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Stability analysis of incommensurate elementary
fractional systems using interval arithmetics

Rachid MALTI
Univ. Bordeaux — IMS UMR 5218 CNRS, France
Email: firstname.lastname @ims-bordeaux.fr

Abstract—The objective of this paper is to present a new
method for stability analysis of fractional systems with two
differentiation orders, based on interval arithmetics. It allows
determining stability/instability regions in the parametric space.
Hence, all transfer functions which parameters belong to the
same stability region have the same stability property.

I. INTRODUCTION

Fractional systems has been attracting a lot of interest during
the last two decades in different fields of engineering and
science, since the seminal work by Oldham and Spanier [1],
[2] for modeling diffusive phenomena.

Due to its simplicity, the most used criterion for testing
stability of fractional systems is Matignon’s theorem [3]. It
allows deciding whether a system is stable by locating its s”-
poles. It generalizes the classical Routh-Hurwitz criterion for
rational systems. However, Matignon’s theorem applies only
for stability checking of commensurate fractional systems.
When the system is incommensurate, some other criteria,
mainly based on Cauchy’s principal theorem [4] or its deriva-
tives such as the Nyquist theorem [5] are used. However, these
methods are quite difficult to implement in practice.

Fractional systems are frequently described by elementary
transfer functions of the first kind,

_ 1
and/or the second kind,
_ 1
e (7)2 +2 (:) 1 N

where v € [0,2]. Hence, it is useful to deduce standard
properties of these models, such as stability, resonance, and
root locus. Stability conditions, deduced from Matignon’s
theorem, provided wgy > 0, are respectively given by [6]

O<v<?2 (3)
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These elementary commensurate transfer functions were
extended in [7], to a third kind of elementary system:
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R P S

which is incommensurate for all v € R/Q.

(&)

Further in [8], the following second order fractional transfer
function is studied (the highest order is set to 2), due to its
interest in modeling viscoelastic and visco-inertial materials

= 1 .
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Stability analysis of incommensurate transfer functions such
as (5) and (6) is not an easy task, as it requires using criteria
difficult to implement, mainly based on Cauchy’s argument
principle.

(6)

The objective of this paper is to study stability of fractional
transfer functions described by

1
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with wy > 0. Such transfer functions generalize the previous

ones: (1) by setting as to 0, (2) by setting as = 201, (5) by
setting ae = a1 + 1, and (6) by setting ay = 2.

F(s,) = )

Stability domain is computed by determining Stability
Crossing Sets (SCS) between stability and instability regions
in the parametric space'. Hence, if the system is stable
at a given parametric point, it is also stable in the whole
region delimited by the SCS. The only parameters influencing
stability in (7) are oy, a9, and (, since wy > 0. Although,
the method can be applied to any of these parameters, the
following restriction is set in this paper

¢=1, ®)

for representation purposes only, so that the SCS can be
represented in the (o, ag)-plane.

"More precisely the SCS allow delimiting regions based on the number of
unstable poles. When this number equals zero, one gets the stability region.



The proposed method is based on interval arithmetics, intro-
duced in the next sub-section. Then the problem is formulated
in section II and solved in section III. Results of applying the
proposed algorithm on (7) are presented in section IV, before
concluding.

Introduction to interval arithmetics

Interval analysis was initially introduced by Moore [9]. An
interval [z] = [z, Z] is a closed, bounded, and connected set of
real numbers. The set of all intervals is denoted by IR. Real
operations are extended to intervals as follows. Given [z] € IR
and [y] € IR:

€))
(10)

/] = {m x |5 4], ifo ¢y -

if 0 € [y].

Interval arithmetics do not define an algebra because (IR, +)
is not a group. Indeed, elements of IR do not have an inverse.
Take for instance A = [—1,1] € IR, then A+ (—A) = [-2, 2]
is not equal to the degenerated interval [0] = [0,0] = {0}.
Either, (IR, +, %) is not a ring etc. Additionally, arithmetic
operations on intervals introduce often pessimism because the
result of each operation must be included in an interval.

II. PROBLEM FORMULATION

Stability of fractional transfer functions described by
1

where @ = (o, a2) € A; x Ay C R2, Ay and A, define

the searching domains, is considered in this paper. It can

be analyzed by checking the position of the zeros of the
characteristic function

F(s,a) = (13)

fls,) = 892 + 25 + 1 (14)
f(pe??, a) = p®2 cos(Bag) + 2p°* cos(fay) + 1+
j(p*?sin(Bas) + 2p** sin(fay))  (15)

More precisely, the problem can be formulated in two
different ways in the parametric space o € A; X As.

