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RECENT DEVELOPMENTS IN THE THEORY OF MULTIPLE

ZETA VALUES IN POSITIVE CHARACTERISTIC

TUAN NGO DAC

Abstract. Thakur introduced MZV’s in positive characteristic as analogues
of the classical multiple zeta values of Euler. This manuscript reports our

recent results on these values in [33, 34, 38].
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1. Classical multiple zeta values

1.1. Multiple zeta values of Euler.

Throughout this text, let N = {1, 2, . . . } be the set of positive integers and
Z≥0 = {0, 1, 2, . . . } be the set of non-negative integers. The multiple zeta values
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(MZV’s for short) studied by Euler some centuries ago are the following convergent
series

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1

kn1
1 . . . knr

r

where ni are positive integers with ni ≥ 1 and nr ≥ 2. Here r is called the depth
and w := n1 + · · ·+nr is called the weight of the presentation ζ(n1, . . . , nr). When
r = 1, we recover the zeta values

ζ(n) =
∑
k>0

1

kn
, where n ∈ N and n ≥ 2,

which were studied well before Riemann studied them as a function ζ(s) of a com-
plex variable s, and its links with the distribution of primes.

The even zeta values have been extensively studied and are well understood. As
early as 1735, Euler proved that when n is even, ζ(n) is a rational multiple of πn.
Since Lindemann’s proof of the transcendence of π, it has been established that all
these numbers are transcendental. However, the odd zeta values remain a mystery.
A folklore conjecture in the field suggests that:

Conjecture 1.1. The numbers π, ζ(3), ζ(5), . . . are all algebraically independent
over Q.

As far as our understanding goes, we currently have no knowledge about the
transcendence of odd zeta values. However, with regards to their irrationality, it
has been shown that ζ(3) is irrational by Apéry [5], while Ball-Rivoal [6] showed
that there are infinitely many irrational numbers among the remaining odd zeta
values (see [42, 43, 56] for related works).

1.2. Ihara-Kaneko-Zagier’s conjecture.

1.2.1. An overview.

Euler showed that the product of two multiple zeta values can be expressed as a
linear combination, with integral coefficients, of multiple zeta values. An example
of this is the identity:

ζ(m)ζ(n) = ζ(m,n) + ζ(n,m) + ζ(m+ n)

for all integers m,n ≥ 2. The space of multiple zeta values, denoted by Z, is a
Q-vector space that possesses an algebraic structure due to the previous fact. The
primary objective of this theory is to comprehend all Q-linear relations that exist
among multiple zeta values. Unlike the algebraic structure generated by zeta values,
the space Z has a rich combinatorial structure due to the presence of many linear
relations among its elements. One effective approach to generating these linear
relations is through the application of extended double shuffle relations introduced
by Ihara-Kaneko-Zagier [32]. This process involves defining Hoffman’s algebra h,
and its subalgebras h0 and h1, which are endowed with specific algebraic structures.
Two particular cases of quasi-product algebras introduced by Hoffman, namely the
stuffle algebra (h1, ∗) and the shuffle algebra (h,�), are used to construct two
algebraic structures. By means of regularization [32, §2], zeta maps can be defined,
which are Q-algebra homomorphisms:

ζ∗ : (h1, ∗)→ Z,
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and

ζ� : (h,�)→ Z,

which give rise to a generalization of the stuffle product and the shuffle product.
The extended double shuffle relations arise by comparing the stuffle and shuffle
products on h1, as detailed in [32, Theorem 2]. Moreover, Ihara, Kaneko, and Zagier
put forward a significant conjecture known as Ihara-Kaneko-Zagier’s conjecture
(see [32, Conjecture 1]), which states that all Q-linear relations among MZV’s can
be obtained from the extended double shuffle relations. This conjecture implies
Goncharov’s conjecture, which asserts that all Q-linear relations among MZV’s can
be deduced from those among MZV’s of the same weight.

We now give precise details in the rest of this section.

