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Abstract 13 

Public transport is a fundamental aspect of urban life and its quality of service can 14 

significantly impact the daily life of passengers. Research on quality of service in public 15 

transport is vital to creating efficient and inclusive public transport systems. This study 16 

which is both timely and imperative, provides a systematic literature review and 17 

bibliometric analysis of quality of service in public transport with special focus on 18 

gender and machine learning. The study employed a systematic search in Web of 19 

Science using relevant keywords. Based on 270 published articles on the Web of 20 

Science, we evaluate the state of knowledge through keyword analysis, co-21 

occurrences, and co-citations. It appears that key themes in quality of service in public 22 

transportation have shifted from efficiency to user satisfaction and perceptions. 23 

However, there is limited literature on public transport service quality in the global 24 

south, particularly in Africa, compared to the global north. In particular, the study 25 

revealed that the total publications focusing on gender in Africa is two. Moreover, much 26 

of the literature on the African continent emanates from authors and countries outside 27 

the continent. It often does not reflect the lived realities of the state of public transport 28 
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in Africa. Similarly, emerging issues pertaining to machine learning and gender in 29 

public transport also require consideration. This paper paves the way for policy, 30 

practice, and further research. The review will be useful reference for evolutions of 31 

quality of service in public transport research.  32 

Keywords: PRISMA, Vosviewer, Quality of service, Public transport, Gender, 33 

Machine learning 34 

1. Introduction 35 

The quality of public transport services is always a major challenge in African cities 36 

(Luke and Heyns, 2020). Indeed, the deteriorating quality of service in public transport 37 

is evident through poor access to economic opportunities and the unreliability of public 38 

transportation. To the other end, high costs and longer commuting hours for local and 39 

national travel have further limited access to human life's important needs (Guevara 40 

et al. 2020). The poor quality of service makes it difficult to break the current habit of 41 

using motor vehicles and switching to alternative sustainable means of transport, such 42 

as public transport (Mugion et al. 2018). Over the years, public transport has been 43 

regarded as an effective tool to address multiple societal challenges of sustainability 44 

and liveability (Friman et al. 2019; Oort and Yap, 2021). An effective public transport 45 

system cause the least harm to the environment while offering a mobility service to 46 

everyone choosing to use it (Park and Chowdhury, 2018).  47 

Striving for improved quality of service in public transport to increase customer 48 

satisfaction has sparked the interest of researchers (Paulley et al. 2006; De Oña et al. 49 

2013; Cantillo et al. 2022). However, public transport studies are confronted with 50 

challenges of the lack of literature in the African continent on the quality of service, 51 

gender, and machine learning. A search on Web of Science (WoS) identified 270 52 

published articles with only 2 articles focusing on public transport and gender issues 53 

in Africa. In Ghana, Adom‑Asamoah et al. (2021) conducts a study on the quality of 54 

service in public transport by looking closely at Ghana’s intra-city public transport. 55 

Their study shows that passengers choose to minimise the frequency use of public 56 

transport due to poor customer care. Though the paper is categorized under gender 57 

considerations, its content does not address the gender aspect in public transport. 58 

Additionally, Moghayedi et al. (2023) utilized socio demographics information to 59 

analyse modal choice among women in South Africa when using public transport, 60 
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employing a Structure Equation Model (SEM). Their research demonstrate that service 61 

quality and socio demographic background influence modal choice. The study further 62 

underscores the need for incorporations of new technologies in public transportation 63 

studies in Africa.   64 

Globally, the focus on the quality of service, gender and machine learning in public 65 

transport has been identified in transport research (Dell’Olio et al. 2011; Wei et al. 66 

2022). Previous research has provided valuable insights on service quality, user 67 

satisfaction, performance, efficiency and quality of service in public transport (De Oña 68 

et al. 2015; Tirachini et al. 2017; Chen et al; 2022). In one study, Haghighi et al. (2018) 69 

develops an evaluation framework using unsupervised machine learning applied to 70 

twitter data, where people expressed their opinions about the satisfaction with services 71 

provided by Salt Lake City local transit system. Indeed, machine learning has been 72 

developed to explore different concepts in different disciplines (Okoroafor et al. 2022; 73 

Sholevar et al. 2022) including public transport.  74 

In the field of gender studies, Dash et al. (2022) conducts an analysis on service quality 75 

and and passenger satisfaction among bus riders in Baku. Their findings indicate that 76 

inadequate bus services significantly reduce passenger satisfaction with socio-77 

demographic information playing no role in this regard. Furthermore, Freista et al. 78 

(2023) examined gender differences in perception of bus transport service quality in 79 

Brazil. Using an Importance Performance Analysis and Tarrant and Smith 80 

methodology for the analysis. The results indicate that factors such as waiting time, 81 

scheduling and maintenance were important to both men and women. However, 82 

gender differences emerged with women placing greater importance to safety and 83 

treatment while men prioritized cost and rules than the actual bus service quality.  84 