(P1) Finding stability and instability regions. In this case,
the objective is to check whether, for positive o« €
A x Ay C Rf_, f(peje,a) has zeros in the right half
complex plane including the imaginary axis. However,
due to the symmetry of complex conjugate zeros, the
searching domain can be restreint to the first quadrant
of the complex s-plane: (p,0) € Ry x [O, g]

(P2) Finding the SCS between stability and the instability
regions. In this case, the searching domain in the complex
plane is restraint to (p,0) € Ry x {7}. Hence, only
values of & € Ay x As, for which the poles are crossing
the imaginary axis towards the instability region are
searched for.

Hence, the problems (P1) and (P2) can be formulated as
finding the set of all feasible parameters

0:(p,9,a1,a2)T€Q:(R+><®><A1 X.Ag), (16)
where © = [O, g] for (P1) and © = {g} for (P2), satisfying

Ze{f(0)} =0
and 17
Jm{f(@)} =0

If 30 = (p, 0, a1, a2)T € Q such that f(pe??, ) = 0, then,
for the problem (P1), the characteristic function has zeros in
the closed right half complex plane and, for the problem (P2),
on the imaginary axis, which allows determining the SCS.

Both of these problems can be formulated as a Constraint
Satisfaction Problem CSP?

He{f(0)} =0
Im{f(0)} =0
0<p<R, 00O,
(IS A17 o € AQ

CSP: (18)

where R is oo in theory and is finite in practice for evident
implementation reasons. The solution set S for the problem
(18) is rewritten as:

S=1{0cQ|Z(f(0)} C [0] and Sn{f(8)} C [0]}. (19)

The characterization of the whole set S can be formulated
as a set inversion problem:

S=f7Ho)ne,

and solved by guaranteed methods.

(20)

Hence, the following algorithm can be applied for solving
the problem.

Algorithm Stability analysis

1) Find the number of right-half zeros of f(pe’? a) at a
given point, ag. An integer value could be a good choice.

2Usually a CSP is formulated using inequalities

z < %Z{f(0)} <%
y < Im{f(0)} <7y
0<p<R, €0,
ay € A1, az € Aag,

CSP:

where z, T, y, ¥ can also be set to small enough values —e, €, —¢, €; as in the
fourth initialization of the example in section IV-D.



2) Initialise R, the maximum radius value of p, which
defines the searching domain in the right half complex
plane for the (P1) problem, and the maximum interval
along the imaginary axis for the (P2) problem.

3) Solve the CSP defined in (18) to find the SCS or the
stability/instability region around the oy point.

4) Check a posteriori that the possible location of the poles
is strictly inside the searching domain defined by R.
Otherwise, if the possible location of poles touches the
borders, choose a bigger R and repeat steps 3 and 4.

III. SOLVING THE CSP

A. Contractors

The CSP (18) is solved by a contractor C, which is an
operator which permits to reduce the domain [@] without any
bisection. Hence, contracting the box [#] means replacing it
by a smaller box [0]* such that the solution set S remains
unchanged, i.e. S C [0]* C [6] [10]. There exists different
types of contractors depending on whether the system to be
solved is linear or not.

In our study, a non linear type contractor named forward-
backward contractor is used to reduce the initial searching
space. The basic idea when implementing this contractor is
to decompose a principal constraint into primitive constraints.
Each primitive constraint involves elementary operators and
functions such as {+, —, X, /, exp, log, . . .}. The next example
illustrates how a given constraint is used to contract a domain.

1) Example: Consider the constraint:

f(X) = x5 —x221 =0,

(21)
xr1 E[?,lOL ZTo € H,lOL xr3 € u,5L

which can be rewritten as: x3 = xox;. The forward interval
constraint propagation removes all inconsistent values from
[x3] as follows:

[z3] = ([z1] x [22]) N [s] = [2,5].

Then, the backward interval constraint propagation removes
all inconsistent values from x; and x5 as follows:

[21] = ([ws]/[22]) O [21] = [2,5],

(2] = ([23]/[2]) N [22] = [1,5/2].

After a forward and a backward propagation, the contracted
box is [x] = ([2,5],[1,5/2],[2, 5])T which contains the
solution of the CSP.