1.2.2. Quasi-shuffle algebras.

The quasi-shuffle product, introduced by Hoffman, is a notion we will review.
It involves a field k and a countable set X = {xi}i∈N of letters, each of which is
assigned a weight w(xi) ∈ N. Tensor products will be taken over k. Additionally,
for each n ∈ N, we assume that the set Xn of letters with weight n is finite.

We refer to X as an alphabet, and its elements as letters. A word over the
alphabet X is a finite sequence of letters, and we denote the empty word by 1. The
depth of a word a is the number of letters in a, with depth(1) = 0. The weight of
a word a is the sum of the weights of its letters, denoted by w(a).

The set of all words over X is denoted by 〈X〉. We define the concatenation
product on 〈X〉 as follows: for any words a = xi1 . . . xin and b = xj1 . . . xjm , we
have

a · b = xi1 . . . xinxj1 . . . xjm .

We denote by k〈X〉 (resp. kX) the k-vector space with 〈X〉 (resp. X) as a basis.
The concatenation product extends to k〈X〉 by linearity, so that k〈X〉 is a graded
algebra with respect to weight.

We use the notation au to denote the word obtained by appending a letter a ∈ X
to a word u ∈ 〈X〉. For a non-empty word a ∈ 〈X〉, we can write a = xaa−, where
xa is the first letter of a and a− is the word obtained from a by removing xa.

We define X = X ∪ {0} and introduce a commutative and associative product
� : X×X→ X which preserves the grading. This means that for any a, b, c ∈ X, we
have:

• a � 0 = 0.
• a � b = b � a.
• (a � b) � c = a � (b � c).
• Either a � b = 0 or w(a � b) = w(a) + w(b).

We define a new operation denoted by ∗� on the vector space k〈X〉, which is
generated by words over the alphabet X. The definition of � is recursive: we set
1 ∗� u = u ∗� 1 = u for any word u, and for any letters a, b and any words u, v, we
define

au ∗� bv = a(u ∗� bv) + b(au ∗� v) + (a � b)(u ∗� v),

where � is a binary operation on X. This operation is called the quasi-shuffle product
associated to �. A theorem due to Hoffman [26, Theorem 2.1] states that the vector
space k〈X〉 equipped with ∗� is a commutative k-algebra.
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We also define a coproduct map ∆ : k〈X〉 → k〈X〉 ⊗ k〈X〉 and a counit map
ε : k〈X〉 → k. The coproduct is defined by

∆(u) =
∑
ab=u

a⊗ b,

where the sum is taken over all pairs of words a and b whose concatenation is equal
to u. The counit is defined as follows:

ε(u) =

{
1 if u = 1,

0 otherwise,

for all words u ∈ 〈X〉. Hoffman proved in [26, Theorem 3.1] that k〈X〉 equipped with
the multiplication ∗� and the comultiplication ∆ is a bialgebra. Since both ∗� and
∆ respect the grading, this implies that the bialgebra structure of k〈X〉 is graded.

Theorem 1.2. The algebra k〈X〉 with the ∗�-multiplication and ∆-comultiplication
is a graded Hopf algebra. Further, it is connected and of finite type.

Moreover, the antipode S : k〈X〉 → k〈X〉 is given explicitly in [26, Theorem 3.2]:
for any word u = xi1 . . . xin we have

S(u) =
∑

(j1,...,jk)

(−1)kxi1 . . . xij1 ∗�xij1+1 . . . xij1+j2
∗�· · ·∗�xij1+···+jk−1+1 . . . xij1+···+jk

where the sum runs through the set of all partitions (j1, . . . , jk) of n.

For recent developments on quasi-shuffle products, we refer the reader to [27, 29,
30, 31].

1.2.3. The Hoffman algebra, stuffle product and shuffle product.

In this section we take k = Q. Let X be the alphabet with two letters x0, x1
with weight 1, that means w(x0) = w(x1) = 1. We denote h = Q〈X〉 and call it
the Hoffman algebra. A word in the alphabet X is said to be positive if it is of the
form x1u and is said to be admissible if it is of the form x1ux0. We denote by h1

(resp. h0) the subspace of h spanned by positive words (resp. admissible words).

