
HAL Id: hal-04397024
https://hal.science/hal-04397024

Submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Lossless Neural Network Model Compression Through
Exponent Sharing

Prachi Kashikar, Olivier Sentieys, Sharad Sinha

To cite this version:
Prachi Kashikar, Olivier Sentieys, Sharad Sinha. Lossless Neural Network Model Compression
Through Exponent Sharing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
2023, 31, pp.1816 - 1825. �10.1109/tvlsi.2023.3307607�. �hal-04397024�

https://hal.science/hal-04397024
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Lossless Neural Network Model Compression
Through Exponent Sharing

Prachi Kashikar , Olivier Sentieys , Member, IEEE, and Sharad Sinha , Senior Member, IEEE

Abstract— Artificial intelligence (AI) on the edge has emerged
as an important research area in the last decade to deploy
different applications in the domains of computer vision and
natural language processing on tiny devices. These devices have
limited on-chip memory and are battery-powered. On the other
hand, neural network (NN) models require large memory to
store model parameters and intermediate activation values. Thus,
it is critical to make the models smaller so that their on-chip
memory requirements are reduced. Various existing techniques
like quantization and weight-sharing reduce model sizes at the
expense of some loss in accuracy. We propose a lossless technique
of model size reduction by focusing on the sharing of exponents
in weights, which is different from the sharing of weights.
We present results based on generalized matrix multiplication
(GEMM) in NN models. Our method achieves at least a 20%
reduction in memory when using Bfloat16 and around 10%
reduction when using IEEE single-precision floating point, for
models, in general, with a very small impact (up to 10% on the
processor and less than 1% on FPGA) on the execution time
with no loss in accuracy. On specific models from HLS4ML,
about 20% reduction in memory is observed in single precision
with little execution overhead.

Index Terms— Convolutional neural network (CNN), FPGA,
generalized matrix multiplication (GEMM), model compression,
Vivado HLS.

I. INTRODUCTION

THE convolutional neural networks (CNNs) in machine
learning are increasingly used in different applications

ranging from image classification [1] to object detection [2],
activity recognition [3] in medical diagnosis [4], military [5],
agriculture [6], sports [7], and so on. Convolutional and fully
connected layers in CNNs have a huge number of parameters
and feature maps. During training as well as inference, a lot
of memory and power are consumed by these compute-
intensive layers. Therefore, for training, high-end GPUs or
cloud systems are used. Still, the training time ranges from
days to weeks for complex state-of-the-art models such as

Manuscript received 16 April 2023; revised 6 July 2023 and 2 August
2023; accepted 8 August 2023. This work was supported by DST-INRIA
through CEFIPRA, India, under Project IFC/4131/DST-Inria/2018-2019/1.
(Corresponding author: Prachi Kashikar.)

Prachi Kashikar is with the Indian Institute of Technology Goa, Goa 403401,
India (e-mail: prachi183311004@iitgoa.ac.in).

Olivier Sentieys is with Univ. Rennes, INRIA, 35042 Rennes, France
(e-mail: olivier.sentieys@inria.fr).

Sharad Sinha is with the School of Mathematics and Computer Sci-
ence, Indian Institute of Technology Goa, Goa 403401, India (e-mail:
sharad@iitgoa.ac.in).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI.2023.3307607.

Digital Object Identifier 10.1109/TVLSI.2023.3307607

ResNet, GoogleNet, and so on. Their inferences also have
thousands of parameters that require storage in the orders of
MBs.

The performance improvement in neural network (NN)-
based applications has been accelerating in this last decade.
However, the software side advances for the deployment
of such models have not considered the characteristics of
underlying hardware while adding multiple layers to improve
the performance. Thus, to deploy models on the edge,
hardware–software co-design and co-development become
needful [8]. With the advent of the Internet of Things (IoT) and
mobile platforms, it is expected that artificial intelligence (AI)
applications will run on such devices. The target hardware
platforms to run machine-learning models, in this case, are
small in size having limited memory and power budgets.
It is challenging to deploy existing big models on such
tiny devices [9]. This has motivated researchers to compress
models and find the best tradeoffs with accuracy.

Model compression is possible during training as well as
posttraining. The existing model compression methods like
quantization [10], weight sharing, and pruning [11], reduce
the model size by sacrificing some accuracy. We propose a
lossless model compression technique that exploits exponent
distribution in weights for a trained model and show how
exponent sharing in weights, an intuitive but powerful method,
helps in reducing memory requirements. It is worthwhile
to note that the proposed “exponent sharing in weights” is
different from the existing method of “sharing of weights.” The
latter targets weight sharing (i.e., making weights common)
by sacrificing accuracy, while the former does not sacrifice
accuracy. It is logical to assume that one may apply exponent
sharing on top of weight sharing or other existing compression
methods, one combination of which (pruning followed by
proposed exponent sharing) we present results for in Section
IV. We discuss the impact of exponent sharing on the memory
and execution time of processors and FPGAs. Ultralow power
machine-learning implementation of tasks, such as keyword
spotting and visual wake words [12], can benefit from model
compression approaches.

Additionally, we present results on various combinations
of GEMM dimensions, a few pretrained standard models,
and models from HLS4ML [13]. We discuss the impact on
resource usage when the reading of weights is sequential
and parallel. The impact of using different initiation intervals
during pipelining in FPGA implementations is also discussed.
We also present the application of our method on a few

1063-8210 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INRIA. Downloaded on September 05,2023 at 06:45:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2280-2990
https://orcid.org/0000-0003-4334-6418
https://orcid.org/0000-0002-4532-2017

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

relatively large models, though it is not the focus of the work
in this article.

