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Artificial intelligence (AI) on the edge has emerged as an important research area in the last decade to deploy different applications in the domains of computer vision and natural language processing on tiny devices. These devices have limited on-chip memory and are battery-powered. On the other hand, neural network (NN) models require large memory to store model parameters and intermediate activation values. Thus, it is critical to make the models smaller so that their on-chip memory requirements are reduced. Various existing techniques like quantization and weight-sharing reduce model sizes at the expense of some loss in accuracy. We propose a lossless technique of model size reduction by focusing on the sharing of exponents in weights, which is different from the sharing of weights. We present results based on generalized matrix multiplication (GEMM) in NN models. Our method achieves at least a 20% reduction in memory when using Bfloat16 and around 10% reduction when using IEEE single-precision floating point, for models, in general, with a very small impact (up to 10% on the processor and less than 1% on FPGA) on the execution time with no loss in accuracy. On specific models from HLS4ML, about 20% reduction in memory is observed in single precision with little execution overhead.

I. INTRODUCTION

T HE convolutional neural networks (CNNs) in machine learning are increasingly used in different applications ranging from image classification [START_REF] Hasan | An application of pre-trained CNN for image classification[END_REF] to object detection [START_REF] Liu | Recurrent scale approximation for object detection in CNN[END_REF], activity recognition [START_REF] Zeng | Convolutional neural networks for human activity recognition using mobile sensors[END_REF] in medical diagnosis [START_REF] Khatamino | A deep learning-CNN based system for medical diagnosis: An application on Parkinson's disease handwriting drawings[END_REF], military [START_REF] Chen | Military image scene recognition based on CNN and semantic information[END_REF], agriculture [START_REF] Barbosa | Multi-stream CNN for spatial resource allocation: A crop management application[END_REF], sports [START_REF] Johnson | Predicting athlete ground reaction forces and moments from spatio-temporal driven CNN models[END_REF], and so on. Convolutional and fully connected layers in CNNs have a huge number of parameters and feature maps. During training as well as inference, a lot of memory and power are consumed by these computeintensive layers. Therefore, for training, high-end GPUs or cloud systems are used. Still, the training time ranges from days to weeks for complex state-of-the-art models such as Prachi Kashikar is with the Indian Institute of Technology Goa, Goa 403401, India (e-mail: prachi183311004@iitgoa.ac.in).
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ResNet, GoogleNet, and so on. Their inferences also have thousands of parameters that require storage in the orders of MBs.

The performance improvement in neural network (NN)based applications has been accelerating in this last decade. However, the software side advances for the deployment of such models have not considered the characteristics of underlying hardware while adding multiple layers to improve the performance. Thus, to deploy models on the edge, hardware-software co-design and co-development become needful [START_REF] Kwon | Invited: Co-design of deep neural nets and neural net accelerators for embedded vision applications[END_REF]. With the advent of the Internet of Things (IoT) and mobile platforms, it is expected that artificial intelligence (AI) applications will run on such devices. The target hardware platforms to run machine-learning models, in this case, are small in size having limited memory and power budgets. It is challenging to deploy existing big models on such tiny devices [START_REF] Shafique | TinyML: Current progress, research challenges, and future roadmap[END_REF]. This has motivated researchers to compress models and find the best tradeoffs with accuracy.

Model compression is possible during training as well as posttraining. The existing model compression methods like quantization [START_REF] Wei | Mixed-precision quantization for CNN-based remote sensing scene classification[END_REF], weight sharing, and pruning [START_REF] Yu | NISP: Pruning networks using neuron importance score propagation[END_REF], reduce the model size by sacrificing some accuracy. We propose a lossless model compression technique that exploits exponent distribution in weights for a trained model and show how exponent sharing in weights, an intuitive but powerful method, helps in reducing memory requirements. It is worthwhile to note that the proposed "exponent sharing in weights" is different from the existing method of "sharing of weights." The latter targets weight sharing (i.e., making weights common) by sacrificing accuracy, while the former does not sacrifice accuracy. It is logical to assume that one may apply exponent sharing on top of weight sharing or other existing compression methods, one combination of which (pruning followed by proposed exponent sharing) we present results for in Section IV. We discuss the impact of exponent sharing on the memory and execution time of processors and FPGAs. Ultralow power machine-learning implementation of tasks, such as keyword spotting and visual wake words [START_REF] Banbury | Benchmarking TinyML systems: Challenges and direction[END_REF], can benefit from model compression approaches.

