bos, Schmidt, et al., 2020b). 640 

4.2 Physiological Measures 641 

As previously mentioned, the literature on physiological measurements and motion 642 

sickness indicates that (i) there is as yet no consensus on an objective indicator of motion sickness, 643 

(ii) despite the number of studies, there is no consensus on the directions (decrease/increase) of 644 

the physiological changes themselves, and (iii) so far, most studies have been conducted in 645 

laboratory conditions (rotating optokinetic drum, VR, Static driving simulator, etc.). Therefore, 646 

the third objective of this study was to investigate the relationship between car sickness and 647 

physiological responses in real driving conditions. We first analyzed the dynamics of physiological 648 

parameters retained over the several test phases to compare their evolution with CSR dynamics. 649 

Overall, the physiological parameters uniformly showed an significant evolution during the slalom 650 

period, whereas responses during the recovery period were not homogeneous.  651 

‘HR_mean' and 'HR_std' reflect modulations of cardiac activity and its variability during 652 

the test (Shaffer & Ginsberg, 2017; Meteier et al., 2021). ‘HR_mean’ showed a significant increase 653 

during the slalom period in all conditions and a return to baseline level only in Low and Regular 654 

conditions during the recovery period. This suggests that the most sickness-inducing conditions 655 

had the most persistent effects on cardiac activity. ‘HR_std’ showed an increase in High conditions 656 

during the slalom period, with a subsequent return to baseline level, indicating that changes were 657 

only induced by high levels of acceleration and did not persist over time. These increases could be 658 

interpreted as only due to the vehicle’s movements and not to the evolution of the sickness. 659 

However, cardiac activity was elevated during the full slalom period, simultaneously with 660 

increased car sickness; for the most sickness-inducing stimuli, this persisted in the recovery period. 661 

Type of stimulation therefore has an impact on ‘HR_mean’ that may persist once the movements 662 

stop, indicating that the changes are not solely caused by the agitation experienced. Indeed, we 663 

observed a significant correlation between 'HR_mean', 'HR_std' values and the most severe car 664 

sickness (CSR_max): increases in car sickness severity were accompanied by increased cardiac 665 

activity. Our findings confirm the hypothesis of a relationship between car sickness and cardiac 666 

changes (Keshavarz et al., 2022), although findings in the literature remain inconsistent. This 667 

discrepancy is mainly due to the kind of stimuli employed, and/or the methodology used for 668 

measuring and analyzing cardiac activity. Several studies on cardiac parameters used laboratory 669 

setups, with inconclusive results (increase, decrease, no change) (Hu et al., 1991; Cheung, 2004; 670 

Kim et al., 2005; Dahlman et al., 2009; Koohestani et al., 2019). Only one study measured 671 

physiological variables in cars, reporting a slight increase in heart rate with car movements (Irmak, 672 
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2021). Yet the stimuli used were similar to those in our study, with a lateral acceleration of almost 673 

4m/s² (i.e., between our low and high conditions), and a condition with no view of the outside 674 

environment was used (i.e., highly sickness-inducing). Comparing our results with the literature 675 

reveals that the direction and magnitude of cardiac changes likely depends on the experimental 676 

environment and especially on the nature of the stimulus itself (frequency, acceleration, speed, 677 

direction). 678 

Regarding RSP parameters, we analyzed maximum inspiration (‘In_max’) and expiration 679 

(‘Out_max’) values, reflecting respiratory volume. Although these features are not well 680 

documented in the literature, they proved relevant in our study. As with cardiac parameters, an 681 

increase in both was observed during the slalom period for all conditions. ‘In_max’ values revealed 682 

a gradual and strong increase until ‘Sstop’ in High conditions only, while ‘Out_max’ values 683 

exhibited the same pattern in RH conditions only. In the same vein, during the recovery period, 684 

respiratory measurements remained high only in High conditions for ‘In_max’ and in RH 685 

conditions for ‘Out_max’. This provides evidence that higher lateral acceleration levels induce 686 

greater and more persistent changes in breathing volume. The positive correlation observed 687 

between our breathing parameters and the most severe car sickness (CSR_max) confirms this 688 

observation. This relationship is also supported by studies demonstrating that controlled breathing 689 

can reduce the level of motion sickness (Yen Pik Sang et al., 2003; Denise et al., 2009; Chin-Teng 690 

