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Abstract

Modeling and simulation of complex systems is key to explore systems dynamics. Many
scientific approaches were developed to represent dynamic structure systems but most of
these approaches are efficient for some kinds of systems and inefficient for others. Which
approach can be adopted for different dynamic structure systems categories is a topic
of interest for many researchers and until now has not been fully resolved. Therefore it
is essential to explore the existing approaches, understand them, and identify gaps. To
fulfil this goal, we identified criteria at stake for a smooth flow from model creation to its
simulation for dynamic structure systems. Using these criteria, we benchmark the existing
modeling formalisms focusing more on DEVS extensions, and use the results to identify
approaches gaps and discuss them.

1 Introduction

Modeling and Simulation (M&S) is a research field aiming at bringing a scientific approach
to the creation of system models and the production of simulation results. M&S offers a
mathematical frame to represent systems as models and make these models evolve over time
within a simulation environment. Models and simulators are powerful tools used in many
scientific areas. Also, modeling is a critical concept in system design either for static systems
or dynamic structure systems. This makes M&S a cornerstone of many scientific and industrial
fields.

Static systems are characterized by a fixed structure in which all possible events can be
treated and fully described. Dynamic structure (or variable structure) systems are systems in
which there is the possibility to add, change, remove parts of the system or modify coupling
relations between them during simulation. In such systems, the conformity of the model re-
garding the real system is far more difficult to ensure than when dealing with static structure
systems. This makes modeling dynamic structure systems among the most difficult challenges
in M&S, making them a specific topic of interest to researchers.

A formalism gives a frame to build models using a certain syntax and semantics as well as a
set of rules allowed for their state changes during a simulation. A dynamic structure formalism
needs to address the allowed ways of modifying the model structure and define a behavior to
deal with these changes. The system changes should be made according to specified rules in the
formalism. A great deal of research has been devoted to this goal. Many approaches developed
for dynamic structure systems were reliable for some systems but inefficient for others.

In M&S theory as defined by Zeigler [36], there are three main ways to describe models
and simulators: using discrete time, using differential equations or using discrete events. From
these, he proposes a mathematical descriptions for each one of these categories: Discrete Time
System Specification (DTSS), Differential Equation System Specification (DESS) and Discrete
Event System Specification (DEVS). These three are mathematically formal descriptions that
are intended as being root of any other modeling and simulation technologies. Moreover, he
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proposes that DESS and DTSS can both be expressed using DEVS, which makes the later the
equivalent of assembly language for simulators. DEVS is considered as the root in which all
languages can be translated, but is often hidden behind more high-level languages.

DEVS offers a modular and hierarchical description of systems’ dynamics using components.
A system is represented as a set of connected components that can be atomic or coupled and
react to external environment according to a set of rules. This approach ensures the reuse of
models, thus minimizing rework and improve productivity.

Initial research work on variable structure systems based on DEVS was DSDEVS made
by Barros [3]. A special component called the executive network is responsible for changing
structure and giving structure data of the systems. Many enhanced approaches were proposed
to tackle the issues met with initial formalisms, such as DynDEVS [29], its parallel version
ρDEVS [31] or Cell-DEVS [32]. These efforts aimed mainly at supporting system dynamics at
all its levels and help system adaption with internal or external environments automatically.

Therefore, our contribution consists of analyzing existing formalisms and creating or updat-
ing a formalism that deals with issues encountered with the existing formalisms.

In this work, we focus our attention on deterministic dynamic structure systems literature,
we try to extract and analyze formalism parameters used to handle dynamic structure systems.
To do so, we need to extract main criteria that ensure the dynamic reconfiguration support.

The remaining of this article is organized as follows: a presentation of the basis of DEVS
formalism is done in section 2. The dynamic structure DEVS benchmarking is presented in
section 3, in this section we search for blocking reasons, determine main benchmarking criteria
and present the benchmarking results. The benchmarking analysis are presented in section 4.
Our concluding remarks and future works are contained in section 5.