Additionally, we present results on various combinations of GEMM dimensions, a few pretrained standard models, and models from HLS4ML [START_REF]FastML Team[END_REF]. We discuss the impact on resource usage when the reading of weights is sequential and parallel. The impact of using different initiation intervals during pipelining in FPGA implementations is also discussed. We also present the application of our method on a few relatively large models, though it is not the focus of the work in this article.

The article is arranged as follows. Section II discusses some existing model compression techniques and their shortfalls. In Section III, we discuss our proposed method of exponent sharing to reduce on-chip memory requirements. We also present a model to find out the impact of exponent sharing on the execution overhead (in terms of clock cycles) on FPGAs. We demonstrate our approach in Section IV with experiments and results and conclude in Section V.

II. RELATED WORK: MODEL SIZE COMPRESSION

The accuracy of a trained model depends on the precision it uses to store its parameters. In general, higher accuracy needs higher precision and, therefore, greater storage volume. Existing model compression techniques focus on reducing the precision of parameters while minimizing the tradeoff with model performance. We discuss some of the mainstream techniques in the following subsections.

A. Algorithmic Approaches of Model Compression

1) Quantization: Quantization is one of the most popular methods for model size compression. It maps (bins) the range of the weights to a smaller set of finite values. As the size of the bins in quantization increases, the precision to save the weights reduces. Researchers could reduce the precision to even a single bit [START_REF] Redfern | BCNN: A binary CNN with all matrix OPS quantized to 1 bit precision[END_REF] in certain application areas. On the other hand, as the bin sizes increase, accuracy loss also increases due to bigger approximations.

All bins in quantization can be of fixed or variable sizes. In the fixed-size approach, weights are binned independent of their impact on the accuracy. This can cause more loss in accuracy. As a solution, genetic algorithms are used to optimize bin sizes for the best accuracy [START_REF] Nogami | Optimizing weight value quantization for CNN inference[END_REF]. These algorithms bin weights depending on their impact on model accuracy. This results in the variable size of bins. As this impact of weights on accuracy is not known during training, quantization using variable bin size is done during inference.

The range of weights in all layers of an NN may not be the same. Besides applying the same quantization policy for a complete model, layer-wise different quantization scheme [START_REF] Wei | Mixed-precision quantization for CNN-based remote sensing scene classification[END_REF] shows more compression for the same accuracy. Neural architectural search (NAS) [START_REF] Wu | Mixed precision quantization of ConvNets via differentiable neural architecture search[END_REF] helps in identifying the best bit widths for weights per layer during training. As a result, the model gets quantized in mixed precision where each layer needs different bit-widths.

Quantization can be done during as well as posttraining. Incremental network quantization [START_REF] Zhou | Incremental network quantization: Towards lossless CNNs with low-precision weights[END_REF] combines both. It divides weights into two sets after training. One set holds the low precision weights. Viable bit lengths are found for this set. The other set having higher precision is retrained and the same process continues until all weights take lower bits in memory. After multiple passes, the model gets quantized.

Along with the weights, the number of activations also increases the memory requirement of a model. For more storage savings, the joint statistics of weights and activation can be considered. The transform quantization [START_REF] Young | Transform quantization for CNN compression[END_REF] does this and improves the suboptimal storage savings obtained after only weight quantization.

Quantization is a magnitude-aware process, in general. However, along with memory storage, few works also look at different constraints such as energy [START_REF] Kang | Genetic algorithm-based energy-aware CNN quantization for processing-in-memory architecture[END_REF], sparsity [START_REF] Shomron | Post-training sparsity-aware quantization[END_REF], and hardware [START_REF] Wang | HAQ: Hardware-aware automated quantization with mixed precision[END_REF] for quantization.

