
HAL Id: hal-04397350
https://hal.science/hal-04397350

Submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Mitigating Mode-Switch through Run-time
Computation of Response Time

Angeliki Kritikakou, Stefanos Skalistis

To cite this version:
Angeliki Kritikakou, Stefanos Skalistis. Mitigating Mode-Switch through Run-time Computation of
Response Time. ACM Transactions on Design Automation of Electronic Systems, 2023, 28 (5), pp.1-
26. �10.1145/3597432�. �hal-04397350�

https://hal.science/hal-04397350
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

111

Mitigating Mode-Switch through Run-time Computation of
Response Time

ANGELIKI KRITIKAKOU, Univ Rennes, Inria, IRISA, France
STEFANOS SKALISTIS, Collins Aerospace, Ireland

Mixed-critical systems consist of applications with different criticality. In these systems, different confidence

levels of Worst-Case Execution Time (WCET) estimations are used. Dual criticality systems use a less pes-

simistic, but with lower level of assurance, WCET estimation, and a safe, but pessimistic, WCET estimation.

Initially, both high and low criticality tasks are executed. When a high criticality task exceeds its less pes-

simistic WCET, the system switches mode and low criticality tasks are usually dropped, reducing the overall

system Quality of Service (QoS). To postpone mode switch, and thus, improve QoS, existing approaches

explore the slack, created dynamically, when the actual execution of a task is faster than its WCET. However,

existing approaches observe this slack only after the task has finished execution. To enhance dynamic slack

exploitation, we propose a fine-grained approach that is able to expose the slack during the progress of a task,

and safely uses it to postpone mode switch. The evaluation results show that the proposed approach has lower

cost and achieves significant improvements in avoiding mode-switch, compared to existing approaches.

CCS Concepts: • Computer systems organization→ Embedded software; Real-time systems.

Additional Key Words and Phrases: Worst-Case Execution Time, Interference-sensitive, Run-time Adaptation,

Time-triggered, Response Time Analysis, Multi-cores

ACM Reference Format:
Angeliki Kritikakou and Stefanos Skalistis. 2023. Mitigating Mode-Switch through Run-time Computation

of Response Time. ACM Trans. Des. Autom. Electron. Syst. 37, 4, Article 111 (August 2023), 26 pages. https:
//doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Mixed-critical systems [31] consist of applications with different levels of criticality. The applica-

tion’s criticality level partially depends on the consequences on the system, when the application

fails to meet its timing constraints [26]. As a result, applications with different criticality levels

have different properties and requirements. A high criticality application requires strict timing

guarantees, i.e., ending before its deadline. To ensure timing guarantees, the Worst-Case Execution

Time (WCET) of the application has to be considered. Nonetheless, the WCET estimation depends

on the application’s criticality level [11]; the same code has a higher WCET, if it requires a higher

level of assurance, than it would, if it was considered as a non-critical application [11]. When

computingWCET estimations, pessimism is introduced due to application and processor complexity.

Applications have several execution paths, and thus, the worst-case path is used during WCET

computation. Processor components, that take decisions dynamically, have a difficult-to-predict

timing behavior, e.g., cache memories and branch predictors. When pessimistic WCET estimations

Authors’ addresses: Angeliki Kritikakou, angeliki.kritikakou@irisa.fr, Univ Rennes, Inria, IRISA, Campus Beaulieu, Rennes,

France, 35042; Stefanos Skalistis, stefanos.skalistis@collins.com, Collins Aerospace, xxxx, Cork, Ireland, xxxx.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1084-4309/2023/8-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

111:2 A. Kritikakou and S. Skalistis

are used, resources are over-allocated to high criticality applications. However, to provide an overall

high Quality of Service (QoS), low criticality tasks should be executed as long as possible [11].

To improve the execution of low criticality tasks, while still guaranteeing safe execution of

high criticality tasks, different WCET estimations are used for high criticality tasks; a pessimistic,

with high assurance, upper bound (𝐶𝐻
) and a less pessimistic, with lower assurance, bound (𝐶𝐿

).

Low criticality tasks are usually bounded by less pessimistic WCET estimations (𝐶𝐿
). A dual-

criticality system has two executions modes: low criticality mode (LO-mode), executing low and

high criticality tasks considering 𝐶𝐿
, and high criticality mode (HI-mode), executing only high

criticality tasks considering 𝐶𝐻
. The system starts in LO-mode. Following the common approach,

called BaseLine (BL), the system checks at a specific time instance, given by the 𝐶𝐿
, if the task has

finished execution. If not, the task is dropped, if it is a low criticality task, or the system switches

from LO-mode to HI-mode, if it is a high criticality task. In HI-mode, low criticality tasks are usually

dropped, e.g.,[3, 5, 10]. Section 2 provides an illustration example of a mixed-criticality system and

the BL approach.

However, in BL approach the mode-switch can occur at specific time instances, which are defined

upfront before execution and are equal to the 𝐶𝐿
of each high criticality task. To improve the

execution of low criticality tasks, existing approaches work on two directions: i) explore other

strategies, than dropping low criticality tasks in HI-mode, and ii) explore static or dynamic ways to

postpone the mode-switch. In this work, we focus on the second category. Note that, the proposed

approach can be combined with approaches of the first category. Regarding the second category,

existing static approaches determine the largest value, to be added to the 𝐶𝐿
of the high criticality

tasks, while the system still remains schedulable; then, this value is used to extend the mode-switch

further than 𝐶𝐿
. Such methods are inspired by sensitivity analysis [27] and zero-slack [13, 14].

However, the static approaches are applied before execution, thus exploring only the existing slack

due to system under-utilisation. On the contrary, dynamic approaches (DYN) are able to exploit

the slack created during execution. When the actual execution time of a task is lower than its 𝐶𝐿
,

slack is created, since the task finished earlier than expected in LO-mode. This slack can be used

by the next high criticality tasks and potentially postpone the mode-switch, e.g., through single

budget [17], bailout protocol [7] and feedback control mechanisms [23]. However, existing DYN

approaches are able to observe and use the dynamic slack, only after a task has terminated. This

limitation is highlighted in the illustration example of Section 2.

To address the aforementioned limitation, this work extends the state-of-the-art with a safe

and lightweight approach that dynamically computes, not only the slack created due to the early

termination of tasks, but also the slack created due to the actual progress of active tasks, during

execution, and safely uses it in order to postpone or even avoid mode-switch. Following this

approach, there is no need to apply at run-time approaches that have high overhead and are

typically applied offline, such as schedulability test or response time analysis, as in [28]. To achieve

that, we propose a run-time controller, which is regularly evoked at a set of points inserted to the

high criticality job (named instrumentation points) during execution, when the system is in LO-

mode. The controller computes the available dynamic slack based on a safe run-time computation

of the worst-case response-time bound of the running job. In this way, the actual execution progress

of both finished jobs and currently active jobs is exposed at a given point. The controller computes

any dynamic slack created between two instrumentation points of the job, based on the difference

of the worst-case response-time bound computed at the current and previous points. More precisely,

the worst-case response-time bound of a job of a high criticality task at an instrumentation point

is computed by taking into account the actual time when the controller is evoked, the remaining

worst case delay, that can still occur for this job from point until the job ends, due to preemption by

higher priority (low and high criticality) tasks, and the remaining WCET, which corresponds to the

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Mitigating Mode-Switch through Run-time Computation of Response Time 111:3

WCET of the code that remains to be executed from the point until the job ends. After the dynamic

slack computation, a simple, and safe, condition decides whether a mode-switch can be postponed

for later. From our extensive experiments, RRT was able to avoid mode-switch in 50.10% of the

experiments, on average. As a result, on average, 60.34% low criticality tasks finished execution.

The paper is organized as follows: Section 2 describes the limitations of the state-of-the-art and

the add-on of the proposed approach through and illustration example. Section 3 presents the

system model. Section 4 presents the proposed approach and its Response Time Analysis (RTA).

Section 5 presents the evaluation results. Section 6 presents the state-of-the-art, whereas Section 7

concludes this study.

2 ILLUSTRATION EXAMPLE
We use a simple example based on a dual-criticality mixed-critical system to illustrate the limitations

of the state-of-the-art and show how the proposed approach remedies them. Table 1 shows the

characteristics of the dual-criticality mixed-critical system, where tasks 𝜏0 and 𝜏2 are high criticality

tasks, and tasks 𝜏1 and 𝜏3 are low criticality tasks. LO-mode mode is depicted in Fig. 1a) and HI-mode

mode in Fig. 1b.

Task 𝐶𝐿 𝐶𝐻
Priority Arrival Criticality

𝜏0 10 20 3 0 HI

𝜏1 8 - 2 3 LO

𝜏2 8 16 0 4 HI

𝜏3 4 - 1 12 LO

Table 1. Illustration example (Period: 40 time units).

τ2τ0 τ1 τ0

0 3 12 16

C

23

τ3

… …

τ1
… 30…… 4

(a) LO-mode execution.

τ2τ0 τ0

0 4 20 36

C

… ……

(b) HI-mode execution.

Fig. 1. Illustration example a) LO-mode and b) HI-mode.

The behavior of the BL approach is illustrated in Fig. 2a, when 𝜏2 exceeds its 𝐶
𝐿
𝜏2
at time 𝑡 = 12,

and in Fig. 2b, when 𝜏0 exceeds its 𝐶
𝐿
𝜏0
at 𝑡 = 30. The DYN limitation is depicted in Fig. 3. During

execution, at 𝑡 = 3, let’s assume that 𝜏0 has already executed a large part of its code, but, still,

the actual execution time is less than its 𝐶𝐿
𝜏0
(3 < 10). Therefore, when 𝜏0 is preempted, it has

not reached its 𝐶𝐿
𝜏0
, in order to decide mode-switch. At 𝑡 = 12, when 𝜏2 reaches its 𝐶

𝐿
𝜏2
without

terminating, the system has to switch to HI-mode, since no slack is available at that moment.

The slack created due to the progress of 𝜏0 can be seen at this moment, since 𝜏0 has not finished

execution. Only after task termination (𝑡 = 20), the slack created by 𝜏0 can be observed and used.

The proposed approach is based on the Run-time worst-case Response Time (RRT). To illustrate

the proposed RRT approach, and keep the complexity of the illustration example low, we use a simple

instrumentation for the high criticality tasks of Table 1, i.e., insertion of instrumentation points in

a uniform way. As schematically depicted in Fig. 4a, we uniformly inserted five instrumentation

points to 𝜏0 and four instrumentation points to 𝜏2, and the partial WCET, required to reach from

one point the next one, is 𝐶𝐻
𝑝𝑡𝑝 = 4 in HI-mode and 𝐶𝐿

𝑝𝑡𝑝 = 2 in LO-mode. In section 4 we describe

how the instrumentation points are placed in high criticality jobs. Let’s now assume that i) at

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

111:4 A. Kritikakou and S. Skalistis

τ2τ0 τ1 τ0

0 3 20

C

… 12

HI

τ2
… 4 37… …

(a) Mode-switch at 𝑡 = 12, where 𝜏2
exceeds its 𝐶𝐿

𝜏2
.

HI

τ2τ0 τ1 τ0

0 3 … 12 16 …

C τ3

4 …

τ1
… 30 40…

τ0
… 23

(b) Mode-switch at 𝑡 = 30, where 𝜏0 exceeds its 𝐶𝐿
𝜏0

.

Fig. 2. BL approach.

τ2τ0 τ1 τ0

0 3 4 16 20

C

… 12

HI

τ2
… … …

Fig. 3. DYN approach. Mode-switch at 𝑡 = 12, 𝜏2 exceeds its 𝐶𝐿
𝜏2

and no slack is available.

𝑡 = 3 (Fig. 4b), due to a faster execution of 𝜏0, compared to its WCET, the fourth instrumentation

point is reached, and ii) the RRT computed in the previous points of 𝜏0 was equal to the initial

response-time bound, computed offline, i.e., 𝑅𝐿
𝜏0
= 30. The controller computes a new value for the

RRT in LO-mode (𝑅𝑅𝐿
) of 𝜏0, based on the actual time (𝑡 ) at which the controller is evoked, the

remaining worst-case delay (𝑅𝐷𝐿
ℎ𝑝
) and the remaining WCET (𝑅𝐶𝐿

) of 𝜏0 from the fourth point

until the task ends, i.e., 𝑅𝑅𝐿
𝜏0
= 𝑡 + 𝑅𝐷𝐿

ℎ𝑝 (𝜏0) + 𝑅𝐶𝐿
𝜏0
= 3 + (12 + 8) + 2 = 25. The difference between

the RRT of the current and previous points provides the dynamic slack in LO-mode, i.e., 𝐷𝑆𝐿 = 5.

