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INTRODUCTION

Landslides pose a significant danger in vari-
ous mountainous regions around the globe and 
can result in devastating consequences such as 

loss of property, economic instability, and loss of 
life (Prasad & Francescutti, 2017). The destruc-
tive impact of landslides is increasing globally 
due to deforestation, global population growth, 
and climate change, whereby the latter alters the 
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ABSTRACT
Landslides are considered to be one of the most significant and critical natural hazards in the heterogeneous geomor-
phological setting of the Rif region of Morocco. Despite the high susceptibility to landslides, the region lacks detailed 
studies. Therefore, this research introduces four advanced machine learning methods, namely Support Vector Machine 
(SVM), Classification and Regression Trees (CART), Multivariate Discriminant Analysis (MDA), and Logistic Regres-
sion (LR), to perform landslide susceptibility mapping, as well as study of the connection between landslide occurrence 
and the complex regional geo-environmental context of Taounate province. Fifteen causative factors were extracted, 
and 255 landslide events were identified through fieldwork and satellite imagery analysis. All models performed very 
well (AUC > 0.954), while the CART model performed the best (AUC= 0.971). However, SVM demonstrated superior 
performance compared to other methods, achieving the highest accuracy (89.92%) and F1-measure (81.66%) scores 
on the training data, and the highest accuracy (83.01%), precision (81.74%), and specificity (79.46%) scores on the test 
data. The results do not necessarily indicate that LR and MDA have the lowest predictive ability, as they demonstrated 
high accuracy in terms of AUC and in some classification tasks. Moreover, they provide the significant advantage of 
easy interpretation of the geo-environmental processes that control landslides. Rainfall is the primary triggering factor 
of landslides in the study area. The majority of landslides occurred on slopes, particularly those located along rivers and 
faults, suggesting that landslides in the region are closely associated with active tectonics and precipitation. All four 
models predicted similar spatial distribution patterns in landslide susceptibility. The results showed that almost half of 
the area mainly in the north and northwest, has a very high susceptibility to landslides. The findings provide valuable 
references for land use management and the implementation of effective measures for landslide prevention.
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stability of slopes and bedrock through changes 
in precipitation and/or temperature (Saha et al., 
2021). Landslides can be local and superficial but 
could also occur on a large scale and suddenly, 
affecting the slopes of entire catchments and lead-
ing to severe landscape damage. Therefore, un-
derstanding the dynamics of landslides and devel-
oping effective mitigation measures are essential 
for minimizing the impact of these hazard events 
and ensuring the safety of vulnerable populations 
and infrastructure.

Africa, notably, stands out as a significant 
landslide-prone area due to high population 
growth and the influence of climate change, re-
sulting in increased precipitation and more fre-
quent and violent rainstorms (Broeckx et al., 
2018; Gariano & Guzzetti, 2016). The tectoni-
cally active region extending from Morocco to 
Egypt contributes to the heightened susceptibil-
ity of the northern margin of Africa to landslides 
(Poggi et al., 2020). Despite the critical necessity 
for landslide susceptibility mapping in North Af-
rica, only a few studies have been conducted, and 
the majority of them have focused on Morocco 
(Abdı et al., 2021; Anis et al., 2019). Integrating 
landslide susceptibility mapping into the disaster 
management plans of each exposed country is 
crucial for improving disaster management and 
mitigation strategies (P. Zhao et al., 2022).