2) Pruning: Pruning removes the weights, neurons, or feature maps from the model for its size reduction. A few weight tensors are sparse, redundant, and sometimes have the least impact on the accuracy of the network. Removal of these weights does not lead to a significant loss of accuracy. Pruning removes such redundant weights and neurons and the model size is reduced. It results in accelerated training and inference speed. Pruning can also remove a complete filter from a model. To identify the least valued filters, a model can be fed to Network Pruning Network [START_REF] Verma | A 'network pruning network' approach to deep model compression[END_REF] architecture. This gives binary-valued output that indicates the least significant filters to be pruned which, in turn, saves model storage requirement. Similarly, ThinNet [START_REF] Luo | ThiNet: Pruning CNN filters for a thinner net[END_REF] proposes to discard the least impacting filters during convolution completely. It results in more memory savings. It proposes to prune filters depending on the features they propagate to the next layer. So, the least important features are traced through back-propagation, and filters are pruned. Similarly, filter pruning using activation maximization is proposed in [START_REF] Lin | An improved neural network pruning technology for automatic modulation classification in edge devices[END_REF], which removes the least important convolutional filters.

In layer-wise weight pruning, the least significant weights in a layer are removed and the error propagated to the very next layer is only minimized. However, in practice, this error reaches the output layer of the model causing a substantial loss of accuracy. Yu et al. [START_REF] Yu | NISP: Pruning networks using neuron importance score propagation[END_REF] proposed a neuron importance score propagation (NISP) algorithm to prune neurons jointly from a complete network to minimize the error. Also, the layer-wise weight pruning breaks the structure of state-of-theart models like VGG as they have dimensional dependencies. It makes the training intractable. Such complex models cannot use single compression techniques for optimal performance. Aghli and Ribeiro [START_REF] Aghli | Combining weight pruning and knowledge distillation for CNN compression[END_REF] make use of the combination of pruning on selective layers with knowledge distillation (discussed in Section II-A3) on the remaining ones.

With the storage reduction, power and energy budgets are also of concern while compressing a model. The layer-wise weight pruning followed by the fine-tuning results in moderately less energy consuming [START_REF] Yang | Designing energy-efficient convolutional neural networks using energy-aware pruning[END_REF]. After layer-wise pruning, the global fine-tuning improves performance.

Pruning can also remove the redundant channels generated during training [START_REF] Zhao | Variational convolutional neural network pruning[END_REF] which does not need any further retraining. For a layer, the channels to prune are identified by regression-based channel selections and least-square reconstruction [START_REF] He | Channel pruning for accelerating very deep neural networks[END_REF].

3) Knowledge Distillation: Knowledge distillation follows a student-teacher model. The learning from a complex structured teacher model generates a student model (i.e., an ensemble). Ensembles are lightweight and generated in a block-wise manner. An ensemble can combine different features of different teacher models. The student network is distilled by learning application-specific resources such as floating-point operations (FLOPs) and model parameters. This ensures the best compression-performance tradeoff [START_REF] Ahmed | Compact CNN structure learning by knowledge distillation[END_REF].

These block-wise knowledge distillation methods are complex and take longer training times. However, in depth-wise separable layers, the independent blocks are trained in parallel. Experiments on the state-of-the-art models have shown up to 3.5× speedup using this method during training [START_REF] Blakeney | Parallel blockwise knowledge distillation for deep neural network compression[END_REF]. As a result of compression, models may also show acceleration in performance. Most of the time the convolutional and fully connected layers accelerate separately. Lin et al. [START_REF] Lin | Holistic CNN compression via low-rank decomposition with knowledge transfer[END_REF] propose to jointly distill layers by first removing redundancies in both convolutional and fully connected layers and then doing the knowledge transfer.

All these popular methods of knowledge distillation, pruning, and quantization can be used in combination with each other for more compression and optimal performance [START_REF] Wei | Quantization mimic: Towards very tiny CNN for object detection[END_REF]. Usage-driven model selection framework AdaDeep [START_REF] Liu | On-demand deep model compression for mobile devices: A usage-driven model selection framework[END_REF] compressed models using a combination of existing techniques. For optimal compression, a model can pass through a series of compression techniques in a pipeline [START_REF] Zhang | Efficient deep learning inference based on model compression[END_REF], achieving the best of all inferences. The pipeline can contain methods like tensor decomposition, graph pruning, knowledge distillation, and so on.