The article is arranged as follows. Section II discusses some
existing model compression techniques and their shortfalls.
In Section III, we discuss our proposed method of exponent
sharing to reduce on-chip memory requirements. We also
present a model to find out the impact of exponent sharing on
the execution overhead (in terms of clock cycles) on FPGAs.
We demonstrate our approach in Section IV with experiments
and results and conclude in Section V.

II. RELATED WORK: MODEL SIZE COMPRESSION

The accuracy of a trained model depends on the precision
it uses to store its parameters. In general, higher accuracy
needs higher precision and, therefore, greater storage volume.
Existing model compression techniques focus on reducing
the precision of parameters while minimizing the tradeoff
with model performance. We discuss some of the mainstream
techniques in the following subsections.

A. Algorithmic Approaches of Model Compression

1) Quantization: Quantization is one of the most popular
methods for model size compression. It maps (bins) the range
of the weights to a smaller set of finite values. As the size
of the bins in quantization increases, the precision to save the
weights reduces. Researchers could reduce the precision to
even a single bit [14] in certain application areas. On the other
hand, as the bin sizes increase, accuracy loss also increases due
to bigger approximations.

All bins in quantization can be of fixed or variable sizes.
In the fixed-size approach, weights are binned independent
of their impact on the accuracy. This can cause more loss
in accuracy. As a solution, genetic algorithms are used to
optimize bin sizes for the best accuracy [15]. These algorithms
bin weights depending on their impact on model accuracy. This
results in the variable size of bins. As this impact of weights
on accuracy is not known during training, quantization using
variable bin size is done during inference.

The range of weights in all layers of an NN may not be
the same. Besides applying the same quantization policy for
a complete model, layer-wise different quantization scheme
[10] shows more compression for the same accuracy. Neural
architectural search (NAS) [16] helps in identifying the best
bit widths for weights per layer during training. As a result,
the model gets quantized in mixed precision where each layer
needs different bit-widths.

Quantization can be done during as well as posttrain-
ing. Incremental network quantization [17] combines both.
It divides weights into two sets after training. One set holds
the low precision weights. Viable bit lengths are found for
this set. The other set having higher precision is retrained and
the same process continues until all weights take lower bits in
memory. After multiple passes, the model gets quantized.

Along with the weights, the number of activations also
increases the memory requirement of a model. For more
storage savings, the joint statistics of weights and activation
can be considered. The transform quantization [18] does this

and improves the suboptimal storage savings obtained after
only weight quantization.

Quantization is a magnitude-aware process, in general.
However, along with memory storage, few works also look
at different constraints such as energy [19], sparsity [20], and
hardware [21] for quantization.

2) Pruning: Pruning removes the weights, neurons, or fea-
ture maps from the model for its size reduction. A few
weight tensors are sparse, redundant, and sometimes have
the least impact on the accuracy of the network. Removal of
these weights does not lead to a significant loss of accuracy.
Pruning removes such redundant weights and neurons and the
model size is reduced. It results in accelerated training and
inference speed. Pruning can also remove a complete filter
from a model. To identify the least valued filters, a model can
be fed to Network Pruning Network [22] architecture. This
gives binary-valued output that indicates the least significant
filters to be pruned which, in turn, saves model storage
requirement. Similarly, ThinNet [23] proposes to discard the
least impacting filters during convolution completely. It results
in more memory savings. It proposes to prune filters depending
on the features they propagate to the next layer. So, the least
important features are traced through back-propagation, and
filters are pruned. Similarly, filter pruning using activation
maximization is proposed in [24], which removes the least
important convolutional filters.

In layer-wise weight pruning, the least significant weights
in a layer are removed and the error propagated to the very
next layer is only minimized. However, in practice, this error
reaches the output layer of the model causing a substantial
loss of accuracy. Yu et al. [11] proposed a neuron importance
score propagation (NISP) algorithm to prune neurons jointly
from a complete network to minimize the error. Also, the
layer-wise weight pruning breaks the structure of state-of-the-
art models like VGG as they have dimensional dependencies.
It makes the training intractable. Such complex models cannot
use single compression techniques for optimal performance.
Aghli and Ribeiro [25] make use of the combination of pruning
on selective layers with knowledge distillation (discussed in
Section II-A3) on the remaining ones.

With the storage reduction, power and energy budgets are
also of concern while compressing a model. The layer-wise
weight pruning followed by the fine-tuning results in moder-
ately less energy consuming [26]. After layer-wise pruning,
the global fine-tuning improves performance.

Pruning can also remove the redundant channels gener-
ated during training [27] which does not need any further
retraining. For a layer, the channels to prune are identified
by regression-based channel selections and least-square recon-
struction [28].

3) Knowledge Distillation: Knowledge distillation follows
a student–teacher model. The learning from a complex struc-
tured teacher model generates a student model (i.e., an ensem-
ble). Ensembles are lightweight and generated in a block-wise
manner. An ensemble can combine different features of dif-
ferent teacher models. The student network is distilled by
learning application-specific resources such as floating-point

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INRIA. Downloaded on September 05,2023 at 06:45:22 UTC from IEEE Xplore. Restrictions apply.

KASHIKAR et al.: LOSSLESS NEURAL NETWORK MODEL COMPRESSION THROUGH EXPONENT SHARING 3

operations (FLOPs) and model parameters. This ensures the
best compression-performance tradeoff [29].

These block-wise knowledge distillation methods are com-
plex and take longer training times. However, in depth-wise
separable layers, the independent blocks are trained in parallel.
Experiments on the state-of-the-art models have shown up to
3.5× speedup using this method during training [30]. As a
result of compression, models may also show acceleration in
performance. Most of the time the convolutional and fully
connected layers accelerate separately. Lin et al. [31] propose
to jointly distill layers by first removing redundancies in both
convolutional and fully connected layers and then doing the
knowledge transfer.