The Taounate province in Northern Morocco 
is prone to numerous landslides and is located 
within the geologically diverse Intra and Mesorif 
domains, as well as the geologically consistent 
Prerif region. A recent study has identified over 
1,000 landslide cases in Taounate alone, equiva-
lent to 25 movements/km2 (Abidi et al., 2019). 
The geology of this area, characterized by active 
tectonics and rugged terrain, and its climate, char-
acterized by long periods of drought followed by 
periods of heavy precipitation in the form of ex-
treme events, are considered the leading causes of 
this natural hazard (Benabdelouahab et al., 2020). 
Moreover, all the studies conducted to generate 
landslide susceptibility maps are case-by-case 
studies and do not cover the entire province. For 
instance, investigations by Jemmah & Brahim, 
2018, and the research conducted by Benchelha 
et al., 2020, focused on the province’s northern 
regions, where they performed a comparative 
assessment of various techniques for mapping 
landslide susceptibility. Nevertheless, previous 
research efforts have not adequately addressed 
the overall complexities of the entire region under 

study. Producing clear maps is essential in map-
ping landslide susceptibility, and various tech-
niques have been suggested and utilized for this 
aim, including qualitative and quantitative ap-
proaches. Qualitative methods require an expert 
to estimate landslide potential and slope move-
ment. On the other hand, quantitative methods, 
such as statistical or probabilistic techniques, 
have proven effective in identifying areas that re-
quire intervention or development and are used 
by policymakers with input from scientists, engi-
neers, and the general population (Bravo-López 
et al., 2022; Reichenbach et al., 2018). 

Numerous statistical techniques have been 
used in order to generate landslide susceptibility 
maps in the Moroccan Rif region. For example, 
Hierarchical Fuzzy Inference Systems (HFIS) that 
were applied in the Rif Mountains’ center region 
(Ozer et al., 2020) and fuzzy Analytical Hierarchy 
Process (FAHP) were combined for landslide sus-
ceptibility modeling in southeast Morocco (Sadi-
ki et al., 2023); Weight Of Evidence (WOE) was 
applied in Tetouan-Ras Mazar (Elmoulat & Ait 
Brahim, 2018), an area of the Rif chain (Es-smairi 
et al., 2021) and Taounate-Ain Aicha (Jemmah & 
Brahim, 2018). Logistic regression (LR) was used 
in Taounate-Oudka and the Sahla catchment area 
(El-Fengour et al., 2021), while the Analytical Hi-
erarchical Processes (AHP) method was applied 
in Tangiers (Brahim et al., 2018), the Larache 
Province (Hamdouni et al., 2022) and parts of the 
Rif mountains (Es-smairi et al., 2021). Howev-
er, these methods rely on assumptions about the 
data, such as normality and linearity, which can 
limit their accuracy in analyzing complex inter-
relationships between different causative factors. 
Furthermore, reclassifying continuous causative 
factors to prepare the dataset can be challeng-
ing and affect the nature of the data (Chen et al., 
2018), resulting in decreased model accuracy. 
Additionally, classical statistical methods, which 
require large sample sizes and are less able to pro-
cess high-dimensional and complex data (He et 
al., 2012), The geo-environmental processes con-
trolling landslides in the Taounate province are 
complicated and remain unknown, highlighting 
the need for further research and effort in land-
slide susceptibility modeling and mapping. How-
ever, there are opportunities for improvement by 
leveraging the strengths of high-resolution, freely 
available remote sensing data and the efficiency 
of advanced machine learning methods. Machine 
learning techniques have lately gained significant 
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popularity in assessing landslide susceptibility 
(Rahmati et al., 2019). The accessibility of sat-
ellite imagery has enhanced machine learning’s 
success, geographic information systems (GIS), 
and the scarcity of historical landslide records 
(Ado et al., 2022). Despite the numerous advan-
tages offered by machine learning, including its 
ability to handle high-dimensional data efficient-
ly, fit nonlinear relationships between targets and 
factors (X. Zhou et al., 2021), as well as its adapt-
ability, reproducibility, and ability to quantitative 
analysis of factors contributing to landslide de-
velopment. The use of machine learning methods 
for landslide susceptibility mapping has been lim-
ited in North Africa, particularly in Morocco.