B. Implementation Oriented Approaches for Model Compression

Communication with off-chip memory affects the speed of inference. Even after compression, the model size can reach several megabytes. Hence, running inference in three phases, that is, layer partition, compression, and scheduling, showed promising results [START_REF] Hu | Fast and accurate streaming CNN inference via communication compression on the edge[END_REF] in terms of storage budgets. Storing the parameters in the block floating-point format [START_REF] Lian | High-performance FPGA-based CNN accelerator with block-floating-point arithmetic[END_REF] in the off-chip memory saves some storage and also reduces the communication delay with off-chip memory. Although this format improves the energy and efficiency of the hardware, it also loses some accuracy. The energy efficiency can be further improved by 5.6× focusing on memory accesses made during edge computing [START_REF] Navardi | E2EdgeAI: Energy-efficient edge computing for deployment of vision-based DNNs on autonomous tiny drones[END_REF].

The existing techniques do not always emphasize the tradeoff between performance and resource constraints. The architectures of CNNs are different from each other. Other than using a general method for all of them, a model-specific approach results in better compression. For example, Tiny-PULP-Dronets [START_REF] Lamberti | Tiny-PULP-dronets: Squeezing neural networks for faster and lighter inference on multi-tasking autonomous nanodrones[END_REF] based on ResNet aims at thinning the number of channels per layer and the neuron which never get activated during the entire validation process without much penalizing the accuracy. It could reduce the model size by more than one order of magnitude (50× fewer parameters) at the cost of 4% accuracy loss. Navardi et al. [START_REF] Navardi | An optimization framework for efficient visionbased autonomous drone navigation[END_REF] propose a complete framework to deploy such tiny vision-based models on drones that also reduce the energy requirement by 53%, while preserving 97% of the model accuracy. The parallel execution of DNNs [START_REF] Palossi | A 64-mW DNN-based visual navigation engine for autonomous nano-drones[END_REF] on drones can be exploited to perform real-time navigation with only 64 mW of power.

Most existing methods compress models at the cost of some accuracy loss. In this work, we propose a novel model compression method that keeps the accuracy intact, by studying sharing of exponents in weights. This method can be used for saving both on-chip and off-chip memory requirements for the network weights.

III. EXPONENT SHARING FOR MODEL COMPRESSION

The size of a model is determined by the number and the representation (integer, float, etc.) of its parameters. The parameters comprising weights and biases are generally floating-point values. In contrast with fixed-point representations, floating-point formats offer greater precision and represent a wider range of real numbers. As per the IEEE 754 standard for floating-point representation [START_REF] Kahan | IEEE standard 754 for binary floating-point arithmetic[END_REF], every floating-point value is stored as a combination of sign, exponent, and mantissa, as shown in Fig. 1. BFloat16 [START_REF] Henry | Leveraging the bfloat16 artificial intelligence datatype for higher-precision computations[END_REF] is a reduced-precision floating-point format where data are stored on 16 bits, multiplications are 16 bits, and accumulations are usually 32-bit wide. The difference between IEEE halfprecision (Float16) and BFloat16 is that BFloat16 has a higher dynamic range with 8 bits of exponents, which also makes it easier to cast to Float32. The range in half-precision is reduced because of the decrease in the number of exponent bits, as shown in Fig. 1. We exploit these standard floating-point storage formats to come up with the new storage format.

A. Proposed Floating-Point Storage Format

In IEEE single-precision format, an exponent can have 256 different values, but, in practice, there are thousands of weights in a model. Hence, many of them have the same exponent values. Fig. 2 shows an example of the exponent frequency distribution in weights of a trained LeNet. Out of all the trained weights, only 6.25% exponents are distinct, and the rest of the values are not used for weights.

Hence, we propose a new floating-point storage format based on an algorithmic pass following Algorithm 1 that exploits the presence of several exponents with the same values. The proposed floating-point storage format is illustrated in Fig. 3. Along with IEEE 754 and Bfloat16, it applies to any real value representation format that makes use of the mantissa-exponent method for number representation.