Nonetheless, these studies have not addressed the gender dimensions extensively in 85 

public transport, lived experience on perception and expectations.  86 

Inlight of evolving technology, dynamic changes in customer preferences, the 87 

increasing need for sustainable and inclusive transportation options, remains 88 

unexplored territory in understanding the dynamics of quality of service in public 89 

transport particularly concerning gender related issues and potential of machine 90 

learning techniques to enhance service quality. Consequently, the increase in 91 

knowledge in public transport research has made it hard to comprehend all the 92 
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research done, making it important to undertake a bibliometric analysis and review of 93 

literature to identify emerging research focus and key areas. Thus, this paper aims to 94 

use Bibliometric analysis and Preferred Reporting Items for Systematic Reviews and 95 

Meta-Analyses (PRISMA) to document the  the state of the art of knowledge of quality 96 

of service in public transport, identify new trends and emerging themes in the literature.  97 

Following this introduction, we discuss the methodological issues relating to the 98 

bibliometric analysis and PRISMA method focusing on how the data was gathered and 99 

analysed for this paper. The following section presents findings obtained from the 100 

bibliometric analysis. Next, these findings are discussed and a conclusion is provided 101 

to wrap the study.  102 

2. Materials and Methods 103 

The review of the literature was executed using PRISMA protocols (Moher et al. 2016) 104 

and bibliometric analysis.  105 

2.1 Information Sources and Search 106 

Web of Science (WoS) and Scopus are the main used database for research in 107 

bibliometric analysis. WoS was selected as the only database used in this paper. 108 

Although both databases use interdisciplinary approaches, WoS contains 109 

comprehensive coverage in literature (Mongeon and Hus, 2016). Introduced by the 110 

Institute of Scientific Information (ISI) in 1964, WoS has since evolved in scientific 111 

research coverage with the most impact and is a widely used database for systematic 112 

literature research (Birkle et al. 2020). WoS compared with Scopus was the best fit for 113 

this paper as Zhu and Liu (2020) stated that WoS is widely used and effective in 114 

practice. 115 

All studies relating to the research were eligible for review with no specification on 116 

publication years. The database search in WoS was conducted and classified using 117 

the following keywords. The database search and the subsequent analysis were both 118 

carried out on a global scale.  119 

 “Quality of service” AND “Public transport” 120 

 “Quality of service” AND “Public transport” AND “Gender” 121 

 “Quality of service” AND “Machine learning” AND “Public transport” 122 
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2.1.1 Keywords Defined 123 

Quality of service: Is a multifaceted concept. Generally, QoS is defined as the level of 124 

service and customer satisfaction that public transport users experience when using 125 

a public transport systems (Machado et al. 2018; De Oña et al. 2021). It includes 126 

various factors that contribute to the overall experience of the passenger. This ranges 127 

from reliability, accessibility, travel time etc. 128 

Machine Learning: Machine learning is a subset of Artificial Intelligence (AI), allowing 129 

a system to adapt and learn from the available data (Bi et al. 2019). It uses algorithms 130 

that progressively learn from data to enhance their ability to understand data patterns 131 

and make predictions (Peng et al. 2021).  132 

The inclusion criteria were all articles published in the field of quality of service in public 133 

transport (Table 1). 134 

Table 1: Inclusion and exclusion criteria for the data collection extracted from the database 135 

Inclusion criteria Exclusion criteria 

All articles with topics in the quality of service in 

public transport 

Studies outside public transport scope 

All articles with topics relating to gender 

dimensions in quality of service in public 

transport 

Unpublished thesis and dissertations 

All articles with topics relating to machine 

learning techniques used in public transport 

Newspapers, conference papers 

Language: English Non-English language 

Countries: Looked from globally then Africa  

 136 

The search in the literature was directed by screening titles and abstracts for each 137 

article to confirm eligibility. The in-depth information on the selection process is 138 

presented in Figure 1 as guided by the PRISMA protocols. PRISMA is a method used 139 

successfully to extensively scan all literature to find answers to a specified research 140 

question for a study (Selcuk, 2019). The method is employed because it eliminate the 141 

bias resulting from the traditional methods of conducting a literature review. In 142 

Addition, PRISMA guidelines increase validity of the findings of the study (Page et al. 143 

2021) and present the results in a coherent manner.  144 

  145 
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 146 

Figure 1: PRISMA flow diagram 147 

Adapted from Moher et al. (2016) 148 

 149 

The review identified 26,642 studies in WoS, of which 10 were duplicates and 150 

consequently removed. 26,632 were used for this study. After examining the title and 151 

abstract of each article and refining the scope of quality of service in public transport, 152 

