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Abstract

Human motion analysis plays a crucial role in industry 4.0 and, more recently, in
industry 5.0 where human-centered applications are becoming increasingly important,
demonstrating its potential for enhancing safety, ergonomics and productivity. Con-
sidering this opportunity, an increasing number of studies are proposing works on the
analysis of human motion in an industrial context, taking advantage of the rise of artificial
intelligence technologies and sensor technologies. The objective of this work is to provide
a review of recent studies exploring these technologies in the analysis of human move-
ment while specifically considering industrial context. First, a taxonomy of key human
motion analysis applications is proposed, presenting statistical insights to reveal trends
and highlighting lacks in current research. Furthermore, this work identifies benchmark
datasets acquired in various industrial case studies and associated sensors. Many recom-
mendations for selecting optimal sensors and valuable benchmarks are proposed. Then,
the paper outlines the current trend of utilizing hybrid deep learning methodologies in
human movement analysis while underscoring the performance and limitations of these
proposed methods, considering industrial constraints such as real-time recognition and
frugality. Finally, challenges and future works are highlighted, focusing on the opportuni-
ties to address problems related to the complex industrial environment in order to achieve
reliable performances. Human motion analysis plays a crucial role in industry 4.0 and
recently in industry 5.0, where human-centered applications are becoming increasingly
important demonstrating its potential for enhancing safety, ergonomics and productivity.
While numerous works have examined diverse approaches for human motion analysis,
few studies have specifically addressed the industrial environment, which poses distinct
challenges and problems. In light of this gap, the present study aims to investigate
the importance of online human motion analysis across various industrial domains. It
underscores the need for benchmark datasets and compares them based on different
criteria such as the type of interactions, recorded views, body part analyzed and available
modalities. Furthermore, it provides a thorough review of the technological advancements
applied in the field of human motion analysis mainly based on MoCaps sensors. Additionally,
it presents a comparative evaluation of various deep learning approaches mostly focusing
on human action recognition methods on trimmed and untrimmed sequences. Finally,
we discuss the limitations. These include but are not limited to imbalanced datasets
and poor performance of online recognition methods. We also shed light on unresolved
challenges that arise in industrial environments. These encompass the choice of sensors
for data acquisition, data annotation for large benchmark datasets, and online action
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segmentation in continuous sequences. In conclusion, the exploration of synthetic data
generation and multimodal approaches is encouraged. Further investigation is called for,
considering aspects such as frugality and system interoperability which help to inspire
future research directions in this area.

Keywords:
Industry 4.0/5.0; Online human motion analysis; Data acquisition technologies;
Benchmarks; Deep learning; Human-robot collaboration.

1. Introduction

The importance of analyzing human motion in industry 4.0 and recently in industry
5.0 is paramount, as it highlights the crucial role of humans and their impact on various
industrial applications, including ergonomics, safety and productivity (Alves et al., 2023).
While human motion refers to the physical movement of the human body, human action
goes beyond the physical movement and involves a purpose or intention behind the
motion. Human motion analysis (HMA) is a multidimensional field comprising various
facets of human movement comprehension. It involves human gesture recognition (HGR),
which specifically deals with identifying and categorizing human actions, especially when
only the hands are captured (Sturm et al., 2023). Additionally, HMA encompasses human
action recognition (HAR), focusing on identifying and classifying actions when the whole
body is captured (Nazmus Sakib et al., 2022). Moreover, human action detection involves
detecting the start and end points of action instances (Xu et al., 2021). Lastly, there is
action anticipation or forecasting, which involves predicting future actions by anticipating
the movement of the operator (Moutinho et al., 2023).

Accurate analysis and recognition of human actions hold significant importance for
several purposes, including facilitating effective human-robot collaboration (HRC) (Zhou
et al., 2023), optimizing industrial processes (Hernandez et al., 2021), assisting operators
in their work (Moutinho et al., 2023) and safeguarding their health (Tassi et al., 2022)
and security (Kwon et al., 2021). The acquisition of displacement and movement data
in human motion analysis can be achieved using a range of methods and technologies.
The choice of approach and technology depends on the particular context of the case
study and the adopted methodology (Menolotto et al., 2020). To assess and compare
various methods for human motion analysis, researchers frequently utilize benchmark
datasets tailored for industrial scenarios, which are increasingly being made available.
These datasets consist of annotated motion sequences that capture diverse human ac-
tions and interactions within manufacturing environments. They serve as standardized
platforms, enabling the testing of approaches against real-world challenges introduced
by industrial requirements. These benchmark datasets promote fair comparisons and
facilitate advancements in the field (Sener et al., 2022).

As depicted in Table 1, literature has been examined concerning various components,
such as technologies used for acquiring human movement data, as well as the method-
ologies and evaluation metrics applied in the analysis of human actions and movements.
A noticeable observation highlights the absence of recent comprehensive surveys that
encompass all facets of HMA in the industrial context.
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Table 1: Recent surveys on motion analysis in industrial context from 2018 to 2023.
HMA: Human Motion Analysis, HAR: Human Action Recognition, DL: Deep Learning, P: Partial study of
the item, G: General study of the item without a specific focus, MoCap: Motion Capture.
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2023

The Expanding Role of Artificial
Intelligence in Collaborative Robots

for Industrial Applications:
A Systematic Review of Recent Works

(Borboni et al., 2023) 2018-2022
Comparison between automated robots

and cobots for tasks such as
vision-based action recognition

2022
Human–robot collaboration in industrial

environments: A literature review
on non-destructive disassembly

(Hjorth and Chrysostomou, 2022) 2009-2020 Human robot collaboration disassembly
using action, posture and gesture recognition

2022 Temporal Action Segmentation:
An Analysis of Modern Techniques (Ding et al., 2022) 2011-2023

Comparison between datasets, approaches
and metrics used for online

temporal action segmentation
G

2022
Wearable Sensors and Artificial

Intelligence for Physical Ergonomics:
A Systematic Review of Literature

(Donisi et al., 2022) 2009-2021 Overview of sensors and approaches
employed for ergonomic applications in industry

2022
Vision-based holistic scene

understanding towards proactive
human-robot collaboration

(Fan et al., 2022) 2010-2021
Scene understanding considering

cognition object, human and environment
+ visual reasoning

2021 Human-Robot Perception in Industrial
Environments: A Survey (Bonci et al., 2021) 2010-2020

Sensor equipment useful for human
detection and action recognition
with fixed and mobile robots.

P

2020 Motion Capture Technology in Industrial
Applications: A Systematic Review (Menolotto et al., 2020) 2011-2021 List MoCap in industry and identify

their most targeted applications G G

2019
Human Activity Recognition for

Production and Logistics:
A Systematic Literature Review

(Reining et al., 2019) 2009-2018 Roadmap of HAR in
production and logistics P P

2018
Active and assisted living:

a comprehensive review of enabling
technologies and scenarios

(Manoj and Thyagaraju, 2018) 2005-2018 Active and assisted living via HAR G G

2023 Ours - 2018-2023

Study the applications of online
human motion analysis in industrial context,
the technologies used to acquire motion data,

benchmark datasets and approaches.

In fact, some surveys have examined the analysis of human motion within industrial
settings, either in a broad scope encompassing various contexts such as sports and health
(Ding et al., 2022; Manoj and Thyagaraju, 2018) (these surveys are denoted by ’G’ in
Table 1 column ’Industry’) or in a narrower scope such as logistics or ergonomics limited
to specific sub-fields within the industrial context (Reining et al., 2019; Donisi et al.,
2022) (these surveys are denoted by ’P’ in Table 1 column ’Industry’).

Among the mentioned surveys, approximately half of them have not addressed the
sensors utilized for data acquisition (Borboni et al., 2023; Hjorth and Chrysostomou,
2022; Ding et al., 2022; Fan et al., 2022). Only two studies (Ding et al., 2022; Reining
et al., 2019) specifically addressed benchmark datasets and evaluation metrics presenting
some industrial datasets such as Assembly101 (Sener et al., 2022) and HA4M (Cicirelli
et al., 2022). However, in these studies, it was noted that most reviewed approaches were
evaluated on general datasets like Breakfast activities (Singhania et al., 2022), which may
not adequately capture the complexities encountered in manufacturing environments.
Furthermore, some surveys (Hjorth and Chrysostomou, 2022; Manoj and Thyagaraju,
2018; Donisi et al., 2022) do not review benchmark datasets which makes it challenging
to compare the approaches discussed in their studies.

The existing literature remains limited, particularly in terms of surveys that specif-
ically focus on analyzing human movements within untrimmed sequences. Some of the
available surveys are still primarily centered around trimmed sequences which fail to
encompass the complete complexity and nuances of human motion in industrial environ-
ments (Hjorth and Chrysostomou, 2022; Manoj and Thyagaraju, 2018). Some approaches
focus only on a specific architecture of deep learning (DL) approaches, as in (Reining
et al., 2019; Bonci et al., 2021), only convolution neural network (CNN) based approaches
are reviewed (these surveys are denoted by ’P’ in Table 1 column ’DL’). On the contrary,
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other works (Manoj and Thyagaraju, 2018; Menolotto et al., 2020) cover not only DL but
broader methodologies such as machine learning methods (these approaches are denoted
by ’G’ in Table 1 column ’DL’). It is worth mentioning that deep learning techniques
employed in some surveys (Borboni et al., 2023; Fan et al., 2022) exhibited limitations in
terms of time efficiency. Additionally, case studies utilized in the presented approaches
predominantly involved controlled environments with operators in static poses. However,
in real-world scenarios, operators are often moving within the working area in a dynamic
environment with changing backgrounds. More surveys (Ding et al., 2022; Vahdani and
Tian, 2022; Matheson et al., 2019; Yonga Chuengwa et al., 2023; Castro et al., 2021; Sun
et al., 2022) were also identified, covering general applications not specific to the industry
or centered more on human-robot collaboration in general than specifically delving into
human motion analysis.

To address the limitations and gaps identified in previous surveys, this study specif-
ically focuses on the industrial context. A more up-to-date viewpoint is provided by
concentrating on recently published works from 2018 onwards. In this review, human
movement analysis encompasses human gesture recognition, human action recognition,
human action detection and anticipation. To the best of our knowledge, this is the
first review providing a comprehensive overview of online human motion analysis in
an industrial context, addressing various items including applications, data acquisition
technologies, data modalities, benchmark datasets and evaluation metrics. In addition to
categorizing existing works, their strengths and limitations, this paper proposes various
taxonomies and discussions emphasizing the opportunities to consider in future works.
To resume, this study presents several contributions by:This paper aims to investigate
applications, data acquisition technologies, data modalities, benchmark datasets and
evaluation metrics. The objective of this paper is to identify and provide a comprehensive
analysis of existing resources while also paving the way for future directions. The key
contributions of this study can be summarized as follows:

• Identifying and categorizing key applications using human motion analysis, es-
tablishing a taxonomy that distinguishes main and sub-applications. Also, this
study provides statistical insights, revealing trends and underscoring gaps in ex-
isting works across these application domains. We provide a taxonomy of primary
applications of human motion analysis within an industrial context, offering insights
into their usage, significance, and impact, whether or not robots are present.
Additionally, we identify emerging trends in these applications, highlighting the
evolving landscape within industrial settings.

• Proposing a taxonomy by investigating various sensors for capturing operator move-
ments and acquiring motion data, including both motion capture sensors and con-
temporary signal-based ones. Additionally, this paper provides a comparative anal-
ysis of these technologies, along with recommendations for selecting optimal sensors
based on specific application requirements and the type of movement being ana-
lyzed. We identify and conduct a comparative analysis of the technologies used
for capturing operator movements and acquiring data. Additionally, we present a
taxonomy and analyze the modalities provided by each technology.

• Pioneering the creation of a comprehensive in-depth view consolidating recent
benchmark datasets explicitly tailored for human motion analysis within indus-
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trial applications. This synthesis serves as a valuable resource for the research
community, enabling results reproduction and comparison while significantly re-
ducing time spent on data acquisition. Additionally, this paper presents a com-
prehensive cross-analysis to identify diverse perspectives on movement acquisition,
encompassing viewpoints, modalities and analyzed body segments. We pinpoint
diverse benchmark datasets suitable for training and evaluating motion analysis
methodologies, emphasizing their diverse features, case studies, and distinctive
attributes they offer.