Mode-switch is decided based on whether the computed dynamic slack is higher than or equal to

the additional time required to reach the next instrumentation point in the worst-case, denoted as

𝐶𝑝𝑡𝑝 . This worst-case additional time is given when a high criticality task takes WCET in HI-mode,

instead of WCET in LO-mode, to reach the next instrumentation point, i.e.,𝐶𝑝𝑡𝑝 = 𝐶𝐻
𝑝𝑡𝑝 −𝐶𝐿

𝑝𝑡𝑝 , e.g.,

𝐶𝑝𝑡𝑝 = 2 in the illustration example. At 𝑡 = 12, the third instrumentation point of 𝜏2 is reached

and the RRT, computed at the previous points of 𝜏2, is equal to the response-time bound computed

offline, i.e., 𝑅𝐿
𝜏2

= 12. A new value for the response-time bound in LO-mode of 𝜏2 is computed,

i.e., 𝑅𝑅𝐿
𝜏2
= 𝑡 + 𝑅𝐷𝐿

ℎ𝑝 (𝜏2) + 𝑅𝐶𝐿
𝜏2
= 12 + (0 + 0) + 2 = 14. Comparing with the previously computed

RRT, the slack between the two points is negative, i.e., −2. The overall dynamic slack is updated,

𝐷𝑆𝐿 = 5 + (−2) = 3. As the overall slack is higher than or equal to𝐶𝑝𝑡𝑝 , there is no need to perform

mode-switch at 𝑡 = 12; there is enough slack to reach the next instrumentation point and take the

decision later, even if the task execution takes WCET in HI-mode. Thus, the proposed approach is

able to avoid mode-switch, compared to DYN approach.

3 SYSTEM MODEL
3.1 System model
We consider a uni-processor system with a set of tasks T to be executed preemptively. A dual-

criticality system is assumed, where each task has a level of criticality equal to either high (𝐻 ) or

low (𝐿), with 𝐻 > 𝐿. We use the basic mixed-criticality model, where the system has two modes of

execution: i) LO-mode, where both high criticality tasks and low criticality tasks are executed on

the processor, and ii) HI-mode, where only the high criticality tasks are executed on the processor.

When a job of a low criticality task exceeds its WCET, the job is dropped, whereas when a high

criticality job exceeds its WCET, a mode-switch occurs. The proposed approach has as goal to

postpone or avoid mode-switch, even if a high criticality task exceeds its WCET, as long as it does

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Mitigating Mode-Switch through Run-time Computation of Response Time 111:5

B D Eτ0 * ** * *

τ2

𝐶!"!#

A B C D* ** *

CA

2

𝐶!"!$

2 2 2 2

2 2 2 2

4 4 4 4 4

4 4 4 4

* : Instrumentation point

𝐶!"!#
𝐶!"!$

(a)

τ2τ0 τ1 τ0

0 3 12 16

C

20

τ3
… …

τ1
… 27…

RCτ2(LO)=2
*

RCτ1(LO)=2
*
τ2

31…… 4

(b)

Fig. 4. RRT approach. a) Instrumentation of high criticality tasks and𝐶𝑝𝑡𝑝 in LO-mode and in HI-mode,
and b) No mode-switch, 𝜏2 exceeds its 𝐶𝐿

𝜏2
at 𝑡 = 12, but enough slack exist due to 𝜏0 progress.

Table 2. Summary of main notation

System model

T , 𝜏 Task 𝜏 belonging to task-set T
𝐶𝐿𝜏 Criticality level 𝐶𝐿 of task 𝜏 , 𝐶𝐿 ∈ {𝐻, 𝐿}
𝑟𝜏 , 𝐷𝜏 Arrival time and deadline of task 𝜏

𝐶𝐶𝐿
𝜏 WCET 𝐶𝐶𝐿

𝜏 of task 𝜏 at criticality level 𝐶𝐿

𝑃 Common period 𝑃

Remaining WCET

S Set of functions S = {𝐹0, 𝐹1, ..., 𝐹𝑙 }, with 𝐹0 being the main function

𝐺 The ECFG 𝐺 = (𝑉 , 𝐸) of a function 𝐹

𝑉 The set of nodes 𝑉 = N ∪ C ∪ F ∪ {IN } ∪ {OUT } of an ECFG 𝐺

𝐸 The sets of edges 𝐸 ⊆ 𝑉 ×𝑉 of ECFG 𝐺

𝑁 ∈ N Block of one or more binary instructions

𝐶 ∈ C Block of binary instructions of a condition statement

𝐹𝑖 ∈ F Binary instructions of the function caller of a function 𝐹𝑖
IN ,OUT The input/output node of ECFG 𝐺

𝑝𝜏 A point of task 𝜏

level[𝑝𝜏 ], head[𝑝𝜏 ] The depth of point 𝑝𝜏 and its ancestor point head[𝑝𝜏 ]
𝐶𝜏 [𝑝 ′

𝜏 -𝑝𝜏 ] Partial WCET from point 𝑝 ′
𝜏 to 𝑝𝜏 of task 𝜏

𝑆𝑇 𝐼𝜏 Structure & Timing Information (level, head & partial WCET of 𝜏 points)

𝑅𝐶𝜏 Remaining WCET of task 𝜏

Remaining Response Time

𝐶𝑝𝑡𝑝 Overhead to reach next point, with WCET in HI-mode, instead of LO-mode

𝑃𝐷𝐿
ℎ𝑝 (𝜏) Preemption delay of 𝜏 in LO-mode, due to higher priority tasks

𝑅𝐷𝐿
ℎ𝑝 (𝜏) Remaining preemption delay of 𝜏 in LO-mode, due to higher priority tasks

𝑅𝑅𝐿
𝜏 LO-mode remaining response time of 𝜏 in LO-mode

𝐷𝑆𝐿 Dynamic slack

Δ
𝑝

𝑝+1𝑥 Difference of 𝑥 at point 𝑝 and at point 𝑝 + 1

not exceed its response time. We define the response time of a task 𝜏i per criticality-level, 𝑅
𝐶𝐿
𝜏i

, and

the response time when a mode-switch occurs, 𝑅∗
𝜏i
. Each task, 𝜏𝑖 ∈ T , is characterized by its arrival

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

111:6 A. Kritikakou and S. Skalistis

time 𝑟𝜏i , deadline 𝐷𝜏i , criticality level 𝐶𝐿𝜏i and the WCET 𝐶𝐶𝐿
𝜏i

for each criticality level, i.e., 𝐶𝐻
𝜏i
and

𝐶𝐿
𝜏i
. 𝐶𝐶𝐿

𝜏i
is assumed to be monotonically non-decreasing, with increasing criticality level 𝐶𝐿 [4].

Tasks are periodically executed with a common period 𝑃 , i.e., at the 𝑘-th period a task releases a job

at time 𝑘 ∗ 𝑃 + 𝑟𝜏i . Jobs can be either dependent or independent. We focus on constrained deadlines,

i.e., 𝐷𝜏𝑖 ≤ 𝑃 . The task-set T is considered to be executed preemptively with a scheduling policy 𝑆

following a Fixed Priority (FP) scheme using a unique priority assignment algorithm (e.g. Audsley’s

Algorithm [2]). Notice that, a low criticality task could have higher priority than a high criticality

task. Our task model depicts asynchronous mono-periodic task-sets. Multi-periodic task-sets could

be unrolled to the hyper-period of the system, i.e., the least common multiple of the task periods,

and the approach applied inside the hyper-period. Note that, in such a case, the unrolled jobs

are executed once in the hyper-period and thus, they do not require additional memory to store

information, as they can reuse the memory space of the previous job. Between hyper-periods, the

dynamic slack is set to zero. More efficient ways to deal with multi-periodic task sets are future

work. A summary of the main notation is presented in Table 2.

4 PROPOSED APPROACH
Our goal is to postpone, or even avoid, mode-switch, even if a high criticality job exceeds its WCET.

To achieve that, the proposed approach regularly computes in a fine-grained and safe way the

dynamic slack in LO-mode and uses it to safely postpone mode-switch. It takes into account not

only the actual progress of the running high criticality job (that invoked the controller), but also

the actual execution progress of the remaining active, but preempted, jobs and the actual execution

time of already finished jobs. Fig. 5 overviews the proposed approach. Section 4.1 describes the

design-time analysis, Section 4.2 presents the run-time control and Section 4.3 presents the approach

safety. Table 3 summarises the acronyms.

Instrumentation 
of CFG

High criticality 
task

FP scheduler

Online controller

Selected task 

Job ends

Execution

Monitor time
Compute job RWCET

Update RWCD: 
high criticality lower 
priority tasks

Mode-switch decision

0Update dynamic slack

Compute job RRT

Decide mode switch

Design-time

Timing 
analysis

Response time 
analysis

Run-time

Instrumentation point

During execution

Structure 
analysis

Low criticality 
task

New job
Initialise job variables:
RWCET, RWCD, RRT

WCDTiming info Structure info

Fig. 5. Overview of the proposed approach.

4.1 Design-time system analysis
Design-time analysis performs the task instrumentation and extracts the information required

for the run-time computation of the dynamic slack. We use the approach of [20] as a starting

block, and leverage it in order to be applicable for the system under study. Note that, the approach

of [20] is designed for only a single task with a unique WCET estimation running on one processor

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Mitigating Mode-Switch through Run-time Computation of Response Time 111:7

Table 3. Summary of acronyms

QoS Quality of Service WCET Worst-Case Execution Time

BL BaseLine RWCET Remaining Worst-Case Execution Time

DYN DYNamic RRT Run-time worst-case Response Time

LO-mode LOw criticality mode HI-mode HIgh criticality mode

RTA Response Time Analysis FP Fixed Priority

WCD Worst-Case Delay RWCD Remaining Worst-Case Delay

CL Criticality Level STI Structure and Timing Information

CFG Control Flow Graph ECFG Extended Control Flow Graph

without preemption. As a result, it cannot be applied in systems where multiple periodic tasks with

different criticalities are preemptively executed on the same processor. Our approach addresses

this limitation by computing at run-time the worst-case response-time bound. To achieve this, not

only information regarding the RWCET per high criticality task in LO-mode is needed, but also

information regarding the overall system execution, i.e., the Worst-Case Delay (WCD) in LO-mode

per high criticality task, due to the preemption from higher priority (low and high criticality) tasks

in any period.

High criticality task: A high criticality task is described by a set of Control Flow Graph (CFGs),

constructed by the assembly code. Each CFG corresponds to a function 𝐹 of the high criticality

task. Therefore, the high criticality task 𝜏𝑖 is a set of functions S = {𝐹0, 𝐹1, ..., 𝐹𝑙 }, with 𝐹0 the main

function.

Definition 1. The CFG of a function 𝐹 is a directed graph 𝐺 = (𝑉 , 𝐸), consisting of:
• A finite set of nodes 𝑉 composed of 5 disjoint sub-sets 𝑉 = N ∪ C ∪ F ∪ {IN } ∪ {OUT }:

i) 𝑁 ∈ N represents a block of one or more binary instructions,
ii) 𝐶 ∈ C represents the block of binary instructions of a condition statement,
iii) 𝐹 ∈ F represents the binary instructions of the function caller of a function 𝐹 and links the

node of the current function with the CFG of the function 𝐹 ,
iv) IN is the input node,
v) OUT is the output node,

• a finite set of edges 𝐸 ⊆ 𝑉 ×𝑉 representing the control flow between nodes.

Therefore, a CFG can include the following components: i) a single node 𝑁 , ii) an if-then-else

component, i.e., the concatenation of a 𝐶 conditional node with two mutually executed paths that

have the same end node, iii) a loop component, i.e., the concatenation of a loop condition 𝐶 with

two mutually executed paths, one with the exit path and one with the loop repetition, and iv) a

function call node 𝐹 . F Fig. 6 illustrates how to obtain CFG through an example. L.1 to L.9 (Fig. 6c)

handle the stack and initialise the local variables and correspond to 𝐵1, which is a component of

type 𝑁 , (Fig. 6b), L.10 to L.14 describe the exit condition of the loop and correspond to 𝐵2 (which is

a component of type 𝐶), L.15 to L.26 describe the loop kernel and the increase of 𝑖 and correspond

to 𝐵3 (component of type 𝑁 ), and L.27 to L.32 manage the stack and performs the return from

the function call correspond to 𝐵4 (component of type 𝑁 ). A special point start exists before task
execution, which denotes the function call to the main function.