For all i ∈ N we put zi = x1x
i−1
0 . Then w(zi) = i. Let Z be the alphabet

with letters {zi}i∈N. Then h1 = Q〈Z〉. We now equip the alphabet Z with the
commutative and associative product � : Z × Z → Z given by

zi � zj = zi+j

for all i, j ∈ N. The associated quasi-product on h1 = Q〈Z〉 will be denoted by ∗ and
called the stuffle product. A word in h1 is called admissible if it can be expressed
as zs1 . . . zs` with s` > 1. We note that h0 is the subspace generated by admissible
words in h1 and that (h0, ∗) is a subalgebra of (h1, ∗). Further, the harmonic product
on MZV’s gives rise to a homomorphism of Q-algebras

ζ∗ : h0 → R

which sends an admissible word zs1 . . . zs` to the associated zeta value ζ(s1, . . . , sr),
that means

ζ∗(u ∗ v) = ζ∗(u)ζ∗(v)

for all words u, v ∈ h0. This map is called the stuffle zeta map.
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We now recall the shuffle algebra. We endow X with the trivial product � :
X ×X → X given by

a � b = 0

for all a, b ∈ X. The associated quasi-product on h = Q〈X〉 will be denoted by �
and called the shuffle product. We see that (h0,�) and (h1,�) are subalgebras of
(h,�). The shuffle product on MZV’s defines a homomorphism of Q-algebras

ζ� : h0 → R

which sends an admissible word zs1 . . . zs` to the associated zeta value ζ(s1, . . . , sr),
that means

ζ�(u� v) = ζ�(u)ζ�(v)

for all words w, v ∈ h0. This map is called the shuffle zeta map.

Using these zeta maps yield the so-called double shuffle relations in the conver-
gent case: for all words u, v ∈ h0,

ζ∗(u ∗ v) = ζ�(u� v).

1.2.4. Regularized zeta maps.

Following Ihara-Kaneko-Zagier [32], we note that the homomorphism of (h0, ∗)-
algebras ϕ∗ : h0[T ] → h1 which sends T to z1 is an isomorphism. Further, the
following homomorphisms of (h0,�)-algebras

ϕ� : h0[T ]→ h1, T 7→ x1,

ϕ� : h0[T,U ]→ h, T 7→ x1, U 7→ x0,

are isomorphisms.

Now we define the stuffle regularized zeta map

(1.1) ζ∗ : h1 → R

as the composition

h1 → h0[T ]→ R[T ]→ R

where the first map is ϕ−1∗ , the second map is induced by the stuffle zeta map and
the last one is the evaluation at T = 0. Similarly, we define the shuffle regularized
zeta map

(1.2) ζ� : h→ R

as the composition

h→ h0[T,U ]→ R[T,U ]→ R

where the first map is ϕ−1
�

, the second map is induced by the shuffle zeta map and
the last one is the evaluation at T = U = 0.

In the study of MZV’s, Ihara, Kaneko, and Zagier [32] used the maps discussed
earlier to extend the double shuffle relations among MZV’s. They formulated the
following influential conjecture:

Conjecture 1.3 (Ihara-Kaneko-Zagier’s conjecture). The extended double shuffle
relations exhaust all Q-linear relations among MZV’s.
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1.2.5. Stuffle Hopf algebra and shuffle Hopf algebra.

By the work of Hoffman [26] the above algebras can be endowed with a richer
structure, i.e., that of Hopf algebras. In fact, as a direct consequence of Theorem 1.2,
we get two Hopf algebras for classical MZV’s.

The first graded Hopf algebra

H∗ = (h1, ∗)
comes from the stuffle product. We note that it is related to the algebra of quasi-
symmetric functions over k (see [19, 27]). For some applications of Hopf algebra
structure, we refer the reader to [27] (see also [36]).