Few research studies have evaluated the effi-
ciency of Artificial Neural Networks (ANN) and 
LR in identifying suitable methods for limited re-
gions within the Taounate province. In a study by 
Benchelha et al., 2020, the Multivariate Adaptive 
Regression Spline (MARSpline) model demon-
strated a higher success rate compared to LR and 
ANN models. However, it should be mentioned 
that this study was verified using a single assess-
ment measure (Area Under Curve (AUC)) and 
was based on eight conditioning factors. In other 
research, Sahrane et al., 2023 used LR and ANN 
models to examine the effect of landslide invento-
ry maps on landslide susceptibility in two distinct 
geomorphologically different regions in Taounat 
province. In the Atlas Mountains, the Support 
Vector Machine (SVM) model outperformed the 
Weight of Evidence (WoE) and Radial Basis Func-
tion Network (RBFN) models despite being uti-
lized only once in Morocco (Naceur et al., 2022). 
The case studies mentioned have their limitations, 
as the effectiveness of machine learning techniques 
can be influenced by the unique geo-environmental 
characteristics of each region, various contributing 
factors, and the accuracy of input data (P. Zhao et 
al., 2022). Hence, to ensure the generation of pre-
cise landslide susceptibility maps, it is essential to 
assess and contrast alternative advanced machine 
learning approaches capable of adequately ad-
dressing the overall study area complexities when 
performing landslide susceptibility mapping.

Addressing the current limitations of models 
used and the data gaps in Morocco’s Rif mountains, 
we concentrated on analyzing the performance of 
four machine learning methods: SVM, LR, Multi-
variate Discriminant Analysis (MDA), and Classi-
fication and Regression Trees (CART) for landslide 
susceptibility mapping. These models were chosen 

based on a literature review and the recognition 
that different linear and nonlinear factors influ-
ence landslide occurrence. The aim of this research 
study is not limited to the assessment of machine 
learning models but also to develop an extensive 
understanding of the geo-environmental factors 
controlling landslides in one of the most affected 
and complex regions of North Africa. Moreover, 
the strength of this study lies in its extensive and 
significant database, comprising 255 landslides and 
15 geo-environmental factors using remote sensing 
and fieldwork data. These contributions represent 
a substantial addition to the scientific community.

STUDY AREA

The geographical area studied covers a moun-
tainous province of around 5616 km² in the Fez-
Meknes region of North Morocco (Figure 1). In 
2009, the province’s population was approximate-
ly 678,000, giving it an average density of 121 in-
habitants per km², relatively high for a mountain-
ous area. The province straddles three structural 
subdomains of the Rif belt: Intra-Rif, Meso-Rif, 
and Pre-Rif, and therefore is characterized by dif-
ferent tectonic units and a high diversity of litho-
logical units (limestone, marl, flysch, etc.) (Mich-
ard et al., 2014; Poujol et al., 2014). The topogra-
phy is contrasted with a varied landscape due to 
the tectonic deformations of the region, which can 
be divided into two main sub-regions:
• The northern part, linked to the Rifian domain, 

is a mountainous relief that covers about 40% 
of the province’s total area, with altitudes up 
to 1800 m. The province is crossed by several 
vital rivers constituting the main tributaries of 
the Oued Ouergha

• The southern part, linked to the pre-Rifian 
zone, has a hilly relief with an altitude ranging 
from 150 m along Oued Inaouen and 1000 m 
at Jbel Zeddour.

The province’s climate is Mediterranean, 
with dry, hot summers and cold, wet winters, and 
annual rainfall averages around 790 mm, which 
can exceed 1800 mm in the Jebel Outka area. The 
average temperature is around 16.9 °C, which can 
exceed 45 °C in summer (El-Assri et al., 2021). 
This situation is compounded by a rising occur-
rence of heavy rainfall, earthquakes, and urban 
development, making it one of Morocco’s regions 
most susceptible to high-impact landslides.
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DATA AND METHODS

A schematic representation of the application 
procedure is shown in Figure 2. The main steps 
in the methodological approach comprise data 
collection and organization, the model’s develop-
ment and validation, and the contribution of con-
ditioning factors.