In this novel method, we store only the distinct exponents of floating-point weights in a separate exponent table. The exponents from IEEE floating-point formats are replaced by respective indices referring to the exponent table. Each floating-point weight then becomes a combination of sign, index, and mantissa, where the index replaces the exponent from the original representation.

If there are k distinct exponents in the weights of a layer, the number of index bits required is i = ⌈log 2 k⌉, which we found will be always less than 8 bits during our experiments. Hence, if s, e, and m denote the number of bits for sign, exponent, and mantissa, respectively, in the IEEE floating-point or Bfloat16 representations, then the memory needed after exponent sharing (M comp ) is

M comp = N × (s + i + m) + e × k ( 1 
)
where N is the total number of weights in a layer and i is the number of index bits.

B. Proposed Optimization Pass for Trained Models

Algorithm 1 presents the proposed optimization pass. It can be applied as a follow on pass after any other existing model compression methods as it will not change the accuracy.

Like other compression techniques [START_REF] Nan | Deep model compression for mobile platforms: A survey[END_REF], our method also shows better results on layer-wise compression than on compressing a complete model. This optimization pass is applied to the floating-point weights of every layer which are initially stored in standard formats like the IEEE floating-point standard as shown in Fig. 1. In Algorithm 1, the weight tensor of a layer is segregated into three components: Sign (S o ), Exponent (E), and Mantissa (M o ), in lines 2-6. The distinct exponents (E o ) are identified from E in line 7. All exponents in E are henceforth referred to by their indices in E 0 . These indices are stored in a separate Index (I o ) tensor as per lines 8-10. In the end, the algorithm returns tensors S o , I o , and E o of sign, index, and mantissa, respectively, for every weight in the model. The algorithm also reports memory requirements before and post sharing, in lines 12 and 13. 

C. Hardware Implementation of Model Postoptimization Pass

The application of the optimization pass results in a model with a different storage method for weights, as shown in Fig. 3. This affects the execution time of the model. The execution time of a model depends primarily on the number of generalized matrix multiplications (GEMMs) in each layer. However, it is possible to reduce the execution time of each layer using GEMM optimizations present in the research literature, though we do not discuss or implement such methods as part of this article. In our proposed indexing-based method, three reads are required compared to a single read when such indexing is absent. This would, in general, increase the execution time in the case of single-threaded implementations on microprocessors. On the other hand, this overhead in execution can be made negligible by doing parallel reads on accelerators like FPGAs [START_REF] Maclean | An evaluation of the suitability of FPGAs for embedded vision systems[END_REF].

We discuss sequential versus parallel architectures in the next two subsections.

1) Sequential Architecture: Sequential reads are performed in sequential architecture or execution model where a single weight value is fetched from on-chip memory at a time. In our proposed method, three additional reads are necessary to read the same weight, as shown in Fig. 4(a), where c1, c2, and so on, refer to clock cycle number in the schedule, compared to presharing. For a GEMM of any layer, if the weight tensor is Hardware implementation of proposed storage scheme (32-bit example).

M × N and the input tensor is N × O, then the cycle count can be given by

C expSharing = C orig + M × N × O (2)
where C orig is the number of clock cycles before exponent sharing and C expSharing is the number of clock cycles after exponent sharing.

2) Parallel Architecture: We observed about a 9%-10% impact of exponent sharing on the execution cycles when nonpipelined/sequential hardware is used. As mentioned earlier in this section, this impact is due to multiple reads happening to read a single floating-point weight. To reduce this impact, we designed parallel architecture where reads are done in parallel as shown in Fig. 5. Here, multiple reads are possible in the same clock cycle due to multiport on-chip memories like Block RAM, as shown in Fig. 4(b). We used pragmas like Pipeline in the high-level synthesis tool Vivado HLS to parallelize operations, including memory reads. In this scenario, the cycle count is given by

C expSharing C + M × O. (3) 
Using ( 2) and (3), we can find out the execution cycle overhead that would result because of exponent sharing in a GEMM of any layer.