• Outlining the current trend of utilizing hybrid deep learning methodologies in hu-
man movement analysis while underscoring the critical needs for less laborious
approaches, particularly those learned from abundant data suggesting the consid-
eration of recent approaches such as self-supervised and zero-shot learning. This
work emphasizes the relationship between the evolution of deep learning techniques
and the necessity to integrate frugality and embedded systems. Additionally, the
paper recognizes the pressing need for more mature recognition approaches capable
of handling untrimmed data in industrial applications. We conduct an analysis and
comparison of various deep learning methods proposed in the literature for human
action segmentation, recognition, and anticipation. Additionally, we identify the
main metrics used to evaluate these methods across a spectrum of benchmark
datasets.

• Proposing a roadmap for future directions and identifying critical points, start-
ing with the role of motion analysis in Industry 4.0 and its evolution to Indus-
try 5.0. Several opportunities are identified to enhance action recognition in the
industry, considering both online recognition constraints and the need for frugal
approaches. Additionally, this study suggests new opportunities with emerging sen-
sors and data acquisition methods to address the problems related to complex in-
dustrial environments. We thoroughly examine the limitations and challenges that
arise in the context of human motion analysis within the industrial environment.
Simultaneously, we put forward potential areas of future research and investigation
that can help to address these issues and advance the field.

The paper contains several sections illustrated in Fig. 1, and it is structured as
follows: Section 2 introduces the methodology used in selecting articles to write our
paper. Section 3 reviews human motion applications in industry. Section 4 highlights
the technologies utilized to acquire data and create the benchmark datasets. Human
motion analysis approaches mostly human action recognition methods and metrics are
listed in Section 5. Finally, the potential future development of HMA is discussed in
Section 6.

2. Review methodology

In this section, we outline the methodology employed in selecting articles used in
this study, inspired by (Prunet et al., 2022). First, we consider the selection of specific
keywords that align with our research objectives and study scope. To identify these
keywords, we relied on a set of predefined general items which are as follows:
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Figure 1: The review architecture.

• Human and Motion Analysis: We exclusively consider studies that analyze human
movements. This category includes the analysis and recognition of human gestures
and actions but also the interactions between the operator and his environment
through gestures.

• Industrial Environment: The papers we study must treat the application of HMA
in an industrial setting. While HMA solutions have been proposed in various
contexts, such as sports and surveillance, our primary interest lies in its application
in industrial environments, where it can have a significant impact.

• Data Modalities: The papers we review must explicitly specify the type of data
employed for HMA. This may encompass RGB, depth and skeletal data. These are
acquired using MoCaps dedicated cameras or IMUs. Understanding these modali-
ties is important for making informed decisions regarding the choice of approaches
to use.

The derived keywords from these general items are detailed in Table 2. Our review
methodology entailed a specific process for paper and document selection which can be
summarised as follows:
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• Phase 1: We began by identifying pertinent keywords related to our study as pre-
viously mentioned. These keywords were incorporated into the following query:
”(industr* OR manufactur* OR robot) AND (human OR operator) AND (”ac-
tion recognition” OR ”gesture recognition” OR ”motion analysis” OR ”movement
recognition”) AND (skeleton OR video OR RGB OR depth OR camera OR MoCap
OR IMU)”. This query was applied to both ’Scopus’ and ’Scinapse’ databases. We
established specific criteria, including a focus on publications between 2018 and
May 2023 (included), exclusivity to the English language, restriction to journal
and conference papers, and relevance to the domains of engineering or computer
science. Our initial search resulted in 706 records.

• Phase 2: We refined the results by eliminating duplicated entries, leaving us with
658 unique articles.

• Phase 3: We conducted a more detailed screening phase by examining titles, key-
words and abstracts based on specific criteria detailed hereafter. Only works us-
ing deep-learning approaches were selected. Articles exclusively examining robot
displacement analysis without considering human motion analysis were excluded.
Only works specifically focused on an industrial context were included, excluding
those related to other contexts such as sports and healthcare. This resulted in 270
articles.

• Phase 4: An in-depth review process was undertaken on the content of the remain-
ing articles by applying the same criteria as in Phase 3. This process involved a
more advanced examination of the paper’s content to ensure alignment with the
scope of our research, leading to a total of 114 selected articles.

• Phase 5: Relevant papers were identified by consulting the references and citations
of the selected papers as supplementary resources. Ultimately, a total of 140 133
papers were included as the foundation for this review.

Table 2: Used keywords in the papers selection process.

General item Keywords
Industry industr*, manufactur*, robot
Human human, operator

Motion analysis ”action recognition”, ”gesture recognition”,
”motion analysis”, ”movement recognition”

Modalities skeleton, video, RGB, depth, camera, IMU, MoCap

3. Applications

Industry 4.0 and more recently industry 5.0 emphasize the need for industries to ex-
hibit resilience, durability and a human-centered approach, prioritizing the safety and
well-being of individuals (Alves et al., 2023). To reach these objectives, the analysis of
human motion is of utmost importance and holds significant relevance in the industry
(Menolotto et al., 2020; Rana et al., 2023). These endeavors find practical application
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in various industrial domains, most notably in robotics and automation, training, pro-
duction, logistics and aeronautics (Al-Amin et al., 2019; Niemann et al., 2021; Moutinho
et al., 2023). This study reviewed articles and grouped them into three primary applica-
tions (Ergonomy, Safety and Productivity-efficiency) with or without robot participation
which are depicted in Fig. 2.

08/12/2023 Analyse et reconnaissance des mouvements humains dans le contexte de l'industrie 5.0
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Figure 2: Human motion analysis applications in industry. (a) Main applications considering human-
robot collaboration. (b) Productivity, efficiency sub-fields.

3.1. Safety
Ensuring the safety of operators in industrial settings is crucial, as accidents can oc-

cur when machines are near sensitive body parts such as the head or arms. To mitigate
this risk, several approaches have been applied to robots, including collision detection
and reactive motion planning techniques, commonly referred to as speed and separation
monitoring (SSM) (Mohammadi et al., 2020) and power and force limitation (PFL) (Vi-
centini, 2021) methods, respectively. Most studies (9 out of 10 studies) 8 out of 9 studies
focus on study cases that involve the use of robots while only one study (Delamare et al.,
2020) tracks the movements of operators in a workstation without robot presence. Most
of the research in this field references its applications within the context of industry 4.0.
These methods can be broadly categorized into two types. The first category involves the
placement of sensors on robots known as presence sensors (non-visual sensors) along with
cameras to monitor human activity. For instance, Abu Al-Haija and Al-Saraireh (2022)
proposed an autonomous human-robot contact detection model to prevent damaging col-
lisions during collaboration in industrial tasks. Similarly, Kwon et al. (2021) proposed a
method that determines the location of the collision and its occurrence to avoid abrupt
and unpredictable collisions. Birjandi et al. (2020) proposed a collision detection system
using a sensor fusion setup with high accuracy and decreasing detection uncertainty.
(Zhang et al., 2020) introduced a collision prevention model that predicts the future op-
erator motion trajectory while working on engine assembly. The anticipated trajectory
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guides real-time planning and execution of robot actions. The second category involves
placing sensors on the operator along with additional cameras with the primary objective
of capturing data utilized in collision detection algorithms. For instance, Grushko et al.
(2021) attempted to predict the robot’s future trajectory, rather than anticipating the
operator’s movement. They used a notification system that vibrates as the operator’s
hand approaches the robot’s planned trajectory to avoid collisions. Pastor et al. (2022)
presented a haptic database to estimate the grasping location precisely when grabbing a
human limb, which can be applied in rescue or assistive robotics. Delamare et al. (2020)
proposed a new dataset for tracking operators and gathering accurate information on
worker movement to improve safety conditions in the industry.

3.2. Ergonomy
In industries where humans play a central role, ensuring the well-being of workers

is of utmost importance. To achieve this, human motion analysis can be employed to
estimate ergonomic indexes, which can then be used to suggest optimal working pos-
tures and correct any harmful postures that could result in musculoskeletal disorders
(MSDs) (Maurice et al., 2019). HMA also plays a vital role in intelligent automation by
automating time-consuming, repetitive and physically demanding activities to preserve
the mental and physical health of workers (Maddikunta et al., 2022).

Numerous studies have been carried out to assess ergonomic parameters based on
well-known ergonomic indexes such as Rapid Upper Limb Assessment (RULA), which is
the most commonly used index (da Silva et al., 2022). RULA is employed to evaluate
posture, force and movement related to sedentary tasks (Chiabert and Aliev, 2020).
Rapid Entire Body Assessment (REBA), which is similar to RULA in principle, is used
for full body posture studies, including the neck, hand, shoulder, leg and limb twisting
(da Silva et al., 2022). Ergonomic Assessment WorkSheet (EAWS) is a comprehensive
screening method that considers traditional risk factors such as work strength, frequency
and repetition (da Silva et al., 2022). Ovako Working posture Analyzing System (OWAS)
is a method that identifies and evaluates poor working postures and determines the
urgency of corrective measures (Inkulu et al., 2022). National Institute for Occupational
Safety and Health (NIOSH) was developed to determine the maximum load that can be
manually handled and moved during a work activity (da Silva et al., 2022). It is worth
noting that there are additional ergonomic scores beyond the ones listed here (Joshi
and Deshpande, 2019). These indexes have been utilized in several studies. Some work
(Havard et al., 2019; Kim et al., 2021) involved the use of robots in their study cases
while the rest (Manghisi et al., 2022; Bortolini et al., 2020; Sedlar et al., 2023) focused on
human ergonomics in the absence of robots. The majority of studies focus their research
within the context of industry 4.0, with only a limited number expanding their scope to
industry 5.0. Sedlar et al. (2023) introduced a dataset to estimate the pose of handheld
tools during industrial tasks. Havard et al. (2019) studied the ergonomics of a manual
workstation according to the position of a robotic arm used as a third arm to maintain
the assembled product. It allows adapting the robotic arm program to the operator’s
profile. Kim et al. (2021) used a robot arm to hold an object that had to be polished
by the human subject to estimate ergonomic parameters such as joint torque, muscle
fatigue and manipulability to identify the risk of injury associated with poor posture and
suggest an improved posture arrangement. Manghisi et al. (2022) proposed a tool called
ErgoVR, which offers a real-time evaluation of ergonomic postural risk by providing 3D
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visualization of postures. Bortolini et al. (2020) developed a motion analysis system
(MAS) that measures the human skeleton movements during activity execution and uses
these estimations to evaluate previously mentioned ergonomic indexes, such as OWAS,
REBA, NIOSH and EAWS.

3.3. Productivity and efficiency
The optimization of productivity and efficiency constitutes a primary objective across

diverse industrial sectors. To attain these objectives, human motion analysis serves as a
pivotal tool. In industrial settings, identifying movements can pose a challenge, particu-
larly when tasks are allocated among multiple actors, as is often the case in human-robot
collaboration in manufacturing. In such cases, the robot assumes the role of a facilitator,
assisting in tasks such as tool transfer and heavy object manipulation (Eisenbach et al.,
2022). To enable effective collaboration, the robot must possess the ability to anticipate
the operator’s intentions and take proactive measures (Zhang et al., 2022c). While this
aspect is acknowledged in industry 4.0, it is further emphasized in industry 5.0, where
the enhancement of these capabilities is a primary focus (Moutinho et al., 2023). The
application of HMA is viable for various sub-fields of process optimization, as indicated
in the following enumeration:

• Assistance can significantly improve productivity by facilitating the transfer of
parts, objects and tools during assembly processes. Furthermore, It can also aid
operators in achieving better, faster and higher-quality product assembly outcomes.
Numerous studies focused on the enhancement of assembly processes through hu-
man assistance and effective object handover techniques. Castro et al. (2021) and
Matheson et al. (2019) conducted extensive analyses on human assistance and ob-
ject handover. Collaborative robots were used for handling tasks, such as using
a screwdriver, delivering assembly tools, or even grasping objects from operators
and adjusting their orientations for assistance (Zhang et al., 2022a; Zhou et al.,
2023; Tassi et al., 2022). In parallel, other researchers focused on the facilitation
of operator activity through object holding and movement. Activities regrouped
mainly assembly tasks, such as assembling an internal combustion engine, assem-
bling a small wooden box, soldering assistance and performing shop-floor tasks
(?Moutinho et al., 2023; Toichoa Eyam et al., 2021; Darvish et al., 2018; Lagamtzis
et al., 2022). Finally, works such as (Liu et al., 2023b; Xu et al., 2023) considered
anticipating human movements to improve operator assistance by robots. They
addressed intention and behavior recognition, incorporating methods such as rule
reasoning, early action detection and object recognition (Zhang et al., 2022b).