The second graded Hopf algebra

H� = (h,�)

is the shuffle algebra (see [41]). Explicitly,

• h = Q〈x0, x1〉.
• The coproduct is given by the shuffle product �.
• The unit is given by the empty word 1.
• The coproduct ∆ : h→ h⊗ h is given by the deconcatenation

∆(u) =
∑
ab=u

a⊗ b

for any words u ∈ h.
• The counit ε : h→ Q is given by

ε(u) =

{
1 if u = 1,

0 otherwise.

• The antipode S : h→ h is given by

S(xi1 . . . xin) = (−1)nxin . . . xi1 .

This Hopf algebra and its motivic version introduced by Goncharov [21] lie in
the heart of the works of Brown [7], Deligne-Goncharov [18] and Terosoma [45] (see
also [9]).

1.3. Zagier-Hoffman’s conjectures.

It is remarkable that Zagier [54] and Hoffman [25] were able to guess the dimen-
sion and provide a conjectural explicit basis for the Q-vector space Zk, which is the
span of MZV’s of weight k for k ∈ N.

Conjecture 1.4 (Zagier’s conjecture). We define a Fibonacci-like sequence of in-
tegers dk as follows. Letting d0 = 1, d1 = 0 and d2 = 1 we define dk = dk−2 + dk−3
for k ≥ 3. Then for k ∈ N we have

dimQ Zk = dk.

Conjecture 1.5 (Hoffman’s conjecture). The Q-vector space Zk is generated by
the basis consisting of MZV’s of weight k of the form ζ(n1, . . . , nr) with ni ∈ {2, 3}.

The question of determining upper bounds for dimQ Zk in the conjectures men-
tioned above, which is an algebraic aspect, was resolved using the theory of mixed
Tate motives by Terasoma [45], Deligne-Goncharov [18], and Brown [7].

Theorem 1.6 (Deligne-Goncharov, Terasoma). For k ∈ N we have dimQ Zk ≤ dk.
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Theorem 1.7 (Brown). The Q-vector space Zk is generated by MZV’s of weight k
of the form ζ(n1, . . . , nr) with ni ∈ {2, 3}.

Indeed, the determination of lower bounds for dimQ Zk is a major problem in
the theory of multiple zeta values. While upper bounds have been obtained using
the theory of mixed Tate motives, lower bounds remain completely out of reach.

2. Multiple zeta values in positive characteristic

2.1. Multiple zeta values of Thakur.

There is a well-known analogy between number fields and function fields (see
[35, 37, 53]). Inspired by Euler’s work on multiple zeta values and that of Carlitz
[10] on zeta values in positive characteristic, Thakur [50] introduced multiple zeta
values attached to the affine line over a finite field. Multiple zeta values over function
fields have been extensively studied in recent years. They share many properties
with their classical counterparts, and are closely related to certain algebraic varieties
over finite fields, such as Drinfeld modular varieties.

We now need to introduce some notations. Let A = Fq[θ] be the polynomial ring
in the variable θ over a finite field Fq of q elements of characteristic p > 0. We
denote by A+ the set of monic polynomials in A. Let K = Fq(θ) be the fraction
field of A equipped with the rational point ∞. Let K∞ be the completion of K
at ∞. We denote by v∞ the discrete valuation on K corresponding to the place
∞ normalized such that v∞(θ) = −1, and by |·|∞ = q−v∞ the associated absolute
value on K.

In [10] Carlitz introduced the Carlitz zeta values ζA(n) for n ∈ N given by

ζA(n) :=
∑
a∈A+

1

an
∈ K∞

which are analogues of classical special zeta values in the function field setting.
For any tuple of positive integers s = (s1, . . . , sr) ∈ Nr, Thakur [46] defined the
characteristic p multiple zeta value (MZV for short) ζA(s) or ζA(s1, . . . , sr) by

ζA(s) :=
∑ 1

as11 . . . asrr
∈ K∞

where the sum runs through the set of tuples (a1, . . . , ar) ∈ Ar
+ with deg a1 > · · · >

deg ar. We call r the depth of ζA(s) and w(s) := s1+· · ·+sr the weight of ζA(s). We
note that Carlitz zeta values are exactly depth one MZV’s. Thakur [47] showed that
all the MZV’s do not vanish. We refer the reader to [3, 4, 20, 22, 40, 46, 48, 49, 50, 51]
for more details about these objects.