IV. EXPERIMENTS AND RESULTS

In this section, we present results for small models, like tiny-tiny-tiny YOLO (TTT-YOLO), which are used for smaller computing devices, as well as for some relatively large models. This is to show that the proposed work can be used for the reduction in the size of large models as well.

A. Compression Results

We have demonstrated our approach on the layers of the TTT-YOLO model from the Darknet framework with pretrained weights [START_REF]Tiny-Tiny-Tiny YOLO[END_REF]. This model is a tinier version of YOLO having eight convolutional layers. Table I shows the dimensions of GEMM in each of the layers of this model.

Table II reports the total weight memory in bits Before exponent sharing and After exponent sharing as well as the compression ratio achieved in percentage, both for Float32 and Bfloat16, on all layers of a TTT-YOLO model. The exponent sharing saved 9.37% and 18.75% on average for Float32 and Bfloat16, respectively.

Along with the layers of a TTT-YOLO, we have experimented with GEMMs of various sizes and random weights to generalize our analysis as shown in Table III. This table also reports the % distinct exponents out of 256. E1-E8 are different GEMMs with randomly generated weights. The compression achieved by our exponent-sharing method reaches 12.5% and 25% for Float32 and Bfloat16, respectively. The memory savings depends on the degree of distinctness in the exponents. Hence, the proposed method is best suited when a layer has less number of distinct exponents but with high frequency so that the indexing (i) will require fewer bits and hence more memory savings as expressed in [START_REF] Hasan | An application of pre-trained CNN for image classification[END_REF].

We also evaluated exponent sharing on some models from HLS4ML [START_REF]FastML Team[END_REF]. This tool generates HLS models having fixed ⟨16,6⟩ as a default precision. We converted it to Float32 and BFloat16 and then performed exponent sharing. The memory savings (in %) observed on different models after exponent sharing are shown in Fig. 6. The gains range from 12% to 21.5% for Float32 and from 20% to 43% for BFloat16.

B. Execution Time and Resource Overhead

To find out the applicability of proposed (2) and (3) reporting the execution time overhead, we measured the execution time with and without exponent sharing on various architectures.

1) Execution Time Overhead for Hardware Implementations: Table III reports the impact on the number of clock cycles (%) for the exponent sharing with and without pipelining, for GEMMs of different sizes and random weights. The performance reported is using Vivado HLS set for part xc7z020clg484-1 on Zynq Zedboard with a default clock period of 10 ns. From the sets of experiments, we observe that the clock cycle impact is independent of the exponent frequency distribution but dependent on the GEMM sizes of that layer. For example, in Table III, E1 and E4 have the same GEMM dimensions ([250 × 256][256 × 16]) and the same impact on clock cycles (9.084), although the exponent frequency distribution is different, as shown in Fig. 7. Depending on the GEMM dimensions, the number of multiplications and additions are different leading to different impacts on clock cycle count. Here, both E1 and E4 have 1 024 000 multiplications and 1 020 000 additions, and hence the clock cycle impact is also the same. This is also validated using (1) and [START_REF] Liu | Recurrent scale approximation for object detection in CNN[END_REF].

As sequential reading after exponent sharing needs three more reads for every weight, the performance is impacted as per [START_REF] Liu | Recurrent scale approximation for object detection in CNN[END_REF]. The impact on clock cycles is less than 10% percent in all of these cases as summarized in Table III. We have demonstrated exponent sharing on GEMM with Pipeline pragma from Vivado HLS resulting in parallel reads. The performance impact abides by the relationship shown in [START_REF] Zeng | Convolutional neural networks for human activity recognition using mobile sensors[END_REF]. In all of the cases, the impact is less than 1%. Second, Fig. 6 also reports the execution speed impacts observed on different models from HLS4ML generated for the Virtex7 FPGA xc7vx1140t-flg1926-2. It is important to note that the proposed exponent sharing did not show any execution overhead in small models like Kerasllayer and KerasConv1d. These models differ in architecture as one has a dense layer and the other has a convolutional layer. Both models have 704 weights in total which is smaller than any of the GEMMs used in the earlier experiments. However, the memory savings in both cases are different as they depend upon the spread of exponents in weights. As the number of layers (GEMMs) in a model increased, we observed there is more impact on execution speed like in the case with the Keras3LayerBinarySmall and Keras3LayerTernarySmall. The cumulative impact is because of loading weights between two consecutive GEMMs. In both cases, the memory savings are 21% and 43% in Float32 and Bfloat16, respectively. The impact on clock cycles in both models was 24%. In this case, the weights are read in sequential architecture, that is, without using pipelining.