Instrumentation points 𝑝𝜏𝑖 are inserted in the high criticality task 𝜏i, in order to evoke the

controller that will compute the remaining WCET at run-time. Instrumentation points can be

inserted before the execution of the first binary instruction of each node of CFG. Representing

instrumentation points by a lower-case symbol, five disjoint sub-sets of instrumentation points

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

111:8 A. Kritikakou and S. Skalistis

1 i n t main ( vo id ) {

2 i n t i ;

3 i n t A [ 1 0 ] ;

4 f o r ( i = 0 ; i < 1 0 ; i ++) {

5 A[ i ]= i ;

6 }

7 r e t u r n 0 ;

8 }

(a) C code.

𝐵1

𝐵2 𝐵3

𝐵4

(b) Basic blocks

1 main:

2 addi sp, sp, -64

3 sw ra, 60(sp)

4 sw s0, 56(sp)

5 addi s0, sp, 64

6 li a0, 0

7 sw a0, -12(s0)

8 sw a0, -16(s0)

9 j .LBB0_1

10 .LBB0_1:

11 lw a1, -16(s0)

12 li a0, 9

13 blt a0, a1, .LBB0_4

14 j .LBB0_2

15 .LBB0_2:

16 lw a0, -16(s0)

17 slli a2, a0, 2

18 addi a1, s0, -56

19 add a1, a1, a2

20 sw a0, 0(a1)

21 j .LBB0_3

22 .LBB0_3:

23 lw a0, -16(s0)

24 addi a0, a0, 1

25 sw a0, -16(s0)

26 j .LBB0_1

27 .LBB0_4:

28 li a0, 0

29 lw ra, 60(sp)

30 lw s0, 56(sp)

31 addi sp, sp, 64

32 ret

(c) Assembly code (RISC-V).

Fig. 6. Example: CFG is obtained from complied C code.

can exist, based on the node type: {𝑛}, {𝑐}, {𝑓𝑖 }, 𝑖𝑛, 𝑜𝑢𝑡 . Note that, the point start refers to the point

before execution, i.e., point 𝑖𝑛 of function 𝐹0. Such instrumentation points can be implemented

in several ways depending on which level of abstraction the high criticality task code is given

and whether we can modify the hardware of the processor. When the source code is available, a

function call can be inserted in the source code to call the controller code. When only the assembly

code is available, we can modify the assembly code in order to add the call to the controller. When

the binary code is available, we can obtain the assembly code from the binary code, for instance

using a disassembler. If the hardware is modifiable, a hardware block can be inserted to monitor

the program counter and execute the controller.

After the insertion of the instrumentation points, we use an ECFG parser in order to extract

information regarding the ECFG structure that will allow us to distinguish different visits of the

same instrumentation point during execution (e.g., in loops, function calls).

Definition 2. The structure information of a point 𝑝𝜏𝑖 is:

• The nested level of 𝑝𝜏𝑖 , level[𝑝𝜏𝑖 ], which is:
i) set to 0, if 𝑝𝜏𝑖 is the start point,
ii) set to 1, if 𝑝𝜏𝑖 is a sequential point between the IN and OUT of an ECFG,
iii) increased by 1, for each loop where 𝑝𝜏𝑖 resides in.

• The ancestor point of 𝑝𝜏𝑖 , head[𝑝𝜏𝑖 ], that indicates the point where a loop entry or a function call
occurred. The head[𝑝𝜏𝑖 ] of a point 𝑝𝜏𝑖 is:

i) the start point, if 𝑝𝜏𝑖 is a point with level 1 in the main function 𝐹0,

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Mitigating Mode-Switch through Run-time Computation of Response Time 111:9

ii) the function caller, if 𝑝𝜏𝑖 is a point with level 1 in the called function,
iii) the condition of the loop, if 𝑝𝜏𝑖 is inside a loop.

• The function call behavior, type[𝑝𝜏𝑖 ], which is:
i) F_ENTRY , if 𝑝𝜏𝑖 is a function entry (function caller),
ii) F_EXIT , if 𝑝𝜏𝑖 is a function exit, i.e. the node where a function returns to,
iii) F_ENEX , if 𝑝𝜏𝑖 is both a function entry and a function exit, i.e. the point 𝑝𝜏𝑖 where the function

returns is also a function caller,
iv) −, if 𝑝𝜏𝑖 is not related to function calls.

Let’s illustrate the structure information with the example of Fig. 6b. With 𝑏1, 𝑏2, 𝑏3 and 𝑏4
being the points inserted in the beginning of each CFG block, we obtain: level[𝑏1]=1, level[𝑏2]=1,
level[𝑏4]=1 and level[𝑏3]=2, head[𝑏1]=start, head[𝑏2]=start, head[𝑏4]=start, and head[𝑏3]=𝑏2, type[𝑏1]=−,
type[𝑏2]=−, type[𝑏4]=−, and type[𝑏3]=−.
Last, we extract the timing information by extending the approach of [20] to be applied per

criticality level.

Definition 3. Let 𝑥𝜏𝑖 and 𝑝𝜏𝑖 be two instrumentation points; the partial WCET between these points in
a given criticality level 𝐶𝐿 is 𝐶𝐶𝐿

𝜏𝑖
[𝑥𝜏𝑖 -𝑝𝜏𝑖 ] = 𝐶𝐶𝐿

𝜏𝑖
[𝑥𝜏𝑖 ] −𝐶𝐶𝐿

𝜏𝑖
[𝑝𝜏𝑖 ], where 𝐶𝐶𝐿

𝜏𝑖
[𝑥𝜏𝑖 ] denotes the WCET

from point 𝑥𝜏𝑖 until the end of code execution and 𝐶𝐶𝐿
𝜏𝑖

[𝑝𝜏𝑖 ] denotes the WCET from point 𝑝𝜏𝑖 until the
end of execution.

Two types of partial WCET are computed: (1) For all points, we compute 𝐶𝐶𝐿
𝜏𝑖

[ℎ𝑒𝑎𝑑 [𝑝𝜏𝑖 ]-𝑝𝜏𝑖 ],
and (2) For points placed in the entry of a loop, we compute the 𝐶𝐶𝐿

𝜏𝑖
between any two consecutive

loop iterations ( 𝑗 − 1 and 𝑗 ), i.e., 𝐶𝐶𝐿
𝜏𝑖

[𝑝 𝑗−1
𝜏𝑖 -𝑝

𝑗
𝜏𝑖 ]. If multiple paths exist between these points (e.g.,

branches of if-then-else components, function calls from different entry points), the minimum

difference is maintained. Note that, the minimum value is required in order to be safe, since this

value will be subtracted from the overall WCET, during RWCET computation at run-time [20].

The timing information extracted for Fig. 6 is: 𝐶𝐿
𝜏𝑖
[start-𝑏1] and 𝐶𝐻

𝜏𝑖
[start-𝑏1], 𝐶𝐿

𝜏𝑖
[start-𝑏2] and

𝐶𝐻
𝜏𝑖
[start-𝑏2], 𝐶𝐿

𝜏𝑖
[start-𝑏4] and 𝐶𝐻

𝜏𝑖
[start-𝑏4], 𝐶𝐿

𝜏𝑖
[𝑏2-𝑏3] and 𝐶𝐻

𝜏𝑖
[𝑏2-𝑏3], 𝐶𝐿

𝜏𝑖
[𝑏 𝑗−1

2
-𝑏

𝑗

2
] with j=0 . . . 9

and 𝐶𝐻
𝜏𝑖
[𝑏 𝑗−1

2
-𝑏

𝑗

2
] with j=0 . . . 9 .

The above partial WCETs are computed in LO-mode and in HI-mode. Note that, the partial

WCETs for LO-mode will be used by the run-time controller for RWCET computation in LO-mode.

The partial WCETs for HI-mode are used only at design-time to compute the additional time

required to reach the next instrumentation point, in the worst-case, denoted as point-to-point

overhead 𝐶𝑝𝑡𝑝 , used to safely decide mode-switch. The worst-case is when the high criticality

job takes 𝐶𝐻𝐼
𝜏𝑖

[𝑥𝜏𝑖 -𝑝𝜏𝑖 ], instead of 𝐶𝐿𝑂
𝜏𝑖

[𝑥𝜏𝑖 -𝑝𝜏𝑖 ], to reach point 𝑝𝜏𝑖 from point 𝑥𝜏𝑖 . It is computed as

𝐶𝑝𝑡𝑝=𝑚𝑎𝑥 (𝐶𝑝𝑡𝑝,𝐹 ,𝐶𝑝𝑡𝑝,𝐵), where 𝐶𝑝𝑡𝑝,𝐹=𝑚𝑎𝑥 (𝐶𝐻
𝜏𝑖
[ℎ𝑒𝑎𝑑 [𝑝𝜏𝑖 ]-𝑝𝜏𝑖 ] - 𝐶𝐿

𝜏𝑖
[ℎ𝑒𝑎𝑑 [𝑝𝜏𝑖 -𝑝𝜏𝑖 ]), ∀ i and 𝑝𝜏𝑖 ,

and𝐶𝑝𝑡𝑝,𝐵=𝑚𝑎𝑥 (𝐶𝐻
𝜏𝑖
[𝑝 𝑗−1

𝜏𝑖 -𝑝
𝑗
𝜏𝑖 ] -𝐶𝐿

𝜏𝑖
[𝑝 𝑗−1

𝜏𝑖 -𝑝
𝑗
𝜏𝑖 ]), ∀ i, 𝑝𝜏𝑖 ∈ c, and j. The maximum difference provides

the worst-case overhead among points.

System Analysis: Initially, we verify whether the task-set T is schedulable in LO-mode, HI-

mode, and mode-switch. The task-set T at each mode is considered schedulable if the worst-case

response-time bound 𝑅𝜏𝑖 of each task 𝜏𝑖 is not greater than its corresponding deadline 𝑑𝜏𝑖 , for all

periods. The worst-case response-time 𝑅𝐶𝐿𝜏𝑖 of a task 𝜏𝑖 , at each criticality level 𝐶𝐿, is the greatest

response-time of its jobs, where response-time of a job is the time interval from the job release to

the job completion. To acquire the worst-case response-time of all tasks, the corresponding RTA for

the selected scheduling policy is applied, as required by our system model. The worst-case delay of

a high criticality task in LO-mode, denoted as 𝐷𝐿
ℎ𝑝 (𝜏𝑖 ) , due to the execution of higher priority tasks,

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

111:10 A. Kritikakou and S. Skalistis

considering all periods, is given by 𝐷𝐿
ℎ𝑝 (𝜏𝑖 ) = 𝑅𝐿

𝜏i
−𝐶𝐿

𝜏i
. The 𝐷𝐿

ℎ𝑝 (𝜏𝑖 ) and 𝐶
𝐿
𝜏𝑖
are used to initialise the

run-time controller variables at the beginning of each time period 𝑇𝜏i .

Algorithm 1: Run-time control mechanism.

1 Function RTcontrol_start(𝐶𝐿
𝜏𝑖
, 𝐷𝐿

ℎ𝑝 (𝜏𝑖 ) , 𝑘𝜏𝑖 , 𝑇𝜏𝑖 )
2 if (LO-mode is active) then /* in low mode */
3 𝑅𝐶𝐿

𝜏𝑖
= 𝐶𝐿

𝜏𝑖
;

4 𝑅𝐷𝐿
ℎ𝑝 (𝜏𝑖 ) = 𝐷𝐿

ℎ𝑝 (𝜏𝑖 ) ;

5 𝑅𝑅𝐿
𝜏𝑖
= 𝑘𝜏𝑖 *𝑇𝜏𝑖 + 𝐷𝐿

ℎ𝑝 (𝜏𝑖 ) + 𝐶
𝐿
𝜏𝑖
;

6 Function RTcontrol_exec(𝑝𝜏𝑖 , STI𝜏i , 𝑅𝑅
𝐿
𝜏𝑖
, 𝑅𝐷𝐿

ℎ𝑝 (𝜏𝑖 ) , 𝑅𝐶
𝐿
𝜏𝑖
)

7 if (LO-mode is active) then /* in low mode */
8 t = get_current_time();

9 𝑅𝐶𝐿
𝜏𝑖
′
= Compute_RWCET(𝑝𝜏𝑖 , STI𝜏i );

10 𝑅𝑅𝐿
𝜏𝑖
′
= t + 𝑅𝐷𝐿

ℎ𝑝 (𝜏𝑖 )+ 𝑅𝐶𝐿
𝜏𝑖
′
;

11 𝐷𝑆𝐿 = 𝐷𝑆𝐿 + (𝑅𝑅𝐿
𝜏𝑖
- 𝑅𝑅𝐿

𝜏𝑖
′
);

12 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝜏𝑖 = get_total_execution(𝜏𝑖 ) + (t−get_latest_start_time(𝜏𝑖 ));

13 if (𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝜏𝑖 >= 𝐶𝐿
𝜏𝑖
) then

14 if (𝐷𝑆𝐿 < 𝐶𝑝𝑡𝑝 ) then
15 signal(HI-mode);

16 Function RTcontrol_end(𝐶𝐿
𝜏𝑖
, lphc(𝜏i))

17 if (LO-mode is active) then /* in low mode */
18 for 𝜏 𝑗 ∈ lphc(𝜏i) do
19 𝑅𝐷𝐿

𝜏 𝑗
= 𝑅𝐷𝐿

𝜏 𝑗
−𝐶𝐿

𝜏𝑖
;

4.2 Run-time control for dynamic slack computation
During execution, the scheduler selects the job with the highest priority to be executed, until a

higher priority job arrives. At an instrumentation point of the current active job, when the system is

in LO-mode, the controller is executed, with the highest priority. Algorithm 1 depicts the run-time

controller that implements our approach. It has three functionalities: i) at the beginning of the job

execution, it performs initialization of a set of variables, ii) during job execution, it updates the

slack based on its actual progress and verifies whether execution in LO-mode is still safe, otherwise

it informs the scheduler for the mode-switch, and iii) when the job ends, the job contribution to

the overall delay of lower priority jobs is removed.