2 Context of DEVS formalism

In this section we introduce the concepts used along this article. We first introduce the main
concepts of DEVS formalism, then we represent some modeling formalisms including DEVS
extensions and approaches outside of DEVS.

2.1 DEVS

DEVS [35] is a framework for modeling and simulation of complex systems using discrete
events. It offers a framework based on mathematical concepts such as sets and systems theory
to describe the structure and the behavior of a system. DEVS is able to represent complex
real-world systems using a description of components hierarchically related and connected to
each other following rules defined into the formalism. Components can either be atomic or
coupled. Atomic components present a behavior which depends on its internal state, that can
evolve spontaneously with time passing, or in reaction to events on its inputs. Coupled models
combines atomic and/or coupled models to represent the relationships between different system
components and propagate events between them. Figure 1 gives a simple overview of atomic
and coupled models and its connections. When viewed from outside, coupled components act
indistinctly from atomic, allowing to use coupled components the same way as atomics. This
includes using them in other coupled, allowing for a hierarchical system description.

A CDEVS (Classic DEVS) atomic model [35] is described by Equation 1:

DEV S =< X,Y, S, δext, δint, λ, ta > (1)
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Figure 1: DEVS atomic and coupled models

Where:
X = {(p, v) | p ∈ InPorts, v ∈ Xp} is the set of input ports and values,
Y = {(p, v) | p ∈ OutPorts, v ∈ Yp} is the set of output ports and values,
S is the set of sequential states,
δext : Q×X → S is the external state transition function, with:

Q = {(s, e) | s ∈ S, 0 < e < ta(s)} is the total state set,
e is the time elapsed since last transition

δint : S → S is the internal state transition function,
λ : S → Y is the output function
ta : S → R+

0 ∪∞ is the time advance function

In DEVS, a model is defined by a set of inputs X and outputs Y. Each element of these
sets is defined by a pair of key and value and represent a potential event v on a port p. In the
DEVS formalism, components state belong to the S set and can be changed using transition
functions. When an input event occurs, δext the external transition function is executed to
change the component’s state. If no external event occurs, the component will stay in its state
until the period of time returned by time advance function ta(s) is reached, then it will change
its state using the internal transition. When the state change, either as a result of internal or
external event, the result of ta(s) will change accordingly. The component whose ta is minimal
amongst all components is said to be imminent. The output function λ is executed when the
state changed as a result of a component being imminent. After delivering the output, the
imminent component list of the simulator is updated.

A DEVS coupled model [35] is described by Equation 2:

N =< X,Y,D, {Md | d ∈ D}, EIC,EOC, IC, Select > (2)

Where:
D is the set of the component names,
For each d ∈ D, {Md} is a DEVS model,
External input coupling connects external inputs to component inputs:

EIC ⊆ {((N, ipN ), (d, ipd) | ipN ∈ IPortsN , d ∈ D, ipd ∈ IPortsd}
External output coupling connects component outputs to external outputs:

EOC ⊆ {((d, opd), (N, opN ) | opN ∈ OPortsN , d ∈ D, opd ∈ OPortsd}
Internal coupling connects component outputs to component inputs:

IC ⊆ {((a, opa), (b, ipb) | a, b ∈ D, opa ∈ OPortsa, ipb ∈ IPortsb}
Select : 2D → D the tie-breaking function

Coupled models dictate the system composition by describing how components will interact
during simulation. In a coupled model a set of the network inputs X and outputs Y are defined.
The D set contains the names of the components contained into this model. A coupled model
connects the components to each other thanks to connections defined into EOC, EIC, and IC
sets. The select function is used for tie-breaking if there is more than one imminent component
at a given time.

CDEVS does not support multiple simultaneous inputs, so it was essential to develop a
parallel approach. PDEVS was developed to tackle this problem and provide more flexible
alternative. PDEVS [9] is a parallel version of DEVS that replaces the select function with
another mechanism to handle parallel execution. It allows many components to evolve simulta-
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neously and execute concurrent events. δcon is a function added to PDEVS, this function deals
with confluent situation while simulating a system.

