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Location Problem for Compressor Stations in Pipeline Networks
Martin Gugat ∗ Michael Schuster ∗† Jan Sokolowski ‡

Abstract. In the operation of pipeline networks, compressors play a crucial role in ensuring the
network’s functionality for various scenarios. In this contribution we address the important question of
finding the optimal location of the compressors. This problem is of a novel structure, since it is related
with the gas dynamics that governs the network flow. That results in non-convex mixed integer stochastic
optimization problems with probabilistic constraints.

Using a steady state model for the gas flow in pipeline networks including compressor control and uncer-
tain loads given by certain probability distributions, the problem of finding the optimal location for the
control on the network, s.t. the control cost is minimal and the gas pressure stays within given bounds,
is considered.

In the deterministic setting, explicit bounds for the pipe length and the inlet pressure, s.t. a unique
optimal compressor location with minimal control cost exists, are presented. In the probabilistic setting,
an existence result for the optimal compressor location is presented and the uniqueness of the solution is
discussed depending on the probability distribution. For Gaussian distributed loads a uniqueness result
for the optimal compressor location is presented.

Further the problem of finding the optimal compressor locations on networks including the number of
compressor stations as variable is considered. Results for the existence of optimal locations on a graph in
both, the deterministic and the probabilistic setting, are presented and the uniqueness of the solutions is
discussed depending on probability distributions and graph topology. The paper concludes with an illus-
trative example demonstrating that the compressor locations determined using a steady state approach
are also admissible in transient settings.

Keywords: Gas Networks; Compressor Control; Compressor Location; Weber Problem; Optimal Loca-
tion; Uncertain Boundary Data; Non-convex Mixed Integer Stochastic Problem
Subject Classification: 49J55, 90B15.

1 Introduction and Motivation
Gas transport in pipeline networks forms an essential part of the energy infrastructure in particular for
the transport of hydrogen that will be an important energy carrier in the near future worldwide. On the
other hand natural gas is still highly used in households and industry in Europe. Transport in pipelines is
a cost-efficient method also for large distances, but due to the high transport distances there is a signifi-
cant pressure drop along the pipelines caused by friction. Compressor stations are used to counteract this
pressure drop. Since the construction and operation of compressor stations is cost intensive, a natural
question is to ask for the best location. The problem of the optimal location of compressors in a gas
pipeline network is a special type of Weber problem (see e.g. [9] for a Weber problem in planes and [8]
for Weber problems for transportation systems), where the location cost is related to the dynamics in a
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transportation network. Weber problems where the value of the objective functional is linked to a trans-
portation network have also been considered in [33], but in contrast to [33] in the current contribution
the compressor station is an active element in the transportation network. Even if compressor stations
already exist for the European natural gas network, there will always be pipeline network expansion, e.g.,
due to new industry areas and due to new hydrogen pipelines. The aspect of network expansion (not just
for gas networks) was discussed in [15]. For hydrogen transport a new pipeline network is even planned
in Germany [20] and Europe [2]. From an industrial perspective this topic was discussed e.g., in [3, 39].

Gas transport and other network flow problems have been the topic of many studies in the last decades.
The gas transport in pipeline networks is modeled by hyperbolic balance laws as the isothermal Euler
equations (see [6, 31, 32, 40]) and simplifications like stationary models (see e.g. [22, 23, 25, 29]). In [14]
and [37] the authors give an excellent overview about gas network models and network components. In
[5] the authors discuss coupling conditions at the network junctions. Optimal control problems for the
gas transport on networks were often considered (see e.g. [4, 10, 11, 24, 30]) but optimal control problems
on gas networks including the compressor location have not been considered yet.

In this paper we consider problems of finding the optimal location for compressor stations on arbitrary
stationary gas networks including bounds for the pressure and uncertain gas demand. Motivated by the
application, the pressure in the pipes is neither allowed to be too high, nor too low, which is modeled
by state constraints for the pressure. The survey [19] gives an excellent overview about optimal control
under state constraints and related topics. Also motivated by the application, the consumers gas demand
is not known exactly a priori, i.e., it is uncertain. Uncertain gas demand in the context of mathematical
gas transport means, that the boundary data is random and probabilistic constraints are an excellent
modelling tool for the uncertainty in the boundary data. Gas networks under uncertainty have been
analyzed e.g., in [22, 29, 43], a model for a power network with uncertain demand has been analyzed in
[21] and the distributionally robustness of uncertain demands in control problems was analyzed in [45].

Altogether this leads to the analysis of probabilistic constrained optimal control location problems for
the stationary gas transport on arbitrary networks with state constraints, which, to our best knowledge,
have not been considered yet. Our studies are related to the supply chain models that were analyzed e.g.
in [12] and in [13].

This paper is structured as follows: In Section 2 we analyze the optimal location of a compressor
station on a single pipe. We first consider only a lower bound for the pressure, then we consider a
problem with a lower and an upper bound for the pressure. In both cases we state results about the
existence of an optimal compressor location with minimal control cost for deterministic and uncertain
boundary conditions (gas outflow). We also give sufficient conditions for the uniqueness of an optimal
compressor location depending on the inlet pressure and the pipe length.
In Section 3 we analyze the optimal compressor location with minimal control cost on arbitrary graphs
with pressure bounds for both, a fix and a variable number of compressor stations. Based on the results of
Section 2, we state sufficient conditions for the existence of optimal compressor locations in all problems
with and without uncertain boundary data (gas outflow). We also discuss the uniqueness of solutions
depending on the topology of the graph. Further we discuss the question of the minimal number of
compressor stations needed on a graph to satisfy bounds for the pressure. We present an example where
the minimal number of compressor stations in the deterministic case is infeasible in the probabilistic case.
In Section 4 we present an transient simulation based on the results of the previous sections and and we
discuss the robustness of the stationary solution in the transient setting. All examples were solved using
the AMPL software (see [18]) and MATLAB® 2019a. All pictures were created in MATLAB® 2019a.
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2 Optimal Compressor Location on a Single Pipe
The isothermal Euler equations are a well-known model for the gas flow through a network, see e.g.,
[6, 31, 32, 40]. They consist in a 2 × 2 system of hyperbolic partial differential equations

ρt + qx = 0,

qt +
(

p + q2

ρ

)
x

= − λ

2 D

q|q|
ρ

,

where ρ = ρ(t, x) is the gas density, p = p(t, x) is the gas pressure, q = q(t, x) is the gas flow, λ > 0 is
the pipe friction coefficient and D > 0 is the pipe diameter. For long time horizon planning, this model
is often replaced by a static model, that represents the steady states. Considering ideal gas, in a single
pipe with length L > 0 this approach (similar as in [38]) yields the stationary isothermal Euler equations
(see e.g., [22, 23, 25, 29])

qx(x) = 0,

px(x) = − λ

2 D
RS T

q(x)|q(x)|
p(x) .

(1)

Here, RS is the specific gas constant of natural gas and T is the gas temperature. With inlet pressure
p(0) = p0 and gas outflow (load) q(L) = b ≥ 0, the stationary isothermal Euler equations (1) have the
solution

p2(x) = p2
0 − ϕ b |b| x with ϕ = λ

D
RS T. (2)

We consider a compressor station at x = xC ∈ [0, L] on the pipe as it is shown in Figure 1. Compressor
stations often are necessary in gas networks since due to pipe friction the pressure decreases along the pipe.

v0 v1
p0 b

L1 = xC L2 = L − xC

L

Figure 1: Single edge with a compressor station

Let p1(x) be the pressure between v0 and the compressor station and let p2(x) be the pressure
between the compressor station and v1. The compressor station increases the pressure by a control u and
is modeled by

p2
2(0)

p2
1(L1) = u,

with u ≥ 1. From (2) we have

p2
1(x) = p2

0 − ϕ b |b| x x ∈ [0, L1] = [0, xC ], (3)

and
p2

2(x) = u p2
1(L1) − ϕ b |b| x

= u p2
0 − ϕ b |b| (u L1 + x) x ∈ [0, L2] = [0, L − xC ].

For the pressure at node v1, i.e., for x = L − xC we have

p2
2(L2) = u p2

0 − ϕ b |b|
(
(u − 1) xC + L

)
. (4)

In the following sections we introduce the uncertain gas demand and the bounds for the pressure.
We define our optimal control problems including the compressor location and present results about the
existence and uniqueness of optimal controls for the deterministic and the probabilistic setting.
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2.1 Lower Pressure Bound at the End of the Pipe
The pipe friction causes a decrease for the pressure along the pipe. Therefore we request the pressure to
satisfy a lower bound pmin > 0 at node v1, i.e. we demand the inequality state constraint

p2(L2) ≥ pmin (5)

In applications the gas demand b is a priori unknown. In the European gas market, traders have
to determine individual gas nominations hours before the technical system operators (TSO) actually
transports the gas through the network. Thus the TSO have to deal with possible renominations which
can be seen as uncertainty in the loads. We assume random gas outflow at node v1, i.e. we consider a
Gaussian distributed random variable

ξ ∼ N (µ, σ2), (6)
with mean value µ > 0 and standard deviation σ > 0 on the appropriate probability space (Ω, A, P).
We identify the random gas outflow bω with the image ξ(ω) for ω ∈ Ω on this probability space. In [22]
and in [37, Chapter 13] the authors explain why a Gaussian distribution is a good choice for random
loads. Note that due to the random loads also the pressures are random variables. In order to avoid an
additional index, we write p and b instead of pω and bω. Due to the structure of this paper it is always
clear, where pressures and flows are deterministic and where random.

Since the load is random we cannot demand (5) for all ω ∈ Ω anymore but for α ∈ (0, 1) we demand
the probabilistic constraint

P
(

p2(L2, ξ) ≥ pmin
)

≥ α,

which is equivalent to
P
(

p2
2(L2, ξ) ≥ p2

min
)

≥ α. (7)
Note that in [35] the authors provide an explicit gradient formula for probabilistic constraints with
Gaussian distributions. As from now we will neglect the dependency on the random variable since it is
obvious while discussing probabilities. We assume that p2(L2) and p2

2(L2) have absolutely continuous
probability distribution functions with probability density functions ρp2(L2) and ρp2

2(L2). Consider the
probabilistic constrained optimization problem

(OPT 0)


min
u,xC

u2,

s.t. P
(

p2
2(L2) ≥ p2

min
)

≥ α,

u ≥ 1,

xC ∈ [0, L].

Note that p2
2(L2) also depends on u and xC as it is stated in (4). For the reader’s convenience

we do not explicitly mention the dependency. The probability (7) can be computed by integrating the
probability density function from pmin resp. p2

min to infinity, i.e., we have

P
(

p2
2(L2) ≥ p2

min
)

=
∫ ∞

p2
min

ρp2
2(L2)(z) dz.

The following lemma contains a result about the existence of optimal solutions of (OPT 0). In the
next sections this result will be extended to gas networks with a finite number of compressor stations
and upper and lower bounds on every pipe.