1 function [x]=Comb_Contractor_Red (x)

2 global nb_siv;

3 XX = X;

4 rho = x(1); theta = x(2);

5 alphal = x(3); alpha2 = x(4);

6 SForward

7 x1 = rho” (2xalpha2);

8 x2 = 2xrho”alpha2;

9 x3 = thetaxalpha2;

10 x4 = cos (x3);

11 x5 = x2+x4;

12 X6 = x1 + x5 + 1;

13 x7 = 4xrho” (2+xalphal);

14 %Backward

15 x7 = intersect (x6, x7);

16 alphal= intersect (alphal,1/2x1log(x7/4)/log(rho))
17 rho = intersect (rho, (x7/4)"(1/(2*«alphal)));
18 X6 = intersect (x6, x7);

19 x5 = intersect (x5, x6 - x1 - 1);

20 x2 = intersect (x2, x5/x4);

21 alpha2= intersect (alpha2, log(x2/2)/log(rho));
22 rho = intersect (rho, (x2/2)"(1/alpha2));

23 x1 = intersect (x1, x6 - x5 - 1);

24 rho = intersect (rho, x17(1/(2xalpha2)));

25 alpha2= intersect (alpha2, log(xl)/(2+«log(rho)));
2

27 x = [rho, theta, alphal, alpha2];

28 if any(isnan(x))

29 X=XX;

30 end

31 end

Fig. 1. The implementation of the combined contractor (24) using the IntLab
toolbox [11] under Matlab.

2) Implementing the forward-backward contractor on the
system under study: A first contractor could be implemented,
after the real part of f:

Ze{ f(pe?? ,a)} =0 p™2 cos(fag)+1=—2p%1 cos(fa1) (22)

A second one could also be implemented, after the imaginary
part of f:

(23)

In{f(pe’? a)}=0<p>2 sin(az)=—2p"1 sin(fa;)

However, handling sin and cos functions in each contractor
is not an easy task because asin and acos functions return
angles in their principal determination, i.e. between 0 and 7
for the acos, and between —g and g for the asin. In that
case, care must be taken to set back the angles to the correct
determination. Another alternative, is to combine (22) and (23)
to obtain another contractor with less sin and cos functions.
Such a contractor, named combined contractor, is obtained by

squaring both equations and summing them up

022 4+ 202 cos(farp) + 1 = 4p>*. (24)

A single cos function remains in (24) instead of two in
the previous two contractors, which is easier to handle. This
contractor is implemented in Fig.1, using the IntLab toolbox
[11] under Matlab.




In some cases the contractor cannot reduce enough the
parameters domain. In such cases, bisection of the variable
vector @ is necessary. The algorithm SIVIA [12], which is
described in the following section is based on the association
of contractors and splitting.

B. Set Inversion Via Interval Analysis (SIVIA)

This algorithm, proposed by [12], allows to obtain an inner
S and an outer S enclosures of the solution set S (if it exists),
such that:

scScSs. (25)

SIVIA is a recursive algorithm based on partitioning of the
parameter set into three regions: feasible, undeterminate and
unfeasible. SIVIA uses an inclusion test [t] : IR — N which
is a function allowing to prove if an interval [0] is feasible in
which case it is added to the set S. Any undetermined region is
bisected and tested again, unless its size w([6)]) is less than a
precision parameter 7 tuned by the user and which ensures that
the algorithm terminates after a finite number of iterations. The
outer approximation is then computed as S = S U AS where
AS is the union of all remaining undetermined boxes. Hence,
the SIVIA algorithm is presented as follow:

Algorithm SIVIA (in: [t],[6],7 ; out: S,S)

1) Option: Call contractor on 6.

2) If [t]([0]) = [0], return; o
3) If [¢)([6]) = [1], then S := S U [6];S := SU [0], return;
4) If w([0])) <n,S:=SuU[0];
Else bisect [0] into [0;] and [62];
5) SIVIA (in: [t],[01],7 ; out: S,S);

I [
6) SIVIA (in: [t],[02],7 ; out: S,S).

The option in line 1 allows either to call the contractor or not
at each execution of the SIVIA algorithm which complexity
is known to be exponential!

IV. APPLICATION TO THE SYSTEM UNDER STUDY

The algorithm is applied to the characteristic function
(14), using four different initializations. In the first three, the
problem (P2) is considered and in the fourth, the problem (P1)
is treated.

A. First initialization

The initial searching box and tolerance are respectively set
to:

0= (p,@,al,ag)T €
n = diam(9) /27

[0, 4] x {g} % [0,3] x [0,4.5] (26)
(27)

where diam(8) defines the length of each element of (6).

Fig. 2. First initialisation — Stability crossing sets obtained without

contractors. Zeros of the characteristic function f which arguments equal
g are probably contained in the yellow boundary (outer enclosure S). The

lower left region delimited by the yellow boundary represents the guaranteed
stability region.

Fig. 3.

The same as Fig.2, however with contractors.

The SIVIA algorithm is executed:

« without contractors (without step 1 in the algorithm). In
this case the SIVIA function is called 13 543 times in 190
sec. The obtained outer enclosure S is plotted in Fig.2.

« with the combined contractor (24) called at each step of
the SIVIA algorithm (with step 1 in the algorithm). The
SIVIA function is called 8 711 times in 296 sec. The
obtained outer enclosure S is plotted in Fig.3.