Thakur proved that the product of two MZV’s is a K-linear combination of
MZV’s and we call it the shuffle product in positive characteristic. As in the classical
setting, the main goal of the theory is to understand all linear relations over K
among MZV’s.

2.2. Analogues of Zagier-Hoffman’s conjectures.

In positive characteristic, Thakur in [50, §8] and Todd in [52] formulated ana-
logues of Zagier-Hoffman’s conjectures, which aim to understand all linear relations
over K among MZV’s.
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Recently, the fourth author provided a solution to these conjectures for small
weights in [38], using tools from Chen [14], Thakur [49, 50] and Todd [52] as well as
the theory of t-motives and dual motives of Anderson [1, 8, 24], and the Anderson-
Brownawell-Papanikolas criterion in [2] (see [39, 11, 12] for further development).
Later, the authors of [33] developed a new approach and were able to solve these
conjectures for all weights. In particular, they proved Theorem B in [33]:

Theorem 2.1 (Zagier’s conjecture in positive characteristic). For w ∈ N we denote
by Zw the K-vector space spanned by the MZV’s of weight w. Letting

d(w) =


1 if w = 0,

2w−1 if 1 ≤ w ≤ q − 1,

2w−1 − 1 if w = q,

we put d(w) =
∑q

i=1 d(w − i) for w > q. Then for any w ∈ N, we have

dimK Zw = d(w).

Theorem 2.2 (Hoffman’s conjecture in positive characteristic). We keep the above
notation. A K-basis for Zw is given by Tw consisting of ζA(s1, . . . , sr) of weight w
with si ≤ q for 1 ≤ i < r, and sr < q.

The findings of [33] have been extended to alternating multiple zeta values,
which were introduced by Harada [23]. These values have been studied by several
mathematicians in the classical setting due to their connections in various contexts.
Interested readers can refer to [13, 15, 23, 28, 55] for further details. However, there
is currently no knowledge of any algebraic structures of multiple zeta values in pos-
itive characteristic (see [38, Remark 2.2, Part 1]). The proofs of the aforementioned
theorems use new tools, such as the operations introduced by Todd [52] and the
fourth author [38], as well as the Anderson-Brownawell-Papanikolas transcendence
criterion [2].

2.3. Algebraic structures of MZV’s.

In [34] we presented a detailed investigation into the algebraic structures of
MZV’s in positive characteristic. This work was motivated by a question raised by
a referee of [38] and a suggestion made by Deligne [17] in a private letter to Thakur
in 2017, proposing the existence of a Hopf algebra structure for MZV’s in positive
characteristic.

We constructed both the Hopf stuffle algebra and the Hopf shuffle algebra in
positive characteristic, thus solving the conjectures posed by Deligne, Thakur, and
Shi in their respective works. The results of loc. cit. provide a complete solution to
the aforementioned questions and conjectures and we hope that it would open new
perspectives in the study of MZV’s in positive characteristic.

Let us give now more precise statements of our results.

2.3.1. Composition space.

We recall a new structure called the composition space C, which is suggested by
Shuji Yamamoto (see [50, §5.2]). The composition space plays a similar role to the
Hoffman algebra h in the context of MZV’s in positive characteristic. We define X
as a countable set equipped with the weight w(xn) = n and call it an alphabet. The
elements of X are called letters. Let C = Fq〈X〉 be the free Fq-vector space with
basis 〈X〉.
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2.3.2. Shuffle algebra and shuffle map.