All these popular methods of knowledge distillation, prun-
ing, and quantization can be used in combination with each
other for more compression and optimal performance [32].
Usage-driven model selection framework AdaDeep [33] com-
pressed models using a combination of existing techniques.
For optimal compression, a model can pass through a series
of compression techniques in a pipeline [34], achieving the
best of all inferences. The pipeline can contain methods like
tensor decomposition, graph pruning, knowledge distillation,
and so on.

B. Implementation Oriented Approaches for Model
Compression

Communication with off-chip memory affects the speed of
inference. Even after compression, the model size can reach
several megabytes. Hence, running inference in three phases,
that is, layer partition, compression, and scheduling, showed
promising results [35] in terms of storage budgets. Storing
the parameters in the block floating-point format [36] in the
off-chip memory saves some storage and also reduces the
communication delay with off-chip memory. Although this
format improves the energy and efficiency of the hardware,
it also loses some accuracy. The energy efficiency can be
further improved by 5.6× focusing on memory accesses made
during edge computing [37].

The existing techniques do not always emphasize the
tradeoff between performance and resource constraints. The
architectures of CNNs are different from each other. Other
than using a general method for all of them, a model-specific
approach results in better compression. For example, Tiny-
PULP-Dronets [38] based on ResNet aims at thinning the
number of channels per layer and the neuron which never get
activated during the entire validation process without much
penalizing the accuracy. It could reduce the model size by
more than one order of magnitude (50× fewer parameters) at
the cost of 4% accuracy loss. Navardi et al. [39] propose a
complete framework to deploy such tiny vision-based models
on drones that also reduce the energy requirement by 53%,
while preserving 97% of the model accuracy. The parallel
execution of DNNs [40] on drones can be exploited to perform
real-time navigation with only 64 mW of power.

Most existing methods compress models at the cost of some
accuracy loss. In this work, we propose a novel model com-
pression method that keeps the accuracy intact, by studying

Fig. 1. IEEE and Bfloat16 floating-point representation formats.

sharing of exponents in weights. This method can be used for
saving both on-chip and off-chip memory requirements for the
network weights.

III. EXPONENT SHARING FOR MODEL COMPRESSION

The size of a model is determined by the number and
the representation (integer, float, etc.) of its parameters.
The parameters comprising weights and biases are generally
floating-point values. In contrast with fixed-point represen-
tations, floating-point formats offer greater precision and
represent a wider range of real numbers. As per the IEEE
754 standard for floating-point representation [41], every
floating-point value is stored as a combination of sign, expo-
nent, and mantissa, as shown in Fig. 1. BFloat16 [42] is a
reduced-precision floating-point format where data are stored
on 16 bits, multiplications are 16 bits, and accumulations
are usually 32-bit wide. The difference between IEEE half-
precision (Float16) and BFloat16 is that BFloat16 has a higher
dynamic range with 8 bits of exponents, which also makes it
easier to cast to Float32. The range in half-precision is reduced
because of the decrease in the number of exponent bits,
as shown in Fig. 1. We exploit these standard floating-point
storage formats to come up with the new storage format.

A. Proposed Floating-Point Storage Format

In IEEE single-precision format, an exponent can have
256 different values, but, in practice, there are thousands of
weights in a model. Hence, many of them have the same
exponent values. Fig. 2 shows an example of the exponent
frequency distribution in weights of a trained LeNet. Out of
all the trained weights, only 6.25% exponents are distinct, and
the rest of the values are not used for weights.

Hence, we propose a new floating-point storage format
based on an algorithmic pass following Algorithm 1 that
exploits the presence of several exponents with the same val-
ues. The proposed floating-point storage format is illustrated
in Fig. 3. Along with IEEE 754 and Bfloat16, it applies to
any real value representation format that makes use of the
mantissa-exponent method for number representation.

In this novel method, we store only the distinct expo-
nents of floating-point weights in a separate exponent table.
The exponents from IEEE floating-point formats are replaced
by respective indices referring to the exponent table. Each
floating-point weight then becomes a combination of sign,
index, and mantissa, where the index replaces the exponent
from the original representation.

If there are k distinct exponents in the weights of a layer, the
number of index bits required is i = ⌈log2 k⌉, which we found

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INRIA. Downloaded on September 05,2023 at 06:45:22 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 2. Exponent frequency distribution in LeNet.

Fig. 3. Illustration of storing weights in the proposed format.

will be always less than 8 bits during our experiments. Hence,
if s, e, and m denote the number of bits for sign, exponent, and
mantissa, respectively, in the IEEE floating-point or Bfloat16
representations, then the memory needed after exponent shar-
ing (Mcomp) is

Mcomp = N × (s + i + m) + e × k (1)

where N is the total number of weights in a layer and i is the
number of index bits.

B. Proposed Optimization Pass for Trained Models

Algorithm 1 presents the proposed optimization pass. It can
be applied as a follow on pass after any other existing model
compression methods as it will not change the accuracy.

Like other compression techniques [43], our method also
shows better results on layer-wise compression than on com-
pressing a complete model. This optimization pass is applied
to the floating-point weights of every layer which are initially
stored in standard formats like the IEEE floating-point stan-
dard as shown in Fig. 1. In Algorithm 1, the weight tensor of a
layer is segregated into three components: Sign (So), Exponent
(E), and Mantissa (Mo), in lines 2–6. The distinct exponents
(Eo) are identified from E in line 7. All exponents in E are
henceforth referred to by their indices in E0. These indices are
stored in a separate Index (Io) tensor as per lines 8–10. In the
end, the algorithm returns tensors So, Io, and Eo of sign, index,
and mantissa, respectively, for every weight in the model. The
algorithm also reports memory requirements before and post
sharing, in lines 12 and 13.