A PDEVS atomic model is described as [35]:

DEV S =< X+
M , Y +

M , S, δext, δint, δcon, λ, ta > (3)

Where:
δcon : Q×X+

M → S is the confluent transition function

In the PDEVS formalism, X+
M and Y +

M represent multiple inputs and outputs of the model,
the + indicates that multiple events can be present instead of a single event at a time with
CDEVS. PDEVS allows to receive multiple inputs and treat them simultaneously. Inputs
received when a component is imminent (i.e e = ta(s)) result in collisions. δcon is there to handle
collisions, this function processes collision behavior and handles them by defining instructions
that should be applied in these situations. Most of the time, δcon calls δint and/or δext in
a specific order, but can also be more complex. Thanks to this function, models are fully
controlled in collision. A PDEVS coupled model is the same as in DEVS except for the select
function which is removed [35].

2.2 DEVS Simulation

The previous formalism gives a formal representation of the system that is based on mathemat-
ical sets and functions. This representation should be simulated to show system behavior.

In the abstract simulator concept [8], the simulation of atomic and coupled components is
carried out by processors called respectively simulator and coordinator. Additionally, a root
coordinator schedules the system simulation. These processors support the representation of
model behavior. Figure 2a presents the general hierarchy of a simulation and Figure 2b shows
a concrete example for the DEVS model described into Figure 1.

(a) Simulation hierarchy (b) Concrete simulation example

Figure 2: Simulation abstraction and concrete example

The simulation begins by an order of initialization delivered by the root coordinator to
its subordinates. Later, its role is to activate imminent components. The root coordinator
then advances the simulation time to match the ta of the imminent(s) component(s) [35]. An
activated imminent component will produce an output event just before changing its state. The
coordinator is in charge of gathering output events from its inner components, and deliver them
as input event to connected components. In addition, the coordinator updates a list of imminent
components, the time of last event tlast and computes time of next event tnext. Furthermore
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the simulator supports other tasks: it computes variables like the time of last event tlast, time
of next event tnext, elapsed time e and update model’s state.

2.3 Modeling formalisms

In this section we give a brief description of modeling formalisms extended from DEVS and
other approaches.

2.3.1 DEVS extensions

Many extensions for DEVS were proposed to enhance existing approaches. As an example,
DEVS is limited to modeling deterministic systems. To overcome this, an extension was de-
veloped to support stochastic models is the STochastic Discrete Event System Specification
(STDEVS) [17, 6]. This approach performs stochastic space calculations to determine next
states. STDEVS was powerful for many systems such as Wind farms [22] and load-balancing
system [6]. In this article, we will focus on dynamic structure extensions.

Despite the ability of existing static approaches to represent system execution, it is difficult
to deal with dynamic structure changes of the system. This problem makes proposed formalisms
inefficient for some cases. Therefore, many research works focus on creating efficient approaches
for dynamic structure systems.

The first formalism proposed for modeling dynamic structure systems is Variable DEVS [5].
This formalism is composed from atomic DEVS models and coupled models which contain a
couple named χ = (M,C) which itself contains models (M) and their connections (C). But in
this approach, structure decision maker is not defined therefore it isn’t considered efficient.

To represent and simulate systems that undergo structural changes, Barros then proposed
the DSDEVS formalism [2]. This formalism is composed of an atomic and network executive
components (a modified atomic model that specifies structural changes). The network executive
has a global overview of all possible architectures of the system, it stores all possible states of
structural changes and their corresponding component sets in each structural state [25]. A
weakness of the DSDEVS is that it can not support multiple simultaneous events, so a parallel
DSDEVS named DSDE [3] was proposed. Thanks to parallelism, the system can deal with
multiple inputs and is able to provide outputs simultaneously.

DynDEVS [29] and ρDEVS [31] are well used in the fields of biology. DynDEVS is an exten-
sion of the DEVS formalism adding model transition functions that allow structural changes by
both atomic and coupled components (as opposed to DSDEVS where structure changes are only
possible at the coupled level). DynDEVS cannot support multiple simultaneous inputs therefore
ρDEVS was proposed which adds dynamic ports to formalism and allows parallelism. These
formalisms are used in different fields like biology [31] or Agents modeling using JAMES [30].