Beginning of period (L. 1-5): As soon as the job is released at the beginning of a new period 𝑘𝜏𝑖 ,

the remaining WCET in LO-mode is initialized with the overall WCET in LO-mode, i.e., 𝑅𝐶𝐿
𝜏𝑖
=

𝐶𝐿
𝜏𝑖
. The remaining worst-case delay in LO-mode is initialized with the value computed offline,

𝑅𝐷𝐿
ℎ𝑝 (𝜏𝑖 ) = 𝐷𝐿

ℎ𝑝 (𝜏𝑖 ) . Then, the worst-case response-time bound for period 𝑘 is computed as 𝑅𝑅𝐿
𝜏𝑖
=

𝑘𝜏𝑖 *𝑇𝜏𝑖 + 𝐷𝐿
ℎ𝑝 (𝜏𝑖 ) + 𝐶

𝐿
𝜏𝑖
.

During execution (L. 6-15): The approach computes the new remainingWCET of the job of task 𝜏i
in LO-mode at the current point, 𝑅𝐶𝐿

𝜏i
′
. This corresponds to the WCET in LO-mode only of the code

that remains to be executed, from point 𝑝𝜏𝑖 until the end of the job. For the computation of 𝑅𝐶𝐿
𝜏𝑖
′
of

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Mitigating Mode-Switch through Run-time Computation of Response Time 111:11

the running high criticality job, the proposed approach applies the approach of [20], leveraged for

LO-mode. Algorithm 2 summarises the computation of 𝑅𝐶𝐿
𝜏𝑖
′
at a point 𝑝𝜏𝑖 . The algorithm takes as

input the instrumentation point 𝑝𝜏𝑖 along with its Structure and Timing Information (𝑆𝑇 𝐼𝜏𝑖 ), which

includes the type, level, head and partial WCETs of the point, pre-computed during the design-time

analysis of the high criticality task. To be able to compute the 𝑅𝐶 , without unrolling the code of

the high criticality task, the computation is performed per level, with the help of the array 𝑅𝐿𝜏𝑖 . A

local level 𝑙𝑙𝜏𝑖 is used to depict the current nested level of point 𝑝𝜏𝑖 , taking into account function

calls and loops. The local level is computed by adding the offset𝜏𝑖 and the level of the point 𝑝𝜏𝑖
(L. 5). Note that, the level[𝑝𝜏𝑖 ] depicts the level of nested loops inside the ECFG of a function, by

definition. The offset𝜏𝑖 provides the level that must be added, because of any occurred function call.

Therefore, when a function entry point is observed (C5 is true, L. 14), i.e., a function call occurs,

we increase the offset with the level of the entry point (L. 15). When an exit point is observed (C1
is true, L. 2), i.e., a function returns, we decrease the offset by the level of the entry point (L. 3).

Then, the observation level 𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 is used to decide if we are traversing ECFG in a forward (C2 or
C4 is true) or backward direction (C3 is true). When the ECFG is traversed in a forward direction,

the remaining WCET in local level 𝑙𝑙𝜏𝑖 , 𝑅𝐿𝜏𝑖 [𝑙𝑙𝜏𝑖 ], is computed by subtracting the partial WCET of

the point 𝑝𝜏𝑖 from the remaining WCET computed on the previous local level (L. 7 and L. 11). By

definition, the point in the previous local level is the head point of 𝑝𝜏𝑖 . When the ECFG is traversed

backwardss, we are in a loop. Thus, we have reached the point that corresponds the condition

statement of the loop and we subtract the partial WCET computed between any two iterations,

𝑗 − 1 and 𝑗 (L. 9). In this way, the remaining WCET of the head point at local level 𝑙𝑙𝜏𝑖 − 1 is updated

accordingly, before entering the loop, where points have a local level equal to 𝑙𝑙𝜏𝑖 . Note that, before

execution, the initialisation is as follows: 𝑅𝐿𝜏𝑖 [0] = 𝐶𝜏𝑖 (the overall WCET of 𝜏𝑖 ), the remaining

elements of the array 𝑅𝐿𝜏𝑖 to zero, offset𝜏𝑖 = 0, 𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 = 0, and last_point𝜏i [0] = start.
Let’s illustrate how the RWCET is computed for the example of Figure 6. At the first invocation

of the controller at point 𝑐 , 𝑙𝑙𝜏𝑖 = 1. Since 𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 = 0, the graph is traversed in forward direction

and the RWCET is given by 𝑅𝐿𝜏𝑖 [1] = 𝑅𝐿𝜏𝑖 [0] −𝐶𝜏𝑖 [start-𝑐]. The rest of the variables are updated,
i.e., last_point𝜏i [1] = 𝑐 and 𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 = 1. For the first invocation at point 𝑛2, 𝑙𝑙𝜏𝑖 = 2. The graph

is still traversed in forward direction and the RWCET is given by 𝑅𝐿𝜏𝑖 [2] = 𝑅𝐿𝜏𝑖 [1] −𝐶𝜏𝑖 [𝑐-𝑛2],
last_point𝜏i [2] = 𝑛2 and 𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 = 2. When 𝑐 is invoked in the second iteration, 𝑙𝑙𝜏𝑖 = 1. Since

𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 < 𝑙𝑙𝜏𝑖 and the last point in this level was 𝑐 , the graph is now traversed in backward

direction. The RWCET is updated by 𝑅𝐿𝜏𝑖 [1] = 𝑅𝐿𝜏𝑖 [1] − 𝐶𝜏𝑖 [𝑐 𝑗−1-𝑐 𝑗 )], last_point𝜏i [1] = 𝑐 and

𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 = 1. With this update, the RWCET will be correctly computed for the points inside the

loop. The RWCET in the other points is computed in a similar way.

Then, the approach monitors the current time t using low level functions of the platform that

allow us to read the processor clock. The new value of the worst-case response-time bound of

job 𝜏𝑖 at point 𝑝𝜏𝑖 (𝑅𝑅
𝐿
𝜏𝑖
′
), is computed at run-time by adding to the current time t, the updated

remaining WCET of task 𝜏i in LO-mode (𝑅𝐶𝐿
𝜏𝑖
′
) and the remaining delay for task 𝜏i due to higher

priority (both low and high criticality) tasks in LO-mode. The difference between the updated value,

𝑅𝑅𝐿
𝜏𝑖
′
, and the previously computed value, 𝑅𝑅𝐿

𝜏𝑖
, provides in a safe way any new slack (positive or

negative) created due to the progress made between two instrumentation points of the job. The

overall slack 𝐷𝑆𝐿 is updated accordingly. The actual progress of the job is computed based on

the total execution up this point, using information provided by the scheduler. More precisely,

the 𝑔𝑒𝑡_𝑡𝑜𝑡𝑎𝑙_𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛(𝜏𝑖 ) denotes the sum of all previous execution fragments, where 𝜏𝑖 was

preempted, and 𝑔𝑒𝑡_𝑙𝑎𝑡𝑒𝑠𝑡_𝑠𝑡𝑎𝑟𝑡_𝑡𝑖𝑚𝑒 (𝜏𝑖 ) is the time instance that the current fragment of 𝜏𝑖
started execution. Note that, this value is used only to check whether the 𝐶𝐿

𝜏𝑖
has been reached,

and thus, to enable the safe condition that checks for mode-switch. The safety condition verifies

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

111:12 A. Kritikakou and S. Skalistis

Algorithm 2: Run-time computation of remaining 𝑅𝐶𝜏𝑖 at point 𝑝𝜏𝑖 .

1 Function Compute_RWCET(𝑝𝜏𝑖 , STI𝜏i )
2 if (type[𝑝𝜏𝑖 ] ==F_EXIT| |F_ENEX) then /* 𝐶1 */
3 offset𝜏𝑖 = offset𝜏𝑖 − level[𝑝𝜏𝑖 ];
4 𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 = 𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 − 1;

5 𝑙𝑙𝜏𝑖 = offset𝜏𝑖 + level[𝑝𝜏𝑖 ];
6 if (𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 < 𝑙𝑙𝜏𝑖 ) then /* 𝐶2 */
7 𝑅𝐿𝜏𝑖 [𝑙𝑙𝜏𝑖 ] = 𝑅𝐿𝜏𝑖 [𝑙𝑙𝜏𝑖 ] −𝐶𝜏𝑖 [ℎ𝑒𝑎𝑑 [𝑝𝜏𝑖 ]-𝑝𝜏𝑖 ];
8 else if (𝑙𝑎𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝜏𝑖 [𝑙𝑙𝜏𝑖 ] == 𝑝𝜏𝑖 ) then /* 𝐶3 */

9 𝑅𝐿𝜏𝑖 [𝑙𝑙𝜏𝑖 ] = 𝑅𝐿𝜏𝑖 [𝑙𝑙𝜏𝑖 − 1] −𝐶𝜏𝑖 [𝑝
𝑗−1
𝜏𝑖 , 𝑝

𝑗
𝜏𝑖 ];

10 else /* 𝐶4 */
11 𝑅𝐿𝜏𝑖 [𝑙𝑙𝜏𝑖 ] = 𝑅𝐿𝜏𝑖 [𝑙𝑙𝜏𝑖 ] −𝐶𝜏𝑖 [ℎ𝑒𝑎𝑑 [𝑝𝜏𝑖 ]-𝑝𝜏𝑖 ];
12 𝑙𝑎𝑠𝑡_𝑝𝑜𝑖𝑛𝑡𝜏𝑖 [𝑙𝑙𝜏𝑖 ] = 𝑝𝜏𝑖 ;

13 𝑜_𝑙𝑒𝑣𝑒𝑙𝜏𝑖 = 𝑙𝑙𝜏𝑖 ;

14 if (type[𝑝𝜏𝑖 ] ==F_ENTRY| |F_ENEX) then /* 𝐶5 */
15 offset𝜏𝑖 = offset𝜏𝑖 + level[𝑝𝜏𝑖 ]
16 return 𝑅𝐿𝜏𝑖 [𝑙𝑙𝜏𝑖 ];

if it is still safe to continue execution in LO-mode, i.e., whether enough slack exists to reach the

next instrumentation point in the worst-case. Otherwise, we switch to HI-mode by suspending low

criticality tasks.

End of execution (L. 16-19):When a task 𝜏i finishes, it informs the lower priority, high criticality,

tasks 𝑙𝑝ℎ𝑐 (𝜏𝑖 ), that have been preempted from the task 𝜏i. This is achieved by updating their

worst-case delay, through subtraction of the overall WCET of 𝜏i in LO-mode, i.e., 𝐶𝐿
𝜏i
.

Due to the instrumentation points inserted to the the high criticality task 𝜏𝑖 , a controller is

invoked during execution and re-computes in a safe way the remaining WCET (RWCET), 𝑅𝐶𝜏𝑖 at

each point 𝑝𝜏𝑖 , based on the task progress. 𝑅𝐶𝜏𝑖 is the 𝐶𝜏𝑖 of the rest of the code that remains to be

executed from point 𝑝𝜏𝑖 until the high criticality task 𝜏𝑖 ends.

4.3 Safety
In this section, we prove that the proposed run-time approach is safe, i.e., tasks respect their

deadlines and system execution is correct. We will follow a two-step approach to prove the safety

of the proposed method, as the former will allow us to build up the safety proof of the latter. At

step one, we consider the extreme case where each instruction of a high criticality task is also

an instrumentation point, and thus, any preemption has to occur at an instrumentation point.

Considering the maximum number of points is, of course, a mathematical artifact that would enable

us to prove that the approach is safe in all cases and is not envisioned for application in real-life.