Algorithm 1 Optimization Pass on Trained Models

1

Fig. 4. Clock cycles during exponent-sharing in matrix multiplication with
and without pipeline. (a) Sequential Reading. (b) Parallel Reading.

C. Hardware Implementation of Model Postoptimization Pass

The application of the optimization pass results in a model
with a different storage method for weights, as shown in
Fig. 3. This affects the execution time of the model. The
execution time of a model depends primarily on the number
of generalized matrix multiplications (GEMMs) in each layer.
However, it is possible to reduce the execution time of each
layer using GEMM optimizations present in the research litera-
ture, though we do not discuss or implement such methods as
part of this article. In our proposed indexing-based method,
three reads are required compared to a single read when
such indexing is absent. This would, in general, increase the
execution time in the case of single-threaded implementations
on microprocessors. On the other hand, this overhead in
execution can be made negligible by doing parallel reads on
accelerators like FPGAs [44].

We discuss sequential versus parallel architectures in the
next two subsections.

1) Sequential Architecture: Sequential reads are performed
in sequential architecture or execution model where a single
weight value is fetched from on-chip memory at a time. In our
proposed method, three additional reads are necessary to read
the same weight, as shown in Fig. 4(a), where c1, c2, and so
on, refer to clock cycle number in the schedule, compared to
presharing. For a GEMM of any layer, if the weight tensor is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INRIA. Downloaded on September 05,2023 at 06:45:22 UTC from IEEE Xplore. Restrictions apply.

KASHIKAR et al.: LOSSLESS NEURAL NETWORK MODEL COMPRESSION THROUGH EXPONENT SHARING 5

Fig. 5. Hardware implementation of proposed storage scheme (32-bit
example).

M × N and the input tensor is N × O , then the cycle count
can be given by

CexpSharing = Corig + M × N × O (2)

where Corig is the number of clock cycles before exponent
sharing and CexpSharing is the number of clock cycles after
exponent sharing.

2) Parallel Architecture: We observed about a 9%–10%
impact of exponent sharing on the execution cycles when non-
pipelined/sequential hardware is used. As mentioned earlier in
this section, this impact is due to multiple reads happening
to read a single floating-point weight. To reduce this impact,
we designed parallel architecture where reads are done in
parallel as shown in Fig. 5. Here, multiple reads are possible
in the same clock cycle due to multiport on-chip memories
like Block RAM, as shown in Fig. 4(b). We used pragmas
like Pipeline in the high-level synthesis tool Vivado HLS
to parallelize operations, including memory reads. In this
scenario, the cycle count is given by

CexpSharing = Corig + M × O. (3)

Using (2) and (3), we can find out the execution cycle overhead
that would result because of exponent sharing in a GEMM of
any layer.

IV. EXPERIMENTS AND RESULTS

In this section, we present results for small models, like
tiny-tiny-tiny YOLO (TTT-YOLO), which are used for smaller
computing devices, as well as for some relatively large models.
This is to show that the proposed work can be used for the
reduction in the size of large models as well.

A. Compression Results

We have demonstrated our approach on the layers of
the TTT-YOLO model from the Darknet framework with
pretrained weights [45]. This model is a tinier version of
YOLO having eight convolutional layers. Table I shows the
dimensions of GEMM in each of the layers of this model.

Table II reports the total weight memory in bits Before
exponent sharing and After exponent sharing as well as the
compression ratio achieved in percentage, both for Float32 and
Bfloat16, on all layers of a TTT-YOLO model. The exponent

TABLE I
GEMM SIZES OF LAYERS IN TINY-TINY-TINY YOLO

Fig. 6. Exponent sharing in models from HLS4ML.

sharing saved 9.37% and 18.75% on average for Float32 and
Bfloat16, respectively.

Along with the layers of a TTT-YOLO, we have experi-
mented with GEMMs of various sizes and random weights
to generalize our analysis as shown in Table III. This table
also reports the % distinct exponents out of 256. E1–E8 are
different GEMMs with randomly generated weights. The com-
pression achieved by our exponent-sharing method reaches
12.5% and 25% for Float32 and Bfloat16, respectively. The
memory savings depends on the degree of distinctness in the
exponents. Hence, the proposed method is best suited when
a layer has less number of distinct exponents but with high
frequency so that the indexing (i) will require fewer bits and
hence more memory savings as expressed in (1).

We also evaluated exponent sharing on some models from
HLS4ML [13]. This tool generates HLS models having fixed
⟨16,6⟩ as a default precision. We converted it to Float32 and
BFloat16 and then performed exponent sharing. The memory
savings (in %) observed on different models after exponent
sharing are shown in Fig. 6. The gains range from 12% to
21.5% for Float32 and from 20% to 43% for BFloat16.

B. Execution Time and Resource Overhead

To find out the applicability of proposed (2) and (3) report-
ing the execution time overhead, we measured the execution
time with and without exponent sharing on various architec-
tures.