Cell-DEVS [32] is among well used formalisms. It is an extension of Cellular Automata
and DEVS that are combined together to take advantage of both. This formalism has efficient
strategy to represent system dynamics, it divides systems into cells that represent the atomic
models and grid that contains cells related to each other which represent coupled models.

Cell-DEVS is commonly used: among its applications are modeling of residential neigh-
borhood, commercial neighborhood [10], evacuation and crowd modeling, bacteria [33], surface
tension [32], pedestrian movement in a building or computer malware [32].

Another approach, hybrid-DEVS [21], suggests that discrete event system simulation cannot
effectively simulate systems, so it combines discrete and continuous phenomena. The main goal
of this formalism is to represent the dynamic structure in discrete event/continuous systems.
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This formalism was notably used in semiconductor manufacturing supply chain systems [16] or
elevator controller [23].

Sometimes it is good to combine some existing formalisms to derive the full features. A
formalism named Extended Dynamic Structure DEVS (EDEVS) [14] was proposed on the
basis of existing DEVS formalisms. In this formalism, the missing elements in DEVS found in
other formalisms extended from DEVS were exploited like PDEVS, DSDEVS and CDEVS.

2.4 Formalisms outside of DEVS

DEVS is not the only tool used for Modeling and Simulation. In this work, we include some
approaches outside of DEVS for comparison methodology. For example SysML [15, 13, 11] was
also used for many fields. SysML is a modeling language that extends UML which provides
formal semantics and support various levels of complex systems development. This M&S tool
was used for embedded mechatronic system domain [1], also in Intelligence, Surveillance and
Reconnaissance design [13].

Another approach named Variable Structure System Specification (VSSS) [18] was proposed
to deal with variable structure systems. This approach had a similar mindset of DEVS, but it
differs in how the specification of system structure is made. Two characteristic functions are
defined in the compositeVSSS named f and g which represent state transition and mapping
functions which map models under given state to specify system structure.

3 Dynamic structure formalisms benchmarking

Each of the approaches presented in previous section was efficient for some dynamic struc-
ture systems and inefficient for others. Indeed, an efficient dynamic approach should cover
all possible dynamic structure system problems. As result, it is essential to understand these
approaches, analyze it to find gaps and extract main criteria. In this section, we present a
benchmarking of dynamic structure DEVS systems.

3.1 Benchmarking motivation

In dynamic structure systems, on one hand, it is important to understand the dynamical nature
of the components and interactions. On another hand, it is essential to have knowledge about
the development of the underlying network topology and the hierarchy of component dynamics.
Variable structure systems are characterized by dynamic individual and collective behaviors that
should be expressed using the formalism.

One problem is that the rules in the existing modeling approaches restrict the evolution of
component dynamics. In some cases, the approach rules does not support some kinds of events
that aren’t described into the formalism. So it becomes impossible to update the influenced
components and support the dynamic structure changes.

As inputs to the dynamic structure systems are varied and sometimes it is hard to identify
them, connection strengths change and learning takes place [12] but this is not possible with
almost all existing approaches because these approaches contain predefined rules and do not
have the ability to deal with blocking situations except if concrete behavior is added to these
approaches which is not the case currently.

In addition, one type of structure representation optimized for one field of expertise does
not necessarily holds for other fields. Thus, a generalized approach is needed to handle this
variety when describing systems whose structure changes over time. A generalized approach
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should offer a common description for many types of complex dynamic structure systems in
applied science and engineering.

Furthermore, DEVS presents a well defined formalism based on mathematical rules which
are strictly correct and clear. With a formalism purely based on mathematical rules, the cor-
rectness of the transformation from a mathematical model to an executable model can present
a challenge. Errors can then emerge due to the programmer, to the simulator itself, or to the
impossibility to exactly match the formal model to an executable model. For example in some
cases, additional variables will be introduced for temporary computations. Or some specific
details from the formalism will be lacked by the simulator. It can even be that the language
used by the simulator will allow for shortcuts that break the formalism such as changing the
model state outside of delta function in DEVS.