• Monitoring can enhance productivity in the industry by identifying mistakes, dur-
ing assembly and guiding operators for better, faster and higher-quality product
assembly. Rana et al. (2023) proposed a new dataset for monitoring suspicious
activities, especially in large industries to optimize workflow during tricycle assem-
bly. Zamora et al. (2021) evaluated the activity of the operator during the manual
assembly of skateboard parts to identify errors and guide the operator, enhancing
productivity in the industry. Chen et al. (2020a) proposed an approach to monitor
operators during assembly tasks. It identifies repetitive assembly actions and pre-
dicts their respective operating durations. This approach can be used to minimize
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potential quality issues caused by the lack of key operational steps and the irregular
operation of workers during assembly activities.

• Resource management and work scheduling refers to the systematic approach of
efficiently allocating and organizing available resources, such as time, space and
human labor, to optimize productivity and performance in various activities. Bor-
tolini et al. (2020) proposed a MAS that can distinguish between time and space
spent for added-value or non-added-value activities. Hernandez et al. (2021) pro-
posed a hierarchical HAR method with a dataset to measure the performance of
manual labor by estimating productivity indicators, such as worker availability,
worker performance and overall labor effectiveness automatically for packing and
shipping orders. Wang et al. (2019) proposed a vision sensor-based HAR to improve
quality in the industry. They enhanced productivity and resource management by
minimizing task execution time and improving operator efficiency.

• Flow analysis and navigation refers to the process of studying and simulating regu-
lar activities that occur in industrial environments, with the aim of understanding
and optimizing the movement of robots within these settings. Schreiter et al. (2022)
tried to emulate regular activities performed in an industrial environment. Their
work was based on Rudenko et al. (2020) who used an automated guided vehicles
(AGV) type of robot as a moving obstacle in the working area. Li et al. (2021)
used a robotic arm to grab, deliver and hold objects such as a toolbox while moving
next to the operator.

• Assembly plans automation refers to the process of generating assembly plans auto-
matically through the utilization of action recognition techniques applied to man-
ufacturing assembly tasks. Upadhyay et al. published the IKEA ASM dataset to
generate assembly plans automatically for assembling furniture.
The remaining studies prioritized the optimization of solutions for complex action
segmentation, recognition and anticipation. These optimized approaches have the
potential to be implemented across diverse domains and applications, ultimately
improving productivity and efficiency in the industrial sector (Singhania et al.,
2022; Liu et al., 2023a; Zhang et al., 2021).

3.4. Summary of findings
Upon reviewing articles concerning human motion analysis applications in an indus-

trial context, three key applications have been identified. These applications encompass
safety, where the detection of physical contact and collision avoidance is pivotal for op-
erator safety in potentially hazardous industrial environments. Ergonomics is another
significant application, as it involves estimating ergonomic indices to correct the working
postures of operators, ensuring their comfort and well-being. Additionally, there is a fo-
cus on productivity and efficiency, achieved through continuous monitoring, assessment
of operators and the anticipation of their movements. This facilitates human-robot col-
laboration, ultimately enhancing manufacturing processes.
Most studies addressed their research within the context of industry 4.0, with a few ex-
tending to industry 5.0. The results highlight a clear preference for applications related
to industrial productivity and efficiency. Specifically, 41 36 studies have delved into
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the utilization of HMA to enhance these aspects. However, prioritizing ergonomic and
safety considerations represents a new era in industrial practices. Although industry 4.0
acknowledges this aspect, industry 5.0 places even greater focus on it as it aligns with
its core pillar, emphasizing both efficiency and human well-being.

4. Data acquisition

In the field of human motion analysis, understanding and accurately capturing data
is of paramount importance. In the previous section, we explored the main applications
of HMA in industry, highlighting its significance across various domains such as safety,
ergonomics and process optimization. Now, we delve deeper into the fundamental aspect
that underlies the entire process of HMA which is data acquisition. In this section, we
will introduce the technologies employed for the acquisition of human movement data,
highlighting their advantages and limitations. Additionally, we enumerate the industrial
datasets obtained through the use of these technologies. Finally, we provide insights into
the current state-of-the-art datasets.

4.1. Technologies
In recent years, a multitude of technologies have been developed to acquire and ana-

lyze operator movements and displacements in industrial environments (Menolotto et al.,
2020). Among these, motion capture (MoCap) technologies have been widely used to
extract the human skeleton. Additionally, some studies utilized muscle map activity
to improve the analysis of human hand displacement using signal-based sensors such as
electromyography (EMG) (Al-Amin et al., 2019; Kim et al., 2021). In the following, we
provide an overview of all the technologies employed for acquiring and analyzing oper-
ator movements in industrial settings. The proposed taxonomy and comparative study
are depicted in Fig. 3, Fig. 4, Table 3 and Table 4. This provides a practical illus-
tration of how these technologies can be utilized. It helps researchers and practitioners
gain a better understanding of the capabilities and limitations of each technology and
facilitates informed decision-making when selecting the most appropriate motion capture
method for their specific case studies. Furthermore, we present a comparative study of
these technologies, highlighting their advantages and limitations when used alone or in
combination for specific industrial applications.

4.1.1. MoCap technologies
Motion capture technology has been increasingly used in recent years. We present

a taxonomy that categorizes MoCaps into optical systems and non-optical systems, as
illustrated in Fig. 3.

Optical systems:. Cameras are devices capable of capturing a diverse range of reflections,
which can indirectly measure human body movements by recording images in the form
of pixel arrays. These images can be used to determine the positions of various body
joints, enabling the tracking of human motion (Chen et al., 2020b). Optical sensors
are particularly useful in providing a comprehensive understanding of the environment,
making them ideal for monitoring the workspace, ensuring personal safety and detecting
the presence of objects (Maurice et al., 2019). However, their performance is greatly
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MoCap

Optical 
Systems

Non-Optical 
Systems

Inertial 
Measurement 
Units (IMUs)

Marker-Based 
sensors

Marker-Less 
sensors

RGB Camera

Depth Camera

Active

(a)

Passive

Input Output

(b)

(c)

(d)

(e)

Figure 3: MoCap technologies. Examples of data acquired by: (a) Optical MoCap suit (Niemann et al.,
2020) (b) Active LED markers (Yun et al., 2013) (c) Kinect V2 (Ben-Shabat et al., 2021) (d) Kinect V1
(Cicirelli et al., 2022) (e) Perception Neuron 32 (?).

influenced by environmental conditions. For example, depth sensors are sensitive to
reflective surfaces, while RGBD (Red Green Blue and Depth) sensors are susceptible
to strong variations in brightness (Bonci et al., 2021). Optical-based sensors can be
classified into two main types:

• Marker-Based sensors: Marker-based sensors require the attachment of markers to
target regions such as limbs (Khan et al., 2020), which must be visually distin-
guishable from the surrounding environment so that cameras can easily recognize
and process their patterns. Niemann et al. (2020) used 39 reflective markers placed
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on an optical MoCap suit to track human movement during logistic activities. In a
separate study, they also tracked 12 different objects using optical MoCap markers
to capture rigid objects (Niemann et al., 2021). Tamantini et al. (2021) employed
optoelectronic MoCap to acquire data, which can be used to estimate factors that
may contribute to MSDs and therefore prevent their occurrence. While camera
marker-based sensors are well-suited for tracking human movements, they are not
appropriate for industrial applications due to the long preparation times required
for marker setup (Colyer et al., 2018).

• Marker-Less sensors: Marker-less sensors rely primarily on camera-based sensors for
motion tracking. Iodice et al. (2022) utilized an RGBD Realsense D435i camera to
capture a complete visual coverage of the workspace, including the operator. Ben-
Shabat et al. (2021) employed three Kinect V2 cameras capturing simultaneously
three RGB views (front, side and top) and one depth view (front) of the workspace
during assembly tasks in real-time. Cicirelli et al. (2022) utilized a Kinect V1
sensor equipped with RGBD cameras. This type of sensor provides users with more
freedom and has no setup time, making it ideal for tracking full-body movements.
However, they are sensitive to environmental factors such as lighting conditions,
temperature and the presence of other objects in the background, which results in
lower accuracy compared to marker-based sensors (Colyer et al., 2018).

Inertial Measurement Units (IMUs):. IMUs are devices commonly used for acquiring
human motion data, consisting of a set of three accelerometers and three gyroscopes
(Ribeiro et al., 2020). They can be affixed to various parts of the human body, including
the wrist, ankle, or waist (Attal et al., 2015). Multiple IMUs are often employed in the
literature to accurately analyze human pose and movement. For instance, researchers
have used IMUs to track the motion of the arms during assembly tasks (Al-Amin et al.,
2019), record whole-body kinematics during various activities (Maurice et al., 2019) and
generate detailed 3D models of operators while performing assembly tasks (?). IMUs are
lightweight, simple and easy to deploy, making them suitable for sports training, clinical
biomechanics and industrial applications (McGinnis, 2013). However, they are prone to
accuracy degradation over extended periods of use due to factors such as imperfections
and drift (Ribeiro et al., 2020). For instance, Al-Amin et al. (2019) used two IMUs placed
on each arm to track their motion during the assembly of a 3D printer. Other researchers
used wearable IMUs to generate a more detailed 3D model of the operator such as ?.
They used a Perception Neuron 32 v2 system to capture skeletal data by tracking 17
major body joints of the human body while performing assembly tasks. Maurice et al.
(2019) record whole-body kinematics using the Xsens MVN Link system. They equipped
participants with 17 IMUs placed all over the body to measure the orientation of the
body segments while performing tasks, including assembly and movement in the working
area.

In Table 3, a comparison of various MoCap systems is presented. The accuracy of
marker-based sensors is directly proportional to the number of markers and infrared (IR)
cameras used, indicating the higher the better. However, the setup process for markers is
both time-consuming and expensive, making it impractical for industrial workers. There-
fore, marker-less sensors are preferred due to their ease of deployment, affordability and
better representation of the environment. Nevertheless, marker-less sensors are suscep-
tible to external environmental factors such as lighting, temperature and occlusions. To
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obtain high-quality recordings, proper camera placement at suitable angles and locations
is critical.

Table 3: A comparative representation of MoCap systems for human movement data acquisition in
industry (inspired by (Menolotto et al., 2020)).

Accuracy Setup Cost Portability Limitations Modality Case study

MoCap
Systems

Optical Marker-Based

Very high
(0.1 mm and 0.5°);
subject to number/
location of cameras

Time-consuming,
frequent calibrations

[USD 5000 -
USD 150,000] Limited Camera

obstructions RGB, IR,
Depth,
Point-
Cloud,
Skeleton

(Tamantini et al., 2021)
(Niemann et al., 2020)
(Niemann et al., 2021)
(Colyer et al., 2018)

Marker-Less

Low
(static, 0.0348 m)
subject to distance

from camera

Checkerboard
calibrations USD 200(unit) Yes

Camera obstructions,
difficulties tracking
bright/dark objects

(Iodice et al., 2022)
(Ben-Shabat et al., 2021)
(Cicirelli et al., 2022)

Non-
Optical

IMUs High
(0.75° to 1.5°)

Straightforward;
subject to number

of IMUs

[USD 50 (unit) -
USD +12,000
(full-body)]

Yes

Drift, bias,
random noise,

factor imperfections,
misalignment

(Ribeiro et al., 2020)

Skeleton
(Maurice et al., 2019)

(?)
(Al-Amin et al., 2019)

Muscular Signals 
Tracking

Electromyography
 (EMG)

Force Myography
(FMG)

(a)

Input Output

(b)
FMG 

Signals

EMG 
Signals

Figure 4: Muscular signal tracking sensors. Examples of data acquired using: (a) Myo armbands (Al-
Amin et al., 2019) (b) Force Myography bands (Zakia and Menon, 2022).

4.1.2. Muscular Signal-Based sensors
Muscle signal-based sensors have been utilized in various domains, including health-

care, sports and more recently, the industrial sector. We present two commonly used
types of signal-based sensors named surface electrocardiography and force myography
(FMG), as depicted in Fig. 4.