26,468 studies were excluded because they did not meet the eligibility for the present 153 

review. Following the guidelines of PRISMA, a total of 164 articles were eligible for the 154 

present review in this paper. 155 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: PRISMA flow diagram 

Records screened 

QOS & PT: (n=26, 632) 

QOS & PT & Gender: (n=26, 632) 

QOS & PT & ML: (n=162, 293) 

Electronic database search 

QOS & PT: (n=26, 642) 

QOS & PT & Gender: (n=26, 642) 

QOS & PT & ML: (n= 162, 293) 

 

Records after duplicates 

removed 

QOS & PT: (n=10) 
QOS & PT & Gender: (n=10) 
QOS & PT & ML: (n=0) 

 

 

Full text articles assessed 

for eligibility 

QOS & PT: (n=164) 
QOS & PT & Gender: (n=9) 
QOS & PT & ML: (n=98) 

Records excluded 

QOS & PT: (n=26, 468) 
QOS & PT & Gender: (n=26, 623) 
QOS & PT & ML: (n=162, 195) 

 

Full articles excluded 

QOS & PT: (n=0) 
QOS & PT & Gender: (n=1) for being 
outside the context of the paper 
QOS & PT & ML: (n=0) 

 Studies included in quality 

synthesis 

QOS & PT: (n=164) 
QOS & PT & Gender: (n=8) 
QOS & PT & ML: (n=98) 

Reviewed articles 

QOS & PT: (n=12) 
QOS & PT & Gender: (n=8) 
QOS & PT & ML: (n=12) 



7 
 

We also searched the terms “Quality of service” AND “Public transport” AND “Gender” 156 

resulting in 26,642 studies in WOS, of which 10 were duplicates and therefore 157 

removed, resulting in 26,632 being used for the initial analysis. After examining the 158 

title and abstract for each article and refining the scope of quality of service in public 159 

transport, with special reference to gender, 26,623 studies were excluded. Exclusion 160 

was because they did not meet the eligibility for the present review. After the screening 161 

stage, 9 articles were taken further into the eligibility stage. Of the 9 articles, 1 was 162 

excluded for it was outside the scope and only referred to non-motorised transport. 163 

The final 8 articles were eligible for the present review in this paper. 164 

Lastly, for  “Machine learning” AND “Public transport”, we identified 162,293 studies in 165 

WOS. After examining the title and abstract of each article and refining the scope of 166 

machine learning in public transport, 162,195 studies were excluded because they did 167 

not meet the eligibility for the present review. Following the guidelines of PRISMA, 98 168 

articles were eligible for the present review in this paper. The reviewed articles during 169 

the inclusionary phase (Figure 1) were selected based on the highest cited articles in 170 

each group. 171 

3. Bibliometric analysis  172 

Bibliometric analysis is used in academic literature to provide a quantitative evaluation 173 

of published literature (Van Nunen et al. 2017). It is the best technique used to 174 

comprehend a vast amount of academic literature on a given topic or concept. Based 175 

on statistical sampling, bibliometric analysis assesses the impact of a published article 176 

relating to a study and the extent of its impact on the rest of the literature (Soosaraei 177 

et al. 2018). Figure 2 shows the procedure used in conducting the bibliometric analysis. 178 
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 179 

Figure 2: A guide on the bibliometric analysis for this paper 180 

The analysis enabled this study to identify knowledge in concepts, identify major 181 

authors, their influence and overall research impact on the quality of service, public 182 

transport and machine learning. Upon completion of the search phase, data retrieved 183 

from WoS was used for the analysis using VOSviewer software version 1.6.17 (Al 184 

Husaeni and Nandiyanto, 2022). The data was then analysed to assess the co-185 

occurrences, citations, and co-authorships using VOSviewer as depicted in Figure 2. 186 

The interpretations of bibliometric maps and tables produced through VOSviewer are 187 

explained in Table 2.  188 

Table 2: overall interpretation of bibliometric analysis maps 189 

Concept Description 

Clusters Groups of items, differentiated by a different colour. 

 

Items Items are the objects of interest. For example, researchers, publications  

Total link strength The total strength of the connection between researchers, keywords, in 

cases of authorship analysis, the higher the value, the higher the co 

authorship 

Links It is the relationship between items, these may be co authorship 

connections with researchers, keywords, publications 

Network A group of items and their connections (links) 
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 190 

In addition to the information provided in Table 2. The illustrated circles in the Figures 191 

represent the occurrence of the concept. The bigger the size of a circle, the higher the 192 

keyword occurrence in published articles relating to the quality of services in public 193 

transport using machine learning techniques. Thus, the larger the label and circle of 194 

the keywords, the more important it is. The distance between the keywords shows the 195 

relationship between the keywords. The shorter the distance between the keywords, 196 

the stronger their relation (Yu et al. 2020). The colours are used to distinguish different 197 

clusters. 198 

VOSviewer is a software that provides a visual analysis of the literature review such 199 

as trends, research focus and hotspots (Zhang et al. 2021; Soegoto et al. 2022). 200 