Data collection

Generating landslide inventory map

Past and present landslides are critical indi-
cators of future landslides (Guzzetti et al., 1999). 
Therefore, an inventory of landslides, based on 
historical data collected through exhaustive in-
vestigations by Maurer, 1968 and high-resolution 
Google Earth images, was utilized to create a map 
of landslides in the study region. Google Earth 
Pro software was employed to validate the exis-
tence of historical data and collect new landslide 
and non-landslide points. Non-landslide loca-
tions were randomly selected from areas without 
landslide, ensuring a minimum distance of 2000 

meters from landslide sites. In order to produce a 
single landslide inventory map, six different types 
of landslides, including rockfalls, debris flows, 
and complicated landslides, were identified. The 
inventory map contained 255 landslides and 255 
non-landslide points in Taounate province (Figure 
1). Figure 2 illustrates the methodological process 
used in this study.

Generating landslide conditioning factors

The interaction of different factors causes 
the occurrence of a landslide. There are no spe-
cific guidelines for selecting these factors, each 
of which may contribute to a greater or lesser 
extent in different regions. However, it is com-
monly assumed that landslides will happen un-
der similar conditions as in the past. (Youssef 
& Pourghasemi, 2021). Based on the literature 
assessment and the study area’s environmental 
and geographical characteristics, fifteen land-
slide conditioning factors were chosen. They can 
be divided into four categories (Table 1, Figure 
3), namely topographic (altitude, Topographic 

Figure 1. Location maps of the study area showing the location of landslides and non-landslides areas
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Figure 2. Methodological flowchart

Table 1. Details of landslide conditioning factors data
Cluster Conditioning factors Type Data source

Topographical

Altitude Continuous

Digital Elevation SRTM – 30 m

Slope Continuous

Aspect Continuous

Curvature Continuous

Profile curvature Continuous

Plan curvature Continuous

TPI Continuous

TWI Continuous

Geological
Lithology Categorical Geological data of Africa USGS + Geological map of 

Morocco 1/200,000
Distance to faults Continuous Geological map of Morocco 1/200,000 + satellite imagery

Hydrological
Precipitation Continuous CHIRPS - Satellite precipitation product (~ 5 km)

Distance to Rivers Continuous Digital Elevation SRTM – 30 m

Land covers

NDVI Continuous Sentinel-2 time series of 2021 – 10 m

Land cover/Land use Categorical Esri Land cover/land use of 2021 – 10 m

Distance to roads Continuous Google Earth

Position Index (TPI), Topographic Wetness Index 
(TWI), slope, aspect, curvature, profile curvature, 
plan curvature), hydrological (precipitation, dis-
tance to river), geological (lithology, distance to 
faults), and land cover related (distance to roads, 
Land Cover and land Use (LCLU) and Normal-
ized Difference Vegetation Index (NDVI)). The 

discrete variables were distributed following the 
properties of the data, while the topographic fac-
tors were derived using a 30 m resolution Digital 
Elevation Model (DEM). Using the GIS tool, all 
conditioning factors were converted into a raster 
format and synchronized at a spatial resolution of 
10×10 m cell size. 
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Figure 3. Landslide conditioning factors maps

Altitude

The research area’s elevation ranges from 29 
to 1744 meters above sea level. The altitude con-
ditioning factor is often used to analyze landslide 
susceptibility. It has an impact on the land’s sur-
face, changing the location of rainfall, vegetation, 
erosion, and soil depth (Pham et al., 2022). It also 
significantly affects soil moisture, slope gradient, 
stream, and drainage density.

Slope

Slope, which influences the shear forces op-
erating on hill slopes, is typically regarded as 
one of the crucial factors for landslide modeling 
(Nolasco-Javier et al., 2015). The probability of 
landslides rises with steeper slope angles because 
these conditions promote runoff and drainage 
processes at the cost of soil stability. According to 
Magliulo et al. 2008, slope gradient considerably 
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impacts groundwater flow and the concentration 
of soil moisture, which are directly connected to 
landslides occurrence.