Surface Electrocardiography (sEMG) is a method of capturing multi-point electromyo-
graphy recordings of muscles in real-time during dynamic movements. These sensors map
muscle activity to provide more precise data that can be used for biomechanical analy-
sis, ergonomic risk assessment and gesture recognition (Bassani et al., 2021). Previous
studies have utilized sEMG sensors, such as Al-Amin et al. (2019) who used two sensors
attached to an operator’s left and right arm to monitor muscular activity during assem-
bly tasks, and Kim et al. (2021) who used sEMG sensors to estimate muscular fatigue
when manipulating assembly tools. EMG provides rich information as it is a direct mea-
sure of muscle activation preceding muscle movement (Jiang et al., 2020). This is since
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EMG signals are detected when the brain sends instructions to the muscles to control
movement. However, there are some limitations to EMG techniques. For example, the
signal is non-stationary and can be affected by noise and artifacts that may occur during
physical activity or sweating (Zheng et al., 2022).

FMG is a modern and non-invasive wearable technology that can measure muscle
activity during muscle contractions and expansions (Zakia and Menon, 2022; Xiao and
Menon, 2019; Barioul et al., 2020; Wu et al., 2020). FMG can be used to recognize
the applied hand forces of humans during physical human-robot interactions (pHRI)
by detecting the force of each target muscle through pressure measurements against
the contacting muscle (Jiang et al., 2020). FMG sensors have several advantages over
sEMG sensors, including lower cost, smaller signal processing units, Bluetooth technology
and ease of wear. Additionally, FMG provides more accurate fatigue parameters than
EMG for high-speed motion (Prakash et al., 2021). Consequently, FMG sensors are an
excellent choice for human-robot interaction (HRI) projects (Zheng et al., 2022). Zakia
and Menon (2022) conducted an experiment to study human intentions of manipulating
a linear robot/biaxial stage using FMG sensors to estimate the interactive force between
the operator and the robot.

Combining EMG and FMG could potentially compensate for the limitations of each
modality and improve overall performance (Jiang et al., 2020). Ke et al. (2020) presented
a novel modular EMG-FMG sensor to improve the accuracy of recognition of hand ges-
tures. This underscores the benefits of sensor fusion in human motion analysis. Each
type of sensor has its own advantages and limitations. Combining multiple technologies
can ensure better accuracy in data acquisition (Sun et al., 2022).

Table 4: A comparative representation of muscle signal tracking systems for human movement data
acquisition in industry.

Accuracy Setup Cost Portability Limitations Modality usage

EMG 77.8%
Along the longitudinal

midline of desired muscle
parallel to muscle fibers.

[USD 1900 - USD 2400] Yes Limited muscle
representation Signal

(Al-Amin et al., 2019)
(Kim et al., 2021)

FMG 68.9 - 99%

Force sensing resistors
arranged as a grid in a
portable wearable band
(Delva et al., 2020)

calibration

[USD 8 - USD 144] Yes Sensor shifting
(Xiao and Menon, 2019) (Zakia and Menon, 2022)

4.1.3. Hybrid technologies
Hybrid datasets have been proposed to combine the benefits of IMUs and optical-

based sensors such as RGB cameras for improved tracking of human movements. ?
utilized an IMU-based system to capture skeletal data, while simultaneously using 3
cameras to capture RGB data from different viewpoints. Similarly, Maurice et al. (2019)
combined Qualisys MoCap sensors with IMUs, an e-glove was used to monitor hand
and finger flexion, and RGB cameras were utilized for video recording. Yoshimura et al.
(2022) utilized IMU units to acquire acceleration data on three axes, as well as gyroscope
and quaternion data, by attaching them to the subject’s left and right wrists and upper
arms. They also installed Kinect and LiDAR sensors as front-view cameras and an RGB
camera as a top-view camera. The LiDAR sensor was considered effective in accurately
tracking the subject’s position when they were away from the workbench. The extracted
skeleton data from these approaches has demonstrated improved recognition of coarse
actions involved with arm motion.
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As previously discussed, while IMUs and optical-based sensors can offer precise data,
they have limitations in certain applications. For example, MoCap sensors allow us to
get the ergonomic RULA score for the posture but lack the information about the load
raised by the operator during activity execution. Optical sensors or IMUs cannot dif-
ferentiate between actions performed with similar postures but varying load intensities.
To overcome this limitation, other types of sensors are required, such as EMG and FMG
sensors, which can provide valuable insights into muscle activity when used in conjunc-
tion with MoCap technologies in an ergonomic setting. Kim et al. (2021) employed a
combination of RGB cameras, EMG sensors and IMUs to improve the accuracy of human
motion recognition. Al-Amin et al. (2019) utilized Myo armbands, which integrate both
IMUs and EMG sensors to recognize fine actions associated with finger motion with high
precision. Therefore, depending on the use case specifications and available resources,
different technologies can be used independently or in combination for various projects.

4.2. Datasets
Prior research has indicated a deficiency of datasets on human motion analysis in the

industrial sector, which was brought to attention. However, recent developments reveal
a shift in this trend as an increasing number of datasets are being made available in
the industry for training and evaluating HMA techniques. A comprehensive list of these
datasets is presented in Table 5.

For safety applications, Iodice et al. (2022) have proposed a 3000 video dataset for
industrial HRI denoted as HRI30. The dataset consists of three distinct sets of actions,
which include human-object interaction actions, actions without interaction and collabo-
ration and finally, collaborative and end-collaborative actions. Additionally, Mohammadi
et al. (2020) have presented the Physical Human-Robot Contact Detection dataset to fa-
cilitate collision detection and human movement anticipation. Munasinghe et al. (2022)
have introduced the COVERED dataset, which employs multi-LiDAR systems compris-
ing four-point cloud cameras to overcome occlusion and acquire high-resolution data for
identifying elements such as robots, humans and AGVs in an industrial environment.

Several datasets have been introduced for estimating ergonomic indices. Sedlar et al.
(2023) have proposed the Imitrob dataset for training and evaluating 6D object pose es-
timators. Tamantini et al. (2021) have proposed the WGD—Working Gesture Dataset,
which aims to prevent MSDs. Moreover, Maurice et al. (2019) have presented the
AnyData-lab-onePerson dataset, which focuses on industry-oriented activities where par-
ticipants assume various postures to minimize operator load and enhance the working
experience.

Numerous datasets have been proposed to assist operators in industry by identifying
mistakes or providing tools during manufacturing tasks. ? have introduced the InHARD
dataset and its virtual representation InHARD-DT (Dallel et al., 2023), based on a real
use-case in an industrial environment, to generate self-labeled data. Lagamtzis et al.
(2022) have presented CoAx, a collaborative action dataset for human motion forecast-
ing in an industrial workspace. Yoshimura et al. (2022) have introduced OpenPack, a
large-scale dataset for recognizing packaging works in Internet of Things (IoT) enabled
logistic environments. For toy assembly tasks, Ragusa et al. (2021) have provided a
challenging egocentric MECCANO dataset for human-object interactions in industry,
while Sener et al. (2022) have proposed a more comprehensive multi-modal Assembly101
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dataset, which investigates recognition, anticipation, temporal segmentation and mistake
detection based on 3D hand poses.

In the context of flow analysis and navigation, datasets such as THOR dataset
(Rudenko et al., 2020) and its extended version Magni dataset (Schreiter et al., 2022)
have been introduced for motion forecasting in industrial environments. Furthermore,
Delamare et al. (2020) have proposed a novel dataset utilizing ultra-wideband (UWB)
and MoCap systems to monitor worker movements during tricycle assembly in an indus-
trial setting.

To automate assembly planning, a multi-modal and multi-view dataset named the
IKEA ASM dataset (Ben-Shabat et al., 2021) has been proposed. It comprises vari-
ous scenarios of furniture assembly with different backgrounds, which enables robust
recognition of human activities through actions, objects and poses.

Several datasets have been published to improve productivity and efficiency in in-
dustry. The listed datasets address various aspects of this goal, including action or
gesture detection, recognition and anticipation. Cicirelli et al. (2022) have presented the
multi-modal HA4M dataset designed for recognizing human actions in complex assembly
tasks in manufacturing. The HA4M dataset includes RGB, depth, IR, skeleton, point
cloud and RGB-A (RGB-depth Aligned) modalities, providing a robust foundation for
developing, validating and testing methodologies for recognizing assembly actions. In
the context of logistics, Niemann et al. (2020) have proposed the LARa dataset, which
uses attribute representation for HAR, followed by the CAARL dataset (Niemann et al.,
2021), a context-aware activity recognition in logistics dataset that focuses more on ob-
ject representation to explore the potential of context information for HAR. Additionally,
Sturm et al. (2023) have introduced the HAD-V1 dataset for vision-based human hand
action recognition in industrial assembly.
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(a.1)

Full body

(d)

(b)

Hands

Upper body

(e)

(a): [1] (a.1) human-object interaction (a.2) human-object interaction,(a.3) human-object interaction, (b) [3] 
human-robot interaction, (c):[7] human-object interaction,(d):[8] human-object interaction, (e)[4] human-
robot interaction + human-object interaction

(a.2) (a.3)

(c)

3  person viewEgo-centric view Multi-view
rd

Figure 5: Illustrations from reviewed datasets grouped by tracked body parts, type of interactions and
views. (a): (Sener et al., 2022) (a.1) Human-object interaction (a.2) Human-object interaction,(a.3)
Human-object interaction, (b) (Lagamtzis et al., 2022) Human-robot interaction, (c) (Tamantini et al.,
2021) Human-object interaction,(d) (Ben-Shabat et al., 2021) Human-object interaction, (e) (?) Human-
robot interaction + human-object interaction.
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By conducting a thorough analysis of Table 5 and evaluating the criteria outlined in
existing datasets, valuable observations can be made, and a range of diverse challenges
can be identified as follows:

• Trimmed vs Untrimmed: As shown in Fig. 6. (c), more datasets are published
for untrimmed human action sequences than for segmented and clipped sequences.
This growing trend highlights the demand for online solutions that can be applied
to real-world industries.

• Variation in human action execution, time, order and expertise (skills): Human
activities in the industrial context can greatly vary based on the expertise and skills
of individual operators, leading to differences in the way actions are executed, the
order in which tasks are performed and the time taken to complete them. Recent
datasets have begun to address these complexities, such as the Assembly101 dataset
(Sener et al., 2022), which takes into account the temporal ordering of tasks with
a high degree of variation. Additionally, it annotates skill levels based on task
execution speed and mistakes, providing a more realistic representation of industrial
activities. For example, experts tend to complete tasks faster than novice workers.

• Variation in data distribution: The scarcity of industrial HMA datasets is still an
issue, as most published datasets exhibit highly imbalanced data distributions that
result in a significant variation in action representation. To gain insight into the
distribution of datasets, we calculated the mean, variance and standard deviation
(SD) of several datasets while excluding the ”no action” class shown in Table 6. The
selection of datasets was based on the availability of meta-data, which facilitated
the computation of these measures. A higher SD indicates greater data dispersion
from the mean, reflecting a highly imbalanced dataset. For instance, Assembly101
(Sener et al., 2022) has a high SD, indicating significant dispersion, with only the
”pickup” and ”put down” classes having the same number of samples as the sum of
18 other classes, such as ”shake” and ”pull”. In CAARL dataset (Niemann et al.,
2021), approximately 70% of the labeled actions belong to the ”Handling” class.
For the MECCANO dataset (Ragusa et al., 2021), only two actions, ”take” and
”check,” account for 50% of the labeled actions. Although the InHARD dataset (?)
has a better SD, actions such as ”assemble system” and ”picking left” account for
more than 50% of the dataset samples. The HA4M (Cicirelli et al., 2022) dataset
has a low SD, but 47% of the data are represented by only three actions, such as
”Pick up/Place Gear Bearings,” ”Pick up/Place Planet Gears,” and ”Pick up/Place
Screw,” while other actions, such as ”pulling” and ”turning,” are infrequent. We
notice that the digital twin dataset (InHARD-DT) has the lowest SD with the same
mean as its physical twin InHARD. In addition to these measures, the varying
length of action sequences, which can range from a second to tens of seconds, such
as ”walking with a polisher,” poses a challenge for accurately identifying actions in
real-time (Koch et al., 2022).

• Human body parts, type of interaction and viewpoints variation: Different config-
urations of HMA can be applied based on the specific case study, as illustrated in
Fig. 5. For example, in static assembly tasks, only the upper body or arms are
monitored using cameras or signal-based sensors, which is the case in datasets like
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Table 6: Mean and standard deviation of sample numbers per class in some dataset examples.