Although Citespace has been used in several articles (Kumar Sood et al. 2021; Nyathi 201 

et al. 2022), VOSviewer remains the primarily used software in the research fields 202 

because it can comprehend vast information while giving credible results. 203 

Transportation research have tapped into bibliometric analysis using VOSviewer 204 

software. In one study, Ceccato et al. (2021) used VOSviewer to analyse the safety of 205 

passengers during the trip duration and along transportation nodes. The study 206 

uncovered 245 articles related to safety concerns in railway modes from 1990 to 2020, 207 

which advocated for further research into passengers' safety concerns. Seemingly, 208 

Allam and Sharif (2022) studied the concept of smart mobility in western cities. The 209 

study mapped dynamics and identified thematic focus in smart mobility using 210 

VOSviewer. 211 

4. Results and Discussions on bibliometric analysis 212 

4.1 Publication trends of Quality of service 213 

The initial publication on service quality in public transport globally emerged in the 214 

early 1990s. Most of the articles focused on supplying the quality of service in public 215 

transport through scheduling to increase efficiency in bus transit for the benefit of 216 

transit companies' production growth. Over time, there was a slump, probably due to 217 

the low influence of studies. It was not until 2010 that research grew in this 218 

phenomenon due to more people researching, which simultaneously increased 219 

citations (see Figure 3).  220 



10 
 

 221 

Figure 3: Times Cited and Publications over Time in quality of service and public transport 222 

Although there was a slight decline in 2019 in publications and citations on the topic, 223 

research on the quality of services in public transport has been growing which shows 224 

a spark of interest and investment in that field. The research has grown significantly, 225 

especially since 2015, with 10 publications. The increase in publications was during 226 

debates around sustainability that include sustainable modes of transport. 227 

 228 

Figure 4: Times Cited and Publications over Time in quality of service in public transport and gender 229 

It can be noted that the quality of service in public transport, with special reference to 230 

gender issues, is an under-examined area of research (Figure 4) globally. The 231 
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research can only be traced back to 2011. In 2020, there were only 2 reviewed 232 

publications cited 12 times and this was the most influential body of work.  233 

Moore (2011), whose focus was on health issues around women, studied females' 234 

problems with drugs and alcohol. As a result, one of the indicators was the lack of 235 

public transport and the study indicated a lack of research on women's geographical 236 

barriers in accessing public transport. In addition, Chaudhary (2020) studied service 237 

quality in Bus-Rapid Transit in India through the perceptions of user's perspective, the 238 

results showed that the perception of public transport users depended heavily on 239 

gender, educational level, employment status, and reasons for travel. The popularity 240 

of sustainable development goals (SDGs), especially SDG 11.2 (advocates for 241 

efficient, equal, and sustainable access to women and other vulnerable groups) led to 242 

increasing research in public transport and gender dimension.  243 

 244 

Figure 5: Times Cited and Publications over Time in quality of service in public transport and Machine 245 

In addition to the gender dimension in research, machine learning has greatly 246 

impacted public transport research (Figure 5). Research in machine learning in public 247 

transport can be dated back to 2012. In 2012 researchers like Mendes-Moreira et al. 248 

(2012) focused more on using regression methods to predict travel time. The most 249 

cited body of work in this field is a study by Hagenauer and Helbich (2017), with 103 250 

citations. The study compared the predictive performance of seven carefully chosen 251 

machine learning classifiers to analyze choice in different modes of transport using 252 
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Dutch travel data. The availability of big data has increased research in machine 253 

learning as a way to solve current mobility challenges. 254 

Publications on quality of service in public transport research are highly cited by 255 

countries in the global north. Spain and the USA are the leading countries by citation 256 

and most of its research focuses on unpacking service quality by investigating different 257 

methodologies in evaluating customer satisfaction (Dell'Olio et al. 2011; De Oña et al. 258 

2015). Spain also possesses an advantageous location that connects it with countries 259 

in Europe and America. Authors from China highly cite publications in machine 260 

learning and public transport. Of the 98 articles retrieved from Web of Science, 23 are 261 

published in China, for example, China's research areas are on assessing health 262 

issues in public transport (Zhou et al. 2021), predicting car crashes using trained 263 

algorithms (Ijaz et al. 2021) and developing warning models for bus transport users 264 

(Liu et al. 2020). Overall, the highest citations by countries come from countries that 265 

fall under the group of 7 organisations that rank among the wealthiest countries 266 

globally. Moreover,  most of these highly cited papers are written by authors from 267 

countries in the global north. These publications may not reflect African realities 268 

making it difficult to fully comprehend the dynamics that exist in public transportation 269 

services. 270 

4.2   Quality of service in public transport 271 

4.2.1 Keywords analysis 272 

A co-occurrence network analysis was performed and the results yielded six clusters 273 

represented by red, green, navy blue, light blue, purple and yellow colour coding 274 