Problems encountered include the transformation from abstract models (mathematical/
formal models) to executable models, this transformation may not comply with rules in the
abstract model. Indeed we find that variables definition in abstract model is widely different
from its definition in executable model. In abstract model, variables are introduced as sets of
allowed values, without a name. But in the executable model, each variable should be fully
defined using a name and, depending on language, a type. For instance, in C++ programming
language variables have an immutable type. In python, variables have a name, but the type can
change dynamically and thus not match the definition set. This creates gaps between abstract
and executable models. So, dynamic structure systems need a formalism that define the set of
components or agents, the interactions that take place between them and, the main ingredients
of dynamic system, capture and describe the types of changes that can occur.

Therefore, to represent dynamic structure systems, a fully detailed approach will be nec-
essary. As a step toward this goal, a benchmarking of dynamic structure formalisms is made
in the next section in order to analyze the existing approaches and extract important features
that manage the dynamic behavior.

3.2 Benchmarking

To do our benchmarking, we need to identify benchmarking criteria and criteria weights used
in dynamic structure systems benchmarking.

3.2.1 Benchmarking criteria

Several possible criteria were suggested to describe system dynamics during all phases of its
development and interactions with external events. In this section, we define our main criteria
for dynamic structure systems benchmarking, namely, distribution of decision-making authority,
structure information, ports and port modification.

Decision-making authority takes an important part in describing system dynamics. The
centralization strategy was considered in many existing approaches as an important criterion
that is responsible to take decisions making authority. Some formalisms give this authority to all
components and in others it is restricted to special components, this affect system interactions
with external world.

Structure information is important to provide a detailed representation of system compo-
sition, interactions, dynamics. To better represent the structure changes, it is essential to
provide detailed description of different elements in the system such as components information
like their names, types, rules to create, update or remove components. Furthermore the de-
scription of components behavior using transition functions give an overview of different system
interactions.
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Port declaration is essential to specify if the approach defines ports into its formalism.
This criteria help developers to allocate ports, assign inputs, understand the mechanism of
system flows. Furthermore the port specification gives an overview of system development
flows. Specifying different components interface facilitate the manipulation of the system with
external and internal environment and help to manage it correctly.

Finally, ports modification helps to show adaption of the system with structural changes.
Ports with variable property support structure updates and deals with coupling changes. The
ports modification allows to change dynamically models interface which improve the dynamic
adaption during system structural changes. In addition, this gives high level of compatibility in
the description of abstract model in relation to the modelization of real time systems. Indeed,
real time systems endure multiple changes according to their current state, received inputs at
real time that can be deleted, added or updated.

These criteria are used to benchmark the existing variable structure approaches in which
we attribute a value between 0 and 1 for each criterion. This value represents the conformity
of the approach with the mentioned criterion as follows:

• 0 means no conformity
• Values in ]0; 1[ means that the approach tackles some details of the criteria but not all
• Value 1 means that the approach tackles all details of the criteria

The value obtained for each criterion is then multiplied by the criterion weight.

3.2.2 Benchmarking weights

Each criterion used in the benchmarking should have a weight reflecting its importance accord-
ing to our goals. Using this benchmarking, we specified which approach is the most suitable
according to dynamic structure systems criteria. To do so, we assign a score to each benchmark
criteria as mentioned below: distribution of Decision-Making authority: 3 points, structure
information: 3 points, existence of ports: 4 points, ports modification: 1 point.

Indeed the existence of ports criterion has most important weight because it specifies the
different flows during the simulation of the system. Then distribution of Decision-Making
authority strategy and structure information criteria have also an important weight because
these criteria give an idea about system’s execution mechanism during all levels. The criterion
of ports modification has low weight because this information is detailed in system’s structure
information and modeling and simulating system can be well defined without this criterion.

3.2.3 Benchmarking Results

After specifying the score of each criterion, we compute the score of the presented approaches.
Figure 3 presents results of our benchmarking.