Slope aspect

The slope’s aspect or exposure indicates the 
direction in which it is oriented (Barman et al., 
2023). Conditioning exposure to sunlight and dry-
ing winds that control soil moisture and evapotrans-
piration (Tang et al., 2020) is an indicative factor 
of landslide susceptibility. This factor can influence 
other factors, including wind direction, rainfall re-
gime, amount of sunlight, hydrology, vegetation 
development, and soil moisture (Xing et al., 2021).

Curvature

The curvature is the change in the topograph-
ic surface’s slope over a narrow curve arc, also 
called slope shape or topographic curvature. It 
influences the direction of surface flow and the 
constraint on the slope material.

Pro�le curvature

Profile curvature is the term used to describe 
the curvature in the primary direction of the steep-
est slope. This factor impacts how quickly and 
slowly the flow moves, impacting erosion and 
deposition (Xie et al., 2021). A positive or nega-
tive value denotes the cell is part of a concave or 
convex upward slope.

Plan curvature

The curvature of a plane is defined by the 
contour line created when the surface intersects 
a horizontal plane. It controls the water direction 
during downslope flow, which can condition land-
slide events (Habumugisha et al., 2022; Tavak-
koli Piralilou et al., 2019). The cell is a portion of 
a laterally concave or convex slope, whether the 
value is positive or negative.

TPI

The Topographic Position Index (TPI) is a 
parameter to describe the terrain (Andrew D. 
Weiss, 2001). It refers to the difference in altitude 
between a point and its surroundings. It is the out-
come of comparing each cell’s height in a DEM 
to the average elevation of its surrounding cells. 
The TPI is positive for cells elevated above their 
surroundings (ridges and hilltops) and negative 
for depressions.

TWI

The water saturation zones and soil mois-
ture content are represented by the Topographic 
Wetness Index (TWI). This factor was chosen 
because it explains how topography affects soil 
moisture. Higher values of TWI can be related to 
higher risks of landslides (Meena et al., 2022).

Lithology 

Lithology is one of the most frequently em-
ployed parameters in landslide susceptibility 
studies due to its impact on the geo-mechanical 
properties of the terrain (Costanzo et al., 2012).  
The variation of lithological units often leads to 
differences in permeability, density, hardness, and 
strength of soils and rocks. The lithological map 
was created from various sources, including the 
United States Geological Survey’s (USGS) geo-
logical data for Africa and the 1:200,000 geologi-
cal map of Morocco. Eight lithological units were 
distinguished and assigned the following codes:
• Quaternary (marls, sandstone, limestone, and 

alluvium) = 0
• Lower Jurassic (limestone and molasses), 

Cretaceous (marls and marly limestone), and 
Cretaceous-Tertiary (marls, marly limestone, 
and flysch) = 1

• Tertiary (limestone and flysch) =2
• Lower Cretaceous (Flyschs), tertiary intrusive 

rock, tertiary intrusive rock, and Triassic (ba-
salt) = 3.

Precipitation

Precipitation is one of the main initiators or 
triggers of landslide risk. It raises pore pressure 
and water content of the soil, reducing soil co-
hesion and potentially leading to slope instability 
and mass movement (Habumugisha et al., 2022). 
The calculation of monthly average precipitation 
spanning 16 years (2005–2021) was performed 
using data from the Climate Hazards Group Infra-
Red Precipitation with Stations (CHIRPS) (Funk 
et al., 2015). The CHIRPS data were preferred 
because several studies concluded that CHIRPS 
performs better than TRMM 3B42 (Tropi-
cal Rainfall Measuring Mission version 7) and 
PERSIANN-CCS (Precipitation Estimation from 
Remotely Sensed Information using Artificial 
Neural Networks – Cloud Classification System) 
(Karmouda et al., 2022). For the past 16 years, the 
research region has received an average of 35.19 
to 68.50 mm of rain each month.
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Land cover/ land use