We define the unit u : Fq → C by sending 1 to the empty word 1. Next we define
recursively two products on C as Fq-bilinear maps

� : C× C −→ C and � : C× C −→ C

by setting 1 � a = a � 1 = a, 1� a = a� 1 = a and

a � b = xa+b(a− � b−) +
∑

i+j=a+b

∆j
a,bxi(xj � (a− � b−)),

a� b = xa(a− � b) + xb(a� b−) + a � b,

for any words a, b ∈ 〈X〉, Here the coefficients ∆i
a,b are given by

∆i
a,b =

{
(−1)a−1

(
i−1
a−1
)

+ (−1)b−1
(
i−1
b−1
)

if (q − 1) | i and 0 < i < a+ b,

0 otherwise.

We call � the diamond product and � the shuffle product.

Our first result provides a positive solution to the questions posed in [38, Remark
2.2, Part 1] and [44, Conjectures 3.2.2 and 3.2.11]. This result is presented in [34,
Theorem A].

Theorem 2.3. The spaces (C, �) and (C,�) are commutative Fq-algebras. Further,
for all words a, b ∈ C we have

ζA(a� b) = ζA(a) ζA(b).

If we denote by Z the K-vector space spanned by MZV’s, then the homomorphism
of K-algebras

Z� : C⊗Fq K → Z

a 7→ ζA(a)

is called the shuffle map in positive characteristic.

2.3.3. Shuffle Hopf algebra.

We also define recursively a product on C as a Fq-bilinear map

. : C× C −→ C

by setting 1 . a = a . 1 = a and

a . b = xa(a− � b)

for any words a, b ∈ 〈X〉. We call . the triangle product. Inspired by the work of
Shi [44, §3.2.3] we define a coproduct

∆ : C→ C⊗ C.

using . rather than the concatenation on recursive steps for words with depth > 1.
The counit ε : C→ Fq is defined as follows: ε(1) = 1 and ε(u) = 0 otherwise.

We note that for quasi-shuffle algebras introduced by Hoffman [26] and their
generalization, the coproduct is roughly speaking the deconcatenation. The co-
product ∆ defined as above is completely different from the deconcatenation and
involves complicated combinatorics.

Our second result shows that this construction gives rise to a Hopf algebra struc-
ture of the shuffle algebra (see [34, Theorem B]).
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Theorem 2.4. The connected graded bialgebra (C,�, u,∆, ε) is a connected graded
Hopf algebra of finite type over Fq.

Next we study the coproduct ∆ for letters in detail and prove some key proper-
ties. As an immediate consequence, we deduce that the coproduct ∆ coincides with
the coproduct introduced by Shi in [44, §3.2.3] (see [34, Theorem B]).

2.3.4. Stuffle algebra and stuffle Hopf algebra.

The stuffle algebra is easier to define. We introduce the stuffle product in the
same way as that of (h1, ∗) as above. The ∗ product

∗ : C× C −→ C

is given by setting 1 ∗ a = a ∗ 1 = a and

a ∗ b = xa(a− ∗ b) + xb(a ∗ b−) + xa+b(a− ∗ b−)

for any words a, b ∈ 〈X〉. We call ∗ the stuffle product and see that (C, ∗) is a
commutative Fq-algebra.

Then we define a coproduct ∆∗ : C→ C⊗ C and a counit ε : C→ Fq by

∆∗(w) =
∑
uv=w

u⊗ v

and

ε(w) =

{
1 if w = 0,

0 otherwise,

for any words w ∈ 〈X〉.
We deduce from the work of Hoffman [26] that the stuffle algebra (C, ∗, u,∆∗, ε)

is a connected graded Hopf algebra of finite type over Fq. Using our previous works
[33, 38] we are able to construct a homomorphism of K-algebras called the stuffle
map (see [34, Theorem B]):

Theorem 2.5. Recall that Z is the K-vector space spanned by MZV’s. Then there
exists a homomorphism of K-algebras

Z∗ : C⊗Fq
K → Z

called the stuffle map in positive characteristic.
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