Lin et al., 2011). Lin et al., (2011) showed that people affected by motion sickness make breathing 691 

adjustments (deep breathing) to relieve their discomfort. However, in our study, while some 692 

increase in breathing volume was observed, these adjustments remained limited, mainly due to the 693 

car movements. In fact, we found that the frequency of car movements at 0.2Hz imposed a specific 694 

respiration rate, which could partly explain why symptoms remained so severe: participants were 695 

not in full control of their breathing. Furthermore, in the regular conditions, participants could take 696 

advantage of periods with less stimulation (between turns) to adapt their breathing through greater 697 

inspiration and expiration. In contrast, our results tend to indicate that there were even fewer 698 

adjustments under unpredictable car movements, especially with high acceleration levels. All these 699 

observations argue for the hypothesis that physiological changes under sickness-inducing 700 

conditions depend on the nature of the stimulus.  701 

Finally, we analyzed the EDA parameters 'SCR_mean' and 'SCR_std', the mean and 702 

variability of phasic skin conductance responses. This electrodermal conductance is used to 703 

measure sweating, a major motion sickness symptom (Kennedy et al., 2010; Lackner, 2014). Our 704 

SCR values increased during the slalom period and returned to baseline level during the recovery 705 

period. Under stimulation, ‘SCR_mean’ showed an increase from ‘Smid’ to ‘Sstop’ and ‘SCR_std’ 706 

showed an increase from ‘Sstart’ to Sstop’. These results are in agreement with those of Irmak et al. 707 

(2021), also obtained in a real car: sickness-inducing movements increased electrodermal 708 

conductance in palmar sites over time. The literature generally reports the same observation with 709 

increased severity of motion sickness (Hu et al., 1991; Harm, 2002; Kim et al., 2005). While it has 710 

been shown that forehead measurements gave highly sensitive measurements (Golding,1992; Wan 711 
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& Hu, 2003), our results confirmed that measurements on palmar fingers also led to high satisfying 712 

sensibility. However, explanations for the underlying mechanisms remain unclear and 713 

inconsistent, possibly due to the varying measurement sites (forehead, finger, back of hand) and 714 

features used. 715 

We observed several physiological changes when participants were affected by car 716 

sickness. There is a consensus among certain studies that all kinds of motion sickness can be 717 

considered as a stress response to a stressful stimulus (sickness-inducing movements) inducing 718 

particular physiological changes (Harm, 2002; Napoletano & Rossi, 2018). An increase in 719 

cardiovascular, respiratory, and/or electrodermal activities, as in our study, has previously been 720 

shown to reflect physiological stress (Cacioppo et al., 2007).  It is known that depending on the 721 

stress or agitation level of the person, the homeostasis of the body is modulated, causing an 722 

alternation between the activation of the sympathetic and parasympathetic systems (Shaffer & 723 

Ginsberg, 2017). However, under severe stimulus, the sympathetic nervous system (SNS) dictates 724 

appropriate mechanisms and physiological responses to enhance the body's ability to deal with a 725 

threat (known as the "fight or flight response") (Harm, 2002; Irmak, 2021). Notably, this is 726 

achieved through increased arousal, which modifies electrodermal conductance (EDA), strongly 727 

correlated with the activity of the sweat glands (sweating) (Boucsein, 2012). It also increases the 728 

heart and respiratory rate, which amplifies the blood flow and enhances the transport and supply 729 

of oxygen in the body (Cacioppo et al., 2007; Chan et al., 2022). Therefore, our results seem to 730 

highlight a specific/dominant activation of the sympathetic system during the progression of car 731 

sickness symptoms. Nevertheless, motion sickness is more complex than a simple stress and/or 732 

agitation episode, which is why other studies contest the ability of physiological measurements 733 

alone to indicate motion sickness levels (Keshavarz et al., 2022; Smyth et al., 2021). Actually, the 734 

literature has illustrated the difficulty and unreliability of relating physiological measurements to 735 

motion sickness, depending on the environment and stimuli used (Dennison et al., 2016; 736 