2) Resource Overhead: Along with the clock cycles, resource utilization plays a vital role in choosing an algorithm for model compression. We chose layers II, V, and VII as representative of layers having a number of elements in their matrices that can fit in the on-chip memory of the Zynq device on the ZedBoard. This approach is complementary to existing works on CNN accelerators on FPGA where the entire model is not implemented on the FPGA [START_REF] Liao | Design of accelerator for MobileNet convolutional neural network based on FPGA[END_REF]. Table IV summarizes the resource utilization of some of the GEMM kernels from the TTT-YOLO benchmark, in the sequential (without pipeline) and parallel (with pipeline) reading scenarios. Without a pipeline, the increase in the number of LUTs and FF is around 3% in all cases. When relying on a pipeline, the on FFs and LUTs is lower than 3% in all cases. For both architectures, there is no change in BRAM and DSP utilization.

3) Execution Time Overhead for Software Implementations: The execution time on a processor is impacted by the architecture, the language, and the compiler used [START_REF] Thiyagalingam | An exhaustive evaluation of row-major, column-major and Morton layouts for large twodimensional arrays[END_REF]. Languages like C by default save matrices in row-major order as they show better execution time because of the principle of locality. We demonstrate the effect of compiler optimizations on intel-i7 processor on the layers of TTT-YOLO in Fig. 8. In all layers, we observed that the execution times with exponent sharing are the least when optimized with the O3 flag in gcc.

We have demonstrated our method on models trained and exported from N2D2 [START_REF][END_REF]. We chose models M1 and M2 having architectures as shown in Fig. 9. N2D2 by default exports the model with the O3 flag in gcc. We observed that there was further improvement in execution time with optimization using Ofast flag as shown in Fig. 10. The default results of execution time for these models are presented in our prior work [START_REF] Kashikar | Exploiting weight statistics for compressed neural network implementation on hardware[END_REF].

C. Incremental Pipeline Initiation Intervals on FPGA

The processing of two consecutive inputs can be decided using the loop pipeline initiation interval (II). Other than processing every II number of cycles, the interval can be varied depending on the availability of the resources. We found that with exponent sharing the impact after the initiation interval of 5 decreases but the total clock cycles keep increasing. This is expected behavior because, with higher II, there is delayed processing of inputs leading to increased clock cycle count. However, it creates the opportunity to parallelize more reads.

On three layers of the TTT-YOLO, we show the effect of incremental pipeline initiation intervals in Table V. It can be seen that with higher II, the clock cycle count overhead decreases. For instance, the overhead decreases from 0.069% to 0.035%, almost by half when II changes from 5 to 10.

D. Results on Relatively Large Models

Though not the focus of this work, in this section, we highlight that the proposed method can also be applied to any model, whether large or small, in general. A few stateof-the-art image classification models pretrained in PyTorch [START_REF]Pytorch Vision Models[END_REF], viz. squeezenet1_0 (1.2 million weights), efficientnet_b0 (5.3 million weights), googleNet (6.6 million weights), shuf-flenet_v2_x0_5 (1.4 million weights), and mobilenet_v3_small (2.5 million weights) were passed through the proposed exponent sharing method (Algorithm 1). Consequently, this resulted in a reduction in memory requirement for weights by about 10%. Using a single-precision floating point, the storage required by weights became: squeezenet1_0 (4.8 MB), efficientnet_b0 (21.2 MB), googleNet (26.4 MB), shuf-flenet_v2_x0_5 (5.6 MB), and mobilenet_v3_small (10 MB). At 10% savings in memory, the memory requirement reduces by approximately 0.5-2 MB in these models.