The physical characteristics of soils, as well 
as the hydrological processes of rainfall distribu-
tion, infiltration, slopes, and runoff, may all be in-
fluenced by land use (Meena et al., 2022). These 
data for 2021 in our study area were directly ex-
tracted from ESRI’s annual 10m land cover maps, 
derived from ESA’s Sentinel-2 imagery at 10m 
resolution. These were produced by the Impact 
Observatory, which employed a deep-learning 
model trained for land classification using bil-
lions of human-labeled pixels. The methodology 
for encoding the land cover parameters was as 
follows: Water = 1, Built area = 2, Bare ground = 
3, Range Land = 4, Flooded vegetation = 5, Crops 
= 6, and Trees = 7.

Distance to roads

One of the human factors that could promote 
various forms of erosion is the distance to roads, 
especially the occurrence of landslides. Road 
construction requires excavation and dumping of 
material, which impacts slope stability, and vi-
brations generated by human activities can trig-
ger mass movements (Vakhshoori & Zare, 2016). 
The road distance calculation was derived from 
the road network extracted from Google Earth 
through a GIS tool.

NDVI

The presence and type of vegetation cover 
are essential to mass movement, influencing 
slope stability by water absorption and reinforc-
ing soil cover (Xing et al., 2021). A high (NDVI) 
value may also suggest an elevated likelihood of 
such events (Huang et al., 2020). Vegetation den-
sity was obtained by calculating the Normalized 
Difference Vegetation Index (NDVI) on Google 
Earth Engine (GEE), using a one-year time series 
(January to December 2021) derived from cloud-
free images of the Sentinel-2A and Sentinel-2B 
satellites. The NDVI map was calculated accord-
ing to Equation 1:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁

(1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁

(2)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(3)

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(4)

𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(5)

𝐹𝐹1 − 𝑚𝑚𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 = 2 × 𝑇𝑇𝑇𝑇
2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(6)

DACCi = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎− 𝐴𝐴𝐴𝐴𝐴𝐴 𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎

× 100 (7)   

(1)

NIR and RED refer to the spectral reflectance 
measurements obtained within the red and near-
infrared bands of the electromagnetic spectrum, 
respectively. The NDVI value varies within the 
range of -1 to 1.

Distance to faults

The distance from a fault is a significant geo-
logical factor that can potentially trigger land-
slides, and it has been utilized in numerous prior 
studies related to landslide susceptibility (Habu-
mugisha et al., 2022). Areas near geological faults 
are at high risk for landslides because the sur-
rounding rock experiences significant fracturing, 
decreasing its strength due to tectonic fractures 
(Chen et al., 2017).

Distance to rivers

Many landslides are caused by rivers because 
of their power to erode exposed material, thus 
becoming a key factor in landslide susceptibility 
(Pradhan et al., 2010). This factor was computed 
using the “Euclidean Distance” from the drainage 
network derived from the SRTM DEM data and 
refined using Google Earth for improved accuracy.

Modeling using Machine Learning Algorithms

Multivariate discriminant analysis

Multivariate discriminant analysis (MDA) is a 
multivariate statistical method that complements 
linear discriminant analysis (LDA). It performs 
a mixture of classifiers for clustering by merging 
the implementation of simple linear and non-lin-
ear combination models. The MDA algorithm has 
many advantages, including its ability to handle 
large and high-dimensional datasets, avoid overfit-
ting of datasets, and be easy to use (Hastie & Tib-
shirani, 1996). It is a widely employed supervised 
machine learning methodology utilized for both 
regression and classification tasks in various fields, 
including natural resources modeling and landslide 
susceptibility assessments (Kalantar et al., 2019).