Koohestani et al., 2019; Keshavarz et al., 2022). In our study, although the magnitude of our 737 

cardiac and respiratory changes depended on the stimuli used (4 conditions), all parameters 738 

evolved in the same direction and correlatively with car sickness severity. Moreover, the linear 739 

regression showed that our measures (cardiac and respiratory) could explain 41% of the variance 740 

in maximum CSR values, demonstrating the link between the physiological state involved in car 741 

sickness and its symptoms.  742 

4.3 Limitations of the study 743 

Our results should be interpreted with caution in view of certain limitations. One major 744 

limitation of the study is sample size. Although the participants  were selected for their high 745 

susceptibility to motion sickness, our results showed inter-individual variability which limited our 746 

data analyses (e.g., precise data temporal evolution, modeling, analysis per individual, etc.). More 747 

data from a heterogeneous and larger population are needed before these findings can be 748 

generalized. Second, this study is one of the first to measure physiological parameters in real 749 
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driving conditions, which is both a limitation and a challenge. Our environment, where noise could 750 

impact the recorded data, the method of pre-processing and physiological feature extraction had 751 

to be adapted in order to obtain clean and useful signals. In addition, new physiological features 752 

not greatly affected by vehicle dynamics (respiration rate) were explored, reducing the scope for 753 

comparison with previous laboratory studies. However, our findings point to the value of common 754 

physiological measures, such as heart rate, already used in other motion sickness studies (Kim et 755 

al., 2005; Dahlman et al., 2009; Dennison et al., 2016; Koohestani et al., 2019; Irmak, 2021), as 756 

well as respiratory amplitude ('In_max' and 'Out_max'), as possible indicators of car sickness 757 

occurrence. These encouraging results deserve to be further explored. Third, it should be noted 758 

that when we manipulated vehicle path unpredictability, the acceleration level was also being 759 

manipulated. Under high acceleration levels, almost all participants rapidly reached their 760 

maximum symptoms (ratings of 4 = end of test). This saturation prematurely stopped the runs, 761 

resulting both in a rating plateau (a floor effect (Levine et al., 2014; Irmak, 2021)) and in reduced 762 

exposure time (≈10min). Thus, had a higher symptom threshold than ‘mild to moderate nausea’ 763 

been applied, thereby lengthening exposure time, we might have observed a greater difference 764 

between the regular and unpredictable conditions even at high acceleration levels. Finally, only 765 

two lateral acceleration levels (2 m.s² and 5 m.s²) and one frequency level (0.2Hz) were analyzed 766 

in this study. Although this frequency is recognized in the literature as the most nauseating (Bos 767 

& Bles, 1998), and the lateral acceleration levels assessed here induced symptoms, this was not 768 

sufficient to allow proper analysis of the impact of vehicle dynamics in the different axes (lateral, 769 

longitudinal and vertical). Adapting the model proposed by Bos and Bles (1998) for vertical 770 

stimulations to car movements and determining the specific characteristics of movement causing 771 

car sickness will require testing a larger range of accelerations (0 to 6m/s²) and frequencies (0 to 772 