(Figure 6). The keyword analysis was based on the 270 publications identified in WoS. 275 

In the red cluster, the dominant keywords are machine learning, transport, impact, 276 

COVID 19 and big data. Interconnected with this cluster is the green cluster. The 277 

Green cluster whose dominant keywords are modelling, framework, algorithms, 278 

networks and reliability. In the current technological era, big data has been leveraged 279 

to solve current transportation challenges cities face. As a result, machine learning 280 

has been used across various studies to predict, understand and solve emerging 281 

issues in the transportation sector (Wei et al. 2022). Indeed, models developed using 282 

machine learning techniques have been used to predict and mimic the realities in 283 

transportation and their impacts on solving the recent COVID-19 pandemic 284 
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(Gkiotsalitis and Liu, 2022). A novel spatio-temporal model developed by Ciancia et 285 

al. (2018) detected vehicle movements and problems. The model was later used to 286 

detect faults in motor vehicle around the world. 287 

 288 

Figure 6: A Co-occurrence network analysis of keywords on quality of service in public transport 289 
research 290 

The third cluster assigned to the navy blue colour code is centred on user satisfaction, 291 

perceptions, expectations and attitudes in public transport. The cluster is closely 292 

related to the yellow cluster on themes such as customer satisfaction, user 293 

satisfaction, service quality, determinants and high-speed rail in public transport. The 294 

two clusters show that the experience of public transport users is important, as they 295 

help understand a public transport industry's ability to meet user expectation to 296 

improve service quality (Joewono and Kubota, 2007). Passenger satisfaction highly 297 

depends on service quality and perceived value (De Vos et al. 2022). Customer 298 

satisfaction is mostly explored in conventional  modes of transport like buses and rail. 299 

In a bid to attract people to use high-speed rails which are the mobility options 300 

providing the least harm to the environment (Lawrence et al. 2019). There are many 301 

cases where high-speed railways and Bus Rapid Transit (BRT) has positively 302 

impacted countries that have been devoted to increasing user satisfaction. For 303 

example, In China, high-speed rail has significantly boosted economic growth by 304 
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connecting people to different economic activities at lower transportation costs (Dong, 305 

2018). 306 

The next grouping is the light blue cluster which speaks to improving the quality of 307 

service in public transport. The focus is on issues of quality of service, optimization 308 

and efficiency. Lastly, the purple cluster ties closely to the light blue cluster. Since the 309 

dominant keywords in the cluster are accessibility, travel behaviour and quality. Most 310 

of the research on travel behaviour and accessibility is closely related to gender. 311 

Zheng et al. (2022)  identified the gender bias on satisfaction levels in public transport 312 

among bus users in Brazil. Morton et al. (2016) look at expectations by examining the 313 

quality of services using a developed indicator by the Scottish government that entails 314 

assessing different attributes by scaling them across bus passengers from different 315 

socio-economic backgrounds to look at the impacts. The study reveals that females 316 

have higher expectations regarding service delivery and tend to have a negative 317 

opinion of different attributes. 318 

Moreover, Morton (2018) investigates the perceived quality of service in bicycle 319 

sharing as means of public transport. Bicycle-sharing schemes are making their way 320 

in the public transport industry, and the conclusion is that availability, maintenance 321 

and accessibility are the determining factors. Abenoza (2017) divided the respondents 322 

into groups based on their socio-demographics, accessibility and travellers patterns to 323 

determine important attributes in service quality and how they evolve with time. The 324 

results revealed that customer boundaries, trip duration, network and operations were 325 

the highly attributed to people's choice of public transport usage.  326 

The analysis shows a clear direction of the key areas on which research on the quality 327 

of service in public transport has been focusing. Machine learning and public transport 328 

are the most researched keywords, with an occurrence of 88 and total link strength of 329 

272. This opens floodgates for research to harness on the availability of machine 330 

learning, especially in African cities where less research has been done. Seemingly, 331 

gender does not form part of the keywords because most studies look at gender as 332 

after effect and do not primarily look at gender as the main research focus.  333 

4.2.2 Full-text analysis 334 
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Table 3 provides insights into various research conducted in the field of quality of 335 

service in public transport. The analysis is based on the most influential body of work 336 

determined by the highest citation. 337 

Table 3: Analysis of research on the quality of service in public transport  338 

 

CLUSTER 

  

 

KEYWORDS 

  

 

KEY STUDIES 

AUTHORS TITLE YEAR 

Red Cluster Machine learning 
Impact 
transport  
covid 19  
Big data 
Built environment 
data mining 
City 
Bus 
Predictions 
clustering 

El Mahrsi, MK; Come, 
E; Oukhellou, L; 
Verleysen, M 
 
Hagenauer, J; Helbich, 
M 
 
Islam, MF; Fonzone, A; 
MacIver, A; Dickinson, 
K 
 
Gkiotsalitis , K; Liu, T 

 
 
 
 
Wei H, Bao H, Ruan X. 