Logistic regression

Logistic regression (LR) is a simple, rapid, 
and highly efficient classification method (Ra-
janeesh et al., 2022). It is one of the most com-
monly utilized machine learning algorithms, 
originally developed within the statistical field 
(Cabrera, 1994). The generalization of the linear 
model relies on employing the logistic function to 
represent a binary response variable (dependent 
variable, landslide occurrence) and numerous ex-
planatory variables (independent variables, con-
ditioning factors) to predict the likelihood of spe-
cific events, such as landslides (Xie et al., 2021). 
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The classification output is between 0 and 1, mak-
ing it applicable for probabilistic interpretation in 
several study areas (Qu et al., 2019). 

Classi�cation and regression Ttees

Classification and regression trees (CART), 
introduced by Breiman in 1984, represent predic-
tive algorithms employed in the machine learn-
ing field. Instead of using stopping rules, CART 
grows an extensive tree to produce a sequence of 
subtrees for solving classification problems (Loh, 
2011). The decision tree algorithm has been dem-
onstrated to be highly effective in dealing with 
classification. It has the noticeable advantage of 
handling small datasets and scaling to significant 
problems (Markham et al., 2000). The model is 
a non-parametric procedure for predicting output 
variables using input variables (Prakash, 2018). 
CART has found extensive application in land-
slide studies across various global regions (Fe-
licísimo et al., 2013; Rabby & Li, 2020; Vorpahl 
et al., 2012), although, to the best of our knowl-
edge, it has not been applied in Morocco. In the 
context of landslide prediction, the CART algo-
rithm undergoes a four-step training process: (i) 
tree construction, (ii) determination of tree con-
struction termination, (iii) tree pruning, and (iv) 
selection of the optimal tree for classifying land-
slide and non-landslide categories (Loh, 2011).

Support Vector Machine

Support Vector Machine (SVM) is an effi-
cient and robust supervised technique applicable 
for both regression and classification tasks. (Cor-
tes & Vapnik, 1995; Cristianini & Shawe-Taylor, 
2000). The most crucial feature of SVM is its 
kernel function, which transforms the input vari-
ables into a complex and multi-dimensional lin-
ear space through nonlinear transformation. This 
generates an optimal separation hyperplane be-
tween two classes (Qu et al., 2019) to maximize 
the margin between them, thereby making it a 
nonlinear classifier.  There are typically four cat-
egories of Kernel functions utilized in SVM: lin-
ear, sigmoid, radial basis, and polynomial func-
tions. In this study, the linear function was chosen 
for the SVM model to compute the landslide sus-
ceptibility index. SVM classification has demon-
strated its effectiveness in landslide susceptibility 
mapping, outperforming various other machine 
learning methods (Xie et al., 2021), especially in 
mountainous areas.

Model validation and performance

As landslide mapping involves binary classi-
fication (absence or presence of landslides), it is 
crucial to assess the quality of landslide proba-
bility estimates. This assessment should consid-
er prediction accuracy, misclassification errors, 
and outcomes (Merghadi et al., 2020). Before 
model validation, the dataset must be divided 
into training and testing parts. Previous studies 
have commonly used simple random division 
(Kadavi et al., 2018). Nevertheless, we chose 
to employ robust statistical validation through 
k-fold cross-validation to address the issue of 
imbalanced landslide samples and mitigate bias 
(Pal & Patel, 2020). Using this approach, the 
dataset is divided randomly into 10 subsets or 
folds, with each fold employed to validate the 
model trained on the remaining folds. This hold-
out process is repeated 10 times. The evaluation 
is intended to identify and compare the accuracy 
of the four machine learning models across the 
Taounate province. The landslide susceptibility 
values of the four models, which ranged from 
0 to 1, were compared with the landslide fea-
ture based on two predicted landslide classes: 
“positive” if the value was more significant than 
0.5 and “negative” if the value was less than 
0.5. From these values, six statistical measures 
were calculated, including precision, sensitiv-
ity (recall), specificity, accuracy, F1-measure (or 
F1-score), and receiver operating characteristics 
(ROC), as follows:

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁

(1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁

(2)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(3)

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(4)

𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(5)

𝐹𝐹1 − 𝑚𝑚𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 = 2 × 𝑇𝑇𝑇𝑇
2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(6)