0.7 Hz). Once the impact of car movements is known, more realistic studies on the road should be 773 

considered. 774 

5 Conclusion 775 

For the first time in real driving conditions, our results show that the stronger the lateral 776 

acceleration (2 vs 5 m.s²), the more severe the symptoms of car sickness, and that inability to 777 

predict the vehicle’s path exacerbates symptoms. In future autonomous vehicles, the vehicle 778 

dynamics will need to be designed, as far as possible, to limit nauseating movements such as high 779 

lateral acceleration and/or low frequency movements. In addition, countermeasure solutions 780 

should be considered to allow vehicle occupants to anticipate the vehicle's path in real time so as 781 

to update their internal model. Furthermore, these particular factors, which are highly prevalent 782 

during car travel, induce specific physiological changes reflecting SNS activation. It seems that 783 

the more impactful the stimulus is considered by participants (high CSR), the more their SNS is 784 

activated to allow the body to respond. Our work thus provides evidence that (i) physiological 785 

changes related to motion sickness can be recorded in the car with laboratory devices, (ii) 786 

processing stages need to be adapted according to these environmental constraints, (iii) some 787 

features explored in the laboratory can also be used in a real car, but (iv) new features (In_max 788 
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and Out_max) also deserve to be explored and could reveal SNS activation. Indeed, the linear 789 

regression applied to our data suggests that these physiological parameters can be used to confirm 790 

the CSR level indicated by the participants. While the results of this study are encouraging, 791 

however, using physiological measures alone to indicate car sickness symptoms does not currently 792 

appear sufficient. Subjective measures such as ratings (CSR) still need to be used to evaluate car 793 

sickness severity and to identify the physiological changes associated with it. Automating the 794 

detection of car sickness from objective data only will require a predictive model taking into 795 

account the individuals’ parameters as well as the nature of the stimuli. For this purpose, further 796 

research should be conducted to assess (i) the influence of other car-sickness-inducing factors 797 

(different vehicle dynamics, levels of control and predictability, passenger positioning, etc.) and 798 

(ii) the changes in individual parameters that these factors induce. 799 
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 1050 

7 Supplementary material 1051 

  REGULAR LOW  UNPREDICTABLE LOW 
 Bas S

start S
mid S

stop
 Recov Bas S

start S
mid S

stop
 Recov 

CSR 0.0 ± 0.0 0.3 ± 0.1 0.8 ± 0.2 1.0 ± 0.3 0.8 ± 0.3 0.0 ± 0.0 0.5 ± 0.2 1.5 ± 0.2 2.3 ± 0.3 0.9 ± 0.3 
HR_mean 77.73 ± 3.66  80.68 ± 3.11 77.97 ± 2.54 77.42 ±  2.72  73.24 ± 2.63  69.68 ± 2.18  79.20 ± 2.78  79.08 ± 3.19 80.72 ± 3.77  78.20 ± 2.98 
HR_std 3.19 ± 0.37 2.94 ± 0.40 3.16 ± 0.50 2.65 ± 0.33 3.54 ± 0.58 3.17 ± 0.35 2.81 ± 0.32  3.13 ± 0.64  3.38 ± 0.61  3.02 ± 0.40  
In_max 1.78 ± 0.37  2.82 ± 0.39  2.83 ± 0.41  2.95 ± 0.47  1.93 ± 0.27 2.16 ± 0.67 3.66 ± 0.68 4.13 ± 0.75 3.80 ± 0.71 2.07 ± 0.40 
Out_max 1.70 ± 0.31  3.01 ± 0.48  3.07 ± 0.45  2.92 ± 0.42  1.93 ± 0.22 2.43 ± 0.63 3.82 ± 0.78 4.14 ± 0.75 3.83 ± 0.68 2.12 ± 0.46 
Scr_mean 0.79 ± 0.14 1.46 ± 0.48 1.42 ± 0.40 1.78 ± 0.49 0.97 ± 0.20 0.67 ± 0.10 0.97 ± 0.16 1.06 ± 0.30 2.14 ± 0.85 0.68 ± 0.29 
Scr_std 0.63 ± 0.09 1.55 ± 0.67 1.30 ± 0.46 1.42 ± 0.37 0.80 ± 0.13 0.61 ± 0.10 0.77 ± 0.11 0.90 ± 0.28 1.29 ± 0.35 0.64 ± 0.31 
           