We show how our method can be applied as a follow on method on other existing model compression methods using the example of weight pruning. The models in Fig. 11 were trained and then pruned in PyTorch by setting different pruning levels. The pruning levels (10%, etc.) result in commensurate memory savings (i.e., 10%, etc.). The pruned models were then processed by Algorithm 1. We observe the added advantage of exponent sharing for different levels of pruning in all models shown in Fig. 11. With Float32 precision, application of Algorithm 1 resulted in an additional 12% memory savings, on average, with about 15% savings for all models for pruning between 10% and 50%. There is no further loss in accuracy except that incurred by the pruning technique itself.

E. Comparison With Other Model Compression Techniques

To compare our method with quantization and pruning, we first convert the models to the BFloat16 format using PyTorch. We prune models in such a way that the memory saved is equal to the memory saved by exponent sharing. This is done at the cost of some accuracy loss, whereas our method does not compromise the accuracy. On the other hand, although quantization saves 50% of memory in all models, it also loses some accuracy. We show the results on four popular models (mobilenetv2, resnet18, shufflenetv2, and googlenet) in Fig. 12. To understand the impact of exponent sharing on energy consumption we used CodeCarbon [START_REF] Schmidt | CodeCarbon: Estimate and track carbon emissions from machine learning computing[END_REF]. In Fig. 13, we report the energy consumed while processing a batch of ten images by four different models compressed using different methods. Our proposed approach results in comparable energy consumption but without any accuracy loss which is separately shown in Fig. 12. Fig. 13. Energy required for processing a batch of ten images after using different model compression methods, for mobilenetv2, resnet18, shufflenetv2, and googlenet models, using the codecarbon analysis tool [START_REF] Schmidt | CodeCarbon: Estimate and track carbon emissions from machine learning computing[END_REF].

V. CONCLUSION

The best method for model compression depends on the desired accuracy. The method proposed here compresses models without impacting their accuracy. It does not have any overhead of fine-tuning postmodel compression. The parallel reads, possible in FPGA implementations, bridge the gap in execution time before and after exponent sharing. The code of the GEMM with our implementations is available on github. 1Our future work involves (1) improving memory savings with exponent approximations during the training phase itself and (2) an extended study of the proposed method for ultralow power ML applications on Jetson Nano.
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 1 Fig. 1. IEEE and Bfloat16 floating-point representation formats.
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 2 Fig. 2. Exponent frequency distribution in LeNet.
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 3 Fig. 3. Illustration of storing weights in the proposed format.

Algorithm 1 1 Fig. 4 .

 114 Fig. 4. Clock cycles during exponent-sharing in matrix multiplication with and without pipeline. (a) Sequential Reading. (b) Parallel Reading.
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 5 Fig. 5.Hardware implementation of proposed storage scheme (32-bit example).
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 8 Fig. 8. Optimization on the layers of TTT-YOLO after exponent sharing on default processor in N2D2.
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 9 Fig. 9. Architecture of custom models M1 and M2 in N2D2.

Fig. 10 .

 10 Fig. 10. Levels of optimization on the models of N2D2 after exponent-sharing.
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 11 Fig. 11. Exponent sharing after weight pruning on standard models.

TABLE I GEMM

 I SIZES OF LAYERS IN TINY-TINY-TINY YOLO Fig.6. sharing in models from HLS4ML.

TABLE II COMPRESSION

 II ON THE LAYERS OF TTT-YOLOTABLE III COMPRESSION (%) AND CLOCK CYCLE IMPACT (%) OF EXPONENT SHARING IN THE GEMMS OF SAME DIMENSIONS AND DIFFERENT WEIGHTS Fig. 7. Exponent frequency distribution in E1 and E4 of Table III.

TABLE V IMPACT

 V OF PIPELINE INITIATION INTERVAL IN FPGA ON CLOCK CYCLES IN TTT-YOLO Fig. 12. Impact on accuracy after exponent-sharing, quantization, and pruning. The percentage memory savings using exponent sharing or pruning are 19.13%, 18.74%, 19.16%, and 18.8% for mobilenetv2, resnet18, shufflenetv2, and googlenet, respectively. Quantization saves 50% of memory when the model is converted to INT8.
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