Datasets Mean ±S D
HA4M (Cicirelli et al., 2022) 307.42 ± 165

InHARD-DT (Dallel et al., 2023) 369.15 ± 112
InHARD (?) 369.46 ± 347

MECCANO (Ragusa et al., 2021) 737.75 ± 793
CAARL (Niemann et al., 2021) 955.50 ± 1245
Assembly101 (Sener et al., 2022) 42 479.17 ± 48 666

MECCANO (Ragusa et al., 2021), WGD (Tamantini et al., 2021), Assembly101
(Sener et al., 2022) and HAR-V1 (Sturm et al., 2023). On the other hand, when the
operator is moving in the working area, the whole body is monitored using IMUs or
cameras, as seen in datasets like HRI30 (Iodice et al., 2022), Magni (Schreiter et al.,
2022), THOR (Rudenko et al., 2020), COVERED (Munasinghe et al., 2022), LARA
(Niemann et al., 2020) and CAARL (Niemann et al., 2021). The listed datasets ex-
hibit two main types of interactions, namely human-object (HO) interactions and
human-robot (HR) interactions, which are identified as verbs in some datasets.
The InHARD dataset (?) solely employs verbs to recognize actions, a method that
can be refined by concatenating verbs and objects as presented in the Assembly101
(Sener et al., 2022) and MECCANO (Ragusa et al., 2021) dataset. Although the
existing datasets such as the IKEA ASM dataset (Ben-Shabat et al., 2021) have
been experimented within various environments, recognizing human movements in
an industrial environment is challenging due to occlusions caused by limited view-
points, poor lighting conditions, moving entities in the background and machinery.
To minimize occlusions and ease both recognition of human actions and gestures,
some works have suggested multiple viewpoints. For example the WGD dataset
(Tamantini et al., 2021) used 8 RGB cameras in front and behind the operator
to capture upper body images. Assembly101 dataset (Sener et al., 2022) used 8
static cameras with 4 egocentric cameras for gesture recognition. In contrast, oth-
ers monitored the entire operator body while moving in the workspace, carrying
objects and doing packaging activities as in CAARL (Niemann et al., 2021) and
LARa datasets (Niemann et al., 2020). Fig. 6 (a) and (b) illustrate the frequency
of body parts representation and the distributions of the number of datasets re-
garding types of interactions during experiments of previously presented datasets.

• Human intention awareness: The datasets presented in this study have played a cru-
cial role in facilitating the detection, recognition and anticipation of human actions
across a wide range of contexts. To enhance workplace safety, hybrid approaches
were proposed. These approaches integrate human action detection and recognition
to enable robots to proactively anticipate human movements and prevent contact
or collisions, thereby promoting faster and safer HRI. However, despite these ad-
vancements, there remains a need for further progress in enhancing the accuracy
of action detection (Maurice et al., 2019; Mohammadi et al., 2020). Alternative
approaches were also introduced, which involved identifying verbs, active objects
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Figure 6: Statistics for selected datasets shown in Table 5. (a) Frequency of body parts representation.
(b) Distributions of the number of datasets regarding types of interactions. (c) Distribution of the
number of trimmed/untrimmed datasets per year.

and fine-grained actions to anticipate the next action. These approaches offer a
more detailed understanding of human intention. For example, in the scenario
of car assembly, the enumeration of wheels allowed for the inference of four suc-
cessive actions of ”put wheel,” considering that cars typically possess four wheels.
Nonetheless, it is important to acknowledge that this approach has limitations
when it comes to situations where the sequential order of actions is not strictly
followed (Sener et al., 2022). Moreover, several other datasets, such as LARa (Nie-
mann et al., 2020), CAARL (Niemann et al., 2021) and IKEA ASM (Ben-Shabat
et al., 2021), have focused on enhancing context awareness by monitoring both the
operator and various objects like tables and tools, such as screwdrivers. This com-
prehensive monitoring approach has demonstrated notable improvements in the
accuracy of action recognition and the generalizability of the model.

• Technologies: The datasets presented in this study utilized a diverse range of sen-
sors for data acquisition. A majority of the datasets leveraged RGBD cameras
to capture operator movements within the workspace, as demonstrated in HRI30
(Iodice et al., 2022), HA4M (Cicirelli et al., 2022) and IHADv1 (Sturm et al., 2023)
datasets. Other datasets used motion capture IMUs in conjunction with cameras
to acquire precise information regarding the movement and navigation of humans
and robots within workstations. Examples of such datasets include InHARD (?)
andyDataLab (Maurice et al., 2019), CAARL (Niemann et al., 2021) and LARa
(Niemann et al., 2020) datasets. Lastly, Mohammadi et al. (2020) used torque
joints embedded in robot joints to avoid collisions and contact between humans
and robots. Although combining multiple sensor modalities can improve accuracy,
it is important to acknowledge that this approach also introduces complexity and
requires extra resources for both data acquisition and processing.
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• Modalities: In the listed datasets, different modalities were utilized to capture hu-
man actions. The CAARL (Niemann et al., 2021), CoAx (Lagamtzis et al., 2022)
and HRI30 (Iodice et al., 2022) datasets used RGB modality. The WGD (Taman-
tini et al., 2021) andy-lab datast (Maurice et al., 2019), LARa (Niemann et al.,
2020), InHARD (?) and IKEA ASM (Ben-Shabat et al., 2021) datasets used RGB
and skeleton modality. Skeletons are preferred over RGB for recognizing human
actions, as they are more adaptable to different subjects and environments. Consid-
ering hybrid modality, OpenPack (Yoshimura et al., 2022) utilized accelerometers,
skeleton and RGB data, while HA4M (Cicirelli et al., 2022) used RGB video, depth,
IR and skeleton. Although using multiple modalities can improve performance, it
requires additional resources for acquisition and processing, leading to increased
complexity and a larger volume of data needed for prediction. We noticed a di-
versity of data modalities used in the listed datasets. However, fusing data from
multiple modalities requires extra resources for its acquisition and processing. Also,
it adds complexity and may impact performance due to the large volume of data
required for the prediction.

• Digital twin and auto labeling: The process of data annotation can be a significant
challenge, requiring substantial time and resources for manual labeling and evalu-
ation. To address this issue, Dallel et al. (2023) utilized a digital twin approach to
generate data, which involves the recreation of a real-world environment and the
assignment of triggers to each action to facilitate precise auto-labeling of data. This
approach can help to balance datasets by reproducing less frequently occurring ac-
tions and addressing the problem of imbalanced datasets. Similarly, Vysocky et al.
(2022) created synthetic data for training depth images for industrial hand tracking
and proposed a dataset for industrial applications of hand localization.

4.3. Summary of findings
Human motion analysis involves the examination of operator movements, interactions

and physiological signals. To accomplish this, various technologies are employed, includ-
ing Mocaps and signal-based sensors. These technologies yield various data modalities,
such as skeleton, RGB, depth and signal data. Notably, Mocaps, particularly Kinect cam-
eras and IMUs are the prevailing choices, with signal-based sensors being less common.
A total of 16 datasets have been identified, primarily oriented toward manufacturing ap-
plications, particularly assembly operations. The majority of these datasets offers RGB
and skeleton data, primarily captured using Mocaps. It’s important to note that 14 of
these datasets utilize multiple sensors to generate various data modalities.

5. Online human motion analysis approaches and metrics

Human motion analysis involves studying and understanding the patterns, character-
istics and dynamics of human movements. It is of utmost importance in the industrial
sector as it contributes significantly to enhancing productivity, efficiency, safety and
ergonomy. Within this context, the analysis of human motion encompasses multiple as-
pects, including action detection, action recognition, hand gesture recognition and action
forecasting. Action recognition specifically focuses on the identification and recognition
of continuous events or actions within a video sequence (Deng et al., 2023). Numerous
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models have been proposed to address the task of human action recognition (Ding et al.,
2022; Donisi et al., 2022; Fan et al., 2022). We review HMA methods with a specific
focus on HAR methods applied to industrial case studies.

5.1. Online metrics
The evaluation of HMA methods involves various metrics for validating and providing

feedback on their performances. Table 7 summarizes the used metrics to evaluate HMA
approaches in industry. Accuracy is the most commonly used metric in the studied
literature. However, it should be noted that many datasets suffer from class imbalance,
with certain classes having more samples than others. While reported performances often
demonstrate high accuracy levels approaching 100%, a more comprehensive assessment
is needed. The use of the F1-score, which computes the mean and weighted average of
precision and recall, provides a fairer evaluation of HMA performance.

When evaluating action recognition algorithms on untrimmed sequences, it is impor-
tant to consider metrics that account for temporal action detection and spatiotemporal
action detection. For temporal action detection, mean average precision (mAP) is used
which involves the calculation of average precision (AP) for individual action classes using
multiple intersections over union (IoU) thresholds. Also, a variety of regression metrics
are utilized for the estimation of human or robot trajectories to reduce estimation errors
(Sedlar et al., 2023). These metrics serve in evaluating approaches for ergonomics and
safety applications, aimed at preventing accidents and physical interaction between oper-
ators and robots in a collaborative working environment. Considering the computational
cost, the metric of floating point operations (FLOPs) can be employed, but also execu-
tion time that regroups inference time, detection delay and post-processing time (Kwon
et al., 2021). Finally, based on the information presented in Table 8, the predominant
metrics employed for evaluating benchmark datasets are accuracy, F1 score and mAP
over various IoU thresholds.

5.2. Online approaches
Arshad et al. (2022) claim that CNN has been the most widely utilized technique

in 25% of the literature on human activity recognition, closely followed by long-short
term memory (LSTM) at 13% and support vector machine (SVM) at 12% while other
machine learning techniques are less commonly utilized. Besides, recent deep learning
techniques demonstrate encouraging performances for spatio-temporal feature learning
(Le et al., 2022). In addition, transformers with convolution-free networks have shown
efficacy in human action recognition and other fields of computer vision (Ding et al., 2022;
Le et al., 2022; Menolotto et al., 2020; Reining et al., 2019; Fan et al., 2022). Table 8
lists approaches that use deep learning techniques for HMA in industry including human
action detection, gesture recognition and action anticipation with a major focus on HAR.

In this study, given the scarcity of research utilizing recurrent neural network (RNN)-
based methods within the scope of this paper, we made a deliberate decision to categorize
deep learning approaches into four distinct categories: convolution neural network-based,
graph convolution network (GCN)-based, attention-based and hybrid methods. As shown
in Fig. 7, the chart illustrates the approaches listed in Table 8 according to the year
of publication. This trend reveals a gradual decline in the utilization of CNN-based
methodologies with the rise of GCNs and attention-based ones. Furthermore, hybrid
approaches are increasingly adopted, emerging as the predominant methodology.
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Table 7: Used metrics to evaluate human motion analysis approaches.
T P: True Positive, T N: True Negative, FP: False Positive, FN: False Negative, P: predicted labels,
GT : Ground Truth, IoU: Intersection over Union, L: Action length, l: temporal interval between the frame of
the starting GT and the frame of the predicted label, p: predicted keypoint, q: keypoint true location, d: distance,
Recalli: Recall at threshold i, ADD: Average distance between the corresponding predicted and reference vertices
and centroid of the object bounding box, UWB: Ultra-Wide-Band, Ti: Inference time, Dd: Detection delay,
T pp: Time post-processing, Pi

re f : reference vertices, Pi
pre predicted vertices, x :real value of the ith observation,

y: predicted value of the ith observation, n: total number of observations,k: total number of keypoints,
v: total number of vertices.

Metric Formula Goal Reference

General Common
Metrics

Accuracy T P+T N
T P+T N+FP+FN

Determines how often the model’s predictions match the
actual labels.

(?),
(Munasinghe et al., 2022),

(Ragusa et al., 2021),
(Sener et al., 2022),
(Wang et al., 2019),
(Tassi et al., 2022),
(Liu et al., 2023a),
(Zhang et al., 2021),
(Upadhyay et al.),

(Hernandez et al., 2021),
(Al-Amin et al., 2019),
(Belay Tuli et al., 2022),
(Moutinho et al., 2023),

(Mohammadi et al., 2020),
(Koch et al., 2022),
(Dallel et al., 2022)

Precision T P/(T P + FP)

Focuses on the accuracy of positive predictions.
It helps evaluate how precise and reliable the model is when

it predicts a positive outcome.
calculates the ratio of correct predictions for a specific category.