Moreover, the values at which the poles cross the imaginary
axis correspond more or less exactly in both cased to the plot
of Fig.4, which validates a posteriori that all the poles are
inside the searching interval p € [0,4]. In case some poles
were touching the limit R = 4, it would have been necessary
to choose a bigger R.
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Fig. 4. First initialization — Zeros of the characteristic function f crossing
the imaginary axis.

As a conclusion, regarding this first initialization, the al-
gorithm using the combined contractor is a little bit more
precise for the same tolerance factor 1. Execution speeds of
both algorithms are comparable. The former as compared to
the latter converges in a bigger number of iterations, however
quicker, because the latter calls the contractor at each SIVIA
iteration.

B. Second initialization

Let’s search for the SCS by enlarging the searching domain.
The initial box is now set to:

0= (p.0,a1,02)" € 0,4 x { T} x [0,15] x [0,20] (28)

The tolerance is defined as in (27), however applied to the
new definition of the initial searching box.

The SIVIA algorithm, without contractors, is called 73 037
times in 1 090 seconds. The obtained outer enclosure S of
the SCS is plotted in Figs 5, which indicates additionally the
number of unstable poles, computed at integer values of the
parametric points. Hence, all systems with parameters inside
the different regions delimited by the SCS have the indicated
number of poles. The intervals of poles look very much like
the ones in Fig.4.

C. Third initialization

A major change is operated here. Instead of testing, the
CSP defined in (18), a new CSPN is defined by enlarging
the acceptable mapping of f(pe’?, @) to a square of size ¢
instead of a single point (the origine).

—e < Ze{f(pe’’, )} < e,
—e < Sn{f(pei?, @)} < e,
0<p<oo, BeO,
0<a; <00, 0<ay < oo,
e=0.1

CSPN: (29)

Fig. 5. Second initialization — Stability Crossing Sets (wider intervals as
compared to Figs.2 and 3). The number of unstable poles is indicated in each
region.

a

Fig. 6. Third initialization — Inner S (in red), and Outer S (in yellow)
enclosures of the CSPAN defined in (29)

Hence, instead of searching for the zeros of the characteris-
tic function f in (14), the algorithm searches for intervals [6]
that are mapped according to f inside a square of length €. This
is the usual way CSPs are formulated. The same parameters
and tolerance are chosen as in the first initialization in (26)
and (27).

The results, obtained without contractors in 27 795 iterations
and 443 sec, are plotted in Fig.6, where red and yellow parts
indicate the inner and the outer enclosures S and S of (25).

It turns out not to be interesting to consider the CSPN (29)
instead of the initial CSP (18), because it widens the feasible
solution set as the square defining the admissible mapping gets
wider.



Fig. 7. Fourth initialization — Guaranteed stability in white and possible
instability (outer enclosure S) in yellow

D. Fourth initialization

In this part, the problem (P1) is solved. Hence, instead of
looking for the stability crossing sets, let’s look for all the
zeros of f(pel?, @) in the first quadrant. Consider the CSP
in (18), and the following searching box:

0= (p,0,0a1,a)" €[0,4] [o, g] % [0,3] x [0,4.5] (30)

When setting the tolerance to (27), the algorithm is stopped af-
ter an hour because of convergence issues. Then, the tolerance
is augmented to:

n = diam(6)/2*

The algorithm converges in 12 525 iterations in 194 sec. The
obtained outer enclosure S is plotted in Fig.7.

Apparently, the root-searching-domain in the first quadrant,
is validated a posteriori in Fig.8: all the poles of the first
quadrant are inside the searching domain, defined by p € [0, 4],
when (o, a2) € x[0,3] x [0,4.5].

Higher precision is definitely required to find out a better
sketch of the stability region (in white).

However, this problem appears to be ill-posed as the CSP
(18) evaluated for interval values of [#], can never be satisfied.
A mapping of [0] with f is an interval that can never be a
subset of {0}. Hence, in the instability region, the algorithm
will keep bisecting, until reaching the precision 7. It turns out
that the time complexity of the SIVIA algorithm is higher than
a brute-force search on boxes of elementary sizes 7.

V. CONCLUSIONS

This paper proposes an algorithm, based on interval arith-
metics, for stability analysis of an elementary transfer function
(7). Guaranteed stability region is determined in the parametric

Complex

Fig. 8.  Fourth initialization — Possible root location in yellow, searching
domain boundary in blue

space. Two problems have been formulated. It turns out that
the problem of finding the parametric region for which the
system is unstable is ill-posed because the bisection algorithm
has a time-complexity worse than a brute-force search. How-
ever, the problem of finding stability crossing sets turns out
to be very interesting, as it allows finding with a reasonable
complexity, the stability crossing sets and hence deducing the
whole stability region.
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