After computing scores, we find that Variable-DEVS, DynDEVS, ρDEVS, EDEVS, Cell-
DEVS, DynDEVS and SysML are the most interesting approaches thanks to their scores which
range between 5.5 and 10.25. Based on these scores, we select ρDEVS and Cell-DEVS as most
helpful formalisms. They can be used as a base to create another efficient formalism for dynamic
structure systems. Note that, while DynDEVS has a higher score than Cell DEVS, we didn’t
select it as its evolution, ρDEVS was already selected. Also EDEVS, Cell-DEVS and SysML
have the same score but we select Cell-DEVS thanks to its description and its details found
into the formalism, it is more used than EDEVS and we aim to draw upon DEVS.
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Figure 3: Benchmarking of dynamic structure systems

4 Benchmarking analysis

In this section we analyze the benchmarking results which help us to identify Modelization
problems.

4.1 Identified modelization problems

The previous section presented a benchmarking of a set of formalisms for dynamic structure
systems. Although these formalisms deal with some variable structure systems, many types of
inconsistency and conflict are possible. In this section, we show the main reasons that generate
theoretical issues raising the need for a reconsideration of the existing dynamic structure DEVS
formalisms. Issues come from formalism gaps such as the centralization strategy.

Centralized systems give structure changes authority to coupled models only like with Vari-
able DEVS [5], DSDEVS [2], DSDE [3] in which structure changes authority is limited only to
the executive model (the executive model presents a hybrid form between atomic and coupled
models and is responsible for structure changes and storing it). Centralization allows to have a
single reference and avoids decision conflicts but it presents a single point of system bottleneck.
To avoid centralization risks, many approaches trend to distribute this authority to multiple
components. Atomic and coupled models can collaborate and make structure decisions like in
DynDEVS approach [29], ρDEVS [31] and D-HFSS [4] in which atomic and coupled models
have the right to change system’s structure by adding, updating and deleting models. This
strategy offers several benefits, including improved reliability, scalability and performance.

Among criteria that is not well defined in many approaches is the system’s structure data.
Indeed, it is essential to define some details about system structure like the allowed components
and their relationships. System structural change rules should be detailed such as component
addition, removal, replacement, and network reorganization. Initialization takes part of most
important structure change details which should be considered from the beginning. One of
the reasons that explain the importance of it is because of the need of initialization when
restarting a simulation run after it was interrupted. The state has to be re-initialized to the last
know state, from which simulation can subsequently resume as if it was never interrupted [28].
DynDEVS [29] is considered among the most clear approaches, in this formalism initial state
was defined in which we find the detailed minimal composition of the network thanks to minit
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set. But having a static definition of the initial state cannot be sufficient for all cases. Indeed,
initial state can be changed depending on the current state of other components and at the same
time a new component is added, its composition and time i.e the initialization in booting system
differ from initialization after executing some parts of the system. In reality the initial state of
added components at execution time differ from the component’s initial state during booting
the system. This problem was ignored by the existing approaches which explain the complexity
of the implementation of these approaches in some cases. In addition, the initialization is highly
required when the simulation is interrupted due to some system condition, the model is altered,
re-initialized to a consistent state, and the simulation resumed [28]. Therefore, the initial state
should be computed dynamically depending on current system values.

The system’s structure data is not limited to initial state but there are many important
details that should be detailed into the formalism. It is essential to know how the structure
changes are made and the description of its different possible use cases while defining transition
functions and the state set description. The DynDEVS formalism [29] describes how structure
changes are made: to change structure model transition function is executed but this function
does not describe all changes that can be made.

Cell-DEVS [32] presents clear descriptions for atomic and coupled models: atomic models
are presented as cells in which each cell has its interface that defines the number of cells and
describes the connections between cells and its neighbours. The same concept is used for coupled
models and adds extra elements like C set which represents the cell space also the B set which
contains details about borders. This information gives a global overview about the system
dynamics which help to understand how system can be simulated and fix problems but these
are insufficient because some other important details (initial state, ports types, components
descriptions) should be specified into the formalism.