(Niemann et al., 2020),
(Sener et al., 2022),
(Kwon et al., 2021),
(Zamora et al., 2021)

Recall T P/(T P + FN)
Quantifies the model’s ability to find all relevant samples

without missing any, minimizing the number of false negatives.
measures how many relevant elements were detected.

(Niemann et al., 2020),
(Upadhyay et al.),
(Kwon et al., 2021),
(Zamora et al., 2021)

F1-score 2∗Precision∗Recall
Precision+Recall

Evaluate classification models with tow or more classes
particularly when the classes are imbalanced.

(Dallel et al., 2022)
(Niemann et al., 2021),
(Niemann et al., 2020),
(Kwon et al., 2021),

(Singhania et al., 2022),
(Rana et al., 2023),
(Dallel et al., 2023),
(Zhang et al., 2022a)

Untrimmed
Metrics

IoU (P ∩GT )/(P ∪GT )

Assess the quality of object localization or segmentation
algorithms. measures how well the algorithm identifies

and accurately delineates objects of interest in an
image (spatial) or an event in a sequence (temporal).

(Dallel et al., 2022),
(?),

(Munasinghe et al., 2022),
(Ragusa et al., 2021),
(Moutinho et al., 2023)

Mean Average Precision
(mAP)

1
n
∑n

Recalli Precision(Recalli)
Represents the overall performance of an object detection or

instance segmentation model, taking into account both
precision and recall across different confidence thresholds.

(Upadhyay et al.)
(Li et al., 2021)

Edit-score 1 − (S edit(G, P)/max(M,N))

Measures the difference S edit(G, P)
between predicted segments P = {P1, ..., PN}
and ground truth segments G = {G1, ...,GM}

to penalize over-segmentation errors.

(Singhania et al., 2022)

Percentage of Correct
Predictions (PCP)

1
k
∑k

i=1 d(pi, qi) < t
Indicates the probability that a detected keypoint p

is within a distance threshold t, given in pixel,
of its true location q. used to assess accuracy.

(Lagamtzis et al., 2022)

ADD 1
v
∑v

i=1 ∥Pi
pre − Pi

re f ∥2
Estimates the accuracy of object detection

for 6D pose estimation. (Sedlar et al., 2023)

Regression
Metrics

Rotation error (Erot) ∠(−→P ,−−→GT ) Estimate the object orientation error. (Sedlar et al., 2023)Translation error (Etra) ∥P −GT∥ Estimate the object location error.
Mean Absolute
Error (MAE) ( 1

n )
∑n

i=1 |yi − xi|
Express average model prediction error by treating

all errors equally. (Pastor et al., 2022)

Root Mean Squared
Error (RMSE)

√
( 1

n )
∑n

i=1(yi − xi)2 Express average model prediction error by penalizing
larger errors.

(Pastor et al., 2022),
(Delamare et al., 2020),

(Zhou et al., 2023)
Geometric Dilution Of
Precision (GDOP) RMS Eloc/RMS Erange

Estimates the error caused by the relative position
of other sensors such as GPS or UWB. (Delamare et al., 2020)

Time Cost Latency Dd = l/L Evaluate the delay to detect the action. (Dallel et al., 2022)

Processing time Ti + Dd + Tpp
Assess and optimize the efficiency and performance

of the system.
(Kwon et al., 2021),
(Wang et al., 2019)

5.2.1. Convolution-based methods
A CNN model comprises three main types of layers: convolutional, pooling and fully

connected, each with distinct functions (Morshed et al., 2023). A general CNN architec-
ture is illustrated in Fig. 8. These models excel in 2D image analysis, leveraging their
spatial feature learning capabilities (Sun et al., 2022). By utilizing convolutional layers to
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Table 8: Proposed approaches of the state-of-the-art human motion analysis in industrial context.
Metrics are defined in Table 7.
P: Private, AR: Action Recognition, VMM: Variable-length Markov Modeling.

Year Approach Goal Dataset Metrics
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2023 CNN (Rana et al., 2023)

recognize human activity from
noisy indoor trajectory data

using a semi-supervised learning
at a tricycle assembly workshop

P - 0.81-0.95 - - - -

TSM pretrained on
Kinetics-400 (Deng et al., 2023) evaluate different datasets by

supervised and self-supervised learning
for action and gesture recognition

InHARD
(?) 0.881 - - - - -

TSN pretrained on
Kinetics-400 (Deng et al., 2023)

MECCANO
(Ragusa et al., 2021) 0.411 - - - - -

2022 ResNet-50 (Tassi et al., 2022)
recognize human actions and intentions

to optimize the robot’s reactive
behaviour and human ergonomics

HRI30
(Iodice et al., 2022) 0.866 - - - - -

2021 CollisionNet (Kwon et al., 2021) collision detection and localisation P - 0.965 - - - -

CNN (res-net)
(Zamora et al., 2021)

evaluate activity of operator
(error identification)

while manual assembly
P - - - - - -

2020
3D-CNN

(Mohammadi et al., 2020) recognize human action and detect
contact between robot and human

to enhance safety

P 0.997 - - - - -

1D-CNN
(Mohammadi et al., 2020)

PHR Contact
Detection Dataset

(Mohammadi et al., 2020)
0.96 - - - - -

2019
Hierarchical clustering

based CNN (Wang et al., 2019)
recognize human actions for

work scheduling and productivity P 0.56 - - - - -

Weighted fusion CNNs
(Al-Amin et al., 2019)

develop a sensor fusion based system
to recognize human actions
in performing assembly tasks

P 0.846 - - - - -

2018 DCNN (Wang et al., 2018)
recognize human motions and

identify the context of associated
action in car engine assembly

P (3 actions) 0.96 - - - - -

RNN-based 2023 LSTM (Orsag et al., 2023) recognize human spatial-temporal
activity using human skeleton

InHARD (4/14 actions
including background)

(?)
0.38 - 0.67 0.68 - - - -

GCN-based

2023 Mask-GCN (Liu et al., 2023a) recognize complex human actions
with novel motion patterns P 0.73 - - - - -

2022
STGCN-SWMV

(Dallel et al., 2022) recognize human actions OAD (Li et al., 2016) 0.954 0.953 - 0.977 - -
UOW (Tang et al., 2018) 0.934 0.936 0.047 0.958 - -

ST-GCN
(Dallel et al., 2023)

recognize human actions using
both physical and self-generated data

75% InHARD
(?)

25% InHARD-DT
(Dallel et al., 2023)

0.956 0.955 - - - -

ST-GCN
(Zhang et al., 2022c)

recognize operator’s assembly actions
during human-robot collaboration P 0.40 - - - - -

MTM-STGCN-SW
(Koch et al., 2022)

estimate the assembly progress
by extending AR methods to

multi-variant processes

InHARD (3/14 actions
with no background)

(?)
0.593 - - - - -

2021 TL-STGCN
(Li et al., 2021)

recognize human actions for robot
reactive control and decision-making

using transfer learning
P - - - - 0.956 -

Attention-based

2022 P3DAttenNet
(Upadhyay et al.)

recognize human actions
and generate assembly plans

IKEA ASM
(Ben-Shabat et al., 2021) 0.692 0.81-0.95 - - 0.431 -

2020

HAMLET
(Islam and Iqbal, 2020)

recognize human activities for
collaborative robotic systems

UTD-MHAD
(Chen et al., 2015) 0.951 - - - - -

UT-Kinect
(Xia et al., 2012) 0.974 - - - - -

UCSD-MIT
(Kubota et al., 2019) 0.815 - - - - -

SAM (Mahmud et al., 2020)
recognize human actions using
features representations from

body-worn sensors data

PAMAP2
(Reiss and Stricker, 2012) - 0.95-0.96 - - - -

Opportunity
(Roggen et al., 2010) - 0.61-0.67 - - - -

USC-HAD
(Zhang and Sawchuk, 2012) - 0.50-0.55 - - - -

Skoda
(Stiefmeier et al., 2008) - 0.93-0.97 - - - -

Hybrid
2023

ResNest-34 + LSTM
(Moutinho et al., 2023)

recognize human actions and extract
high-level context of industrial

assembly operations to be integrated
into collaborative assembly plans

P 0.966 - - 0.941 - -

Attention + CNN
+ Bi-LSTM (Zhou et al., 2023)

estimate human motion trajectory
for assembly collaboration P - - - - - -

CNN-LSTM
(Belay Tuli et al., 2022) recognize human actions

InHARD (9/14 actions
including background)

(?)
0.85-0.88 - - - - -

C2F-TCN
(Singhania et al., 2022)

segment temporal human actions
and gestures using fully-supervised

and semi-supervised learning

Assembly101
(Sener et al., 2022) - 0.212 - 0.5 - 0.324

2022 ConvTransformer
(Zhang et al., 2022d)

recognize human actions using
knowledge of commonly used

human action recognition sensors

Opportunity
(Roggen et al., 2010) - 0.443-0.861 - - - -

PAMAP2
(Reiss and Stricker, 2012) - 0.858-0.915 - - - -

DSADS (Yao et al., 2018) - 0.846 - - - -

2021
CNN-VMM

(Zhang et al., 2021)
recognize and anticipate human actions
based on VMM in engine assembly tasks P 0.947 - - - - -

GRU + CT-HMM
(Hernandez et al., 2021)

recognize human tasks at tow levels,
primitives and activities for measuring

performance and manual labor
P 0.784-0.925 - - - - -

2020 TSN + GCN +
Attention (Jiao et al., 2020)

recognize human actions
in industrial workflows P - 0.816 - - - -

capture local features and pooling layers to aggregate information, CNNs can accurately
learn discriminative representations for different actions. When combined with efficient
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Figure 7: Distribution of the number of approaches in industry per year.

detection and recognition of objects and tools, as outlined in (Büsch et al., 2023), CNNs
can significantly enhance the accuracy of action recognition. However, effectively model-
ing spatio-temporal information for skeleton-based HAR presents a challenge. Advanced
approaches tackle this by representing skeleton sequences as pseudo-images for standard
CNN processing (Sun et al., 2022). Pseudo-images encode spatial structure within frames
and temporal dynamics between them. Extending 2D CNNs to 3D structures captures
the crucial spatial and temporal context in videos. Robustness and accuracy make them
widely adopted in computer vision tasks, especially action recognition. (Morshed et al.,
2023).

Input

Convolution Pooling Convolution

Fully
Connected

Output

0

1

n

…
…

Figure 8: General CNN architecture.

The studied approaches in Table 8 vary in terms of the specific techniques used,
datasets employed, model architectures and the problem domains they address. For ex-
ample, Rana et al. (2023) proposed a framework to enhance the accuracy of HAR in
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tricycle assembly tasks by leveraging semi-supervised learning techniques using a CNN
classifier tuned based on a stepwise search method. The classification model is trained
for activity recognition using the segmented data and the corresponding pseudo labels
saving both time and resources by avoiding manually annotating data. Also, Deng et al.
(2023) performed a thorough assessment of 2D CNN models for action recognition on a
diverse set of 18 datasets. Notably, the TSM (Temporal Shift Module) model demon-
strated superior performance on the InHARD dataset, while the TSN (Temporal Segment
Networks) model exhibited superior performance on the MECCANO dataset. Another
approach conducted by Wang et al. (2018) presented a modified version of the AlexNet
deep convolutional neural network (DCNN) for improved recognition of human operator
actions. They employed a transfer learning-enabled tuning method and achieved recogni-
tion accuracy of over 96% in an experimental case study on car engine assembly. Later,
they proposed a method for real-time evaluation of operator actions (Wang et al., 2019).
They utilized a CNN classifier for action recognition and applied hierarchical clustering
to mitigate confusion among industrial actions. The method was effective in analyzing
human actions in a reduced assembly line.

Numerous human action recognition and anticipation approaches were conducted for
safety and ergonomic applications such as Tassi et al. (2022) who proposed a framework
for mitigating musculoskeletal disorders. They employed action recognition models with
surface classification to identify human actions and intentions. Surface classification clas-
sifies the sides of the object being handled during assembly tasks to adjust its orientation
to match the operator’s hand for better collaboration. They used a pre-trained SlowOnly
neural network with ResNet50 as the underlying architecture of the action recognition
model. The evaluation was performed on the HRI30 dataset, and the results demon-
strated remarkable performance in recognizing human actions. In a different study,
Kwon et al. (2021) proposed a deep learning-based method for collision identification on
articulated robots, building upon the previous work of CollisionNet (Heo et al., 2019).
The method detects collisions and accurately determines their locations. To improve
accuracy, they employed uncertainty-aware knowledge distillation to transfer knowledge
from a larger, more complex model (known as the teacher model) to a smaller, more effi-
cient model (known as the student model). Following the same spirit, Mohammadi et al.
(2020) introduced a safety-enhancing approach by combining human action recognition
using visual perception and interpreting physical human-robot contact using tactile per-
ception. Their system utilizes skeleton data as input for a 3D-CNN model for action
recognition. Additionally, a 1D CNN is employed for contact detection to differentiate
intentional and incidental physical contact.