At step two, having proven that the proposed method is safe for the extreme case, we will prove

that by removing an instrumentation point, it only impacts the slack that is exposed between two

consecutive points. This means that by removing points, less slack is computed, while the proposed

approach remains safe for an arbitrary number of points.

To ease notation, for a given a point 𝑝𝜏𝑖 , we will refer to the previous visited point as 𝑝𝜏𝑖 − 1

and to the next point as 𝑝𝜏𝑖 + 1, even if they are the same instrumentation point, e.g. in a loop.

This suffices, since the sequence of visited points, during execution, constitutes a linear execution

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Mitigating Mode-Switch through Run-time Computation of Response Time 111:13

path, as if all loops were unrolled and all function calls were in-lined [19]. We will also refer to any

execution between two points of a job as a segment.

4.3.1 Step 1: Each instruction corresponds to an instrumentation point.

Lemma 1. For any job of a high-criticality task 𝜏𝑜 that is executed non-preemptively in LO-mode,
if the previous jobs (of the same or other tasks) executed with precisely their worst-case behavior in
LO-mode, then the proposed run-time control correctly signals a mode switch, when an overrun occurs,
and 𝜏𝑜 always respects its deadline.

Proof. According to L. 13-14 (Alg. 1), a mode switch will occur during the execution of job 𝑗 of

task 𝜏𝑜 , iff the progress of 𝜏𝑜 is greater or equal to its 𝐶
𝐿
𝜏𝑜

(𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝜏𝑜 ≥ 𝐶𝐿
𝜏𝑜
) and the slack 𝐷𝑆𝐿 is

less than the point-to-point overhead 𝐶𝑝𝑡𝑝 . Assuming that the overrun occurs at some point 𝑝𝑜𝜏𝑜
of the unique points 𝑃𝜏𝑜 of task 𝜏𝑜 ; at that point, the progress would be, based on L. 12, equal to

the actual execution of all previously executed segments due to preemption (first term) plus the

execution time, since the job was last scheduled (second term). Since the job overruns at point 𝑝𝑜𝜏𝑜 ,

its actual execution time is greater than 𝐶𝐿
𝜏𝑜
, thus the condition 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝜏𝑜 ≥ 𝐶𝐿

𝜏𝑜
holds. Given two

consecutive points 𝑝, 𝑝 + 1 the computed dynamic slack is (L. 10-11):

𝐷𝑆𝐿 ′ = 𝐷𝑆𝐿 + (𝑅𝑅𝐿
𝜏𝑜
− 𝑅𝑅𝐿

𝜏𝑜
′) =⇒ (1)

Δ
𝑝+1
𝑝 𝐷𝑆𝐿 = Δ

𝑝

𝑝+1𝑡 + Δ
𝑝

𝑝+1𝑅𝐷
𝐿
ℎ𝑝 (𝜏𝑜 ) + Δ

𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑜

(2)

where Δ
𝑝

𝑝+1𝑥 is difference operator between the value of the associated variable 𝑥 at point 𝑝 and its

value at point 𝑝 + 1, e.g. Δ
𝑝

𝑝+1𝑡 = 𝑡𝑝 −𝑡𝑝+1 = −Δ𝑝+1
𝑝 𝑡 . Applying Equation 2 for all pairs of consecutive

points up to 𝑝𝑜𝜏𝑜 we establish the total slack as:

𝑝<𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

Δ
𝑝+1
𝑝 𝐷𝑆𝐿 =

𝑝<𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

(
Δ
𝑝

𝑝+1𝑡 + Δ
𝑝

𝑝+1𝑅𝐷
𝐿
ℎ𝑝 (𝜏𝑜 ) + Δ

𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑜

)
⇐⇒ (3)

𝐷𝑆𝐿𝑝𝑜𝜏𝑜
= 𝐷𝑆𝐿𝑝𝑠𝜏𝑜

+
𝑝<𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

Δ
𝑝

𝑝+1𝑡 +
𝑝<𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

Δ
𝑝

𝑝+1𝑅𝐷
𝐿
ℎ𝑝 (𝜏𝑜 ) +

𝑝<𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

Δ
𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑜

(4)

where 𝐷𝑆𝐿
𝑝𝑠𝜏𝑜

is the available slack at the first point 𝑝𝑠𝜏𝑜 of the running task. Since all previous

tasks executed with precisely their worst-case behavior in LO-mode, 𝐷𝑆𝐿
𝑝𝑠𝜏𝑜

is equal to zero. In

addition, since the task is executed non-preemptively (assumption of this Lemma), the second sum,

containing the remaining preemptions, equals zero. The first sum is equal to the progress of task

𝜏𝑜 . Note that, the value is negative, since in Δ
𝑝

𝑝+1𝑡 , later time instances (with larger values) are

subtracted from earlier time instances (with smaller values). The last sum equals to the partial

WCET of task 𝜏𝑜 from the first point up to 𝑝𝑜𝜏𝑜 , since 𝐶
𝐿
𝜏𝑜

=
∑𝑝<𝑝𝑜𝜏𝑜

𝑝∈𝑃𝜏𝑜
Δ
𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑜

+∑𝑝≥𝑝𝑜𝜏𝑜
𝑝∈𝑃𝜏𝑜

Δ
𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑜
.

Thus, the last sum is clearly less than 𝐶𝐿
𝜏𝑜

(assuming that the computation of remaining WCET (L.

9) is safe, which was proven in [19]). We therefore establish:

𝐷𝑆𝐿𝑝𝑜𝜏𝑜
= −𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝜏𝑜 +

©«𝐶𝐿
𝜏𝑜
−

𝑝≥𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

(
Δ
𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑜

)ª®¬ (5)

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

111:14 A. Kritikakou and S. Skalistis

Since task 𝜏𝑜 has overrun, i.e. 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝜏𝑜 ≥ 𝐶𝐿
𝜏𝑜

it follows that:

𝐷𝑆𝐿𝑝𝑜𝜏𝑜
≤ −𝐶𝐿

𝜏𝑜
+𝐶𝐿

𝜏𝑜
−

𝑝≥𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

(
Δ
𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑜

)
=⇒ 𝐷𝑆𝐿𝑝𝑜𝜏𝑜

≤ 0 (6)

which satisfies the condition 𝐷𝑆𝐿 < 𝐶𝑝𝑡𝑝 and, therefore, concludes the proof. □

Corollary 1. Given two consecutive points 𝑝, 𝑝 + 1 of any job of task 𝜏𝑖 , that are executed non-
preemptively, the approach will correctly signal an overrun if it occurs at point 𝑝 + 1.

Having this fundamental guarantee, i.e., for two consecutive points, executed non-preemptively,

the run-time control is safe, allows us to focus on what happens when preemptions and under-

runs/overruns occur, collectively. As in this extreme case we assumed the maximum number of

instrumentation points, some of these points will coincide with the preemption points. Thus, two

consecutive instrumentation points of the same task are always executed non-preemptively or a

pre-emeption occurred at the former point. In the following lemmas we prove each separate case

with respect to the amount of slack available and whether a mode-switch has already occurred. All

lemmas assume that a schedulable task-set T is given and that 𝑝𝑜𝜏𝑜 is the first point where some job

of a high-criticality task overruns, with the response-time bound of that point 𝑝𝑜𝜏𝑜 ∈ 𝑃𝜏𝑜 is 𝑅𝐶𝐿
𝑝𝑜𝜏𝑜

in

𝐶𝐿-mode, with 𝐶𝐿 ∈ {𝐻, 𝐿} and the actual time at that point is 𝑡𝑝𝑜𝜏𝑜 .

Lemma 2. For any job of a high-criticality task 𝜏𝑢 that is executed non-preemptively in LO-mode
and underruns by𝑈 , the computed slack is never greater than the underrun.

Proof. Since the task 𝜏𝑢 is executed non-preemptively it suffices that the difference between

the slack at the beginning of execution, i.e. 𝐷𝑆𝐿
𝑝𝑠𝜏𝑢

, and at the end of execution, i.e. 𝐷𝑆𝐿
𝑝𝑒𝜏𝑢

, is not

greater than the underrun 𝑈 , where 𝑝𝑠𝜏𝑢 , 𝑝
𝑒
𝜏𝑢
, are the instrumentation points at the beginning and

end of the task, respectively. Applying Equation 4 for the end of execution we acquire:

𝐷𝑆𝐿𝑝𝑒𝜏𝑢
= 𝐷𝑆𝐿𝑝𝑠𝜏𝑒

+
𝑝<𝑝𝑒𝜏𝑢∑︁
𝑝∈𝑃𝜏𝑢

Δ
𝑝

𝑝+1𝑡 +
𝑝<𝑝𝑒𝜏𝑢∑︁
𝑝∈𝑃𝜏𝑢

Δ
𝑝

𝑝+1𝑅𝐷
𝐿
ℎ𝑝 (𝜏𝑢 ) +

𝑝<𝑝𝑒𝜏𝑢∑︁
𝑝∈𝑃𝜏𝑢

Δ
𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑜

(7)

The first sum is equal to the progress of task 𝜏𝑢 , which is equal to its WCET 𝐶𝐿
𝜏𝑢

minus the amount

of underrun 𝑈 . Note that, the value is negative, since in Δ
𝑝

𝑝+1𝑡 , later time instances (with larger

values) are subtracted from earlier time instances (with smaller values). In addition, since the task is

executed non-preemptively (assumption of this Lemma), the second sum, containing the remaining

preemptions, equals zero. The last sum equals to the partial WCET of task 𝜏𝑢 from the first point

𝑝𝑠𝜏𝑢 up to 𝑝𝑒𝜏𝑢 , i.e. its WCET 𝐶𝐿
𝜏𝑢
. Therefore, we establish:

𝐷𝑆𝐿𝑝𝑒𝜏𝑢
− 𝐷𝑆𝐿𝑝𝑠𝜏𝑒

= −(𝐶𝐿
𝜏𝑢

−𝑈 ) + (0) + (𝐶𝐿
𝜏𝑢
) =⇒ 𝐷𝑆𝐿𝑝𝑒𝜏𝑢

− 𝐷𝑆𝐿𝑝𝑠𝜏𝑒
= 𝑈 (8)

Thus, the computed slack is no greater than the amount of underrun 𝑈 , which concludes this

proof. □

Lemma 3. Given the first point 𝑝𝑜𝜏𝑜 , where some job of a high-criticality task overruns and there is
not enough slack to reach the next point, a mode-switch will occur and the next point 𝑝𝑜𝜏𝑜 + 1 will
respect its response-time bound in mode HI-mode, i.e. 𝑡𝑝𝑜𝜏𝑜 +1 ≤ 𝑅

𝐻

𝑝𝑜𝜏𝑜 +1𝜏
, when the mode-switch is being

controlled by the proposed approach.

Proof. Since we assume the maximum number of points, the segment of the current job of task

𝜏𝑜 from 𝑝𝑜𝜏𝑜 − 1 to 𝑝𝑜𝜏𝑜 , is executed non-preemptively; if a preemption existed, it would be either at

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Mitigating Mode-Switch through Run-time Computation of Response Time 111:15

𝑝𝑜𝜏𝑜 − 1 or 𝑝𝑜𝜏𝑜 . Thus, according to Corollary 1, if there is not enough slack, the overrun would be

correctly detected at point 𝑝𝑜𝜏𝑜 and since there is not enough slack a mode-switch will occur.

During the mode-switch, by definition of RTAs for mixed-critical systems, all points 𝑝 that have a

larger response-time bound at mode switch, i.e., 𝑅∗
𝑝 ≥ 𝑅∗

𝑝𝜏𝑜
, will respect their response-time bound

𝑡𝑝 ≤ 𝑅∗
𝑝 , and thus, high-criticality tasks will meet their deadlines. Similarly, when the system has

fully transitioned to HI-mode, high-criticality tasks will meet their deadlines, since the task-set has

been deemed schedulable. □

Having established that the approach behaves correctly, when there is not enough slack, and

high-criticallity tasks meet their deadlines, we now establish correctness in case there is enough

slack, i.e. 𝐷𝑆𝐿𝑝𝜏𝑜
≥ 𝐶𝑝𝑡𝑝 . An amount of slack existing at an overruning point 𝑝𝑜𝜏𝑜 can only be due

two orthogonal reasons. The first reason is that the slack existed at the start of execution of the

current job of 𝜏𝑜 which is addressed by Lemma 4. The other reason is due to some jobs of other

tasks 𝜏𝑢 , that preempted the current job of 𝜏𝑜 , have completed their execution and underrun in

LO-mode, prior to 𝑡𝑝𝑜𝜏𝑜 , which is addressed by Lemma 5. Note that, since 𝑝𝑜𝜏𝑜 is the first point to

overrun, its actual execution (𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝜏𝑜 ) is no less than its WCET in LO-mode,𝐶𝐿
𝜏𝑜
. Thus, any slack

at point 𝑝𝑜𝜏𝑜 cannot occur because of any underrun of the current job of 𝜏𝑜 at some previous points.