Lemma 1. The probabilistic constrained optimization problem (OPT 0) either has a unique solution
(u∗, x∗

C) with x∗
C ∈ {0, L} or there exists u∗ ≥ 1, s.t. (u∗, xC) is a solution of (OPT 0) for every

xC ∈ [0, L] .

Remark 2. When every point (u, xC) with u = 1 is a solution of (OPT 0) this means that the compressor
station is not needed for this pipe. Thus it can be placed anywhere at the pipe since the pressure is not
increased anywhere. If and only if p0 < pmin and∫ 0

−∞
ρξ(z) dz = α,
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where ρξ is the probability density function of the random variable ξ, then there exists u∗ > 1, s.t. every
point (u∗, xC) with xC ∈ [0, L] is a solution of (OPT 0).

Proof. Proof of Lemma 1. We first show that there exist admissible pairs (u, xC) for (OPT 0). For u ≥ 1
and xC ∈ [0, L] define the admissible set

M(u, xC) :=
{

b ∈ R | p2
2(L2) ≥ p2

min
}

,

where b = bω = ξ(ω) is as in (6). As mentioned before we only write b instead of ξ(ω) for ξ ∼ N (µ, σ2).
The probability P( b ∈ M(u, xC) ) is equal to the probability P( p2

2(L2) ≥ p2
min ) and it can be computed

by
P( b ∈ M(u, xC) ) =

∫
M(u,xC )

ρb(z) dz. (8)

The probability density function ρb is given by the Gaussian distribution (6) but the set M(u, xC) is
not known explicitly. Due to (4) for a given xC ∈ [0, L] we can enlarge the set M by increasing the
control u. For a monotonously increasing sequence (uk)k≥1 ⊆ R≥1, we have M(uk, xC) ⊆ M(uk+1, xC).
If limk→∞ uk = ∞, we have limk→∞ M(uk, xC) = R, and this implies

P( b ∈ M(u, xC) ) → 1 for u → ∞. (9)

So for all xC ∈ [0, L] we can find u∗ ≥ 1, s.t.

P( b ∈ M(u, xC) ) ≥ α for all u ≥ u∗,

and thus the set of admissible controls and compressor locations is nonempty.

Next we show the second statement in Lemma 1 for u = 1 (the case u > 1 follows later). Due to (4)
we have

p2
2(L2) = p2

0 − ϕ b |b| L,

and thus the pressure at the end of the pipe and also M are independent of the compressor location. So
if

P( b ∈ M(1, xC) ) ≥ α,

every point (u, xC) with u = 1 and xC ∈ [0, L] is a solution of (OPT 0).

Now we consider the first statement in Lemma 1. If

P( b ∈ M(1, xC) ) < α,

then we need to show that there exists a unique solution of (OPT 0) with xC ∈ {0, L}. Obviously we
have u > 1 in this case. We first show that in this case the probabilistic constraint is always active. For
the set M(u, xC), we fix an admissible pair (u, xC). Then we can find b ∈ R, s.t.

u p2
0 − ϕ b |b|

(
(u − 1) xC + L

)
= p2

min,

and u p2
0 − ϕ b |b|

(
(u − 1) xC + L

)
≥ p2

min ∀ b ≤ b.

From this it follows that
M(u, xC) =

(
− ∞, b

]
.

Then due to (8) and (9) it follows that if (u∗, x∗
C) is a solution of (OPT 0) then we have

P( b ∈ M(u∗, x∗
C) ) = α, (10)

and thus we can find β∗, s.t., ∫ β∗

−∞
ρb(z) dz = α.
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Now we can show the first statement in Lemma 1 by cases. For β∗ > 0 consider the admissible points
(u1, 0), (u2, ε) with ε > 0 and

P( b ∈ M(u1, 0) ) = P( b ∈ M(u2, ε) ) = α.

Then with (4) we have

u1p2
0 − ϕ β∗ |β∗| L = u2p2

0 − ϕ β∗ |β∗| (u2 − 1) ε︸ ︷︷ ︸
>0

−ϕ β∗|β∗| L,

and it follows u2 > u1. That means that the compressor located at the beginning of the pipe is the most
efficient if β∗ > 0 and thus (u∗, 0) is a unique solution of (OPT 0) with u∗ s.t. (10) holds.
For β∗ < 0 consider the admissible points (u1, L), (u2, L − ε) with ε > 0 and

P( b ∈ M(u1, L) ) = P( b ∈ M(u2, L − ε) ) = α.

Then with (4) we have

u1
(
p2

0 − ϕ β∗ |β∗| L
)

= u2
(
p2

0 − ϕ β∗ |β∗| L
)

+ ϕ β∗ |β∗| (u2 − 1) ε︸ ︷︷ ︸
<0

,

and it follows u2 > u1. That means that the compressor located at the end of the pipe is the most
efficient if β∗ < 0 and thus, (u∗, L) is a unique solution of (OPT 0) with u∗ s.t. (10) holds.

For β∗ = 0 due to (4) the pressure at the end of the pipe does not depend on the compressor location,
so we can find a unique u∗ > 1, s.t. (u∗, xC) is a solution of (OPT 0) for every xC ∈ [0, L]. This completes
the proof of Lemma 1. □

If the inlet pressure is larger than the lower pressure bound then there always exist positive loads s.t.
the pressure at the end of the pipe is also larger that the lower pressure bound. This implies β∗ > 0 and
we can formulate a more precise statement:

Corollary 3. Let p0 > pmin be given. If

P( p2
0 − ϕ b |b| L ≥ p2

min ) ≥ α,

then the pair (1, xC) is a solution of (OPT 0) for every xC ∈ [0, L]. Otherwise (u∗, 0) is the unique
solution of (OPT 0), where u∗ can be determined by (10).

Remark 4. Even if negative loads usually do not occur in real world applications a Gaussian distribution
is a reasonable choice for the random loads as it is mentioned above. When mean value µ and standard
deviation σ are chosen close to real world application1 it always follows that P( b ≤ 0 ) is very small. In
order to completely avoid negative loads one can consider a probability distribution for the load vector that
does not allow negative values like e.g., a truncated Gaussian distribution or a logarithmic distribution.
For these distributions the statement of Corollary 3 even holds for p0 ≤ pmin.

2.2 Upper and Lower Pressure Bound for the whole Pipe
In this section we consider pressure bounds pmin, pmax > 0 with pmin < pmax for the whole pipe, i.e., we
demand the state constraints

p1(x) ∈ [pmin, pmax] ∀x ∈ [0, L1],
and p2(x) ∈ [pmin, pmax] ∀x ∈ [0, L2],

(11)

In this setting it is reasonable to assume p0 ∈ [pmin, pmax] because if p0 > pmax then (11) cannot be
satisfied at all and if p0 < pmin then the compressor station needs to be located at the beginning of the

1Real world data can be found on https://gaslib.zib.de/
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edge, s.t. xC = L1 = 0. Since the pressure is monotonously decreasing along the pipe, for p0 ∈ [pmin, pmax]
we have

(11) ⇐⇒


p1(L1) ≥ pmin,

p2(0) ≤ pmax,

p2(L2) ≥ pmin.

We first consider the deterministic optimization problem

(OPT 1)



min
u,xC

u2,

s.t. p1(L1) ≥ pmin,

p2(0) ≤ pmax,

p2(L2) ≥ pmin,

u ≥ 1,

xC ∈ [0, L].

The existence of a solution depends on the pipe length and the inlet pressure. If the pipe is sufficiently
short a compressor station might not be needed. When the pipe length exceeds a certain limit the
compressor control generates a state that always violates at least one of the pressure bounds, as it is
shown in Figure 2.

Figure 2: Pressure loss in a single pipe with length L ∈ {15km, 30km, 45km}, compressor location
xC = 15km, control u ∈ {1, 1.8, 2.2}, inlet pressure p0 = 58bar, outflow b = 180 kg

m2s , ϕ = 3.0179 · 104 m
s2

and pressure bounds [pmin, pmax] = [40bar, 60bar].

Lemma 5. Let p0 ∈ [pmin, pmax] and b > 0 be given.

(i) For

L ≤ p2
0 − p2

min
ϕ b |b|

(12)

every point (u, xC) with u = 1 and xC ∈ [0, L] is a solution of the optimization problem (OPT 1).

(ii) For
p2

0 − p2
min

ϕ b |b|
< L ≤ p2

0 + p2
max − 2 p2

min
ϕ b |b|

(13)

the optimization problem (OPT 1) has a unique solution (u∗, x∗
C) with u∗ > 1 and xC ∈ [0, L].
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(iii) For

L >
p2

0 + p2
max − 2 p2

min
ϕ b |b|

(14)

the optimization problem (OPT 1) does not have a solution.

Proof. Proof of Lemma 5. Since we assumed b > 0, for i ∈ {1, 2} and x1, x2 ∈ [0, Li] with x1 < x2 we
always have

p2
i (x2) < p2

i (x1). (15)

(i) Consider a pair (1, xC) with xC ∈ [0, L]. The condition (12) is equivalent to

p2
0 − ϕ b |b| L ≥ p2

min.

Since L1 ≤ L we have
p2

1(L1) = p2
0 − ϕ b |b| L1 ≥ p2

min.

Due to u = 1 we have
p2

2(L2) = p2
0 − ϕ b |b| L ≥ p2

min,

and together with (15) it follows

p2
2(0) = p2

1(L1) ≤ p2
1(0) = p2

0 ≤ p2
max,

and thus the pair (1, xC) is a solution of (OPT 1) for every xC ∈ [0, L].

(iii) Assume that there exists a solution (u∗, x∗
C) of (OPT 1) with u∗ ≥ 1 and x∗

C ∈ [0, L]. Then due
to (4) we have

p2
2(L2) = u∗ p2

0 − u∗ ϕ b |b| x∗
C − ϕ b |b| L + ϕ b |b| x∗

C . (16)

By reformulating (16) and by adding p2
0 we have

p2
2(L2)︸ ︷︷ ︸
≥p2

min

+ p2
0 − ϕ b |b| x∗

C︸ ︷︷ ︸
= p2

1(L1) ≥ p2
min

+ ϕ b |b| L = p2
0 + u∗ ( p2

0 − ϕ b |b| x∗
C

)︸ ︷︷ ︸
= p2

2(0) ≤ p2
max

.

Thus it follows
2 p2

min + ϕ b |b| L ≤ p2
0 + p2

max,

which is a contradiction to (14) and (u∗, x∗
C) cannot be a solution of (OPT 1).

(ii) Since the constraints of (OPT 1) are not strict, the admissible set (defined in the proof of Lemma 1)
is compact. If the admissible set is non empty a solution of (OPT 1) exists. Suppose that the admissible
set is empty, i.e. there is no pair (u, xC) that satisfies the constraints of (OPT 1). We construct the
maximal pipe length L1 + L2 for admissible points. For p0 ∈ [pmin, pmax] we choose L1 s.t.

p2
1(L1) = p2

0 − ϕ b |b| L1 = p2
min.