Clustering Smart Card Data for Urban Mobility 
Analysis 
 
 
A comparative study of machine learning classifiers 
for modelling travel mode choice 
 
Use of ubiquitous real-time bus passenger 
information 
 
 
 
Periodic Optimization of Bus Dispatching Times and 
Vehicle Schedules Considering the COVID-19 
Capacity Limits: A Dutch Case Study Perspective 
 
Predicting and optimizing thermal transport 
properties with machine learning methods 

2017 
 
 
 
2017 
 
 
 
2020 
 
 
 
 
 
2022 
 
 
 
 
2022 

Green 

cluster 

Model 
framework 
reliability 
algorithms 
networks 

Salva, JR; Sierra, M; 
Alanis, AKJ; Kaplan, S; 
Prato, CG 
 
Singh, N; Kumar, K 

Role of Social Climate in Habitual Transit Use by 
Young Adults to Work and Leisure Activities 
Evidence from Colombia and Mexico 
 
A review of bus arrival time prediction using 
artificial intelligence 

2015 
 
 
 
2022 

Navy Blue 

Cluster 

Perceptions 
expectations 
attitudes 
Users 
satisfaction 

De Oña , J;  De Oña , 
R; Eboli, L; Mazzulla, G 
 
Arabikhan, F; 
Postorino, MN; Dupont-
Kieffer, A; Gegov, A 
 
Efthymiou, D; 
Antoniou, C; 
Tyrinopoulos, Y; 
Skaltsogianni, E 
 
 

Perceived service quality in bus transit service: A 
structural equation approach 
 
Gender-Based Analysis of Zones of Tolerance for 
Transit Service Quality Considering Intelligent 
Transportation Systems 
 
 
Factors affecting bus users' satisfaction in times of 
economic crisis 
 
 

2013 
 
 
 
2016 
 
 
 
2018 

Yellow 

cluster 

Customer 
satisfaction 
user satisfaction 
service quality 
determinants 
high speed rail 

Paulley, N; Balcombe, 
R; Mackett, R; 
Titheridge, H; Preston, 
J; Wardman, M; Shires, 
J; White, P 
 
Chen, JP; Yan, N; Lin, 
SL; Chen, SJ 

The demand for public transport: The effects of 
fares, quality of service, income and car ownership 
 
 
 
 
Comparative Analysis of the Influence of Transport 
Modes on Tourism: High-Speed Rail or Air? 

2006 
 
 
 
 
 
 
2022 
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 339 

The research in public transport is highly focused on harnessing the use of machine 340 

learning in public transport (Table 3). Firstly, De Oña et al. (2015) sought to understand 341 

the complex nature of service quality in public transport, by exploring evolutions in 342 

methodological approaches to service quality and attributes affecting service quality. 343 

Data mining and cluster analysis were the best techniques to evaluate service quality 344 

(De Oña et al. 2015). Indeed, the use of new techniques to evaluate service quality 345 

has increased over time. Yuan (2020) used embedding network, which has important 346 

impact compared to traditional machine learning models. El Mahrsi et al. (2017) 347 

assess mobility patterns in public transport by using smart card data.  348 

Through passengers clustering, they could identify passengers travelling patterns that 349 

shed light on why traffic is experienced during morning hours, and inform the operators 350 

of the number of buses needed to accommodate the customers. Likewise, Hagenauer 351 

and Helbich (2017) used machine learning classifiers to build algorithms to evaluate 352 

service quality. Islam (2020) used ubiquitous real-time passenger information (URTPI) 353 

to enhance the perceived quality of public transport service and enables travellers to 354 

make better pre-trip and en-route travel choices. URTPI is an under-researched area 355 

because it has only 2 studies.  356 

Moreover, Hu (2016); Singh and Kumar (2022) developed a framework using 357 

algorithms to predict the arrival time of buses. The use of machine learning, as 358 

stipulated in the previous sections, is used to identify, predict and understand issues 359 

in public transportation. On the other hand, during the COVID-19 pandemic, among 360 

others, public transportation health concerns rose. Thus, Gkiotsalitis and Liu (2022) 361 

introduced an optimization model that was used to prevent the spread of COVID-19 362 

Purple 

cluster 

Accessibility 
travel behaviour 
quality 
 

Holmgren, J 
 
De Oña, R;  De Oña, J 
 
 
 
Cantillo, A; Raveau, S; 
Munoz, JC 

Meta-analysis of public transport demand 
 
Analysis of transit quality of service through 
segmentation and classification tree techniques 
 
Fare evasion on public transport: Who, when, 
where and how? 