The description of system’s structure may lead to structural and behavioral problems: in-
accuracy in the definition of states, how states are computed after each transition, how states
are exactly introduced like its types, values that can be present, system’s composition, relations
between components. Also, the specification of domain of variables is of real significance for
system dynamics guidance but it is ignored by many approaches.

Furthermore, in the definition of ports which is important to specify the type of different
flows and have organized knowledge about system flows. Indeed, we found that the most of
formalisms don’t define ports and its types which lead to problems of inconsistency in some
simulation cases. Ports definition is important to give an overview about possible flows while
receiving inputs or returning outputs. Many approaches ignored ports concept like DSDEVS [2],
DSDE [3], VSSS [18] and other approaches, which explain the faced conflicts during some
simulations. Also, in some cases we found inaccuracy in the definition of domain of variables.

In addition, it is notable that the transformation from abstract model to executable model
may be inconsistent because developers face many difficulties in translating abstract model to
executable code. The majority of approaches doesn’t specify the variable type for inputs or
outputs which lead to difference between what exist in abstraction and in execution. Also,
in some cases developers are forced to add some details like internal variables, add functions
and other additional parts or removing some elements like in ADEVS [20] simulator in which
the I set that represents the influencers is not defined and there is an added function named
route function which guide Inputs/Outputs of each component. These changes generate incon-
sistency between abstraction and execution. ADEVS [20] is not the only approach that take
freedom during the transformation from abstract model to executable model, in CD++ [27]
[26] some functions are ignored and others are added. The same problem with PythonPDEVS
simulator [34] in which ModelTransition function is used instead of the Cχ component.

10
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Issues come from formalism gaps such as the specification of structure decision making
authority, poorly defined structure data, ports definition and inconsistent transformation from
abstract model to executable model.

4.2 Discussion

Considering existing formalisms, we find many gaps for critical points: because it is easier to
implement, centralization concept was preferred by most of formalisms like Variable DEVS [5],
DSDEVS [2], DSDE [3] in which structure changes authority is limited only to the executive
model, also in hybrid-DEVS [21], EDEVS [14]. A fewer number of approaches adopt opposite
strategy by sharing this authority like DynDEVS [29], its parallel version ρDEVS [31] and D-
HFSS [4]. The trend to centralization for many approaches explain blocking reasons in some
situations, the only authority that guide simulator during its execution is blocked so the whole
is blocked. Therefore, few number of approaches process this issue and try to find solution by
sharing this authority between its components like DynDEVS [29] in which atomic and coupled
models share this right and are able to take structure decisions that decrease the problem of
single point of failure in simulator and decrease the risk of error.

Considering system’s structure data, almost all approaches give information about structure
which offers an overview about system simulation. This information was presented by most of
approaches like DSDEVS [2], DSDE [3], hybrid-DEVS [21], EDEVS [14], DynDEVS [29], Cell-
DEVS [32], HFSS [4] and ignored by a very few number of approaches like BM-DEVS [7].
This information is very important to understand system dynamics. Given insufficient sys-
tem’s structure data leads to incoherence in the transformation from abstract to executable
model. To effectively simulate the system additional elements are added during the flow from
abstract to executable model for example in Cell-DEVS [32] simulator there are some additional
functions like setLocalTransition or inverseNeighborhood in simulator code. In addition, some
information in the formalism are considered as extra data in simulation and are ignored. For
example, in the same simulator mentioned above, the select function and the borders set do not
exist in the simulator code although borders set is considered important thanks to its ability to
provide an overview of influencers and influencees and which differ effectively while computing
transition functions. Among identified inconsistencies the description of DSDEVS [2] formal-
ism in which some details aren’t mentioned into abstract model but are found into executable
model like the input and output sets description of these two kinds of models. Indeed the input
and output of abstract models are described that are sets of values without specifying ports
but into executable model we found the declaration of ports. Also in the same example, we
found some functions into simulator that does not described into the formalism like addModel,
removeModel, replace, link, unlink, find, clear and replace.