1) Execution Time Overhead for Hardware Implementa-
tions: Table III reports the impact on the number of clock
cycles (%) for the exponent sharing with and without pipelin-
ing, for GEMMs of different sizes and random weights.
The performance reported is using Vivado HLS set for part
xc7z020clg484-1 on Zynq Zedboard with a default clock
period of 10 ns. From the sets of experiments, we observe
that the clock cycle impact is independent of the exponent

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INRIA. Downloaded on September 05,2023 at 06:45:22 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE II
COMPRESSION ON THE LAYERS OF TTT-YOLO

TABLE III
COMPRESSION (%) AND CLOCK CYCLE IMPACT (%) OF EXPONENT SHARING IN THE GEMMS OF SAME DIMENSIONS AND DIFFERENT WEIGHTS

Fig. 7. Exponent frequency distribution in E1 and E4 of Table III.

frequency distribution but dependent on the GEMM sizes of
that layer. For example, in Table III, E1 and E4 have the
same GEMM dimensions ([250 × 256][256 × 16]) and the
same impact on clock cycles (9.084), although the exponent
frequency distribution is different, as shown in Fig. 7. Depend-
ing on the GEMM dimensions, the number of multiplications
and additions are different leading to different impacts on
clock cycle count. Here, both E1 and E4 have 1 024 000
multiplications and 1 020 000 additions, and hence the clock
cycle impact is also the same. This is also validated using (1)
and (2).

As sequential reading after exponent sharing needs three
more reads for every weight, the performance is impacted
as per (2). The impact on clock cycles is less than 10%
percent in all of these cases as summarized in Table III.
We have demonstrated exponent sharing on GEMM with
Pipeline pragma from Vivado HLS resulting in parallel reads.
The performance impact abides by the relationship shown in
(3). In all of the cases, the impact is less than 1%.

TABLE IV
IMPACT (%) ON FPGA RESOURCES POSTEXPONENT

SHARING IN TTT-YOLO

Second, Fig. 6 also reports the execution speed impacts
observed on different models from HLS4ML generated for
the Virtex7 FPGA xc7vx1140t-flg1926-2. It is important to
note that the proposed exponent sharing did not show any
execution overhead in small models like Kerasllayer and
KerasConv1d. These models differ in architecture as one has
a dense layer and the other has a convolutional layer. Both
models have 704 weights in total which is smaller than any
of the GEMMs used in the earlier experiments. However, the
memory savings in both cases are different as they depend
upon the spread of exponents in weights. As the number of
layers (GEMMs) in a model increased, we observed there
is more impact on execution speed like in the case with
the Keras3LayerBinarySmall and Keras3LayerTernarySmall.
The cumulative impact is because of loading weights between
two consecutive GEMMs. In both cases, the memory savings
are 21% and 43% in Float32 and Bfloat16, respectively. The
impact on clock cycles in both models was 24%. In this case,
the weights are read in sequential architecture, that is, without
using pipelining.

2) Resource Overhead: Along with the clock cycles,
resource utilization plays a vital role in choosing an algorithm
for model compression. We chose layers II, V, and VII as

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INRIA. Downloaded on September 05,2023 at 06:45:22 UTC from IEEE Xplore. Restrictions apply.

KASHIKAR et al.: LOSSLESS NEURAL NETWORK MODEL COMPRESSION THROUGH EXPONENT SHARING 7

Fig. 8. Optimization on the layers of TTT-YOLO after exponent sharing on
default processor in N2D2.

Fig. 9. Architecture of custom models M1 and M2 in N2D2.

Fig. 10. Levels of optimization on the models of N2D2 after exponent-shar-
ing.

representative of layers having a number of elements in their
matrices that can fit in the on-chip memory of the Zynq device
on the ZedBoard. This approach is complementary to existing
works on CNN accelerators on FPGA where the entire model
is not implemented on the FPGA [46]. Table IV summarizes
the resource utilization of some of the GEMM kernels from the
TTT-YOLO benchmark, in the sequential (without pipeline)
and parallel (with pipeline) reading scenarios. Without a
pipeline, the increase in the number of LUTs and FF is around
3% in all cases. When relying on a pipeline, the impact on FFs
and LUTs is lower than 3% in all cases. For both architectures,
there is no change in BRAM and DSP utilization.

3) Execution Time Overhead for Software Implementations:
The execution time on a processor is impacted by the archi-
tecture, the language, and the compiler used [47]. Languages
like C by default save matrices in row-major order as they
show better execution time because of the principle of locality.
We demonstrate the effect of compiler optimizations on intel-
i7 processor on the layers of TTT-YOLO in Fig. 8. In all
layers, we observed that the execution times with exponent
sharing are the least when optimized with the O3 flag in gcc.

We have demonstrated our method on models trained and
exported from N2D2 [48]. We chose models M1 and M2

Fig. 11. Exponent sharing after weight pruning on standard models.

having architectures as shown in Fig. 9. N2D2 by default
exports the model with the O3 flag in gcc. We observed
that there was no further improvement in execution time with
optimization using Ofast flag as shown in Fig. 10. The default
results of execution time for these models are presented in our
prior work [49].

C. Incremental Pipeline Initiation Intervals on FPGA

The processing of two consecutive inputs can be decided
using the loop pipeline initiation interval (II). Other than
processing every II number of cycles, the interval can be varied
depending on the availability of the resources. We found that
with exponent sharing the impact after the initiation interval
of 5 decreases but the total clock cycles keep increasing. This
is expected behavior because, with higher II, there is delayed
processing of inputs leading to increased clock cycle count.
However, it creates the opportunity to parallelize more reads.

On three layers of the TTT-YOLO, we show the effect of
incremental pipeline initiation intervals in Table V. It can
be seen that with higher II, the clock cycle count overhead
decreases. For instance, the overhead decreases from 0.069%
to 0.035%, almost by half when II changes from 5 to 10.