The largest possible control is to raise the pressure from the lower to the upper bound, i.e., we have

u = p2
max

p2
min

,

thus we have p2
2(0) = p2

max. Then we find the maximal admissible L2 by solving

p2
2(L2) = p2

max − ϕ b |b| L2 = p2
min.

Since we have no admissible point, either L1 or L2 must be larger, so we have

L = L1 + L2 >
p2

0 − p2
min

ϕ b |b|
+ p2

max − p2
min

ϕ b |b|
= p2

0 + p2
max − 2 p2

min
ϕ b |b|

,

which is a contradiction to (13). So the admissible set is non empty, i.e., a solution of (OPT 1) must
exist.
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Assume that the pairs (u1, xC,1) and (u2, xC,2) are solutions of (OPT 1). Due to the objective function
we have u∗ := u1 = u2. Assume w.l.o.g. xC,1 < xC,2. Since b > 0, we have

u∗ p2
0 − ϕ b |b|

(
(u∗ − 1) xC,1 + L

)
> u∗ p2

0 − ϕ b |b|
(
(u∗ − 1) xC,2 + L

)
≥ p2

min,

and thus we can find u < u∗, s.t. (u, xC,1) is admissible. This contradicts the optimality of (u∗, xC,i)
(i = {1, 2}). Hence the solution (u∗, x∗

C) is unique. The optimal control u∗ is strictly larger than 1
because otherwise, if u∗ = 1, we have

p2
2(L2) = p2

0 − ϕ b |b| L ≥ p2
min,

which is a contradiction to the lower bound of L in (13) and the lemma is proven. □

The Proof of Lemma 5 (ii) shows that smaller compressor locations xC are more efficient, i.e., the
compressor cost is lower. This fact allows us to state the following necessary optimality conditions:

Corollary 6. Let (u∗, x∗
C) be a unique solution of (OPT 1). Then we have

p2(0; (u∗, x∗
C)) = pmax and p2(L2; (u∗, x∗

C)) = pmin.

In the applications often the pipe length is given a priori, so another interesting question is the
following: For given pipe length and gas demand, can we find an appropriate inlet pressure s.t. the
optimization problem (OPT 1) has a (unique) solution? The answer directly follows from Lemma 5.
From Lemma 5 (i) it follows that if the pipe is sufficiently short then we can find suitable inlet pressures
p0 s.t. a compressor station is not needed. From Lemma 5 (iii) it follows that if the pipe length exceeds
a certain limit, then every pressure increase violates the pressure bounds for any p0 ∈ [pmin, pmax].
Consequently from Lemma 5 (ii) it follows that if the pipe is neither too short nor too long then we can
find a suitable p0 s.t. a compressor station is needed to guarantee the bounds for the pressure.

Corollary 7. Let L > 0 and b > 0 be given.

(i) If
P1 :=

[
p2

min + ϕ b |b| L, ∞
)

∩
[

p2
min, p2

max
]

̸= ∅,

then for all p0 ∈ P1, every point (u, xC) with u = 1 and xC ∈ [0, L] is a solution of (OPT 1).

(ii) If
P2 :=

[
2 p2

min − p2
max + ϕ b |b| L, ∞

)
∩
[

p2
min, p2

max
]

̸= ∅,

then for all p0 ∈ P2\P1 the optimization problem (OPT 1) has a unique solution (u∗, x∗
C) with

u∗ > 1 and xC ∈ [0, L].

(iii) If P2 = ∅ then for all p0 ∈ [ pmin, pmax ] the optimization problem (OPT 1) has no solution.

Note that P1 ⊆ P2. In the end of this section we consider an example based on the pipe with length
30km from Figure 2 for both the deterministic and the probabilistic case.

In the next part of this section we consider random gas outflow at the end of the pipe. As in the last
section we consider the Gaussian distributed random variable (6) with mean value µ > 0 and standard
deviation σ > 0 on an appropriate probability space (Ω, A, P). We identify the random gas outflow bω

with the image ξ(ω) for ω ∈ Ω on this probability space. Thus the corresponding pressures pω are also
random. We mention again, that in order to prevent the use of additional indices, we will refer to pω as
p and bω as b henceforth.

In contrast to the deterministic optimization problem (OPT 1), the Gaussian distribution load b could
take negative values. Even if this is not possible in applications, we need to consider this fact in our
analysis. Negative loads increase the pressure, s.t. we also need to make sure that

p2(L2) ≤ pmax. (17)

Note that this constraint can be neglected for probability distributions that allow only positive values for
b (cf. Remark 4).
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Remark 8. Due to possible negative loads in the probabilistic setting, even for p0 < pmax we could have
p1(L1) > pmax, but due to u ≥ 1 this would imply p2(0) > pmax, which is already covered by a constraint.

For α ∈ (0, 1) the probabilistic constrained optimization problem corresponding to the deterministic
problem (OPT 1) is given by

(OPT 2)



min
u,xC

u2,

s.t. P


p1(L1) ≥ pmin
p2(0) ≤ pmax
p2(L2) ≥ pmin
p2(L2) ≤ pmax

 ≥ α,

u ≥ 1,

xC ∈ [0, L].

The probabilistic problem (OPT 2) shows a similar behaviour as the deterministic problem (OPT 1)
but due to the uncertainty we cannot state sharp bounds for the length L or the inlet pressure p0 as we
did in Lemma 5 and Corollary 7. We first state a necessary optimality condition:

Lemma 9. If (u∗, x∗
C) with u∗ > 1 is a solution of (OPT 2), then we have

P


p1(L1) ≥ pmin
p2(0) ≤ pmax
p2(L2) ≥ pmin
p2(L2) ≤ pmax

 = α.

Proof. Proof of Lemma 9. We use a proof by contradiction here. For a solution (u∗, x∗
C) of (OPT 2)

assume that

P


p2

1(L1) ≥ p2
min

p2
2(0) ≤ p2

max
p2

2(L2) ≥ p2
min

p2
2(L2) ≤ p2

max

 = α + ε1,

with ε1 > 0. Note that since 0 < pmin < pmax we can use pressures and squared pressures equivalently.
We define the set

M(u∗, x∗
C) :=

 b ∈ R

∣∣∣∣∣∣∣∣
p2

1(L1) ≥ p2
min

p2
2(0) ≤ p2

max
p2

2(L2) ≥ p2
min

p2
2(L2) ≤ p2

max

 ,

so we have

P


p2

1(L1) ≥ p2
min

p2
2(0) ≤ p2

max
p2

2(L2) ≥ p2
min

p2
2(L2) ≤ p2

max

 = P( b ∈ M(u∗, x∗
C) ),

and the probability can be computed by

P( b ∈ M(u∗, x∗
C) ) =

∫
M(u∗,x∗

C
)
ρb(z) dz,

where ρb is the probability density function of the Gaussian distributed random load b. Due to

p2
1(x) = p2

0 − ϕ b |b| x,

and p2
2(x) = u p2

0 − ϕ b |b| (u L1 + x),
(18)

the set M(u∗, x∗
C) is given by the interval [ b∗, b

∗ ], where the lower bound b∗ is given by the larger
solution of p2

2(0) = p2
max and p2

2(L2) = p2
max, and the upper bound b

∗ is given by the lower solution of
p2

1(L1) = p2
min and p2

2(L2) = p2
min. Note that due to p0 ∈ [pmin, pmax] and due to u∗ > 1, we have b

∗ ≥ 0

10



but b∗ can be negative (depending on the control u∗). Further due to α ∈ (0, 1) we have b∗ ̸= b
∗ because

otherwise it follows P( b ∈ M(u∗, x∗
C) ) = 0 ̸= α. Consider ε2 > 0, s.t. u∗ − ε2 ≥ 1, due to (18) we have

M(u∗ − ε2, x∗
C) =

[
b, b

]
with b < b∗ and b ≤ b

∗
.

Thus we have
P( b ∈ M(u∗ − ε2, x∗

C) ) =
∫

M(u∗−ε2,x∗
C

)
ρb(z) dz = α + ε1 + ν.

Due to the continuity of ρb and due to the continuity of (18) for all ε1 > 0 we can find ε2 > 0 sufficiently
small, s.t. |ν| is sufficiently small, s.t.

α + ε1 + ν > α.

Thus (u∗, x∗
C) cannot be a solution of (OPT 2) and the proof is complete. □

The next statement is an existence result for (OPT 2) and it guarantees that if the admissible set is
nonempty, then a solution of (OPT 2) exists.

Theorem 10. Consider the probabilistic constrained optimization problem (OPT 2) and let p0 ∈
[

pmin, pmax
]

be given.

(i) If there exists a pair (u, xC) with u = 1 and xC ∈ [0, L], that satisfies the constraints of (OPT 2),
then every pair (u, xC) with u = 1 and xC ∈ [0, L] is a solution of (OPT 2).

(ii) If there exist a pair (u, xC), that satisfies the constraints of (OPT 2) and if (u, xC) with u = 1 is
infeasible for at least one xC ∈ [0, L], then there exists at least one solution (u∗, x∗

C) of (OPT 2)
with u∗ > 1 and x∗

C ∈ [0, L].

Apart from the assumption that the admissible set is nonempty, the statements (i) and (ii) in Theo-
rem 10 match the statements (i) and (ii) of Lemma 5 and Corollary 7.

Proof. Proof of Theorem 10.
(i) It is easy to see that if we find an admissible pair (u, xC) with u = 1 that satisfies the constraints of
(OPT 2) then a compressor station is not needed to guarantee that the pressure stays within the pressure
bounds with probability α. Thus every point (1, xC) with xC ∈ [0, L] is a solution of (OPT 2).

(ii) We know that if (1, xC) is infeasible for one xC ∈ [0, L] then (1, xC) is infeasible for all xC ∈ [0, L]
because otherwise this contradicts to case (i), so we have u > 1. That means that a compressor station
is needed due to the pressure loss caused by pipe friction.
As in the proof of Lemma 9, we define the set

M(u, xC) :=

 b ∈ R

∣∣∣∣∣∣∣∣
p2

1(L1) ≥ p2
min

p2
2(0) ≤ p2

max
p2

2(L2) ≥ p2
min

p2
2(L2) ≤ p2

max

 .

The probability in (OPT 2) can be written as P( b ∈ M(u, xC) ) and it can be evaluated by

P( b ∈ M(u, xC) ) =
∫

M(u,xC )
ρb(z) dz, (19)

where ρb is the probability density function of the Gaussian distribution. We mention again that we write
b instead of bω as a realization of ξ ∼ N (µ, σ). The admissible set A is given by

A =
{

(u, xC)
∣∣ u ≥ 1, xC ∈ [0, L], P( b ∈ M(u, xC) ) ≥ α

}
.