Lemma 4. Given the first point 𝑝𝑜𝜏𝑜 , where some job of a high-criticality task overruns and there is
enough slack to reach the next point, i.e.𝐷𝑆𝐿𝑝𝜏𝑜 ≥ 𝐶𝑝𝑡𝑝 , and that slack existed at the start of execution of
the current job of 𝜏𝑜 (denoted as point 𝑝𝑠𝜏𝑜 ), then no mode-switch will occur and all tasks will meet their
deadlines if they do not overrun, when the mode-switch is being controlled by the proposed approach.

Proof. Since all subsequent tasks are assumed not to overrun, it suffices to show that the

computed slack at 𝑝𝑜𝜏𝑜 is not greater than the underrun of previous jobs (of the same or different

tasks) at that point. This is sufficient as from the response time perspective, the overrun execution

is equivalent to some other execution, where the underrun jobs of tasks 𝜏𝑢 executed for (at most)

their WCET in LO-mode, and thus, the overrun job of task 𝜏𝑜 executes for less than its 𝐶𝐿
𝜏𝑜

at the

point of overrun 𝑝𝑜𝜏𝑜 . The fact that the computed slack at 𝑝𝑜𝜏𝑜 is not greater than the underrun of

previous jobs is nevertheless given by Lemma 2. □

Lemma 5. Given the first point 𝑝𝑜𝜏𝑜 , where some job of a high-criticality task overruns and there is
enough slack to reach the next point, i.e. 𝐷𝑆𝐿𝑝𝜏𝑜 ≥ 𝐶𝑝𝑡𝑝 , and that slack was created by underruning
jobs that preempted 𝜏𝑜 , then no mode-switch will occur and all tasks will meet their deadlines if they
do not overrun, when the mode-switch is being controlled by the proposed approach.

Proof. Since all subsequent tasks are assumed not to overrun, it suffices to show that the

computed slack at 𝑝𝑜𝜏𝑜 is not greater than the underrun at that point. This is sufficient as from the

response time perspective, the overrun execution is equivalent to some other execution, where the

underrun jobs of tasks 𝜏𝑢 executed for (at most) their WCET in LO-mode, and thus, the overrun job

of task 𝜏𝑜 executes for less than its𝐶
𝐿
𝜏𝑜
at the point of overrun 𝑝𝑜𝜏𝑜 . Following Equation 4, considering

preemptions, the sum

∑𝑝<𝑝𝑜𝜏𝑜
𝑝∈𝑃𝜏𝑜

Δ
𝑝

𝑝+1𝑡 contains both the progress of the job of task 𝜏𝑜 and the actual

progress of the job of tasks 𝜏𝑢 that preempted 𝜏𝑜 . Since the job of task 𝜏𝑜 overrun at point 𝑝𝑜𝜏𝑜 , its

progress is equal to its WCET in LO-mode, i.e. 𝐶𝐿
𝜏𝑜
. Let ℎ𝑝 𝑗 𝑓 (𝜏𝑜 ), be the set of jobs that preempted

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

111:16 A. Kritikakou and S. Skalistis

the job of 𝜏𝑜 and finished, i.e., ℎ𝑝 𝑗 𝑓 (𝜏𝑜 ) ⊆ ℎ𝑝 (𝜏𝑜 ). We establish:

𝑝<𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

Δ
𝑝

𝑝+1𝑡 = −
𝑝<𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

Δ
𝑝+1
𝑝 𝑡 = − ©«𝐶𝐿

𝜏𝑜
+

∑︁
𝑗𝜏𝑢 ∈ℎ𝑝 𝑗 𝑓 (𝜏𝑜 )

∑︁
𝑝∈𝑃𝜏𝑢

Δ
𝑝

𝑝+1𝑡
ª®¬ = (9)

= −𝐶𝐿
𝜏𝑜
− ©«©«

∑︁
𝑗𝜏𝑢 ∈ℎ𝑝 𝑗 𝑓 (𝜏𝑜 )

𝐶𝐿
𝜏𝑢

ª®¬ −𝑈𝑝
ª®¬ = −𝐶𝐿

𝜏𝑜
− ©«

∑︁
𝑗𝜏𝑢 ∈ℎ𝑝 𝑗 𝑓 (𝜏𝑜 )

𝐶𝐿
𝜏𝑢

ª®¬ +𝑈𝑝 (10)

where𝑈𝑝 ≥ 0 is the total amount of underrun, if any, of the jobs that preempted the current job of

𝜏𝑜 . Thus, the computed slack is established as (Equation 4):

𝐷𝑆𝐿𝑝𝑜𝜏𝑜
= 𝐷𝑆𝐿𝑝𝑠𝜏𝑜

−𝐶𝐿
𝜏𝑜
− ©«

∑︁
𝑗𝜏𝑢 ∈ℎ𝑝 𝑗 𝑓 (𝜏𝑜 )

𝐶𝐿
𝜏𝑢

ª®¬ +𝑈𝑝 +
𝑝<𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

Δ
𝑝

𝑝+1𝑅𝐷
𝐿
ℎ𝑝 (𝜏𝑜 ) +

©«𝐶𝐿
𝜏𝑜
−

𝑝≥𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

Δ
𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑜

ª®¬ =⇒
(11)

𝐷𝑆𝐿𝑝𝑜𝜏𝑜
= 𝑈𝑝 + 𝐷𝑆𝐿𝑝𝑠𝜏𝑜

+ ©«−
∑︁

𝑗𝜏𝑢 ∈ℎ𝑝 𝑗 𝑓 (𝜏𝑜 )
𝐶𝐿
𝜏𝑢

+
𝑝<𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

Δ
𝑝

𝑝+1𝑅𝐷
𝐿
ℎ𝑝 (𝜏𝑜 )

ª®¬ −
𝑝≥𝑝𝑜𝜏𝑜∑︁
𝑝∈𝑃𝜏𝑜

Δ
𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑜

(12)

According to Algorithm 1 (L. 16-19) when a job finishes execution, it subtracts its WCET from the

remaining delay of its lower priority, high criticality tasks that it has preempted. Thus, the jobs

𝑗𝜏𝑢 ∈ ℎ𝑝 𝑗 𝑓 (𝜏𝑜 ) that preempted the current job of 𝜏𝑜 , have subtracted their WCET from 𝑅𝐷ℎ𝑝 (𝜏𝑜 ) ,
hence the terms in parenthesis cancel each other. The last sum of Equation 12 is greater than zero,

since it is the partial WCET of 𝜏𝑜 from the start point up to point 𝑝𝑜𝜏𝑜 . Thus, the slack 𝐷𝑆
𝐿
𝑝𝑜𝜏𝑜

at point

𝑝𝑜𝜏𝑜 is no greater than any underrun that was created during execution of 𝜏𝑜 plus the slack 𝐷𝑆𝐿
𝑝𝑠𝜏𝑜

that 𝜏𝑜 started with. Therefore, we have shown that the execution is equivalent, from a response

time perspective, to an execution where the underrun jobs executed for at most their WCET in

LO-mode and the overrun job of task 𝜏𝑜 executed for less than its 𝐶𝐿
𝜏𝑜

at the point of overrun, thus

proving that the next point 𝑝𝑜𝜏𝑜 + 1 will respect its response-time bound. □

Theorem 6 (Time safety). Given a schedulable task-set T where the mode switch is being controlled
by the proposed approach, the tasks always respect their deadlines.

Proof. In Lemma 4 and Lemma 5 it was proven that the execution to the first point of overrun

is safe, i.e. either a mode switch will occur or there is enough slack to proceed to the next point.

In addition, the execution in case of enough slack is equivalent, in terms of time, to an execution

where the under-running task(s) executed for at most their WCET in LO-mode and the overrunning

task 𝜏𝑜 executed for less than its 𝐶𝐿
𝜏𝑜

at the point of overrun. As a result, that point can be consider

as not having an overrun and some other future point will be the first to overrun. By iterative

application of those Lemmata, until a mode switch occurs or the end of execution, to all points, we

conclude our proof. □

4.3.2 Step 2: Impact of removing instrumentation points. Following, we prove that removing

points preserves safety of the proposed approach and it only impacts the exposed slack.

Theorem 7. Any task 𝜏𝑖 will meet its deadline, if some instrumentation points are removed.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Mitigating Mode-Switch through Run-time Computation of Response Time 111:17

Proof. Applying Equation 2 to three consecutive points 𝑝 − 1, 𝑝, 𝑝 + 1 of a high-criticality task,

we establish:

Δ
𝑝

𝑝−1𝐷𝑆
𝐿 = Δ

𝑝−1
𝑝 𝑡 + Δ

𝑝−1
𝑝 𝑅𝐷𝐿

ℎ𝑝 (𝜏𝑖 ) + Δ
𝑝−1
𝑝 𝑅𝐶𝐿

𝜏𝑖
(13)

Δ
𝑝+1
𝑝 𝐷𝑆𝐿 = Δ

𝑝

𝑝+1𝑡 + Δ
𝑝

𝑝+1𝑅𝐷
𝐿
ℎ𝑝 (𝜏𝑖 ) + Δ

𝑝

𝑝+1𝑅𝐶
𝐿
𝜏𝑖

(14)

By adding the equations together, the computed slack, if point 𝑝 did not exist, is:

Δ
𝑝+1
𝑝−1𝐷𝑆

𝐿 = Δ
𝑝−1
𝑝+1𝑡 + Δ

𝑝−1
𝑝+1𝑅𝐷

𝐿
ℎ𝑝 (𝜏𝑖 ) + Δ

𝑝−1
𝑝+1𝑅𝐶

𝐿
𝜏𝑖

(15)

This effectively states that the slack computation remains the same, when a point is removed,

and becomes visible only at the next point. Since the control algorithm decides if there is enough

slack to reach the next point (L. 14) based on the point-to-point WCET overhead 𝐶𝑝𝑡𝑝 , Lemma 1

and Theorem 6 still applies, hence the response-time bound cannot increase. Thus, by iteratively

removing points, we prove that any assignment of instrumentation points is safe. □

5 EXPERIMENTAL EVALUATION
To evaluate the proposed approach (RRT), we compare the run-time control overhead and the

performance, with respect to the mode-switch decisions and the execution of the low criticality

tasks, with the: i) BaseLine (BL) approach, which switches mode when a high criticality job exceeds

its 𝐶𝐿
, such as [3, 5, 10], and ii) Dynamic (DYN) approach, which observes the dynamic slack, but

only after a job finishes, such as [7, 17, 23].

5.1 Run-time control overhead
For the timing overhead, we implemented the controllers of RRT, DYN and BL approaches on the on

the TMS320C6678 chip (TMS) of Texas Instrument [29] (Table 4). The overhead in cycles, depicted

in Table 5, is obtained by applying a measurement-based approach. The measurements have been

obtained using the processor’s local timer during the controller execution and we have followed

the approach of multiple executions, where each controller is executed 50 times and we maintain

the largest observed value.

Table 4. TMS platform (8 DSP cores).

Instr./cycle Freq. Instr. L1 Data L1 L2 L3 DDR3
8 1 GHz 32 KB 32 KB 512 KB 4 MB 512 MB

To obtain the overall overhead, we compute how many times the actions of each mechanism

will be performed, which depends on the task set and the actual execution.

• For the BL approach, a timer must be set, before the task starts execution, in order to trigger an

interrupt when 𝐶𝐿
has been reached, and check for mode-switch [18]. The timer is set in the

beginning of a job execution (895 cycles) and there is a single time moment when the BL controller

will be executed (192 cycles), i.e., when the timer is triggered. In this overhead, we need to add

the cost due to potential preemptions. Each time the job is preempted, its timer has to be paused,

as a new timer will be set with the WCET in low mode of the higher priority job that will be now

executed. When the execution returns to the preempted job, the timer needs to be resumed with

theWCET in lowmode (895 cycles) of the preempted job. Thus, the overhead of the BLmechanism

per job is given by 𝑂𝐵𝐿 = (895 + 192) + 895 ∗ #𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑜𝑛𝑠 = 1, 087 + 895 ∗ #𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑜𝑛𝑠 . The

minimum overhead is given when the job is not preempted. For the maximum overhead, the

worst-case is when a high-criticality job, that has the lower priority, is preempted sequentially

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

111:18 A. Kritikakou and S. Skalistis

(i.e., no nested preemption takes place). In the worst-case, the number of preemption is equal

to the number of jobs, that have a higher priority. Figure 7a depicts the cost of BL mechanism

based on the number of preemptions.