D. Results on Relatively Large Models

Though not the focus of this work, in this section, we high-
light that the proposed method can also be applied to any
model, whether large or small, in general. A few state-
of-the-art image classification models pretrained in PyTorch
[50], viz. squeezenet1_0 (1.2 million weights), efficientnet_b0
(5.3 million weights), googleNet (6.6 million weights), shuf-
flenet_v2_x0_5 (1.4 million weights), and mobilenet_v3_small
(2.5 million weights) were passed through the proposed
exponent sharing method (Algorithm 1). Consequently, this
resulted in a reduction in memory requirement for weights
by about 10%. Using a single-precision floating point, the
storage required by weights became: squeezenet1_0 (4.8 MB),
efficientnet_b0 (21.2 MB), googleNet (26.4 MB), shuf-
flenet_v2_x0_5 (5.6 MB), and mobilenet_v3_small (10 MB).
At 10% savings in memory, the memory requirement reduces
by approximately 0.5–2 MB in these models.

We show how our method can be applied as a follow on
method on other existing model compression methods using
the example of weight pruning. The models in Fig. 11 were

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INRIA. Downloaded on September 05,2023 at 06:45:22 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

TABLE V
IMPACT OF PIPELINE INITIATION INTERVAL IN FPGA ON CLOCK CYCLES IN TTT-YOLO

Fig. 12. Impact on accuracy after exponent-sharing, quantization, and prun-
ing. The percentage memory savings using exponent sharing or pruning are
19.13%, 18.74%, 19.16%, and 18.8% for mobilenetv2, resnet18, shufflenetv2,
and googlenet, respectively. Quantization saves 50% of memory when the
model is converted to INT8.

trained and then pruned in PyTorch by setting different pruning
levels. The pruning levels (10%, etc.) result in commensurate
memory savings (i.e., 10%, etc.). The pruned models were then
processed by Algorithm 1. We observe the added advantage
of exponent sharing for different levels of pruning in all
models shown in Fig. 11. With Float32 precision, application
of Algorithm 1 resulted in an additional 12% memory savings,
on average, with about 15% savings for all models for pruning
between 10% and 50%. There is no further loss in accuracy
except that incurred by the pruning technique itself.

E. Comparison With Other Model Compression Techniques

To compare our method with quantization and pruning,
we first convert the models to the BFloat16 format using
PyTorch. We prune models in such a way that the memory
saved is equal to the memory saved by exponent sharing.
This is done at the cost of some accuracy loss, whereas
our method does not compromise the accuracy. On the other
hand, although quantization saves 50% of memory in all
models, it also loses some accuracy. We show the results on
four popular models (mobilenetv2, resnet18, shufflenetv2, and
googlenet) in Fig. 12. To understand the impact of exponent
sharing on energy consumption we used CodeCarbon [51].
In Fig. 13, we report the energy consumed while processing
a batch of ten images by four different models compressed
using different methods. Our proposed approach results in
comparable energy consumption but without any accuracy loss
which is separately shown in Fig. 12.

Fig. 13. Energy required for processing a batch of ten images after using
different model compression methods, for mobilenetv2, resnet18, shufflenetv2,
and googlenet models, using the codecarbon analysis tool [51].

V. CONCLUSION

The best method for model compression depends on the
desired accuracy. The method proposed here compresses mod-
els without impacting their accuracy. It does not have any
overhead of fine-tuning postmodel compression. The parallel
reads, possible in FPGA implementations, bridge the gap in
execution time before and after exponent sharing. The code of
the GEMM with our implementations is available on github.1

Our future work involves (1) improving memory savings with
exponent approximations during the training phase itself and
(2) an extended study of the proposed method for ultralow
power ML applications on Jetson Nano.

REFERENCES

[1] M. S. Hasan, “An application of pre-trained CNN for image classifica-
tion,” in Proc. 20th Int. Conf. Comput. Inf. Technol. (ICCIT), Dec. 2017,
pp. 1–6.

[2] Y. Liu, H. Li, J. Yan, F. Wei, X. Wang, and X. Tang, “Recurrent scale
approximation for object detection in CNN,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), Oct. 2017, pp. 571–579.

[3] M. Zeng et al., “Convolutional neural networks for human activity
recognition using mobile sensors,” in Proc. 6th Int. Conf. Mobile
Comput., Appl. Services, Nov. 2014, pp. 197–205.

[4] P. Khatamino, I. Canturk, and L. Özyilmaz, “A deep learning-CNN based
system for medical diagnosis: An application on Parkinson’s disease
handwriting drawings,” in Proc. 6th Int. Conf. Control Eng. Inf. Technol.
(CEIT), Oct. 2018, pp. 1–6.

[5] C. Chen, J. Huang, C. Pan, and X. Yuan, “Military image scene
recognition based on CNN and semantic information,” in Proc. 3rd Int.
Conf. Mech., Control Comput. Eng. (ICMCCE), Sep. 2018, pp. 573–577.

[6] A. Barbosa, T. Marinho, N. Martin, and N. Hovakimyan, “Multi-stream
CNN for spatial resource allocation: A crop management application,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Jun. 2020, pp. 258–266.

1https://github.com/prachikashikar/Expo-Share-In-GEMM

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INRIA. Downloaded on September 05,2023 at 06:45:22 UTC from IEEE Xplore. Restrictions apply.

KASHIKAR et al.: LOSSLESS NEURAL NETWORK MODEL COMPRESSION THROUGH EXPONENT SHARING 9

[7] W. R. Johnson, J. Alderson, D. Lloyd, and A. Mian, “Predicting athlete
ground reaction forces and moments from spatio-temporal driven CNN
models,” IEEE Trans. Biomed. Eng., vol. 66, no. 3, pp. 689–694,
Mar. 2019.