The set is nonempty by assumption. We now show that A is compact.
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If A contains a finite number of elements the existence of a solution is trivial. Otherwise we first
show, that A is bounded. From the proof of Lemma 9 we know, that for (u, xC) ∈ A, the set M(u, xC)
is given by the interval [ b, b ], where b is determined by the larger solution of

p2
2(0) = u

(
p2

0 − ϕ b |b| L1
)

= p2
max and p2

2(L2) = u p2
1(L1) − ϕ b |b| L2 = p2

max, (20)

and b is determined by the smaller solution of

p2
1(L1) = p2

0 − ϕ b |b|L1 = p2
min and p2

2(L2) = u p2
1(L1) − ϕ b |b| L2 = p2

min.

For u sufficiently large, s.t. b is sufficiently large (determined by (20)), s.t.

p2
1(L1) = p2

0 − ϕ b |b|L1 < p2
min or p2

2(L2) = u p2
1(L1) − ϕ b |b| L2 < p2

min,

the set M(u, xC) is empty for all xC ∈ [0, L] and thus

P( b ∈ M(u, xC) ) =
∫

M(u,xC )
ρb(z) dz = 0 < α.

So the admissible set A is bounded.

Suppose that A is open. Consider a convergent sequence (uk, xC,k)k∈N in A with limit (û, x̂C) ̸∈ A
and

P( b ∈ M(û, x̂C) ) = α − ϵ1,

for ε1 > 0. In the proof of Lemma 9 we have shown, that for ε2 > 0 sufficiently small, there exists ν with
|ν| sufficiently small, s.t.

P( b ∈ M(û ± ε2, x̂C) ) = α − ε1 + ν < α.

So all sequence elements in (û±ε2, x̂C) cannot be in A and we have a contradiction. Thus the admissible
set A is bounded and closed and by the extreme value theorem, a solution of (OPT 2) exists. □

The statements in Theorem 10 correspond to the statements (i) and (ii) of Lemma 5 resp. Corol-
lary 7. In the probabilistic setting the statement (iii) of Lemma 5 and Corollary 7 implies, that if the
admissible set of (OPT 2) is empty, then there exists no solution. We also mention that the results of
Lemma 9 and Theorem 10 are not restricted to Gaussian distributions. If the gas outflow is given by
a random variable, that only allows positive loads (e.g., truncated Gaussian distribution or logarithmic
distribution), the condition p2

2(L2) ≤ p2
max is implied by the condition p2

2(0) ≤ p2
max, see also Remark

4. In the following theorem, we establish the existence of a unique solution for Gaussian distributed loads.

Theorem 11. Let α > 1
2 be given. For a Gaussian distribution, Statement (ii) in Theorem 10 guarantees

the existence of a unique solution (u∗, x∗
C) of (OPT 2) with u∗ > 1 and x∗

C ∈ [0, L].

Note that if u∗ = 1, then the assumptions in statement (i) in Theorem 10 are satisfied and every
point (1, xC) is be a solution of (OPT 2). The assumption α > 0.5 is necessary to use the convexity resp.
concavity property of the probability distribution function of the Gaussian distribution for values smaller
than resp. larger than the mean value (see Figure 3).

For the proof of Theorem 11 we use a contradiction argument. We show that if the assumptions are
not satisfied, then we can construct an admissible point with lower control cost. Since the following proof
is quite technical we split it in four parts.

Proof. Proof of Theorem 11. The existence of a solution was already shown in Theorem 10. We only
have to show the uniqueness for Gaussian distributed loads. Therefore we use a proof by contradiction.
Consider two solutions (u∗, xC,1) and (u∗, xC,2) with u∗ > 1 and xC,1 ̸= xC,2. We define the set

M(u, xC) :=

 b ∈ R

∣∣∣∣∣∣∣∣
p2

1(L1) ≥ p2
min

p2
2(0) ≤ p2

max
p2

2(L2) ≥ p2
min

p2
2(L2) ≤ p2

max

 ,
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(a) Probability density function of a Gaussian dis-
tribution, the increasing part is shown in red and
decreasing part is shown in blue
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Figure 3: Probability density function and probability distribution function of a Gaussian distribution
with mean value µ = 3 and standard deviation σ =

√
2

where the pressures depend on the control u and on the compressor location xC . As above b denotes
the gas outflow at the end of the pipe. We split the proof in four main parts: In the first part we write
M(u, xC) depending on the solutions (u∗, xC,1) and (u∗, xC,2) as intervals and determine their bounds.
In the second part we construct a new pair (u∗, xC,3). In the third part we determine the bounds of
M(u∗, xC,3). In the fourth part, we show that (u∗, xC,3) is admissible with probability larger that α,
which contradicts Lemma 9. Consequently we can find a smaller control for xC,3, s.t. neither (u∗, xC,1)
nor (u∗, xC,2) can be optimal.

Proof of Theorem 11, Part I: In the first part of the proof, we determine the bounds for M
depending on the solutions (u∗, xC,1) and (u∗, xC,2). Since the pressure drops monotonously before and
after the compressor station, we can write M(u, xC) as interval. Considering the bounds on the pressures

p2
min ≤ p2

1(L1) = p2
0 − ϕ b |b| xC ,

p2
2(0) = u p2

0 − u ϕ b |b| xC , ≤ p2
max,

p2
min ≤ p2

2(L2) = u p2
0 − ϕ b |b|

(
(u − 1) xC + L

)
≤ p2

max,

(21)

one can see that the the upper bound of M depends on the first and third inequality in (21), while the
lower bound of M depends on the second and third inequality in (21). Let M(u∗, xC,1) = [b1, b1] and
M(u∗, xC,2) = [b2, b2]. Then for i ∈ {1, 2} we have

p2
min ≤ p2

0 − ϕ bi |bi| xC,i,

and p2
min ≤ u∗ p2

0 − ϕ bi |bi|
(
(u∗ − 1) xC,i + L

)
.

(22)

Due to the fact that p0 ≥ p2
min, the upper bounds bi are non negative. Hence, for i = 1, 2, we have

bi = min
{ √

p2
0 − p2

min
ϕ xC,i

,

√
u∗ p2

0 − p2
min

ϕ
(
(u∗ − 1) xC,i + L

) } (23)

Note that for xC,1 = 0, the first inequality in (22) is always satisfied and b1 is determined by the
second inequality. The first key result of this part of the proof is, considering (23), due xC,1 < xC,2 we
have

b1 > b2. (24)
Next, for the lower bounds, we have (i ∈ {1, 2})

u∗ p2
0 − ϕ bi |bi|xC,i ≤ p2

max,

and u∗ p2
0 − ϕ bi |bi|

(
(u∗ − 1) xC,i + L

)
≤ p2

max.
(25)
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Since p0 ≤ pmax, the lower bounds bi can be negative or positive, depending on u∗. Therefore we define
s := sgn

(
u∗ p2

0 − p2
max
)

as indicator for the sign of the lower bounds bi. Thus, for i = 1, 2 we have

bi = max
{

s

√
|u∗ p2

0 − p2
max|

u∗ ϕ xC,i
, s

√
|u∗ p2

0 − p2
max|

ϕ
(
(u∗ − 1) xC,i + L

) }. (26)

As above, for xC,1 = 0, if the first equation in (25) is satisfied, the lower bounds are determined by
the second equation in (25). If s = 0 we have b1 = b2 = 0. If s < 0, for xC,1 < xC,2, we have b1 < b2. In
both cases, due to (24), this implies [b2, b2] ⊆ [b1, b2] with b1 ̸= b2. Then both intervals lead to different
probabilities, which is a contradiction to the optimality conditions in Lemma 9, so for s ≤ 0 the pairs
(u∗, xC,1) and (u∗, xC,2) cannot both be solutions.

Hence from now on we only consider the case s > 0. For i ∈ {1, 2}, due to
ϕ
(
(u∗ − 1) xC,i + L

)
= u∗ ϕ xC,i + ϕ (L − xC,i)︸ ︷︷ ︸

≥0

,

the second terms in (26) are always smaller than or equal to the first terms. Equality is only satisfied, if
xC,2 = L. Thus for s > 0 and i = 1, 2, we have

bi =

√
|u∗ p2

0 − p2
max|

u∗ ϕ xC,i
. (27)

So in addition to (24), the second key result of this part of the proof is, considering (27) and s > 0, due
to xC,1 < xC,2 we have

b1 > b2. (28)
This completes the first part of the proof.

Proof of Theorem 11, Part II: In the second part of the proof we construct a new admissible pair
(u∗, xC,3). Since the bounds of M depend continuously on xC , we can choose xC,1 < xC,3 < xC,2, s.t.
the lower bound of M(u∗, xC,3) is given by b3 = b1+b2

2 . Inserting (27) this leads to

b3 = 1
2

( √
u∗ p2

0 − p2
max

u∗ ϕ xC,1
+

√
u∗ p2

0 − p2
max

u∗ ϕ xC,2

)
= 1

2

√
u∗ p2

0 − p2
max

u∗ ϕ xC,1 xC,2

(√
xC,1 + √

xC,2
)
. (29)

Further, due to (27) for i = 3, with s > 0, we have

b3 =

√
u∗ p2

0 − p2
max

u∗ ϕ xC,3
,

and thus together with (29), it follows√
|u∗ p2

0 − p2
max|

u∗ ϕ xC,3
= 1

2

√
u∗ p2

0 − p2
max

u∗ ϕ xC,1 xC,2

(√
xC,1 + √

xC,2
)

⇔

√
1

xC,3
= 1

2

(√
xC,1 + √

xC,2
)

√
xC,1 xC,2

.

Then this implies
xC,3 = 4 xC,1 xC,2(√

xC,1 + √
xC,2

)2 . (30)

Now we can compute the upper bound b3 for M(u∗, xC,3). Due to (23), we have

b3 = min
{ √

p2
0 − p2

min
ϕ xC,3

,

√
u∗ p2

0 − p2
min

ϕ
(
(u∗ − 1) xC,3 + L

) }

= min
{ √

p2
0 − p2

min
(√

xC,1 + √
xC,2

)
2
√

ϕ xC,1 xC,2
,

√
u∗ p2

0 − p2
min√

ϕ
(

(u∗ − 1) 4 xC,1 xC,2(√
xC,1+√

xC,2

)2 + L
)}.

(31)
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Due to (24), for xC,1 < xC,3 < xC,2 we have b2 < b3 < b1, which completes the second part of the proof.

Proof of Theorem 11, Part III: In this part of the proof, we now show that

b3 ≥ 1
2(b1 + b2).

We split this part depending on whether b is defined by the first or second term in (31). Note that due
to xC,1 < xC,3 < xC,2 we have xC,3 /∈ {0, L} and due to u∗ > 1 we have b3 > 0.
Proof of Theorem 11, Part III a): Let b3 be given by the first term in (31). Then due to bi ≥ 0
(i ∈ {1, 2, 3}), for p2

0 > p2
min, we have

p2
0 − p2

min
ϕ xC,3

≤ u∗ p2
0 − p2

min

ϕ
(

(u∗ − 1) xC,3 + L
) ⇔ ϕ xC,3

p2
0 − p2

min
≥

ϕ
(

(u∗ − 1) xC,3 + L
)

u∗ p2
0 − p2

min
.