  REGULAR HIGH  UNPREDICTABLE HIGH  Bas S
start S

mid S
stop
 Recov Bas S

start S
mid S

stop
 Recov 

CSR 0.0 ± 0.0 0.4 ± 0.2 2.0 ± 0.2 3.7 ± 0.2 2.1 ± 0.3 0.0 ± 00. 0.5 ± 0.3 2.4 ± 0.5 3.5 ± 0.3  2.1 ± 0.3            

HR_mean 67.18 ± 2.80  83.12 ± 4.08 87.05 ± 6.45   84.05 ± 5.31 68.52 ± 3.76  63.89 ± 3.28 78.89 ± 5.14 80.03 ± 5.55 81.40 ± 5.84 77.89 ± 5.56 
HR_std 2.66 ± 0.24 5.26 ± 1.06  4.85 ± 1.11  5.33 ±  1.07 3.01 ± 0.36  3.90 ± 1.32 9.58 ± 4.06 7.17 ± 3.97 7.53 ± 3.96 2.47 ± 0.37  
In_max 4.00 ± 0.83   6.97 ± 1.04 7.01 ± 1.08 9.59 ± 1.37 6.11 ± 1.03 2.88 ± 0.75  4.81 ± 1.03 5.27 ± 1.08  5.87 ± 1.27 3.71 ± 0.71  
Out_max 3.69 ± 0.63 6.95 ± 1.07 7.49 ± 1.29 10.38 ± 1.39 6.27 ± 1.08 3.05 ± 0.79 4.80 ± 1.09 5.42 ± 1.09 5.76 ± 1.18 3.99 ± 0.84 
Scr_mean 0.71 ± 0.14 2.13 ± 1.07 2.81 ± 1.24 1.56 ± 0.30 0.51 ± 0.13 0.86 ± 0.25 1.01 ± 0.13 1.75 ± 0.52 1.14 ± 0.20 0.42 ± 0.09 
Scr_std 0.71 ± 0.13 0.86 ± 0.13  0.96 ± 0.20 1.37 ± 0.39 0.53 ± 0.11 0.55 ± 0.16 0.90 ± 0.14 0.95 ± 0.12 0.88 ± 0.15 0.43 ± 0.11 
           

Supplementary Table 1: Results for each test period (Base, Sstart, Smid, Sstop, and Recov) in each condition (mean ± 1052 
SEM; n=23) and for each feature: mean heart rate (‘Hr_mean’), standard deviation of heart rate (‘Hr_std’), maximum 1053 
inspiration (‘In_max’) and expiration (‘Out_max’), mean skin conductance response (‘SCR_mean’), and standard 1054 
deviation of skin conductance response (‘SCR_std). 1055 
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CSR  RL UL RH UH 
PATH*PERIOD*ACCEL Bas S

start S
mid S

stop
 Recov Bas S

start S
mid S

stop
 Recov Bas S

start S
mid S

stop
 Recov Bas S

start S
mid S

stop
 Recov 

RL 

Bas  *** *** *** ***  *** *** *** ***  *** *** *** *** . *** *** *** *** 
S

start ***  * ** * ***  *** *** ** ***  *** *** *** *** . *** *** *** 
S

mid * *  . . ***  ** ***  ***  ** *** *** *** . *** *** *** 
S

stop *** ** .  . *** * * ***  ***  * *** ** *** . *** *** ** 
Recov *** * . .  ***  ** ***  ***  ** *** ** *** . *** *** ** 

 UL 

Bas . *** *** *** ***  *** *** *** *** . *** *** *** ***  *** *** *** *** 
S

start *** . . *  ***  *** *** * *** . *** *** *** *** . *** *** *** 
S

mid *** *** ** * ** *** ***  *** * *** ** . *** . *** * * *** . 
S

stop *** *** *** *** *** *** *** ***  *** *** *** . *** . *** *** . ** . 
Recov *** ** . . . *** * * ***  *** . * *** ** *** . *** *** ** 

 RH 

Bas . *** *** *** *** . *** *** *** ***  *** *** *** *** . *** *** *** *** 
S

start *** . . . . *** . * *** . ***  *** *** *** *** . *** *** *** 
S

mid *** *** ** * ** *** *** . . * *** ***  *** . *** *** * *** . 
S

stop *** *** *** *** *** *** *** *** *** *** *** *** ***  *** *** *** *** . *** 
Recov *** *** *** ** ** *** *** . . ** *** *** . ***  *** *** . *** . 