[8] K. Kwon, A. Amid, A. Gholami, B. Wu, K. Asanovic, and K. Keutzer,
“Invited: Co-design of deep neural nets and neural net accelerators for
embedded vision applications,” in Proc. 55th ACM/ESDA/IEEE Design
Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

[9] M. Shafique, T. Theocharides, V. J. Reddy, and B. Murmann,
“TinyML: Current progress, research challenges, and future roadmap,”
in Proc. 58th ACM/IEEE Design Autom. Conf. (DAC), Dec. 2021,
pp. 1303–1306, doi: 10.1109/DAC18074.2021.9586232.

[10] X. Wei, H. Chen, W. Liu, and Y. Xie, “Mixed-precision quantization for
CNN-based remote sensing scene classification,” IEEE Geosci. Remote
Sens. Lett., vol. 18, no. 10, pp. 1721–1725, Oct. 2021.

[11] R. Yu et al., “NISP: Pruning networks using neuron importance score
propagation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 9194–9203.

[12] C. R. Banbury et al., “Benchmarking TinyML systems: Challenges and
direction,” 2020, arXiv:2003.04821.

[13] (2021). FastML Team. [Online]. Available: https://github.
com/fastmachinelearning/hls4ml

[14] A. J. Redfern, L. Zhu, and M. K. Newquist, “BCNN: A binary CNN
with all matrix OPS quantized to 1 bit precision,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2021,
pp. 4599–4607.

[15] W. Nogami, T. Ikegami, S.-I. O’uchi, R. Takano, and T. Kudoh,
“Optimizing weight value quantization for CNN inference,” in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[16] B. Wu, Y. Wang, P. Zhang, Y. Tian, P. Vajda, and K. Keutzer, “Mixed
precision quantization of ConvNets via differentiable neural architecture
search,” 2018, arXiv:1812.00090.

[17] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremental network
quantization: Towards lossless CNNs with low-precision weights,” 2017,
arXiv:1702.03044.

[18] S. I. Young, W. Zhe, D. Taubman, and B. Girod, “Transform quantization
for CNN compression,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 9, pp. 5700–5714, Sep. 2022.

[19] B. Kang, A. Lu, Y. Long, D. Kim, S. Yu, and S. Mukhopadhyay,
“Genetic algorithm-based energy-aware CNN quantization for
processing-in-memory architecture,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 11, no. 4, pp. 649–662, Dec. 2021.

[20] G. Shomron, F. Gabbay, S. Kurzum, and U. Weiser, “Post-training
sparsity-aware quantization,” 2021, arXiv:2105.11010.

[21] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware
automated quantization with mixed precision,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 8604–8612.

[22] V. Verma, P. Singh, V. Namboodri, and P. Rai, “A ‘network pruning
network’ approach to deep model compression,” in Proc. IEEE/CVF
Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2020, pp. 3009–3018.

[23] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, and W. Lin, “ThiNet:
Pruning CNN filters for a thinner net,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 10, pp. 2525–2538, Oct. 2019.

[24] Y. Lin, Y. Tu, and Z. Dou, “An improved neural network prun-
ing technology for automatic modulation classification in edge
devices,” IEEE Trans. Veh. Technol., vol. 69, no. 5, pp. 5703–5706,
May 2020.

[25] N. Aghli and E. Ribeiro, “Combining weight pruning and knowl-
edge distillation for CNN compression,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2021,
pp. 3185–3192.

[26] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient con-
volutional neural networks using energy-aware pruning,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 6071–6079.

[27] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Varia-
tional convolutional neural network pruning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2775–2784.

[28] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1398–1406.

[29] W. Ahmed, A. Zunino, P. Morerio, and V. Murino, “Compact CNN
structure learning by knowledge distillation,” in Proc. 25th Int. Conf.
Pattern Recognit. (ICPR), Jan. 2021, pp. 6554–6561.

[30] C. Blakeney, X. Li, Y. Yan, and Z. Zong, “Parallel blockwise knowledge
distillation for deep neural network compression,” IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 7, pp. 1765–1776, Jul. 2021.

[31] S. Lin, R. Ji, C. Chen, D. Tao, and J. Luo, “Holistic CNN com-
pression via low-rank decomposition with knowledge transfer,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 12, pp. 2889–2905,
Dec. 2019.

[32] Y. Wei, X. Pan, H. Qin, W. Ouyang, and J. Yan, “Quantization mimic:
Towards very tiny CNN for object detection,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), Sep. 2018, pp. 267–283.

[33] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in Proc. 16th Annu. Int. Conf. Mobile Syst., Appl., Services,
Jun. 2018, pp. 389–400.

[34] Q. Zhang et al., “Efficient deep learning inference based on model
compression,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2018, pp. 1695–1702.

[35] D. Hu and B. Krishnamachari, “Fast and accurate streaming CNN infer-
ence via communication compression on the edge,” in Proc. IEEE/ACM
5th Int. Conf. Internet-Things Design Implement. (IoTDI), Apr. 2020,
pp. 157–163.

[36] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, “High-performance
FPGA-based CNN accelerator with block-floating-point arithmetic,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 8,
pp. 1874–1885, Aug. 2019.

[37] M. Navardi, E. Humes, and T. Mohsenin, “E2EdgeAI: Energy-efficient
edge computing for deployment of vision-based DNNs on autonomous
tiny drones,” in Proc. IEEE/ACM 7th Symp. Edge Comput. (SEC),
Dec. 2022, pp. 504–509, doi: 10.1109/SEC54971.2022.00077.

[38] L. Lamberti et al., “Tiny-PULP-dronets: Squeezing neural networks
for faster and lighter inference on multi-tasking autonomous nano-
drones,” in Proc. IEEE 4th Int. Conf. Artif. Intell. Circuits Syst. (AICAS),
Jun. 2022, pp. 287–290, doi: 10.1109/AICAS54282.2022.9869931.