Since xC,3 < xC,2 we set ∆x := xC,2 − xC,3 > 0. Thus we have

ϕ
(
xC,2 − ∆x

)
p2

0 − p2
min

≥
ϕ
(

(u∗ − 1)
(
xC,2 − ∆x

)
+ L

)
u∗ p2

0 − p2
min

⇔ ϕ xC,2

p2
0 − p2

min
≥

ϕ
(

(u∗ − 1) xC,2 + L
)

u∗ p2
0 − p2

min
+ ϕ ∆x

p2
0 − p2

min
− ϕ (u∗ − 1) ∆x

u∗ p2
0 − p2

min
.

(32)

Further we have

ϕ ∆x

p2
0 − p2

min

(
u∗ − 1

)(
u∗ − 1

) =
ϕ
(
u∗ − 1

)
∆x

u∗ p2
0 − p2

min + 2 p2
min − p2

0︸︷︷︸
≥p2

min

− u∗ p2
min︸ ︷︷ ︸

>p2
min︸ ︷︷ ︸

<0

>
ϕ
(
u∗ − 1

)
∆x

u∗ p2
0 − p2

min
. (33)

For (32) this implies

ϕ xC,2

p2
0 − p2

min
>

ϕ
(

(u∗ − 1) xC,2 + L
)

u∗ p2
0 − p2

min
,

and thus b2 is also defined by the first value in (23) for i = 2. For p0 = pmin the second term in (23) is
positive and thus b2 is always defined by the first value in (23). Assume that b1 is also defined by the
first value in (23) (for i = 1). Then we have(

b1 + b2

2

)2
= 1

4

(
p2

0 − p2
min

ϕ xC,1
+ 2

√
p2

0 − p2
min

ϕ xC,1

√
p2

0 − p2
min

ϕ xC,2
+ p2

0 − p2
min

ϕ xC,2

)

= 1
4

((
p2

0 − p2
min
)

xC,2

ϕ xC,1 xC,2
+

2
(
p2

0 − p2
min
)√

xC,1 xC,2

ϕ xC,1 xC,2
+
(
p2

0 − p2
min
)

xC,1

ϕ xC,1 xC,2

)

= p2
0 − p2

min
4 ϕ xC,1 xC,2

(√
xC,1 + √

xC,2
)2

= b
2
3.

(34)

If b1 is defined by the second value in (23), then we can estimate b1 from above by the first value in (23)
and thus, if b3 is defined by the first value in (31), then we have

b3 ≥ 1
2
(
b1 + b2

)
. (35)
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Proof of Theorem 11, Part III b): Let b3 be given by the second term in (31). This implies
p0 > pmin. Then due to bi ≥ 0 (i ∈ {1, 2, 3}) we have

p2
0 − p2

min
ϕ xC,3

≥ u∗ p2
0 − p2

min

ϕ
(

(u∗ − 1) xC,3 + L
) ⇔ ϕ xC,3

p2
0 − p2

min
≤

ϕ
(

(u∗ − 1) xC,3 + L
)

u∗ p2
0 − p2

min
.

Since xC,1 < xC,3 we set ∆x := xC,3 − xC,1 > 0. Thus we have

ϕ
(

(u∗ − 1) xC,1 + L
)

u∗ p2
0 − p2

min
≥ ϕ xC,1

p2
0 − p2

min
+ ϕ ∆x

p2
0 − p2

min
− ϕ (u∗ − 1) ∆x

u∗ p2
0 − p2

min
.

Due to (33) this implies
ϕ
(

(u∗ − 1) xC,1 + L
)

u∗ p2
0 − p2

min
>

ϕ xC,1

p2
0 − p2

min
,

and thus, b1 is also defined by the second value in (23) for i = 1. If b2 is defined by the second value in
(23), then we get (35) analogously to (34) by writing b3 as

b3 =
√

u∗ p2
0 − p2

min
(√

xC,1 + √
xC,2

)√
ϕ
(

(u∗ − 1) 4 xC,1 xC,2 + L
(√

xC,1 + √
xC,2

)2
) .

If b2 is defined by the first value in (23) that we can estimate b2 from above by the second value in (23)
and we also get (35).

Thus, if b3 is defined by the second value in (31), then (35) also holds. Consequently, for the upper
bound b3 of M(u∗, xC,3), we always have

b3 ≥ b1 + b2

2 , (36)

which is the key result of the third part of the proof.
Proof of Theorem 11, Part IV: In the last part of this proof, we show, that (u∗, xC,3) is an

admissible pair and from this we infer a contradiction. Since u∗ > 1 by assumption and 0 ≤ xC,1 <
xC,3 < xC,2 ≤ L we only have to make sure that the probabilistic constraint in (OPT 2) is satisfied. For
(u∗, xC,3), we have

P
(

b ∈ M(u∗, xC,3)
)

= P


p1(L1) ≥ pmin
p2(0) ≤ pmax
p2(L2) ≥ pmin
p2(L2) ≤ pmax

 =
∫ b3

b3

ρξ(z) dz,

where ρξ is the probability density function of the Gaussian distribution. Due to (36) it follows∫ b3

b3

ρξ(z) dz ≥
∫ 1

2 (b1+b2)

1
2 (b1+b2)

ρξ(z) dz = Fξ

(1
2b1 + 1

2b2

)
− Fξ

(1
2b1 + 1

2b2

)
,

where Fξ is the probability distribution function of the Gaussian distribution. The distribution function
Fξ(z) is strictly convex for z < µ and strictly concave for z > µ, where µ is the expected value of the
Gaussian distribution. Since we have α > 1

2 by assumption, the lower bounds b1 and b2 are smaller that
the expected value µ, and the upper bounds b1 and b2 are larger than the expected value µ (cf. Figure
3). Thus we can apply the inequalities for strict convexity on the lower bounds and for strict concavity
on the upper bounds here. This implies

Fξ

(1
2b1 + 1

2b2

)
− Fξ

(1
2b1 + 1

2b2

)
>

1
2Fξ(b1) + 1

2Fξ(b2) − 1
2Fξb1 − 1

2Fξ(b2)

= 1
2

(
Fξ(b1) − Fξ(b1)

)
+ 1

2

(
Fξ(b2) − Fξ(b2)

)
.
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Due to Lemma 9 the solutions (u∗, xC,1) and (u∗, xC,2) satisfy the probabilistic constraint with equality,
so we have (

Fξ(b1) − Fξ(b1)
)

=
(

Fξ(b2) − Fξ(b2)
)

= α,

and thus for (u∗, xC,3) it follows

P


p1(L1) ≥ pmin
p2(0) ≤ pmax
p2(L2) ≥ pmin
p2(L2) ≤ pmax

 > α.

So (u∗, xC,3) is feasible with probability larger than α. Following the proof of Lemma 9, for xC,3 we can
find ū with 1 < ū < u∗, s.t. (ū, xC,3) is feasible. Thus, (u∗, xC,1) and (u∗, xC,2) cannot be solutions of
(OPT 2) and we have a contradiction. So under the assumptions of Theorem 11, a unique solution of
(OPT 2) exists and the proof is complete. □

Remark 12. The properties of the Gaussian distribution were only applied in Part IV of the proof.
Theorem 11 also holds for other distributions, that allow the last step in proof (e.g., logistic distribution,
Laplace distribution or chi distribution with at least two degrees of freedom), by appropriate strict con-
vexity and concavity properties and a proper lower bound for α.

2.3 A Numerical Example on a Single Pipe
As an illustrative example we consider the pipe with length 30km from Figure 2 with the data given in
Table 1. The data in this example is based on the data of methane, the main component of natural gas.
Our aim is to find the optimal control and the optimal compressor location in both the deterministic and
probabilistic setting. Both settings are implemented in MATLAB® 2019a using the optimization routine
fmincon.m with default settings. The probability is approximated using a kernel density estimator ap-
proach similarly as it was done in [42, 43].

Variable Letter Value Unit
inlet pressure p0 58 bar
lower pressure bound pmin 40 bar
upper pressure bound pmax 60 bar
gas outflow (=mean value) b (=µ) 180 kg/m2s
variance σ 9
pipe friction coefficient λF 0.1
pipe diameter D 0.5 m
pipe length L 30 km
specific gas constant RS 515 J/kg K
gas temperature T 293 K
probability level α 0.9

Table 1: Values for the example in Section 2.3 with lower and upper pressure bound for the whole pipe

The unique solution (cf. Figure 2) of the deterministic optimization problem (OPT 1) with the data of
Table 1 is given by (

u∗
det

x∗
C,det

)
=
(

1.4811
9545.957 km

)
.

As it was stated in Corollary 6 a compressor station with smaller xC is not possible since we have
p2(0) = pmax and p2(L2) = pmin (otherwise the admissible set would be empty). A compressor station
with larger xC is possible but this would increase the compressor cost and thus not be optimal. This is
illustrated in Figure 4.
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We now consider uncertain gas outflow. We define a Gaussian distributed random variable

ξ ∼ N (180, 9),

and we identify the random gas outflow bω with the image of the random variable ξ(ω) for ω ∈ Ω. The
optimal solution of the deterministic problem (u∗

det, x∗
C,det) leads to infeasible pressures in the probabilistic

problem for every α ∈ (0, 1). This can be seen as follows. Due to{
p2(0; (u∗

det, x∗
C,det)) > pmax for bω < b,

p2(L2; (u∗
det, x∗

C,det)) < pmin for bω > b,

for every load bω ̸= b the pressure bounds are not satisfied and we have

P


p1(L1) ≥ pmin
p2(0) ≤ pmax
p2(L2) ≥ pmin
p2(L2) ≤ pmax

 = 0.

Thus the deterministic optimal solution is not acceptable in the probabilistic setting and it is neces-
sary to consider the probabilistic constrained optimization problem (OPT 2). As mentioned before the
probabilistic constraint is evaluated using a kernel density estimator approach similarly as it was done
and explained in [42, 43]. We choose 1000 samples for the random gas outflow bω. The unique optimal
solution of the probabilistic constrained optimization problem (OPT 2) is given by(

u∗
prob

x∗
C,prob

)
=
(

1.6431
12969.569 km

)
. (37)

Even if the probabilistic optimal compressor cost is slightly larger than the deterministic optimal com-
pressor cost, this slight increase in the cost guarantees feasibility of the pressure in 90% of all scenarios,
which is shown in Figure 4.
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Figure 4: Pressure profile for the unique optimal solution of the deterministic problem (OPT 1) (upper
picture) and pressure profiles of 25 scenarios for unique optimal solution of the probabilistic problem
(OPT 2) (lower picture). In the lower picture the feasible pressure profiles are shown in green, the
infeasible pressure profiles are shown in red.
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3 Optimal Compressor Location on a Network of Pipes
In this section we consider the problem of finding optimal compressor locations on graphs under uncertain
gas demand. A binary variable will indicate whether a compressor station is located at a certain pipe
in the network. This leads to mixed integer non-convex optimal compressor location problems with
probabilistic constraints.