 UH 

Bas . *** *** *** *** . *** *** *** *** . *** *** *** ***  *** *** *** *** 
S

start *** . . . . *** . * *** . *** . *** *** *** ***  *** *** *** 
S

mid *** *** *** *** *** *** *** * . *** *** *** * *** . *** ***  *** . 
S

stop *** *** *** *** *** *** *** *** ** *** *** *** *** . *** *** *** ***  *** 
Recov *** *** *** ** ** *** *** . . ** *** *** . *** . *** *** . ***  

 1064 

Supplementary Table 2: Results of post-hoc analyses for significant interaction between 'test period', 'acceleration 1065 
level', and 'path predictability' for CSR values and each test period (Base, Sstart, Smid, Sstop, and Recov) in each condition 1066 
(n=23).  The three independent variables are: ‘ACCEL’ for ‘acceleration level', ’PATH’ for 'path predictability', and 1067 
‘PERIOD’ for ‘test period’. Significant statistical differences between values are shown in green. *significant 1068 
difference (p < 0.05), **  significant difference (p < 0.01), ***  significant difference (p < 0.001).  1069 

 1070 

 1071 

   1072 

 1073 

 1074 

 1075 

 1076 

Supplementary Table 3: Results of post-hoc analyses for significant interaction between (A) 'test period' and 1077 
‘acceleration level' and (B) 'test period' and 'path predictability' for ‘HR_mean’ values and each test period (Base, 1078 
Sstart, Smid, Sstop, and Recov) (n=23). The three independent variables are: ‘ACCEL’ for ‘acceleration level', ’PATH’ 1079 
for 'path predictability', and ‘PERIOD’ for ‘test period’. Significant statistical differences between values are shown 1080 
in green. *significant difference (p < 0.05), ** significant difference (p < 0.01), *** significant difference (p < 0.001). 1081 
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HR_std 
PERIOD*ACCEL 

 LOW HIGH 
Bas S

start S
mid S

stop
 Recov Bas S

start S
mid S

stop
 Recov 

LOW 

Bas  . . . . . * . . . 
S

start .  . . . . * . . . 
S

mid . .  . . . * . . . 
S

stop . . .  . . * . . . 
Recov . . . .  . * . . . 

 HIGH 

Bas . . . .   *** * * . 
S

start * * * * * ***  . . *** 
S

mid . . . . . * .  . ** 
S

stop . . . . . * . .  ** 
Recov . . . . . . *** ** **  

 1082 

Supplementary Table 4: Results of post-hoc analyses for significant interaction between 'test period' and 1083 
‘acceleration level' for ‘HR_std’ values and each test period (Base, Sstart, Smid, Sstop, and Recov) (n=23). The two 1084 
independent variables are: ‘ACCEL’ for ‘acceleration level' and ‘PERIOD’ for ‘test period’. Significant statistical 1085 
differences between values are shown in green. * significant difference (p < 0.05), ** significant difference (p < 0.01), 1086 
*** significant difference (p < 0.001). 1087 