In most cases, the transformation from abstract model to executable model is done by a
manual procedure. The formalism itself is transformed into executable code as simulators. The
description of transition functions, output function are described into simulator but in some
cases the simulators need to introduce additional variables or functions that help the simulator
to achieve desired goal. This produces executable models that do not respect all rules set into
the abstract model which reduces confidence in this transformation. Some other approaches
try to cover this issue by suggesting translators like VSSS [18] approach in which a translator is
proposed in order to ensure vertical transformation from abstract model to executable model.
This transformation ensures similarity in abstract and executable model.

The definition of ports is important knowledge to have about system flows. This concept
was treated by some approaches like Variable DEVS [5], DynDEVS [29], its parallel version
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ρDEVS [31], EMF-DEVS [24], Cell-DEVS [32] and SysML [11] and ignored by others like
DSDEVS [2], DSDE [3], VSSS [18], HFSS [4] and D-HFSS [4]. Indeed these approaches don’t
specify if there are ports specification or not.

Ports types is only supported by Cell-DEVS [32] but the other approaches do not take
attention about the type of variables received into its ports. Few number of approaches take
care of the definition of ports at root like in Variable DEVS [5], Cell-DEVS [32] and SysML [11].

Systems that change dynamically need to have dynamic equipment like ports. Indeed, it is
highly required to have ports that can be changed dynamically i.e ports can be added when
the system dynamics need additional ports to continue its execution, can be deleted also when
the existing ports are not useful, in some other cases ports definitions need to be changed like
updating ports value type. This concept was treated only by ρDEVS [31] and EMF-DEVS [24].
The ports modification is an additional part to DynDEVS to create ρDEVS and which make
ρDEVS more useful than DynDEVS. The other approaches do not take attention to this concept,
this explain the trend to apply ρDEVS for many systems according to other existing approaches.
So it is useful that the approach suggest port modification i.e the approach suggest if there are
ports added, removed or updated dynamically.

Using analytical results in Figure 3, we can observe that no single formalism covers the whole
criteria for modeling dynamic structure systems. Although none of the existing formalisms
implements all the required features, a combination of different formalisms can be operated to
extract useful elements of the modeling process and create an efficient formalism. In search
for a proper formalism, perhaps the most important aspect to consider is the balance between
simplicity and expressiveness [19]. To fulfil this goal, the state set, formalism functions, all
useful details of the system should be expressive and simple. This helps to create efficient
modeling approach. Efficient modeling approach use a distributed strategy that avoid blocking
risk, also it is important that all structure details are mentioned into the formalism. Giving
all modelization details gives an overview about system dynamics and helps developers to
create the executable model. We find also that it is essential to specify ports and describe
its characteristics. Providing good formalism enables to have strong system description and
ensures efficient simulation.

5 Conclusion and future work

The main objective of our research is to understand the strategy used in the existing approaches
for dynamic structure systems, identify gaps and provide an adaptive formalism for dynamic
structure systems. To do so we extracted the main criteria for the development of dynamic
structure systems used in literature then we used these criteria to present dynamic structure
system formalism benchmarking. The benchmarking was helpful to understand the strategy
used by the existing approaches and analyze it.

By analyzing the benchmarking results we identified that among reasons for dynamic struc-
ture systems inefficiency is forgetting details in the description of the formalism, ports existence
and its description. For future work, we intend to provide a proof of correctness in the descrip-
tion of each variable in the formalism by providing the maximum of important details of system
description as possible. This helps to avoid this kind of problems. The consistency between
these two kinds of models should be included among the formalism rules. To do so, the formal-
ism should be fully defined up to the executable model and its execution, and strict rules should
be fixed in order to ensure vertical transformation that will be a part of our future works.

Using these analysis, we are able to select efficient strategy to develop or update an efficient
formalism for dynamic structure systems. The research works to have efficient formalism for
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dynamic structure systems will continue because so far the existing formalisms still has a lot
of gaps and this type of formalisms is highly needed in real world. Furthermore our research
works will try to provide tools that facilitate the M&S process and promote the adoption of
formal M&S approaches by a wider community of practitioners and researchers.
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