3.1 The Optimal Location of a Finite Number of Compressor Stations on a
Graph

Consider a connected, directed graph G = (V, E) with the vertex set V = {v1, · · · , vn} and the set of
edges E = {e1, · · · , em} ⊆ V × V. For i = 1, . . . , m let binary variables δi ∈ {0, 1} be given. The binary
variables δi state if a compressor station is located on edge ei. For the pressure on every edge ei we have

p2
i,1(x) = p2

i,1(0) − ϕ qi |qi| x x ∈ [0, δixC,i], (38)

and
p2

i,2(x) =
(

1 − δi + δi ui

)
p2

i,1(Li,1) − ϕ qi |qi| x x ∈ [0, L − δixC,i], (39)

where qi is the (constant) flow and ui ≥ 1 is the control on edge ei. For the convenience of the reader we
assume that ϕ is equal on every edge. For δi = 0 this implies

p2
i,2(x) = p2

i,1(0) − ϕ qi |qi| x x ∈ [0, L],

and for δi = 1 this implies
p2

i,1(Li,1) = p2
i,1(0) − ϕ qi |qi| xC,i,

p2
i,2(0) = ui p2

i,1(Li,1),

p2
i,2(Li,2) = ui p2

i,1(Li,1) − ϕ qi |qi| Li,2,

which coincides with (3) and (4). So an edge ei without compressor station is modeled as an edge with
compressor station at xC,i = 0, on which the control does not influence the change in pressure. Due to
this modelling, optimization later will always lead to ui = 1 (i.e., the compressor at xC,i = 0 is switched
off), if a compressor station is not needed on edge ei.

For every node v ∈ V let E−(v) be the index set of all ingoing edges (i.e., edges that end in v) and let
E+(v) be the index set of all outgoing edges (i.e., edges that start in v). Since we consider gas transport
on networks in this section we need to define suitable coupling conditions at the nodes. Consider a load
vector b ∈ Rn, where bi is the amount of gas that enters or leaves the network at node vi. We have bi < 0
if gas enters the network and bi ≥ 0 if gas leaves the network. We assume conservation of mass, i.e. for
every node vi ∈ V (i = 1, · · · , n) we assume∑

j∈E−(vi)

qj = bi +
∑

j∈E+(vi)

qj . (40)

Further we assume continuity in the pressures for the graph, i.e., for every node vi ∈ V (i = 1, · · · , n) we
assume

pj,2(Lj,2) = pk,1(0) ∀j ∈ E−(vi), k ∈ E+(vi). (41)

Every node vi is either an inflow node, where gas enters the network (i.e., bi < 0), or an outflow node,
where gas leaves the network (i.e., bi ≥ 0). Let Vin ⊆ V be the set of all inflow nodes. For every inflow
node vi ∈ Vin an inlet pressure pj,0 ∈ [pmin, pmax] is given, i.e. we have

p2
j,1(0) = p2

j,0 ∀j ∈ E+(vi). (42)

Let Vout be the set of outflow nodes. For every outflow node vi ∈ Vout an outflow bi ≥ 0 (gas demand)
is given. A similar model without the binary variables was also considered in [29] and [42]. For given
numbers δi (i = 1, · · · , m) the existence of a unique stationary state follows from [25].
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Let pressure bounds 0 < pmin < pmax be given. For convenience we assume that the pressure bounds
are equal on every edge, but every result in this section can easily be adapted to different pressure bounds
on every edge. For a graph with nC ∈ {1, · · · , m} compressor stations we consider the deterministic
optimization problem

(OPT 3)



min
u,xC ,δ

∥u∥2
2 =

m∑
i=1

u2
i ,

s.t. for all i = 1, · · · , m, we have
pi,1(Li,1) ≥ pmin,

pi,2(0) ≤ pmax,

pi,2(Li,2) ≥ pmin,

ui ≥ 1,

xC,i ∈ [0, Li],
δi ∈ {0, 1},

m∑
j=1

δj = nC ,

where the pressures at the nodes pi,k (i = 1, · · · , m, k = 1, 2) are given by the solution of the static model
(38), (39), (40), (41) and (42).

Lemma 13. For all vi ∈ Vin let pi,0 ∈ [pmin, pmax] be given and for all vi ∈ Vout let bi ≥ 0 be given.
Further let a number nC ∈ {0, · · · , m} be given.

(i) If a triple (u, xC , δ) ∈ Rm × Rm × Rm with uj = 1 for all j = 1, · · · , m satisfies the constraints of
(OPT 3), every triple (1m, xC , δ) with xC,j ∈ [0, Lj ], δj ∈ {0, 1} and

∑m
j=1 δj = nC is a solution of

(OPT 3).

(ii) If there exists a triple (u, xC , δ) ∈ Rm × Rm × Rm that satisfies the constraints in (OPT 3), and
if (1m, xC , δ) is infeasible for at least one pair (xC , δ) with xC,j ∈ [0, Lj ] and δj ∈ {0, 1}, the
optimization problem (OPT 3) has at least one solution.

Proof. Proof of Lemma 13.
(i) The first statement of the proof is similar to the first statement of Theorem 10. It means that
compressor stations are not needed and thus their location can be arbitrary.
(ii) In the second statement we show that if the admissible set is nonempty, then there exists at least
one solution of (OPT 3). Let

D := { δ ∈ {0, 1}m |
m∑

j=1
δj = nC }, (43)

with |D| = nD be the set of all possible distributions of nC compressor stations on the graph. We define
the admissible set Ak (k = 1, · · · , nD) for a fixed distribution of compressor stations on the graph δ ∈ D
as

Ak := { (u, xC) | The constraints of (OPT 3) are satisfied } k = 1, · · · , nD,

and we define the admissible set for the whole optimization problem (OPT 3) as

A :=
nD⋃
k=1

Ak.

The admissible set A is nonempty by assumption, i.e., Ak is nonempty for at least one k ∈ {1, · · · , nD}.

We now show that A is compact. For every k = 1, · · · , nD due to the constraint uj ≥ 1 (j = 1, · · · , m)
and due to the pressure bounds, for the controls we have

uj ∈
[

1,
p2

max
p2

min

]
.
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Further the compressor locations are bounded by 0 and by the lengths of the pipes, i.e., xC,j ∈ [0, Lj ] (j =
1, · · · , m). So the sets Ak are bounded for every k ∈ {1, · · · , nD} and thus, A is bounded. Analogously
to Theorem 10, for a fixed distribution δ ∈ D of compressor stations on the graph, the sets Ak are closed.
Consequently, the union A is closed as well and the existence of a solution follows by the extreme value
theorem due to the continuity of the objective function. □

The uniqueness of a solution mainly depends on the topology of the graph. For the graph shown
in Figure 5a with nC = 2 one can easily construct a scenario in which a single compressor station on
the first edge is needed to guarantee the pressure bounds, but due to nC = 2 the second compressor
station is switched off and can be located anywhere on the second or third edge, so we do not have a
unique solution. On the other hand if a point (u, xC , δ) with uj = 1 for some j ∈ {1, · · · , m} (but not
all, cf. Lemma 13) is feasible, nevertheless, a unique solution might exist, depending on the graph and
the scenario. We refer to [27], where the authors analyze the properties of the admissible set depending
on the graph topology. For linear graphs with a single compressor station we can formulate a statement
for the uniqueness of a solution. By considering the linear graph as a single edge we can consider the
subgraph in front of the compressor as p1(x) and the subgraph behind the compressor as p2(x) as it is
shown in Figure 5b and thus we can apply the results of Lemma 5 and Corollary 7.

(a) Scheme of a symmetric graph with one source
and two sinks

· · · · · ·

p1(x) p2(x)

(b) Scheme of a linear graph with one source and
n sinks

Figure 5: A scheme of a symmetric and a linear graph, source nodes (gas supply) are drawn in blue and
sink nodes (gas demand) are drawn in red

Another interesting question is to find the optimal number of compressor stations and their locations,
s.t. the control cost is minimal. This implies, that nC is also an optimization variable, i.e., we consider
the optimization problem

(OPT 4)



min
u,xC ,δ,nC

∥u∥2
2 =

m∑
i=1

u2
i ,

s.t. for all i = 1, · · · , m, we have
pi,1(Li,1) ≥ pmin,

pi,2(0) ≤ pmax,

pi,2(Li,2) ≥ pmin,

ui ≥ 1,

xC,i ∈ [0, Li],
δi ∈ {0, 1},

m∑
j=1

δj = nC .

The existence of a solution for the optimization problem (OPT 4) directly follows from the statements
of Lemma 13 by defining the set D (stated in (43)) as {0, 1}m. Thus we can state the following result:

Corollary 14. For all vi ∈ Vin let pi,0 ∈ [pmin, pmax] be given and for all vi ∈ Vout let bi ≥ 0 be given.

(i) If a quadruple (u, xC , δ, nC) ∈ Rm × Rm × Rm × {0, · · · , m} with uj = 1 for all j = 1, · · · , m
satisfies the constraints of (OPT 4), every quadruple (1m, xC , δ, nC) with xC,j ∈ [0, Lj ], δj ∈ {0, 1},
nC ∈ {0, · · · , m} and

∑m
j=1 δj = nC is a solution of (OPT 4).
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(ii) If there exists a quadruple (u, xC , δ, nC) ∈ Rm ×Rm ×Rm ×{0, · · · , m}, that satisfies the constraints
in (OPT 4), and if (1m, xC , δ, nC) is infeasible for at least one triple (xC , δ, nC) with xC,j ∈ [0, Lj ],
δj ∈ {0, 1} and nC ∈ {0, · · · , m}, the optimization problem (OPT 4) has at least one solution.

Remark 15. The assumption in statement (i) of Corollary 14 is equivalent to the assumption that there
exists a quadruple (u, xC , δ, nC) with nC = 0, that satisfies the constraints of (OPT 4). This also leads
to the fact, that the bounds for the pressure are satisfied without compressor stations.

As before the uniqueness of a solution cannot be guaranteed since it mainly depends on the topology
of the graph (cf. Figure 5a and Figure 5b). The objective to find the minimal number of compressor
stations on a graph without considering the control cost leads to the optimization problem

(OPT 5)



min
u,xC ,δ,nC

nC ,

s.t. for all i = 1, · · · , m, we have
pi,1(Li,1) ≥ pmin,

pi,2(0) ≤ pmax,

pi,2(Li,2) ≥ pmin,

ui ≥ 1,

xC,i ∈ [0, Li],
δi ∈ {0, 1},

m∑
j=1

δj = nC .

The following lemma guarantees the existence of a solution of (OPT 5).

Lemma 16. For all vi ∈ Vin let pi,0 ∈ [pmin, pmax] be given and for all vi ∈ Vout let bi ≥ 0 be given.
If there exists a quadruple (u, xC , δ, nC) ∈ Rm × Rm × Rm × {0, · · · , m}, that satisfies the constraints in
(OPT 5), the optimization problem (OPT 5) has a solution.