 1088 

In_max 
PERIOD*ACCEL 

 LOW HIGH 
Bas S

start S
mid S

stop
 Recov Bas S

start S
mid S

stop
 Recov 

LOW 

Bas  * ** * . . *** *** *** ** 
S

start *  . . * . * ** *** . 
S

mid ** .  . ** . * * *** . 
S

stop * . .  * . * * *** . 
Recov . * ** *  . *** *** *** ** 

 HIGH 

Bas . . . .   *** *** *** ** 
S

start *** * * * *** ***  . *** . 
S

mid *** ** * * *** *** .  ** * 
S

stop *** *** *** *** *** *** *** **  *** 
Recov ** . . . ** ** . ** **  

 1089 

Supplementary Table 5: Results of post-hoc analyses for significant interaction between 'test period' and 1090 
‘acceleration level' for ‘In_max’ values and each test period (Base, Sstart, Smid, Sstop, and Recov) (n=23). The two 1091 
independent variables are: ‘ACCEL’ for ‘acceleration level' and ‘PERIOD’ for ‘test period’. Significant statistical 1092 
differences between values are shown in green. * significant difference (p < 0.05), ** significant difference (p < 0.01), 1093 
*** significant difference (p < 0.001). 1094 

 1095 

 1096 

 1097 

 1098 
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Out_max  RL UL RH UH 
PATH*PERIOD*ACCEL Bas S

start S
mid S

stop
 Recov Bas S

start S
mid S

stop
 Recov Bas S

start S
mid S

stop
 Recov Bas S

start S
mid S

stop
 Recov 

RL 

Bas  * * * . . *** *** *** . . ** *** *** ** . * * ** . 
S

start *  . . . . . . . . . * ** *** * . . . . . 
S

mid * .  . . . . . . . . * ** *** * . . . . . 
S

stop * . .  . . . * . . . ** ** *** * . . . . . 
Recov . . . .  . ** *** **  . ** ** *** ** . . * *  

 UL 

Bas . . . . .  * ** * . . ** ** *** * . . * * . 
S

start *** . . . ** *  . . ** . * * *** . . . . . . 
S

mid *** . . * *** ** .  . *** . . * *** . . . . . . 
S

stop *** . . . ** * . .  ** . * * *** . . . . . . 
Recov . . . . . . ** *** **  . ** *** *** ** . . * *  

 RH 

Bas . . . . . . . . . .  *** *** *** *** . * ** *** . 
S

start ** * * ** ** ** * . * ** ***  . *** . *** *** ** * *** 
S

mid *** ** ** ** *** ** * * * *** *** .  *** * *** *** *** ** *** 
S

stop *** *** *** *** *** *** *** *** *** *** *** *** ***  *** *** *** *** *** *** 
Recov ** * * * ** * . . . ** *** . *** ***  *** ** . . *** 

 UH 

Bas . . . . . . . . . . . *** *** *** ***  *** *** *** . 
S

start * . . . . . . . . . * *** *** *** ** ***  . . . 
S

mid * . . . * * . . . * ** ** *** *** . *** .  . *** 
S

stop ** . . . * * . . . * *** * ** *** . *** . .  *** 
Recov . . . . . . . . . . . *** *** *** *** . . *** ***  

Supplementary Table 6: Results of post-hoc analyses for significant interaction between 'test period', 'acceleration 1099 
level', and 'path predictability' for CSR values and each test period (Base, Sstart, Smid, Sstop, and Recov) in each condition 1100 
(n=23). The three independent variables are: ‘ACCEL’ for ‘acceleration level', ’PATH’ for 'path predictability', and 1101 
‘PERIOD’ for ‘test period’. Significant statistical differences between values are shown in green. * significant 1102 
difference (p < 0.05), ** significant difference (p < 0.01), *** significant difference (p < 0.001).  1103 

 1104 

 1105 

 1106 

 1107 

 1108 

 1109 

 1110 

Supplementary Table 7: Results of post-hoc analyses for significant effect of 'test period' (A) for ‘SCR_mean’ and 1111 
(B) for ‘SCR_std’ values and each test period (Base, Sstart, Smid, Sstop, and Recov) (n=23). There is one independent 1112 
variable: ‘PERIOD’. Significant statistical differences between values are shown in green. * significant difference (p 1113 
< 0.05), ** significant difference (p < 0.01), *** significant difference (p < 0.001). 1114 

 1115 

 1116 