2007 
 
 
2015 
 
 
 
2022 

Light blue 

cluster 

Public transport 
quality of service 
optimization 
efficiency  

dell'Olio, L; Ibeas, A; 
Cecin, P 
 
He, PL; Jiang, GY; 
Lam, SK; Sun, YD 

The quality of service desired by public transport 
users 
 
ML-MMAS: Self-learning ant colony optimization for 
multi-criteria journey planning 

2011 
 
 
 
2022 
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by estimating expected passenger arrival time. He et al. (2022) research is on 363 

optimization to better service quality in public transport. 364 

Different attributes determine quality of service in public transport. Paulley et al. (2006) 365 

evaluate the factors that influence public transport demand in Britain. Findings 366 

revealed that fares in buses tend to increase over time, negatively affecting service 367 

quality in bus transport. Dell'oli (2011) postulates that waiting time, cleanliness, and 368 

comfort are the most influential attributes affecting modal choice for public transport 369 

users. Moreover, Dell'olli states that the most valued attributes for potential users are 370 

trip duration, waiting time and occupancy. However, the desired quality of services in 371 

public transport is dependent on a variety of issues. De Oña et al. (2013) uses a 372 

weighted mean to analyse important factors in public transport service quality. The 373 

results are that service, comfort and driver's behaviour had the highest weight and the 374 

methodology was proven through the findings to be the best in determining important 375 

attributes in public transport. Holmgren (2007) states car ownership, petrol prices and 376 

any variable that affects the supply determine service quality. 377 

In addition, Gender differences in public transport have been identified globally as well. 378 

Salva et al. (2015) stipulate that gender difference exists in public transport because 379 

both males and females encounter different experiences while in transit. De Oña 380 

(2015) analysed the quality of service and travel behaviour among different groups 381 

based on their shared socio-economic profile. The findings indicate that punctuality 382 

and information availability while using public transport are held in high regard among 383 

all demographics. Nevertheless, accessibility received a lower rating from females 384 

compared to men. In a study conducted in Reggio, Calabria by Arabikhan (2016) focus 385 

on investigating expectations and perceptions of service quality based on gender. 386 

Notably, women exhibits a high tolerance of poor quality of service in the realm of 387 

public transport. Often, this is associated to the societal norms as confirmed by Uteng 388 

and Turner (2019), women play more supporting roles in transportation while men are 389 

involved in decision making and policy making.  390 

To evaluate quality of service in public transport, Efthymiou (2018) states that the 391 

improvement in service quality has attracted new users due to access to information, 392 

and service delivery. However, the attribute's importance differs over time. Fare 393 

evasion, a concept used when one uses public transport without paying, is a problem 394 
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experienced by many countries. It sparked research interest as it puts constraints on 395 

bus transport, eventually affecting service quality. Cantillo et al. (2022) use Chile as a 396 

case study to identify the people involved and the location where fare evasions take 397 

place. Although most of the people involved in fare evasion are men, women ultimately 398 

end up suffering due to protective measures to prevent bus fare evasion. In Athens, 399 

Greece, women fare evasion heavily depends on the evaders' socio-economic profile, 400 

especially gender (Milioti et al. 2020). The results indicate the gender dimensions that 401 

exist in the quality of service in public transport. 402 

The increase in public transport usage is determined by the quality of service in public 403 

transport. Hence, Chen et al. (2022) argue that improving the quality of services in 404 

high-speed rail results in a positive impact on the economy. Efthymiou (2017) makes 405 

a comparison analysis of Athens's public transport demand between 2008 and 2013. 406 

Results reveal an increase in public transport usage due to high maintenance costs of 407 

motor vehicles, increased vision for sustainability and improved services.  408 

4.2.2 Emerging trends and further research 409 

Figure 7 represents the results of all existing, current and emerging trends in quality 410 

of service in public transport, gender and machine learning research from 2017 to 411 

2020. The timelines are divided into four clusters indicated by the colour codes (navy 412 

blue, turquois blue, green and yellow).  413 
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 414 

Figure 7: Emerging trends in research on the quality of service in public transport 415 

The navy blue cluster indicate the trend topics in research on quality of service in 416 

public transport from 2017 to 2018. A turquois blue cluster presents trend topics from 417 

2018 to 2019. In addition, 2019 to 2020 are presented by a green cluster while 2020 418 

to 2022 presented by a yellow cluster. Research from 2017-2018 focused on quality 419 

of service, contracts, performance, perceptions, behaviour, and simulation. Between 420 

2018 and 2019, most research was based on public transport, customer satisfaction, 421 

service, models, and expectations. In 2019 to 2020, research focused on user 422 

satisfaction, perceptions, systems, travel and transport.   423 

Previous studies have focused more on efficiency in public transport for profitability 424 