Proof. Proof of Lemma 16. Similar as in the proof of the second statement of Lemma 13 we define the
set

Dj := { δ ∈ {0, 1}m |
m∑

i=1
δi = j } j = 1, · · · , m,

with |Dj | = nD,j as the set of all possible distributions of j compressor stations on the graph. We define
the admissible sets Aj,k for a fix distribution of compressor stations on the graph as

Aj,k := { (u, xC) | The constraints of (OPT 5) are satisfied } k = 1, · · · , nD,j .

Then the admissible set

A :=
m⋃

j=0

nD,j⋃
k=1

Aj,k,

for the optimization problem (OPT 5) is nonempty by assumption. Thus

n∗
C := min

{
j = 0, · · · , m | Aj,k ̸= ∅ for at least one k ∈ {1, · · · , nD,j}

}
is a solution of (OPT 5). □

Remark 17. If statement (i) in Corollary 14 is satisfied, a solution of (OPT 5) is given by nC = 0.

Remark 18. In general, a solution n∗
C of (OPT 5) is not unique, since every quadruple (u, xC , δ, nC) ∈

Rm × Rm × Rm × {0, · · · , m} with nC = n∗
C , that satisfies the constraints of (OPT 5), is a solution of

(OPT 5) (cf. Figure 4).
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In the next part of this section we consider random gas outflow at every node vi ∈ Vout. Let nout be
the number of exit nodes, i.e., |Vout| = nout. As in Section 2 we consider gas outflow that is Gaussian dis-
tributed. For mean value µ ∈ Rnout

+ and covariance matrix Σ ∈ Rnout×nout , consider the nout-dimensional
Gaussian random variable

ξ ∼ N
(
µ, Σ

)
,

on an appropriate probability space (Ω, A, P). We identify the random gas outflow bω ∈ Rnout with the
image ξ(ω) for ω ∈ Ω on this probability space. Thus also the pressures are random. We mention again
that we write p and b instead of pω and bω for the random pressures and random loads. Let ρξ be the
probability density function of ξ. In contrast to Lemma 13, Corollary 14 and Lemma 16, due to the
Gaussian distribution, the gas outflow can be negative. This might lead to negative gas flow in a pipe,
which increases the gas pressure. So we additionally have to guarantee, that the pressure at the end of
every pipe is smaller than or equal to the upper pressure bound (cf. (17) and Remark 8). For α ∈ (0, 1),
the probabilistic constrained optimization problem corresponding to the deterministic problem (OPT 3)
is given by

(OPT 6)



min
u,xC ,δ

∥u∥2
2 =

m∑
i=1

u2
i ,

s.t. P


pk,1(Lk,1) ≥ pmin
pk,2(0) ≤ pmax
pk,2(Lk,2) ≥ pmin
pk,2(Lk,2) ≤ pmax

∀k = 1, · · · , m

 ≥ α,

and for all i = 1, · · · , m, we have
ui ≥ 1,

xC,i ∈ [0, Li],
δi ∈ {0, 1},

m∑
j=1

δj = nC ,

where the pressures pk,1, pk,2 (k = 1, · · · , m) are given by the solution of the model (38), (39), (40),
(41) and (42) with respect to the random outflow b. Even if the probabilistic constrained optimization
problems (OPT 6) contains binary variables, it has similar properties as (OPT 2).

Lemma 19. If (u∗, x∗
C , δ) is a solution of (OPT 6) such that ui > 1 for at least one i ∈ {1, · · · , nC},

then we have

P


pk,1(Lk,1) ≥ pmin
pk,2(0) ≤ pmax
pk,2(Lk,2) ≥ pmin
pk,2(Lk,2) ≤ pmax

∀k = 1, · · · , m

 = α,

that is the probabilistic inequality constraint is active.

Proof. Proof of Lemma 19. The proof is analogous to the proof of Lemma 9. We define the set

M(u∗, x∗
C) :=

 b ∈ R|Vout|

∣∣∣∣∣∣∣∣
pk,1(Lk,1) ≥ pmin
pk,2(0) ≤ pmax
pk,2(Lk,2) ≥ pmin
pk,2(Lk,2) ≤ pmax

∀k = 1, · · · , m

 , (44)

and the equations (18) hold on every edge. Then the proof by contradiction of Lemma 9 equivalently
holds here. □

The next theorem guarantees, that if the admissible set of (OPT 6) is nonempty, a solution of (OPT 6)
exists. Note that 1m is the vector of all ones with length m.

Theorem 20. Consider the probabilistic constrained optimization problem (OPT 6) and let pi,0 ∈
[

pmin, pmax
]

be given for every node vi ∈ Vin. Further let a number nC ∈ {0, · · · , m} be given.
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(i) If there exists a triple (u, xC , δ) ∈ Rm × Rm × Rm with u = 1m, that satisfies the constraints of
(OPT 6), then every triple (1m, xC , δ) with xC,j ∈ [0, Lj ], δj ∈ {0, 1} and

∑m
j=1 δj = nC is a

solution of (OPT 6).

(ii) If there exists a triple (u, xC , δ) ∈ Rm × Rm × Rm, that satisfies the constraints of (OPT 6), and if
(1m, xC , δ) is infeasible for at least one pair (xC , δ) with xC,j ∈ [0, Lj ] and δ ∈ {0, 1}, then (OPT 6)
has at least one solution.

Proof. Proof of Theorem 20.
(i) The first statement of the proof coincides with the first statements in Theorem 10 and Lemma 13.
It means that compressor stations are not needed and thus their location can be arbitrary.
(ii) We define the set

D := { δ ∈ {0, 1}m |
m∑

j=1
δj = nC },

with |D| = nD. We define the (local) admissible set Ak (k = 1, . . . , nD) for a fixed distribution of
compressor stations on the graph δ ∈ D as

Ak := { (u, xC) | The constraints of (OPT 6) are satisfied },

where the probability in (OPT 6) can equivalently be computed as

P
(

b ∈ Mk(u, xC)
)
,

and Mk(u, xC) is defined as in (44) for every compressor distribution k = 1, · · · , nD. Then we can show
the compactness of the Ak equivalently to the proof of Theorem 10. Thus the (global) admissible set

A :=
nD⋃
k=1

Ak,

as union of compact intervals is also compact and consequently, by the extreme value theorem, there
exists a solution of (OPT 6). □

As discussed before, the uniqueness of a solution mainly depends on the graph topology and on the
probability distribution. Even if the uniqueness result in Theorem 11 holds for a Gaussian distribution
on a single edge, the infinite variety in graph topology makes it impossible to state a general uniqueness
result for the solution of (OPT 6). If we restrict the graph topology to linear graphs (see Figure 5b),
then we can apply Theorem 11, but not allowing junctions in a graph is a rather strict assumption.

For the sake of completeness we also consider the probabilistic constrained optimization problems
corresponding to (OPT 4) and (OPT 5) where the number of compressor stations appears as a decision
variable, even if the following information does not provide any new insights on the topic. For α ∈ (0, 1),
the probabilistic constrained optimization problem corresponding to the optimization problem (OPT 4)
is given by

(OPT 7)



min
u,xC ,δ,nC

∥u∥2
2 =

m∑
i=1

u2
i ,

s.t. P


pk,1(Lk,1) ≥ pmin
pk,2(0) ≤ pmax
pk,2(Lk,2) ≥ pmin
pk,2(Lk,2) ≤ pmax

∀k = 1, · · · , m

 ≥ α,

and for all i = 1, · · · , m, we have
ui ≥ 1,

xC,i ∈ [0, Li],
δi ∈ {0, 1},

m∑
j=1

δj = nC .
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The existence of a solution can be shown equivalently to Theorem 20 by defining the set D as {0, 1}m.
Thus we can state the following result.

Corollary 21. Consider the probabilistic constrained optimization problem (OPT 7) and let pi,0 ∈[
pmin, pmax

]
be given for every node vi ∈ Vin.

(i) If a quadruple (u, xC , δ, nC) ∈ Rm × Rm × Rm × {0, · · · , m} with uj = 1 for all j = 1, · · · , m
satisfies the constraints of (OPT 7), every quadruple (1m, xC , δ, nC) with xC,j ∈ [0, Lj ], δj ∈ {0, 1},
nC ∈ {0, · · · , m} and

∑m
j=1 δj = nC is a solution of (OPT 7).

(ii) If there exists a quadruple (u, xC , δ, nC) ∈ Rm ×Rm ×Rm ×{0, · · · , m}, that satisfies the constraints
in (OPT 7), and if (1m, xC , δ, nC) is infeasible for at least one triple (xC , δ, nC) with xC,j ∈ [0, Lj ],
δj ∈ {0, 1} and nC ∈ {0, · · · , m}, the optimization problem (OPT 7) has at least one solution.

To complete this section, for α ∈ (0, 1) we consider the probabilistic constrained optimization problem
corresponding to the optimization problem (OPT 5), which is given by

(OPT 8)



min
u,xC ,δ,nC

nC ,

s.t. P


pk,1(Lk,1) ≥ pmin
pk,2(0) ≤ pmax
pk,2(Lk,2) ≥ pmin
pk,2(Lk,2) ≤ pmax

∀k = 1, · · · , m

 ≥ α,

and for all i = 1, · · · , m, we have
ui ≥ 1,

xC,i ∈ [0, Li],
δi ∈ {0, 1},

m∑
j=1

δj = nC .

For this problem, equivalent to Lemma 16, we can find solution, that in general is non unique (cf. Remark
18):

Corollary 22. For all vi ∈ Vin let pi,0 ∈ [pmin, pmax] be given. If there exists a quadruple (u, xC , δ, nC) ∈
Rm × Rm × Rm × {0, · · · , m}, that satisfies the constraints in (34), the optimization problem (34) has a
solution.

3.2 Numerics and Implementation
In this section we give some reformulations of the problem to make it convenient for implementation.

Consider a vector of pressures at the nodes p ∈ Rn, a vector of (constant) flows in the edges q ∈ Rm,
a vector of compressor locations xC ∈ Rm, a control u ∈ Rm, a vector of gas inflows and outflows b ∈ Rn

(load vector) and a vector of binary variables δ ∈ {0, 1}m. Let A ∈ Rn×m with

Ai,j =


−1 j ∈ E+(vi)
1 j ∈ E−(vi)
0 else

(45)

be the incidence matrix of the graph G. Then the conservation of mass (40) can equivalently be written
as

A q = b,

where q ∈ Rm is the vector of (constant) flows on every edge and b ∈ Rn is the vector of loads at the
nodes, i.e., the amount of gas that enters or leaves the network at the nodes.
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The set of edges E can be represented by an index matrix E ∈ N2×m, where edge ek (k = 1, · · · , m)
connects the nodes vE1,k

and vE2,k
, starting in vE1,k

. For an implementation, the state constraints for
pk,1(Lk,1) and pk,2(0) in (OPT 3), (OPT 4) and (OPT 5) with pressures given in (38) can be written as

p2
E1,k

− ϕ qk |qk| δk xC,k ≥ p2
min,

and uk

[
p2

E1,k
− ϕ qk |qk| δk xC,k

]
≤ p2

max.