5.2.2. Graph convolution-based methods
Graph-based learning models have gained attention for analyzing graph structures

due to their expressive power (Bhatti et al., 2023). Skeleton data naturally takes the
form of graphs, and representing it solely as vector sequences or 2D/3D maps fail to cap-
ture its complex spatiotemporal configurations and joint correlations (Sun et al., 2022).
Therefore, employing topological graph representations is more suitable for effectively
representing skeleton data (Ahmad et al., 2021). The GCN model processes an input
that comprises an adjacency matrix and a node feature matrix. To capture spatial char-
acteristics among the nodes within the graph, the GCN model utilizes a Fourier domain
filter that considers their immediate neighbors. The model can be extended by stacking

29



multiple convolutional layers, allowing it to operate on the graph’s nodes and employ
the filter to effectively capture spatial information (Zhao et al., 2024). An architecture
of GCN is illustrated in Fig. 9.
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Figure 9: Spatio Temporal GCN architecture inspired from (Ahmad et al., 2021).

Several HAR methods based on GCNs have been proposed, treating the skeleton data
as graph structures composed of nodes and edges (Zhu and Deng, 2023; Zhang et al.,
2022c). For instance, Dallel et al. (2022) introduced an online HAR approach propos-
ing a new method to the sliding window technique by adding a majority voting system.
This skeleton-based method utilizes spatial-temporal graph convolutional networks (ST-
GCNs) to automatically learn spatial and temporal information. The approach was
evaluated on OAD (Li et al., 2016) and UOW (Tang et al., 2018) daily action datasets,
demonstrating superior performance compared to state-of-the-art algorithms. Another
study conducted by Koch et al. (2022), introduced a method utilizing generalized ac-
tion primitives derived from time measurement analysis. These primitives are detected
using a skeletal-based action recognition system. Then, a search algorithm combines
information from HAR and methods of time measurement (MTM) to estimate the as-
sembly process. Later, in a more recent study by Büsch et al. (2023), they considered
the recognition of tools used during assembly tasks to enhance HAR. Additionally, Li
et al. (2021) presented a deep transfer learning ST-GCN model designed to learn action
representations that are invariant to domain variations between human body joints in
the source and target domains. The authors utilized the maximum mean discrepancy
(MMD) approach in the domain adaptation module to align the extracted features from
the two domains. In general, GCN architectures are susceptible to novel motion patterns,
for that, Liu et al. (2023a) introduced a mask graph convolutional network (Mask-GCN).
This system prioritizes the learning of action-specific skeleton joints, which are crucial for
conveying action information. Conversely, action-agnostic skeleton joints, which convey
rare action information and are more susceptible to novel motion patterns, are masked.
The utilization of skeleton data enables direct capture of human body structure while
minimizing redundant information. Experimental results demonstrate that Mask-GCN
outperforms the majority of GCN-based methods when confronted with diverse novel
motion patterns.

5.2.3. Attention-based methods
Transformers have demonstrated success in various domains, including natural lan-

guage processing (NLP) and vision tasks (Sun et al., 2022). Inspired by their effectiveness,
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researchers have applied transformers to skeleton sequences for spatio-temporal model-
ing in human action recognition from videos (Ahn et al., 2023). Transformers architec-
ture comprises encoder and decoder components with self-attention and encoder-decoder
attention layers for effective long-term dependency modeling, multi-modal fusion and
multi-task processing (Morshed et al., 2023). Fig 10 illustrates a general architecture of
an encoder-decoder transformer.

Figure 10: General Transformer architecture (Vaswani et al., 2017).

Recently, researchers have been exploiting these methods to apply them in the field
of HAR. Upadhyay et al. introduced P3DAttnNet, a deep neural network designed to
automatically generate assembly plans from video demonstrations. The network incorpo-
rates a spatiotemporal attention model to recognize actions within the video and utilizes
a functional object-oriented network to model the assembly plan. The performance eval-
uation of the network was conducted on the IKEA ASM dataset. In another study
conducted by Islam and Iqbal (2020), they introduced HAMLET, a hierarchical deep
neural network algorithm for multimodal HAR. The algorithm employed a multi-head
self-attention mechanism to encode spatiotemporal features and accurately identify hu-
man activities. Evaluation on three diverse human activity datasets(Chen et al., 2015;
Xia et al., 2012; Kubota et al., 2019) demonstrated the superior performance of HAM-
LET compared to other baseline methods. Finally, Mahmud et al. (2020) introduced a
self-attention-based deep learning framework that employs various attention mechanisms
to generate higher-dimensional feature representations for human activity recognition.
The model demonstrates impressive performance on widely used HAR datasets, namely
PAMAP2 (2012), Opportunity (2010), Skoda (2008) and USC-HAD (2012).

5.2.4. Hybrid deep learning methods
Hybrid methods refer to combining two or more types of models to provide strong

spatio-temporal modeling of human movements taking advantage of different deep net-
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work architectures leading to enhanced efficiency (Morshed et al., 2023). An example of
a hybrid network architecture is illustrated in Fig. 11.
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Figure 11: Example of Hybrid deep learning network architecture.

Hybrid approaches are gaining increasing traction as the prevailing methodology. For
instance, Moutinho et al. (2023) proposed a residual convolutional neural network with
34 layers (ResNet-34) and an LSTM network to extract high-level context information for
human action recognition of an industrial engine assembly operation. In the same fashion,
Belay Tuli et al. (2022) proposed an activity recognition method using a combined CNN
and LSTM technique. They evaluated 9 of 14 actions of the InHARD dataset including
background actions and compared results with their private dataset captured in a lab
environment. Also, Singhania et al. (2022) introduces C2F-TCN, an encoder-decoder
architecture with a ”coarse-to-fine” ensemble of decoders. They enhance the C2F-TCN
framework with a novel model-agnostic temporal feature augmentation strategy using
stochastic max-pooling of segments. This strategy improves accuracy and calibration
in supervised action segmentation outperforming state-of-the-art approaches in coarse
segmentation on the Assembly101 dataset.

Hybrid approaches incorporating transformer-based methods are becoming increas-
ingly predominant. Zhou et al. (2023) presented an attention-based deep learning ap-
proach for inertial motion recognition and trajectory estimation. They incorporated a
convolution module, residual module, attention module and Bi-LSTM to improve the
predicted human motion trajectory accuracy so that the robot determines when and
how to aid human workers. Following the same spirit, Zhang et al. (2021) presented a
hybrid approach for context-aware human action recognition and prediction. They inte-
grated a CNN and variable-length Markov modeling (VMM) to exploit spatial context
from video images for action recognition. A bi-stream CNN structure is employed as the
spatial context input, while the VMM analyzes dependencies embedded in the action
sequences to determine the optimal consideration of current and past actions for accu-
rate future action prediction. Later, they proposed IF-ConvTransformer (Zhang et al.,
2022d), an HAR framework consisting of an IMU fusion block and a ConvTransformer
subnet. The ConvTransformer network excels in capturing local features and model-
ing long-term dependencies. Extensive experiments conducted on five smartphone-based
datasets and three wearable device-based datasets demonstrate the superior performance
of the proposed framework. In another work conducted by Hernandez et al. (2021),
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utilized an encoder-decoder-based classifier to recognize primitives and a continuous-
time hidden Markov model for activity recognition using skeletal data and hand-centric
features. Their proposed system provides valuable operational insights by computing
productivity indicators such as worker availability, worker performance and overall labor
effectiveness. Finally, Jiao et al. (2020) introduced a multi-deep-learning model, integrat-
ing spatial transformer graph convolutional network for action recognition in industrial
workflows. Their approach combines CNNs, spatial transformer networks (STNs) and
GCNs to extract spatial and temporal information from videos. STNs are employed to
correct skeleton images and mitigate the impact of complex real-world environments.
Additionally, an attention mechanism is incorporated to adjust the weight of key points,
considering the workload disparity between the human upper and lower body in indus-
trial operations, thereby enhancing the accurate identification of manual operations in
industrial settings.

5.3. Self-Supervised and Zero-Shot Learning approaches
Self-supervised training is suitable when dealing with large amounts of data. It learns

visual knowledge from massive unlabeled data which alleviates the annotation burden
(Deng et al., 2023). However, most existing HMA approaches are supervised-learning
based and therefore suffer from manual annotation of massive unlabeled data. As men-
tioned earlier, some approaches generated automatically synthetic data using digital
twins to overcome this problem (Dallel et al., 2023; Vysocky et al., 2022).

In the context of human motion analysis in the industry, zero-shot learning offers a
promising approach that aligns with the principles of frugality. Traditionally, motion
analysis models require a large amount of labeled training data specific to each action
class, which can be costly and time-consuming to collect (Dallel et al., 2023). Zero-shot
learning aims to overcome this limitation by enabling the recognition and understanding
of new, unseen actions without the need for explicit training examples. For instance,
Deng et al. (2023) provided a zero-shot evaluation on several datasets which showed poor
results, especially for challenging procedural datasets such as InHARD and MECCANO.

5.4. Frugality and embedded systems
In the pursuit of cost-effectiveness, researchers and practitioners strive to develop

efficient algorithms, sensor configurations and data processing techniques that minimize
hardware requirements and computational complexity.

Frugality metrics refer to a set of measures or criteria introduced to evaluate ap-
proaches and address complexity issues such as computational complexity and time com-
plexity (Onsongo and Knorringa, 2020). The study conducted by Kwon et al. (2021)
proposed a time processing metric that incorporates factors such as inference time, detec-
tion delay and post-processing time. In the same spirit, Wang et al. (2019) estimated the
average computational cost for each recognition task to be below the recognition interval
set to 1 second, Thereby fulfilling the criteria for real-time recognition. By emphasizing
frugality, industry professionals can strike a balance between achieving reliable motion
analysis outcomes and optimizing resource allocation. This approach ensures practical
and sustainable solutions for various applications, including manufacturing, surveillance
and human-robot collaboration.

33



5.5. Summary of findings
This review delves into deep learning approaches employed for analyzing, recognizing

and predicting operator actions and gestures within industrial settings. Notably, there
is a rising trend favoring GCN and Transformers over CNN. GCNs are used with human
skeleton data, while attention-based models capture temporal aspects in continuous ac-
tion sequences. It is noteworthy that hybrid approaches integrating multiple methods
are increasingly being used to enhance the accuracy of recognition models. Most of the
identified approaches primarily focus on recognizing human actions in trimmed videos
achieving high performances. Recent studies have shifted their focus toward online recog-
nition, driven by the opportunities it offers in industrial contexts. However, these online
methods have shown lower performance. Furthermore, the study highlights a commonly
overlooked aspect of existing approaches, which is frugality. Only a limited number of
studies have addressed this dimension, employing methods such as zero-shot learning and
unsupervised learning.

6. Discussion and Challenges

The study of different research works on human motion analysis across different appli-
cations in industry has yielded valuable observations and opportunities for improvement.
We identified the following insights:

6.1. Human motion analysis evolution from industry 4.0 to industry 5.0:
In our literature review, we identified 36 articles discussing industry 4.0 and 9 articles

mentioning industry 5.0 of which 5 are review papers. This disparity can be attributed to
the fact that the majority of these articles primarily focus on improving productivity and
efficiency, aligning with industry 4.0’s objectives. Industry 4.0, is predominantly char-
acterized by digitalization and automation, striving for high production and efficiency
(Nguyen Ngoc et al., 2022) while it considers also safety and ergonomics (Bortolini et al.,
2020). In our context, Industry 5.0 greatly enhances the significance of these two aspects,
embracing a more pronounced human-centered orientation (Zizic et al., 2022).