• For the DYN approach, on top of the overhead due to preemptions (similar to BL), the controller

may be evoked many times in order to check for the mode-switch. The number of possible

evocations depends on how many of the higher priority tasks, that have preempted the task, have

created slack, and whether the slack has been used to extend the WCET in low mode, each time.

When a higher priority task finishes execution, it updates the dynamic slack (45 cycles). When the

timer is triggered, the DYN controller is executed (252 cycles). If slack exists, it is used to extend

the WCET in low mode (895 cycles to re-set the timer). The overhead of the DYN mechanism per

task is given by 𝑂𝐷𝑌𝑁 = (895 + 252) + (895 + 45) ∗ #𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑜𝑛𝑠 + (252 + 895) ∗ #𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠 =
1, 147+940∗#𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑜𝑛𝑠+1, 147∗#𝑒𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠 . Similar to BL, the minimum overhead is when the

task is not preempted. For the maximum overhead, the worst-case is when all tasks with higher

priorities, thus they preempted the task, created slack, and when between two preemptions, the

task has reached the mode-switch point and extended the WCET in low, but not enough so as

the task can finish execution. Figure 7a gives the DYN cost as box plot, considering the minimum

and the maximum possible extensions for each number of preemptions.

• On the contrary, the proposed approach does not require the use of such a timer, that requires

to be paused and resume during job preemptions, inserting high overhead. The RRT overhead

depends on how many times the controller is evoked and it is exactly bounded by the number

of instrumentation points. When the job finishes execution, the preemption delay of the high

criticality low priority jobs (𝑙𝑝ℎ𝑐), that has preempted, is updated. The RRT overhead is given by

𝑂𝑅𝑅𝑇 = 42 + 274 ∗ #𝑝𝑜𝑖𝑛𝑡𝑠 + 28 ∗ #𝑙𝑝ℎ𝑐 . The maximum cost is given when all the points evoke the

controller, i.e., no mode-switch took place, and only one low criticality task exist in the task set,

and thus, the high priority high criticality task will have to update, at the end of execution, all

the low priority high criticality tasks. Figure 7b depicts in box plots (considering 1 up to 31 low

priority high criticality tasks that need to be updated) for 10 up to 100 instrumentation points.

Table 5. Overhead of run-time control (cycles).

Start Execution End
App. Action Cyc. Action Cyc. Action Cyc.

BL
Set timer 895 Interrupt 162 N/A -

Decide mode-switch 30

Total 192

DYN

Set timer 895 Interrupt 162 Update 𝐷𝑆𝐿 48

Use 𝐷𝑆𝐿 to extend 𝐶𝐿
𝜏𝑖

90

Re-set timer 895

Total 1147

RRT

Initialise 42 𝑅𝐶𝐿
𝜏𝑖
and 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝜏𝑖 152 Update 𝑅𝐷𝜏 𝑗 28 per 𝜏 𝑗

Monitor t 32

𝑅𝑅𝐿
𝜏𝑖
and 𝐷𝑆𝐿 45

Decide mode-switch 45

Total 274

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Mitigating Mode-Switch through Run-time Computation of Response Time 111:19

0

10

20

30

40

50

60

70

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

O
ve

rh
ea

d 
(M

cy
cl

es
)

Number of preemptions

DYNBL

(a) BL and DYN

0

10

20

30

40

50

60

70

80

10 20 30 40 50 60 70 80 100

O
ve

rh
ea

d 
(M

cy
cl

es
)

Number of instrumentation points

RRT

(b) RRT

Fig. 7. Overhead comparison

5.2 Performance evaluation
For the performance evaluation, we developed a simulation framework where we can tune different

parameters of the task set in order to perform extensive evaluation experiments. We compare the

decisions taken by RRT and DYN with the BL decisions, by computing how many times RRT and

DYN decided to i) Not Switch (NS), same as BL, ii) Switch at the Same (SS) job as BL did, iii) Switch

at another job, executed Later (SL) compared to BL, and iv) Switch Avoided (SA), compared to BL.

Furthermore, we compare the percentage of the low criticality jobs (among all experiments) that i)

did not start execution, and ii) finished.

Benchmark characterisation: To obtain realistic values for the simulation set-up in order to

perform the above comparison, e.g., regarding the𝐶𝐿
,𝐶𝐻

, number of instrumentation points, partial

WCETs, and actual execution time of jobs, we execute benchmarks with different characteristics

on the TMS under different platform configurations. We used the Discrete Cosine Transformation

(DCT), Mergesort (MERGE), and Fast Fourier Transformation (FFT) from StreamIT benchmarks [30],

as they are typical kernels for real-time systems, exhibiting different characteristics in terms of

memory accesses and execution paths. The source code of each benchmark has been modified in

order to implement the instrumentation points, following the approach presented in Section 4.1,

and executed on the TMS platform. The instrumentation points have been inserted uniformly in

the benchmark codes. The number of instrumentation points per benchmark has been selected

in order to have the total controller cost around 1% of the benchmark’s WCET, in the worst-case,

based on controller overhead measured on the TMS platform (Table 5). The measurements have

been obtained using the processor’s local timer during the bechmark execution.

Our first set of experiments obtains estimations of the 𝐶𝐿
and the partial WCETs between

instrumentation points. To achieve that, the sources that variate the execution time have to be elim-

inated [15], by disabling data-caches, removing interferences (i.e., disabling all but one processor)

and providing, as much as possible, values as input data that potentially enforce the worst-case path.

We have followed the approach of multiple executions, where each benchmark has been executed

50 times, for each different input. We observed a deviation of ∼ 1% between measurements among

the executions of one input. We maintain the largest observed value among all inputs as the 𝐶𝐿

value. The 𝐶𝐻
is obtained by applying a common practise of inserting a margin of 30%.

Our second set of experiments characterizes the behavior of the actual execution time of the

benchmarks under different software and hardware scenarios, and compute the observed timing

variability. We studied two parameters that typically affect the execution time, i.e., the different

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

111:20 A. Kritikakou and S. Skalistis

execution paths due to the inputs and the benchmark and the use of caches of the hardware platform.

We tune each parameter independently in order to characterize its impact to the execution time.

Table 6 shows the observed variability, computed by comparing the execution time of the best

observed value and the worst observed value (which is given by𝐶𝐿
in Table 6). On the one hand, we

observe that the impact of caches in execution time is similar for all benchmarks, with 71.14% on

average. On the other hand, we observe that the impact of different execution paths is benchmark

depended; it is higher for applications with several execution paths, e.g., DCT, and, smaller for

single-path applications, e.g., FFT. The obtained values depicted in Table 6 will be used to drive the

simulation set-up with realistic values.

Table 6. Benchmark characterisation

Instr. points (Number)
DCT MERGE FFT
25 17 10

WCET (cycles)
DCT MERGE FFT

𝐶𝐿
981,120 669,026 275,891

𝐶𝐻
1,177,344 802,832 331,070

Cache variability
Path DCT MERGE FFT

Best-Path 73.83% 69.03% 69.40%

Worst-Path 76.57% 68.60% 69.38%

Path variability
Caches DCT MERGE FFT
Disabled 46.65% 12.84% 0.15%

Enabled 40.51% 14.69% 0.46%

Experimental set-up: The experimental simulation framework consists of i) a task-set generator,

ii) an offline analysis, iii) an online scheduler, and iv) an online controller. The task-set generator

constructs schedulable task-sets with realistic parameters based on the benchmark characterization,

i.e., 𝐶𝐿
, 𝐶𝐻

, number of instrumentation points, and partial WCETs. The instrumentation points

are generated in a uniform way, following the instrumentation of the benchmark codes. The

offline analysis provides the worst-case delay in LO-mode, due to higher priority tasks. The online

scheduler dynamically selects the ready task with the highest priority to be executed, taking into

account the mode of execution. The online controller implements each approach to be evaluated. If

the online controller decides mode-switch, it informs the online scheduler to drop low criticality

tasks.

We perform experiments by generating task-set sizes from 2 tasks up to 40 tasks, consisting of

an equal number of high and low criticality tasks. For each task set size, we perform a number

of experiments. At each experiment, the task-set generator creates a different task-set using the

measured information provided in Table 6. For each task, it selects the 𝐶𝐿
randomly in the range

[275,891-981,120], the number of points randomly in the range [10,25], the period computed

considering a system utilisation 𝑈 = 70%, with 𝑈 =
∑

𝜏𝑖 ∈T
𝐶𝐿
𝜏𝑖

𝑃𝜏𝑖
, and a unique task priority given

by Rate Monotonic, where the shorter the task period, the higher the job priority [2]. The timing

overhead of the controller is included in the 𝐶𝐿
. Note that, each task invokes a number of jobs.

Among all experiments, the minimum, average and maximum number of simulated jobs is 22, 835,

and 1,787.

For each experiment, the actual execution time of low criticality tasks is equal to their 𝐶𝐿
. The

actual execution time of high criticality tasks is tuned based on the benchmark characterisation.

Two configurations are evaluated:

• Cache-related configuration, based on the trend of the observed timing variability regarding

caches, i.e., similar variability for all benchmarks. Thus, the actual execution time of high criticality

tasks is tuned in a similar way. Per task-set size, we perform 10 experiments. At each experiment,

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Mitigating Mode-Switch through Run-time Computation of Response Time 111:21

the actual execution time among two points is varied almost exhaustively, from 𝐶𝐿 − 40% ×𝐶𝐿

up to 𝐶𝐿 + 30% ×𝐶𝐿
, with a step of 5%, based on the observed variability.

• Path-related configuration, based on the trend of the observed timing variability regarding

execution paths, i.e., the variability due to execution paths is benchmark-dependent. Thus, the

actual execution time of each high criticality tasks is tuned independently. Per task-set size, we

performed 1,000 experiments. At each experiment, the actual execution time among two points

is randomly given in the range [𝐶𝐿 − 50%×𝐶𝐿
,𝐶𝐿 + 50%×𝐶𝐿

], based on the observed variability.

Cache-related configuration: Fig. 8 shows the mode-switch decisions and the number of non

started and finished low criticality tasks. We observe that the proposed approach (Fig. 8a) is able

to avoid the mode-switch (SA) in a significant number of experiments, outperforming the DYN

approach (Fig. 8b). When the actual execution time of all tasks is lower than the𝐶𝐿
(avg. in 17.1% of

the experiments), RRT and DYN have the same behavior with BL, since mode-switch does not occur.

For the majority of the experiments, DYN, most of the time decides to switch mode at the same

time as BL approach, i.e., on average, 78.46% of the experiments. On the contrary, RRT behaves

as BL for only 17.78% of the experiments. Compared to BL, RRT is able to avoid mode-switch in

64.13% of the experiments. DYN avoids mode-switch for only 3.46% of the experiments. Hence, RRT

managed to increase the mode-switch avoidance by a factor of ×18.54, compared to DYN. In the

rest of the experiments, the approaches perform mode-switch later than BL; 1.99% for RRT and

0.98% for DYN. Regarding the execution of low criticality task, DYN behaves quite similarly to BL.

DYN manages to start execution 2.67% more low criticality tasks, compared to the number of low

criticality tasks that started execution with BL. Moreover, with DYN manages to finish, on average,

20.9% of the total number of low criticality jobs, compared to 17.5% for the BL. This provides a

gain of a factor of ×1.19 more low criticality jobs that managed to finish their execution, compared

to the number of low criticality jobs that finished in BL. On the contrary, due to the fine-grained

slack exploitation, RRT provides significant improvements, as 82.60% of the total low criticality

jobs managed to finish execution. This provides a gain factor of ×4.72, compared to the number of

low criticality tasks that finished execution with BL.

Path-related configuration: As shows Fig. 9, on average, RRT switches as BL in 50.42% of the

experiments, while DYN in 63.26%. For the remaining experiments, RRT avoids mode-switch (SA)

in 36.07% of the experiments (Fig. 9a), while DYN in 11.03% (Fig. 9b). As a result, RRT increases

mode-switch avoidance by ×3.27. Furthermore, we observe that DYN decides to switch mode

later than BL in 25.7% of the experiments, while RRT in 13.5%. This difference comes from the

fact in 12.20% of these experiments RRT totally avoided mode-switch, whereas DYN performed

mode-switch, but later that BL. We also explore the impact of these decisions in the execution of

the low criticality tasks. On average, for DYN, 13.50% low criticality jobs finished their execution,

which is 12.28% more jobs than BL. However, RRT managed to finish 38.09% low criticality jobs,

corresponding to 36.82% more jobs than BL.

6 RELATED WORK
We briefly describe the representative mixed-criticality approaches, relevant to our work, which

are summarised in Table 7. A detailed survey is available in [12].