Using the Hadamard product ◦ (element-wise product), we have

p2
E1,:

− ϕ q ◦ |q| ◦ δ ◦ xC ≥ p2
min,

and u ◦
[

p2
E1,:

− ϕ q ◦ |q| ◦ δ ◦ xC

]
≤ p2

max,

where p ∈ Rn is the vector of pressures at the nodes. The inequalities have to be understood component-
by-component. For the pressure pk,2(Lk,2) in (OPT 3), (OPT 4) and (OPT 5), by inserting (38) in (39),
we get

p2
k,2(Lk,2) =

(
1 − δk + δk uk

) [
p2

k,1(0) − ϕ qk |qk| δk xC,k

]
− ϕ qk |qk|

(
Lk − δk xC,k

)
=
(

1 − δk + δk uk

)
p2

k,1 − ϕ qk |qk|
[
Lk − δ2

k xC,k + δ2
k ukxC,k

]
.

Due to δ2
k = δk we have

p2
k,2(Lk,2) =

(
1 − δk + δk uk

)
p2

k,1 − ϕ qk |qk|
[
δk

(
uk − 1

)
xC,k + Lk

]
, (46)

which is equivalent to (2) for δk = 0 and to (4) for δk = 1. For the implementation, using the index
matrix E, this leads to

p2
E2,k

=
(

1 − δk + δk uk

)
p2

E1,k
− ϕ qk |qk|

[
δk

(
uk − 1

)
xC,k + Lk

]
,

resp. using the Hadamard product, this leads to

p2
E2,:

=
(

1 − δ + δ ◦ u
)

◦ p2
E1,:

− ϕ qk ◦ |qk| ◦
[
δ ◦
(
u − 1

)
◦ xC + Lk

]
. (47)

With (47) the vector of pressures at the nodes p ∈ Rn can be computed. Since the inlet pressures satisfy
the pressure bounds by assumption, the state constraint for pk,2(Lk,2) in (OPT 3), (OPT 4) and (OPT 5)
can be written as

p ≥ pmin.

The last constraint in (OPT 3), (OPT 4) and (OPT 5) determines the number of compressor stations on
the graph. It can be written as

1
⊤
m δ = nC .

To complete this section, for the computation of the probability in (OPT 6), (OPT 7) and (OPT 8),
we refer again to [42, 43], where the authors use a kernel density estimator approach to estimate the
probability distribution of the pressures at the nodes. The advantages of the kernel density estimator
approach (e.g., compared to a Monte-Carlo approach) are specifically discussed in [42].

3.3 An Example on a Diamond Graph
In this section we consider a detailed example on a diamond graph (see Figure 6). A diamond graph is
often considered as a meaningful example in the context of gas networks since it contains intertwined
cycles even if the number of edges is small (see e.g., [7, 17, 25, 28]).

The data for this example is given in Table 2. Note that pipe friction, pipe diameter and the gas
temperature are equal on every edge. The pipe length is 10km for every pipe except the vertical pipe,
which has length

√
2 · 10km. The three values for the gas outflow are given for the upper source (firstly),
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Figure 6: Scheme of the diamond graph with source (blue) and sinks (red)

Variable Letter Value Unit
inlet pressure p0 60 bar
lower pressure bound pmin 40 bar
upper pressure bound pmax 60 bar
gas outflow (=mean value) b (=µ) [90, 60, 120] kg/m2s
covariance matrix Σ diag(2.25, 2.25, 2.25)
speed of sound in the gas c 343 m/s
pipe friction coefficient λF 0.1
pipe diameter D 0.5 m
specific gas constant RS 515 J/kg K
gas temperature T 293 K
probability level α 0.8

Table 2: Values for the example on the diamond graph

for the lower source (secondly) and for right source (thirdly).

In the deterministic case we first solve the optimization problem (OPT 3) for nC = 2. The problem is
solved using the AMPL software with the Gurobi solver. The results (visualized with MATLAB® 2019a)
are shown in Figure 7. The locations of the pressure jumps indicate that the optimal location for the
compressors is on the pipes outside the cycle. The solution and the corresponding locations are given by

u∗
det =

(
1.8620
1.3484

)
and x∗

C,det =
(

5906
0

)
.

(a) Pressure profile on the diamond graph
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(b) Flow profile on the diamond graph

Figure 7: Solution of the deterministic problem (OPT 3) with nC = 2

We can see similarities to the analysis of a single pipe in Section 2. Both compressors are located as
early as possible on their edges. This means, that the first compressor steers the pressure up to the upper
bound of 60bar. The second compressor is located directly at the beginning of the edge, increasing the
pressure as much as necessary, such that the pressure at the end of the pipe meets the lower bound of
40bar.

The next result shows the solution of (OPT 3) for nC = 3 (see Figure 8), which is also the solution
of (OPT 4). The solution is given by
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u∗
det =

1.6855
1.1933
1.3484

 and x∗
C,det =

5189
0
0

 .

(a) Pressure profile on the diamond graph
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(b) Flow profile on the diamond graph

Figure 8: Solution of the deterministic problem (OPT 4)

Here a third compressor station operates within the cycle of the graph. This leads to the fact that
the first compressor operates weaker and earlier than in the previous example, still as early as possible.
The second and the third compressor stations are located at the beginning of the pipe, respectively, and
they increase the pressure sufficiently much, such that the lower pressure bound is met exactly at the end
of the graph.

In the probabilistic setting, the existence of a solution strongly depends on the probability level α and
on the covariance matrix Σ. For small α and small covariance matrices we can find a solution of (OPT 6)
for nC = 2, but for α = 0.8 the optimization problem (OPT 6) has no solution. This coincides with
the result of Theorem 20, since in this case, the admissible set is empty. For α = 0.8, for the covariance
matrix given in Table 2 and for nC = 3 the solution of (OPT 6) is given by

u∗
prob =

1.8498
1.3993
1.3385

 and x∗
C,prob =

6119
0
0

 ,

which is also the solution for (OPT 7). The probability is evaluated using a kernel density estimator
approach with 1000 samples (see [42, 43]. The corresponding pressure profiles for the first 25 samples
are shown in Figure 9. The result looks similar to the previous result from the deterministic case, but all
compressors have to operate more strongly in order to prevent infeasibilities caused by the fluctuations
in the uncertain gas outflow. Thus the first compressor is located later on the first edge than in the
deterministic case. Besides, due to the probabilistic setting, no pressure bound is met exactly. If we
further increase α, then also nC = 3 is no solution of (OPT 7) and (OPT 8) anymore, which is the case
e.g., for α = 0.9. In this case, at least four compressors are needed.

4 Discussion of Robustness for Transient Scenarios
In this section we discuss the probabilistic robustness of the steady state solution in a dynamic setting.
The probabilistic robustness is given by the probability, that the pressure bounds are satisfied for all
times t in an interval [0, T ]. This type of ’probust’ constraints is discussed in [1]. Consider the isothermal
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Figure 9: Pressure profiles for 25 random scenarios on the diamond graph, feasible scenarios are shown
in green, infeasible scenarios are shown in red

Euler equations (see e.g., [6, 31, 32, 40]) with initial condition, inlet density and random gas outflow

ρ(0, x) = ρini(x), q(0, x) = qini(x),

ρt + qx = 0,

qt +
(

p + q2

ρ

)
x

= − λ

2 D

q|q|
ρ

,

ρ(t, 0) = ρ0(t), q(t, L) = bω(t),

where ρ = ρ(t, x) is the gas density, p = p(t, x) is the gas pressure, q = q(t, x) is the gas flow, λ > 0 is the
pipe friction coefficient and D > 0 is the pipe diameter. We consider the example from Section 2.3 with
the data given in Table 1. The random gas outflow is modeled by a constant flow with perturbations.
Consider the (constant) outflow b from Table 1 with a perturbation, that is given by a Wiener process
(Wt)t≥0 (see e.g., [36, 41]). We have

bω(t) = b + Wt.

For independent standard normal distributed random numbers ξ1, ξ2, . . . the Wiener process Wt is given
by the random Fourier series

Wt =
√

2 T

∞∑
k=1

ξk

sin
((

k − 1
2
)
π t

T

)
(

k − 1
2

) ,

which implies E[Wt] = 0 and Var[Wt] = t. An excellent overview about probability theory and stochastic
processes can be found in [44]. A sample of 100 outflow scenarios is shown in Figure 10, in which the
Fourier series was cut after ten terms.

We simulate the isothermal Euler equations on a time horizon of T = 12 hours for the 100 random
boundary scenarios given in Figure 10, where the compressor control and the compressor location is
given by the optimal solution (37) of the stationary probabilistic optimization problem (OPT 2) with
probability level α = 0.9. The simulation results are shown in Figure 11 in the Appendix. The probabilistic
robustness is computed by a kernel density estimator approach similar as it is done in [42, 43]. Here this
leads to

P
(

p ∈
[
pmin, pmax

]
∀t ∈ [0, T ]

)
= 0.8574,
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Figure 10: A sample of 100 random gas outflow scenarios

which means that 85.74% of all scenarios satisfy the pressure bounds for all times. This stands to reason
that the stationary solution might be beneficial for transient scenarios with small perturbations. How-
ever, as soon as the expected gas outflow is far from being constant, the probability might decrease rapidly.

5 Conclusion and Open Problems
We have analyzed the problem of finding the optimal location of compressor stations on graphs, s.t. the
control cost is minimal and pressure bounds are satisfied, in a deterministic as well as in a probabilistic
context. For a single pipe, we have given sufficient conditions for the existence and the uniqueness for
both settings. For gas networks, we have presented existence results for several optimization problems.
For example, in some cases the number of compressor stations is also a decision variable. The uniqueness
of solutions on networks mainly depends on the graph structure. To be precise, cycles can cause non-
uniqueness.

The theory and the numerics both show, that a compressor station is better in terms of its cost, the
sooner it is located on a pipe. In the compressor model chosen here, the compressor cost is independent
from the flow rate. Considering a model, where the compressor cost increases with the flow rate, com-
pressors might be more efficient if they are located at pipes with low flow rate. Other compressor models
have bounded operation ranges, see e.g. [14, 34, 37]. This would lead to a more involved analysis and
different results of the problems.

We have discussed the probabilistic robustness of the stationary optimal compressor locations in a
transient context, in which stationary solutions are quite efficient as long as the perturbation stays small.
For gas demand with high perturbation, a natural and interesting question is to consider gas flow dy-
namics as it was done e.g., in [6, 16, 26, 42, 43]. Then the hyperbolic structure of the gas dynamics has
to be considered, which implies that e.g., a change over time in the gas inflow does change the outflow at
another point in time. Also since the solution of the gas dynamics is not given explicit, a new approach
for the existence (and uniqueness) of solutions is necessary. As already mentioned in the Introduction
the problem of the optimal location of compressor stations in a gas pipeline network shows similarities
to Weber problems, so results of this area might be beneficial in the transient setting.
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Appendix.Simulation Results of the Transient Random Scenarios
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