[39] M. Navardi, A. Shiri, E. Humes, N. R. Waytowich, and
T. Mohsenin, “An optimization framework for efficient vision-
based autonomous drone navigation,” in Proc. IEEE 4th Int. Conf.
Artif. Intell. Circuits Syst. (AICAS), Jun. 2022, pp. 304–307, doi:
10.1109/AICAS54282.2022.9869975.

[40] D. Palossi, A. Loquercio, F. Conti, E. Flamand, D. Scaramuzza,
and L. Benini, “A 64-mW DNN-based visual navigation engine for
autonomous nano-drones,” IEEE Internet Things J., vol. 6, no. 5,
pp. 8357–8371, Oct. 2019, doi: 10.1109/JIOT.2019.2917066.

[41] W. Kahan, “IEEE standard 754 for binary floating-point arithmetic,”
Lect. Notes Status IEEE, vol. 754, no. 1776, p. 11, May 1996.

[42] G. Henry, P. T. P. Tang, and A. Heinecke, “Leveraging the bfloat16
artificial intelligence datatype for higher-precision computations,” in
Proc. IEEE 26th Symp. Comput. Arithmetic (ARITH), Jun. 2019,
pp. 69–76.

[43] K. Nan, S. Liu, J. Du, and H. Liu, “Deep model compression for
mobile platforms: A survey,” Tsinghua Sci. Technol., vol. 24, no. 6,
pp. 677–693, Dec. 2019.

[44] W. J. MacLean, “An evaluation of the suitability of FPGAs for embedded
vision systems,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Sep. 2005, p. 131.

[45] Tiny-Tiny-Tiny YOLO. Accessed: Feb. 18, 2023. [Online]. Available:
https://github.com/k5iogura/darknetttt, last

[46] J. Liao, L. Cai, Y. Xu, and M. He, “Design of accelerator for MobileNet
convolutional neural network based on FPGA,” in Proc. IEEE 4th Adv.
Inf. Technol., Electron. Autom. Control Conf. (IAEAC), vol. 1, Dec. 2019,
pp. 1392–1396, doi: 10.1109/IAEAC47372.2019.8997842.

[47] J. Thiyagalingam, O. Beckmann, and P. Kelly, “An exhaustive evalu-
ation of row-major, column-major and Morton layouts for large two-
dimensional arrays,” in Proc. 19th Annu. UK Perform. Eng. Workshop,
2003, pp. 340–351.

[48] CEA LIST. N2D2. Accessed: Feb. 28, 2023. [Online]. Available:
https://github.com/CEA-LIST/N2D2

[49] P. Kashikar, S. Sinha, and A. K. Verma, “Exploiting weight statistics
for compressed neural network implementation on hardware,” in Proc.
IEEE 3rd Int. Conf. Artif. Intell. Circuits Syst. (AICAS), Jun. 2021,
pp. 1–4.

[50] Pytorch Vision Models. Accessed: 28, Feb. 2023. [Online]. Available:
https://pytorch.org/vision/stable/models.html

[51] V. Schmidt et al., “CodeCarbon: Estimate and track carbon emissions
from machine learning computing,” Cited, p. 20, May 2021. [Online].
Available: https://codecarbon.io/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INRIA. Downloaded on September 05,2023 at 06:45:22 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/DAC18074.2021.9586232
http://dx.doi.org/10.1109/SEC54971.2022.00077
http://dx.doi.org/10.1109/AICAS54282.2022.9869931
http://dx.doi.org/10.1109/AICAS54282.2022.9869975
http://dx.doi.org/10.1109/JIOT.2019.2917066
http://dx.doi.org/10.1109/IAEAC47372.2019.8997842

10 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Prachi Kashikar received the B.E. degree in com-
puter science and engineering from the M.G.M.
College of Engineering, Nanded, India, in 2011, and
the M.Tech. degree in information technology from
the S.G.G.S. College of Engineering and Technol-
ogy, Nanded, in 2013. She is currently pursuing the
Ph.D. degree with the Indian Institute of Technology
Goa (IIT Goa), Goa, India.

Her research interests are mainly in computer
architecture and Edge AI.

Mrs. Kashikar has received VLSID 2022 and 2023,
GHC 2021, and Mobisys 2021 student fellowships. She is an HLF 2022 Young
Researcher.

Olivier Sentieys (Member, IEEE) is currently a
Professor with the University of Rennes, Rennes,
France, holding an INRIA Research Chair on
Energy-Efficient Computing Systems. He is leading
the Cairn Team common to INRIA (French research
institute dedicated to computational sciences) and
the IRISA Laboratory, Rennes, where he is also
the Head of the Computer Architecture Department,
IRISA. His research interests are in the area of
computer architectures, embedded systems, and sig-
nal processing, with a focus on system-level design,

energy efficiency, reconfigurable systems, hardware acceleration, approximate
computing, and power management of energy harvesting sensor networks.

Sharad Sinha (Senior Member, IEEE) received the
B.Tech. degree in electronics and communication
engineering from CUSAT, Kochi, India, in 2007,
and the Ph.D. degree in computer engineering from
NTU, Singapore, in 2014.

He is an Associate Professor of Computer Sci-
ence and Engineering with the Indian Institute of
Technology Goa (IIT Goa) Goa, India. His research
and teaching interests are in computer architecture,
embedded systems, and reconfigurable computing.

Dr. Sinha has received the Best Paper Awards at
ICCAD 2022, ICCAD 2017, and IEEE INDICON 2022, and the Best Paper
Award nomination at CASES 2018 and FCCM 2019.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: INRIA. Downloaded on September 05,2023 at 06:45:22 UTC from IEEE Xplore. Restrictions apply.