The majority of existing works use static decisions regarding when the mode switch occurs,

typically given by the value of the low criticality WCET of high criticality tasks. Upon mode

switch, low-criticality jobs are dropped, e.g., in time-triggered scheduling [10], EDF with Virtual

Deadlines scheduling [3] and priority based on Adaptive Mixed Criticality [5] on uniprocessors,

global [21] and partitioned [6] Earliest Deadline First (EDF)-based scheduling and global fixed-

priority scheduling [25] on multiprocessors. However, as the mode switch decision is defined

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

111:22 A. Kritikakou and S. Skalistis

(a) RRT decisions

(b) DYN decisions

(c) Not started low criticality jobs.

(d) Finished low criticality jobs.

Fig. 8. Cache-related configuration.
ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Mitigating Mode-Switch through Run-time Computation of Response Time 111:23

(a) RRT decisions

(b) DYN decisions

(c) Not started low criticality jobs.

(d) Finished low criticality jobs.

Fig. 9. Path-related configuration.
ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

111:24 A. Kritikakou and S. Skalistis

Table 7. Comparison with representative State-of-the-Art

Ref.
When to switch In HI-mode

Low crit. Static Dynamic Drop Reduce Timing Extend
WCET Slack Slack Delay low priority budget Periods

[3, 5, 10] √ √
[6, 21, 25]

[1, 16, 22]

√ √

[13, 14, 27]

√ √

[17, 24]

√ √ √

[7]

√ √ √

[23]

√ √ √

[28]

√ √

[9]

√ √ √ √ √

Proposed

√ √

statically, while the low criticality tasks are dropped in HI-mode, the system performance is

degraded. To increase the execution time of the low criticality tasks, existing works i) explore

other strategies, than dropping low criticality tasks, in HI-mode, and ii) explore, statically or

dynamically, ways to postpone the mode switch or switch back to LO-mode. In summary, first

category approaches i) set the priority of low criticality tasks below the priority of any high

criticality task, ii) reduce the execution time requirements of low criticality tasks in high criticality

mode, and iii) extend the periods of low criticality tasks [9]. We will focus on the second category,

where the proposed approach belongs to.

Static approaches determine the largest value, that could be added to a task’s low criticalityWCET,

postponing the mode switch, such that the whole task set remains schedulable. Methods inspired by

sensitivity analysis [8] compute offline the margins that low criticality tasks are allowed to overrun

before being suspended, on uniprocessor systems [27]. Other approaches use zero-slack scheduling,

where low-critical tasks are allowed to run until the zero-slack of higher-criticality jobs is finished.

The zero-slack of a task is offline computed based on the low criticality and high criticality WCET

and the interference from higher-priority and higher-criticality tasks [13, 14]. However, as those

techniques exploit only static slacks, usually due to the system being under-loaded, they use the

run-time information to further postpone the mode switch.

Dynamic approaches mainly exploit the slack, created during execution due to earlier-than-the-

WCET execution of the tasks. The most straightforward way to use the dynamic slack is to enable

switching back to LO-mode, after the execution of high criticality tasks [1, 16, 22]. The remaining

approaches use the dynamic slack to postpone the mode switch. For instance, a single overrun

budget is used for high and low criticality tasks for EDF scheduling. It is based on the feasible task

procrastination timelength, updated using the run-time information about the completion times

of tasks [17]. In [24], idle slacks are inserted during scheduling for low criticality tasks, and an

online approach explores the slack created due to early termination of tasks. Through the bailout

protocol [7], high criticality tasks, that overrun their low criticality WCET, ask for funds, putting

the system in bailout mode. Tasks, finished early, donate their slack and low criticality task, released

in bailout mode, are abandoned, donating their low criticality WCET. When the bailout fund is zero,

the system enters recovery mode. The adaptMC [23] exploits this dynamic slack through a control

feedback mechanism that run-time updates the task budgets. Our work extends the state-of-the-art

by exploring, not only the slack created due to the early termination of tasks, but also the slack

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Mitigating Mode-Switch through Run-time Computation of Response Time 111:25

due to the current execution progress of active tasks, by safely computing, during execution, the

response time of the running job.

Few approaches exploit, the dynamic slack based on the progress of a task, by computing the

i) observed delay [28], and ii) remaining WCET [19, 20]. The first approach inserts a checkpoint

to a high criticality task and profiles the average execution time up to that point. The actual

time is compared to the profiled value to compute the observed delay. A schedulability analysis

is applied, during execution, to check whether the system remains schedulable, in case the low

criticality WCET of the task is extended by the observed delay [28]. Our approach is based on safe

remaining WCET, instead of average values, without the need of applying a schedulability test or a

response time analysis during execution. The second approaches insert several checkpoints in a

high criticality task. At each checkpoint, it safely computes the remaining WCET, i.e., the WCET of

the code, that remains to be executed, from the observation point until the end. The WCET is used

to decide to postpone mode switch, considering interference from low criticality tasks executed in

parallel on a multicore [19, 20]. However, this approach considers that each core runs only a single

task non-preemptively and high and low criticality tasks are executed in different processors. Our

work extends the approach of [19, 20] for multi-periodic high and low criticality tasks executed

pre-emptively on the same processor.

7 CONCLUSION
This work proposes a safe and lightweight approach that at run-time exposes the dynamic slack,

created as the execution of jobs progresses, and exploits it in order to postpone and avoid mode

switch in mixed-criticality systems. The proposed approach operates upon the novel concepts of

run-time computation of the worst case response time, removing the requirement for performing

a schedulability test or a response time analysis, at run-time. We have shown formally that the

proposed approach is safe. From the obtained results, our approach is able, on average, to avoid

mode switch in 50.10% of the experiments, which allows to 60.34% low criticality tasks to finish

execution.

REFERENCES
[1] James H. Anderson, Sanjoy K. Baruah, and Björn B. Brandenburg. 2009. Multicore Operating-System Support for

Mixed Criticality. In Int’l Workshop on Mixed Criticality Systems (WMC).
[2] Neil C Audsley. 1991. Optimal priority assignment and feasibility of static priority tasks with arbitrary start times.

Citeseer.

[3] Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Alberto Marchetti-Spaccamela, Suzanne van der Ster, and

Leen Stougie. 2011. Mixed-Criticality Scheduling of Sporadic Task Systems. In European Symposium on Algorithms
(ESA), Vol. 6942. 555–566.

[4] S.K. Baruah, L. Haohan, and L. Stougie. 2010. Towards the Design of Certifiable Mixed-criticality Systems. In Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE, USA, 13–22.

[5] S. K. Baruah, A. Burns, and R. I. Davis. 2011. Response-Time Analysis for Mixed Criticality Systems. In Real-Time
Systems Symposium (RTSS). 34–43.

[6] Sanjoy K. Baruah, Bipasa Chattopadhyay, Haohan Li, and Insik Shin. 2013. Mixed-criticality scheduling on multipro-

cessors. Real-Time Systems (2013), 1–36.
[7] I. Bate, A. Burns, and R. I. Davis. 2015. A Bailout Protocol for Mixed Criticality Systems. In Euromicro Conference on

Real-Time Systems (ECRTS). 259–268.
[8] E. Bini, M. Di Natale, and G. Buttazzo. 2006. Sensitivity analysis for fixed-priority real-time systems. In Euromicro

Conference on Real-Time Systems (ECRTS). 10 pp.–22.
[9] Alan Burns and B. Baruah. 2013. Towards A More Practical Model for Mixed Criticality Systems. In Real-Time Systems

Symposium (RTSS).
[10] Alan Burns and Sanjoy K. Baruah. 2011. Timing Faults and Mixed Criticality Systems. In Dependable and Historic

Computing (Lecture Notes in Computer Science, Vol. 6875), CliffB. Jones and JohnL. Lloyd (Eds.). Springer Berlin

Heidelberg, 147–166.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.



1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

111:26 A. Kritikakou and S. Skalistis

[11] Alan Burns and Robert Davis. 2020. Mixed criticality systems-a review. Department of Computer Science, University of
York, Tech. Rep (2020).

[12] Alan Burns and Robert I. Davis. 2018. A Survey of Research into Mixed Criticality Systems. ACM Comput. Surv. (CSUR)
50, 6 (2018), 82:1–82:37.

[13] D. d. Niz, K. Lakshmanan, and R. Rajkumar. 2009. On the Scheduling of Mixed-Criticality Real-Time Task Sets. In

Real-Time Systems Symposium (RTSS). 291–300.
[14] D. de Niz and L. T. X. Phan. 2014. Partitioned scheduling of multi-modal mixed-criticality real-time systems on

multiprocessor platforms. In Real-Time and Embedded Technology and Applications Symposium (RTAS). 111–122.
[15] Jean-François Deverge and Isabelle Puaut. 2007. Safe measurement-based WCET estimation. In Int’l Workshop on

Worst-Case Execution Time Analysis (WCET), Reinhard Wilhelm (Ed.), Vol. 1.

[16] Tom Fleming and Alan Burns. 2013. Extending Mixed Criticality Scheduling. In Real-Time Systems Symposium (RTSS).
[17] Biao Hu, Kai Huang, Pengcheng Huang, Lothar Thiele, and Alois Knoll. 2016. On-the-fly fast overrun budgeting for

mixed-criticality systems. In Int’l Conf. Embedded Software (EMSOFT). 1–10.
[18] Zhe Jiang, Kecheng Yang, Nathan Fisher, N. Audsley, and Zheng Dong. 2020. Pythia-MCS: Enabling Quarter-

Clairvoyance in I/O-Driven Mixed-Criticality Systems. In RTSS.
[19] Angeliki Kritikakou, Olivier Baldellon, Claire Pagetti, Christine Rochange, and Matthieu Roy. 2014. Run-time Control

to Increase Task Parallelism in Mixed-Critical Systems. In Euromicro Conference on Real-Time Systems (ECRTS).
[20] Angeliki Kritikakou, Christine Rochange, Madeleine Faugère, Claire Pagetti, Matthieu Roy, Sylvain Girbal, and

Daniel Gracia Pérez. 2014. Distributed Run-time WCET Controller for Concurrent Critical Tasks in Mixed-critical

Systems. In Int’l Conf. Real Time and Networks Systems (RTNS). Article 139, 10 pages.
[21] Haohan Li and S. Baruah. 2012. Global Mixed-Criticality Scheduling on Multiprocessors. In Euromicro Conference on

Real-Time Systems (ECRTS). 166–175.
[22] Malcolm S. Mollison, Jeremy P. Erickson, James H. Anderson, Sanjoy K. Baruah, and John A. Scoredos. 2010. Mixed-

Criticality Real-Time Scheduling for Multicore Systems.. In International Conference on Computer and Information
Technology (CIT). 1864–1871.

[23] Alessandro Vittorio Papadopoulos, Enrico Bini, Sanjoy Baruah, and Alan Burns. 2018. AdaptMC: A Control-Theoretic

Approach for Achieving Resilience in Mixed-Criticality Systems. In Euromicro Conference on Real-Time Systems (ECRTS),
Vol. 106. 14:1–14:22.

[24] T. Park and S. Kim. 2011. Dynamic scheduling algorithm and its schedulability analysis for certifiable dual-criticality

systems. In ACM Int’l Conf. Embedded Software (EMSOFT). 253–262.
[25] Risat M. Pathan. 2012. Schedulability Analysis of Mixed-Criticality Systems onMultiprocessors. In Euromicro Conference

on Real-Time Systems (ECRTS). 309–320.
[26] SAE. 2010. Aerospace Recommended Practices 4754a - Development of Civil Aircraft and Systems. SAE.

[27] F. Santy, L. George, P. Thierry, and J. Goossens. 2012. Relaxing Mixed-Criticality Scheduling Strictness for Task Sets

Scheduled with FP. In Euromicro Conference on Real-Time Systems (ECRTS). 155–165.
[28] Soham Sinha and Richard West. 2020. PAStime: Progress-aware Scheduling for Time-critical Computing. In Euromicro

Conference on Real-Time Systems (ECRTS).
[29] Texas Instruments. 2013. TMS320C6678 Multicore Fixed and Floating-Point Digital Signal Processor. Technical Report

SPRS691D. TI.

[30] William Thies et al. 2010. An Empirical Characterization of Stream Programs and Its Implications for Language and

Compiler Design. In PACT. 12.
[31] S. Vestal. 2007. Preemptive Scheduling of Multi-criticality Systems with Varying Degrees of Execution Time Assurance.

In Real-Time Systems Symposium (RTSS). 239–243.

ACM Trans. Des. Autom. Electron. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2023.


	Abstract
	1 Introduction
	2 Illustration example
	3 System model
	3.1 System model

	4 Proposed approach
	4.1 Design-time system analysis
	4.2 Run-time control for dynamic slack computation
	4.3 Safety

	5 Experimental Evaluation
	5.1 Run-time control overhead
	5.2 Performance evaluation

	6 Related Work
	7 Conclusion
	References