(Pullen, 1993). However, the concern on service quality gained momentum around 425 

early 2000s. The emerging themes in research during that time shifted towards service 426 

delivery and attitudes among different passenger groups (Morton et al. 2016). The 427 

results from the study revealed that socio-economic cohorts influences travel 428 

behaviour and satisfaction. Thus, from 2017, the research focused more on building 429 

an improved public transport system for customer satisfaction. To achieve these, 430 

different methodologies such as modelling, simulations and regression were explored 431 

to find solutions to maximise user satisfaction (Tirachini et al. 2017; Ingvardson and 432 

Nielsen, 2019). 433 
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The emerging trends and future trends from 2020 focus on machine learning, in 434 

particular, frameworks, big data, impact, optimization, city, networks, and patterns. 435 

The emerging trends are due to the availability of big data (Mitroshin et al. 2022), 436 

concern about the lived experiences of public transport users (Yuxue et al. 2022), and 437 

the urge to shift from car ownership to public transport to solve issues that come with 438 

increased car ownership in cities (Goodarzian et al. 2023). 439 

One study in particular by Liu (2020) leveraged a support vector machine to predict 440 

passenger flow. Results show that accurate predictions and early warning of 441 

passenger flow in a bus enabled the bus dispatchers to maintain efficient bus services. 442 

Aparicio et al. (2021); Bustamante et al. (2022) use machine learning to analyse travel 443 

patterns in public transport during the pandemic. The research focus does not 444 

incorporate issues on gender role in public transport. Socio- economic dynamics of a 445 

society shows a clear picture of the underlining issues. Thus, in the future more 446 

research on the gender dynamics in transportataion can be explored (Bustamante et 447 

al. 2022). Although research focusing on machine learning, service quality in public 448 

transport is increasing as discussed in this paper, there is limited research based on 449 

African cities.  450 

Most of the emerging topics do not look at non-conventional modes of public transport 451 

like minibus taxis, yet, they form important part of mobility in African cities (Moyo et al. 452 

2022). Additionally, availability of big data has also opened a door for researchers to 453 

use data from social media as a reliable data source to create new application in 454 

transport, analyse and predict human behavior (Tran, 2022). Furthermore, as stated 455 

by Wang et al. (2019) most of the research in this area should move towards 456 

integrating the use of machine learning through deep learning.  Athough machine 457 

learning has done a lot of improvement in public transport system, research direction 458 

should move to harnessing the emerging AI and deep learning techniques in public 459 

transport research to find solutions and shortcomings of the public transport system 460 

(Farazi et al. 2022). Also, there is a need to train deep reinforcement learning agent in 461 

real life scenarios within public transport system (Farazi et al. 2021) 462 

Conclusions 463 

The paper provided a comprehensive transport literature and intensively examined 464 

literature pertaining to quality of service, gender and machine learning in public 465 
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transport. This review will be useful reference for transport and evolutions of quality of 466 

service in public transport research. Research in quality of service can be dated back 467 

to 1992 (Figure 1) in public transport. Around early 2011 and 2012, issues on gender 468 

and machine learning were introduced in public transport. The machine learning 469 

techniques act as a blueprint to potentially bridge the gap between realities vs. 470 

practice. De Oña et al. (2021) uses machine learning techniques in European cities to 471 

assess the relationship between service quality, satisfaction and loyalty in Public 472 

transport. The study marked a milestone for European policies in putting more 473 

enthuses on service quality in public transport.  474 

In addition, introductions of algorithms paved the way for futuristic strategies, planning 475 

policies in public transport. Machine learning has proven to be a successful tool for 476 

mimicking and predicting realities in public transport (Guevara et al. 2020). Horcher 477 

and Tirachini (2021) state that although machine learning and modelling have been 478 

used over time, the concepts need to be further explored in the Public transport sector.  479 

The gender dimensions in quality of service and public transport suggest that it has 480 

not been fully incorporated, because women and men experience public transport 481 

differently. Most of the research focus on gender to investigate customer satisfaction 482 

and expectation. These demonstrate a shift in research from public transport-483 

orientated thinking to more concerns on user satisfaction (Díez-Mesa et al. 2018). 484 

These include understanding the socio-demographic background of both private and 485 

public transport users in understanding quality service satisfaction (Rasca and Saeed, 486 

2022). It is expected that research on gender dimensions and machine learning in 487 

public transport will be expected to increase tremendously, especially amid SDGs and 488 

New Urban Agenda that strive for cities to join in the fight to achieve sustainability. 489 

The Majority of the most influential publications are derived from countries in the global 490 

south, with only 2 articles published in Africa. The lack of research in Africa also opens 491 

a wide door for further research in the field of quality of service in public transport. The 492 

reseach will inform policy on the important attributes that users value to attract more 493 

people to use public transport.  494 

 495 

 496 
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