In industry 5.0, HMA systems are primarily employed in applications that prioritize
worker well-being by creating ergonomic work environments to reduce physical strain
(Alves et al., 2023). These systems can analyze human pose to suggest better work pos-
tures and also evaluate safety and fatigue levels (Kim et al., 2022). Real-time monitoring
of worker movements is used to prevent accidents and collisions in shared environments,
enhancing safety in dynamic collaborative settings and enabling smoother HRI (Moham-
madi et al., 2020). Furthermore, it allows personalization by adapting work environments
to individual worker preferences and needs (Alves et al., 2023). This customization can
lead to a more comfortable and accommodating workspace, and ultimately, improve the
well-being and productivity of operators in industry.

To conclude, this transition from industry 4.0 to 5.0 regarding our context signifies
mainly a move from process optimization towards a more comprehensive approach that
takes into account the workforce requirements and the integration of autonomous systems
(Moutinho et al., 2023).
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6.2. Weakly supervised learning
In real-world industrial scenarios, datasets are generally specific to case studies. If

new case studies or new activities are to be added, it would be hard to annotate new
data as it is time-consuming and costly. However, most of the reviewed approaches in
the literature were fully supervised, with a smaller proportion being semi-supervised
(Rana et al., 2023; Singhania et al., 2022). To address this issue, more works using
weak supervision learning and self-supervised learning methods should be encouraged
(Vahdani and Tian, 2022). These approaches offer the advantage of leveraging unlabeled
data, which is particularly beneficial in industrial scenarios.

Another problem is the lack of data especially for some actions that are difficult to
reproduce which results in imbalanced datasets such as (Sener et al., 2022; ?; Ragusa
et al., 2021), where some action classes are less represented than others affecting the
accuracy of the recognition model. Exploring approaches that can perform well on a few
data utilizing methods including zero-shot learning (Deng et al., 2023), Seames (Akremi
et al., 2022) and domain adaptation (Zhuang et al., 2020) which is a branch of transfer
learning seem interesting. These approaches enable the recognition model to generalize
better and make predictions for classes with limited or no training samples.

Overall, weakly supervised learning in industrial HMA offers cost-effective, rapid im-
plementation, utilization of contextual information, leveraging unlabeled data, scalabil-
ity, flexibility and improved outcomes. These advantages make it a promising approach
for analyzing human motion in real-world industrial applications. Future approaches can
be inspired by the work presented in (Rana et al., 2023; Deng et al., 2023; Zhang et al.,
2023) to incorporate these notions.

6.3. Action segmentation on untrimmed data
While offline action segmentation has demonstrated excellent performance such as

in (Tassi et al., 2022), online segmentation has shown lower performance, highlighting
the necessity for further advancements in untrimmed sequence segmentation (Singhania
et al., 2022). With the growing availability of untrimmed datasets, there is an urgent
requirement for better methodologies that can effectively and accurately segment se-
quences with various durations. Early research (Reining et al., 2019) mainly relied on
object tracking and sliding windows to locate action positions for detecting the start
and end frames of an action sequence. To address this challenge, one of the possible
solutions is to investigate developing high-performing methods that can effectively per-
form sequence segmentation, regardless of the specific action labels involved. Such an
approach can rely on the utilization of temporal convolutional networks (TCNs) (Ding
et al., 2022), which have shown promise in this regard.

In addition, for sequence localization and better performance of continual action
recognition, some work such in (Zhang et al., 2023) explored transfer learning techniques
to adapt models trained on general datasets to the specific industrial context. They
leverage pre-trained models on large general datasets and fine-tune them on smaller,
industry-specific datasets which can help overcome data scarcity challenges and improve
generalization performance. Notable examples include models such as TSM and TSN
(Deng et al., 2023) pre-trained on the Kinetics-400 dataset, which have demonstrated
promising results on the InHARD and MECCANO datasets, respectively.
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6.4. The appropriate sensors
Camera-based sensors are susceptible to occlusions and can be affected by workspace

conditions such as lighting conditions, reflections and temperature variations (Menolotto
et al., 2020). For occlusion problems, employing multi-view cameras could be a viable
solution. By strategically positioning them, the fusion of data from various sensing capa-
bilities within the factory (such as onboard cameras, robots, augmented reality headsets,
etc) could be leveraged. This provides a broader coverage of the workspace allowing
tracking of the most important movements and human object interaction information.
Another solution for resolving lightning factors is the utilization of digital twins to recre-
ate industrial environments to generate data with almost fully controlled parameters
capable of simulating various lightning positions or camera views. Furthermore, com-
bining multiple sensors, such as IMUs and low-cost camera-based systems, can offer a
comprehensive solution to compensate for the limitations of individual sensors.

Although capable of providing accurate data for body movement, IMUs present cer-
tain drawbacks such as time-consuming setup procedures and discomfort when worn
during work. To address this issue, a potential solution involves utilizing IMUs more
specifically during the training phase while relieving operators from the burden of wear-
ing these sensors during the testing phase.

Images captured by RGB cameras have the potential to reveal the identity of op-
erators, leading to ethical considerations regarding the anonymization of data, as the
personal information of individuals is being recorded. One possible solution proposes
that sensitive parts of the images, such as the face, can be blurred or masked during
data processing steps. In Addition, it is proposed to consider safeguarding data through
encryption techniques which can then be processed using an edge or cloud computing
architecture (Parashar and Shekhawat, 2022). Another solution may be registering only
pose estimation features and object information ensuring the protection of sensitive data
while still enabling efficient analysis and extraction of valuable insights.

6.5. Data acquisition recommendations
The availability of benchmark datasets is important for advancing human motion

analysis in industrial contexts for various reasons. Indeed, they provide a standardized
foundation for method comparisons and accuracy validation. Moreover, the presence
of accessible benchmarks accelerates research, alleviating researchers from the time and
resource-consuming task of data collection. This, in turn, empowers them to concentrate
on the development of innovative solutions and addressing specific challenges within in-
dustrial environments. Additionally, these datasets foster interdisciplinary collaboration
and ensure that research aligns with industry requirements. Furthermore, it’s worth not-
ing that benchmark datasets often include predefined evaluation metrics, making them
publicly available to facilitate objective performance measurement and contributing to
the development of more effective solutions for the industry. However, it is noticed that
most of the existing datasets are collected in controlled laboratory environments, which
fail to accurately reflect the complexities encountered in actual industrial settings. To ad-
dress these issues, the adoption of diverse and comprehensive datasets is proposed. These
datasets should consider additional context information of tools and objects alongside
human motion data (Niemann et al., 2021), different workstation backgrounds such in
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(Ben-Shabat et al., 2021) and dynamic environments with the presence of moving en-
tities (operators, objects, robots...) such in (Rudenko et al., 2020). Incorporating such
datasets will provide robust solutions for better deployment in real-world applications

Another prominent issue is the lack of industrial benchmark datasets covering dif-
ferent aspects such as the simultaneous acquisition of different body parts (whole body,
upper body, or partial body parts such as hands or arms), alongside different views
(Ego-centric, Allocentric and multiple views). Incorporating most of these aspects is
advised for creating industrial datasets. Acquisition protocol and data collection can be
inspired by existing datasets that take into consideration these aspects such as the NTU-
RGB+D120 dataset (Liu et al., 2019) representing an interesting protocol for massive
data collection, Assembly101 dataset (Sener et al., 2022) with various viewpoints and
NTU-X dataset (Trivedi et al., 2021) with dense representation of human face and full
body.

Many researchers suggest using personalized and private datasets to evaluate their
proposed approaches and experiments. While these datasets are valuable for the research
community, they are often not accessible, preventing others from benefiting from the data
or comparing their works. Moreover, these datasets could potentially enrich existing
datasets by providing additional case studies. encouraging authors to make their data
available is strongly advised, employing anonymization techniques if necessary to protect
participant identities.

Another issue is that in industrial datasets, within each activity, some actions tend
to be repeated more frequently than others. Consequently, this leads to imbalanced
datasets, with certain actions being over-represented while others are under-represented.
To address these limitations, the utilization of synthetic data generation techniques is
proposed to provide more data for fair action class representation. Synthetic data gener-
ator such as digital twin (Dallel et al., 2023) and generative adversarial networks (GANs)
(Ali et al., 2023) offers this opportunity to expand the available data enabling a more
comprehensive representation of diverse industrial activities, and facilitating the training
of robust and accurate HAR models.

Multimodal approaches demonstrate strong performance when utilizing data captured
from diverse sensors (Sun et al., 2022; Ba et al., 2023), which provide information such as
various angles of human posture or objects that operators interact with. These datasets
should encompass different modalities such as RGB, depth, point cloud, IR, skeleton and
even physiological signals, allowing a rich representation of the operator’s movements
and interaction by complementary information. Thus, it is encouraged to acquire more
data following the example set by the HA4M dataset (Cicirelli et al., 2022).

6.6. Approaches
In industry, the objective is to deploy the systems developed for action recognition

using the proposed approaches in embedded production settings. The system must meet
specific criteria to be considered successful in such environments. Firstly, it should ex-
hibit high performance, characterized by good accuracy in action recognition. Secondly,
it needs to be fast, providing real-time processing and immediate results. Additionally, it
should be able to work with untrimmed data and operate efficiently with limited training
samples that have already been processed. Furthermore, the system should support con-
tinuous learning, allowing for the incorporation of new actions and updating the learning
model accordingly. This particular application involves spatio-temporal modeling, with
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a focus on time series analysis. Another important aspect is the interpretability of the
system’s output, enabling a clear understanding of why it works. In terms of existing
techniques, it is worth considering different types of representations, such as graph-
based approaches that provide a suitable representation of skeletal structures (Xing and
Zhu, 2021). Additionally, transformers offer effective temporal data representation (Wen
et al., 2022). Exploring the combination of graph transformers could be an interesting
avenue of research, building upon previous work conducted by Jiao et al. (2020). Another
aspect to address is reducing execution time through memory utilization optimization,
which can be achieved through techniques such as continual graph-based learning (Hede-
gaard et al., 2022). These advancements are not limited to the industry domain but
can also find applications in other fields. Additionally, the fusion of multimodal data
within deep learning architectures can be achieved through various fusion strategies.
These strategies encompass techniques such as early fusion, late fusion, or even attention
mechanisms, which selectively focus on informative modalities. By effectively integrating
deep learning-based approach and fusion techniques, the embedded production system
can attain the desired performance, real-time processing and improved accuracy in ac-
tion recognition tasks, making it a promising approach for practical implementation (Sun
et al., 2022).

7. Conclusion

This study has presenedt a review of the human motion analysis topic from acquisition
to application in the industrial context from 2018 to May 2023 (included). There has
been a growing interest among researchers in applying human action recognition methods
to industrial applications. This is due to the growing availability and variety of industrial
datasets acquired using the newest technologies and presenting different case studies.

Various applications of HMA in the industry were reviewed following the proposed
taxonomy that englobes safety, ergonomics and productivity, shedding light on their sig-
nificance. We also reported different technologies employed in human motion data acqui-
sition, with a particular focus on MoCap and signal-based sensors. Moreover, we identify
and list relevant industrial datasets, emphasizing their distinct characteristics. Addition-
ally, we conduct a comprehensive analysis and comparison of existing deep learning-based
methods and online metrics used to evaluate these datasets with a specific focus on hu-
man action recognition. We conclude by discussing various challenges and by providing
insights into future perspectives.

The findings of our research can significantly facilitate various aspects of future work
in the field of HMA in the industry. Future researchers will be better equipped to discern
which applications are most influenced by HMA, thereby directing more researchers to-
ward these applications and accelerating the development of crucial areas in the industry.
They can make informed decisions on selecting the most suitable sensors for acquiring
movement data, thanks to the taxonomy of technologies we have provided. Additionally,
researchers can identify datasets of interest provided in this paper, selecting the most
appropriate one based on their needs, such as the type of interaction, the number of views
and data modalities. Our research also provides a valuable starting point for researchers
seeking guidance on approaches and methods for action and gesture recognition, along
with insights into the relevant metrics for evaluation.
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Our study reveals several scientific gaps related to online human activity recogni-
tion in industrial environments, which present their unique challenges. Further research
is needed to enhance the recognition performance for practical applications, ensuring
accurate analysis of human movement, in real-time deployed on embedded systems in in-
dustrial case studies. Among interesting strategies, the application of digital twins holds
promising potential in producing balanced datasets and reducing the annotation burden.
Furthermore, the integration of multimodal data into deep learning architectures has the
potential to significantly enhance accuracy in action recognition tasks. Finally, special
attention should also be given to frugality aspects for better optimization of approaches,
emphasizing both simplicity in terms of complexity and optimal use of data.
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