DACCi = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎− 𝐴𝐴𝐴𝐴𝐴𝐴 𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎

× 100 (7)   

(2)

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁

(1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁

(2)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(3)

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(4)

𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(5)

𝐹𝐹1 − 𝑚𝑚𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 = 2 × 𝑇𝑇𝑇𝑇
2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(6)

DACCi = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎− 𝐴𝐴𝐴𝐴𝐴𝐴 𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎

× 100 (7)   

(3)

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁

(1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁

(2)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(3)

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(4)

𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(5)

𝐹𝐹1 − 𝑚𝑚𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 = 2 × 𝑇𝑇𝑇𝑇
2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(6)

DACCi = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎− 𝐴𝐴𝐴𝐴𝐴𝐴 𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎

× 100 (7)   

(4)

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁

(1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁

(2)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(3)

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(4)

𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(5)

𝐹𝐹1 − 𝑚𝑚𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 = 2 × 𝑇𝑇𝑇𝑇
2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(6)

DACCi = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎− 𝐴𝐴𝐴𝐴𝐴𝐴 𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎

× 100 (7)   

(5)

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁

(1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁

(2)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(3)

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(4)

𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(5)

𝐹𝐹1 − 𝑚𝑚𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 = 2 × 𝑇𝑇𝑇𝑇
2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(6)

DACCi = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎− 𝐴𝐴𝐴𝐴𝐴𝐴 𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎

× 100 (7)   

(6)

where: “P” represents the total number of land-
slides, “N” represents the number of non-
landslide points, “True Positives (TP)” 
and “True Negatives (TN)” denote cor-
rectly classified samples, and “False Posi-
tives (FP)” and “False Negatives (FN)” 
represent misclassified samples.
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The ROC curve, as introduced by Bradley, 
1997, is a commonly used method for assessing 
the predictive capabilities of a model. The area 
under the ROC curve (AUC) serves as a perfor-
mance metric that considers specificity on the 
x-axis and sensitivity on the y-axis (Jiang et al., 
2023). AUC values are between 0 and 1 and can 
be classified as excellent (0.9–1), very good (0.8–
0.9), good (0.7–0.8), average (0.6–0.7) and poor 
(0.5–0.6). According to Mathew et al., 2009, the 
AUC is a noteworthy metric and one of the most 
valuable precision statistics for landslide suscep-
tibility analysis.

Factor importance

For geo-environmental models, it is neces-
sary to determine which factors are essential 
or contribute the most to the disaster. There is 
no universal guide for identifying these factors, 
and several methods have been proposed in re-
cent years. We opted for a jack-knife test based 
on removing one factor at a time and using the 
remaining factors for modeling (Lombardo et 
al., 2016; Ramos-Bernal et al., 2019). The jack-
knife test is employed to ascertain the individual 
contributions of each factor to the overall sus-
ceptibility model (Ramos-Bernal et al., 2019). 
The sensitivity of each of the fifteen factors in 
each predictive model has been assessed us-
ing the percentage decrease in overall accuracy 
(DAAC) (Bouramtane et al., 2022). 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝑁𝑁
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝑁𝑁

(1)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁

(2)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(3)

𝐴𝐴𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(4)

𝑇𝑇𝐴𝐴𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑇𝑇

(5)

𝐹𝐹1 − 𝑚𝑚𝑆𝑆𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆 = 2 × 𝑇𝑇𝑇𝑇
2 × 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑁𝑁 + 𝐹𝐹𝑇𝑇

(6)

DACCi = 𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎− 𝐴𝐴𝐴𝐴𝐴𝐴 𝑖𝑖
𝐴𝐴𝐴𝐴𝐴𝐴 𝑎𝑎𝑎𝑎𝑎𝑎

× 100 (7)   (7)

ACCall represents the calculated model accu-
racy when all parameters are considered. ACCi
denotes the accuracy value of the model when an 
indicator ‘i’ is excluded from the input data, and 
DACCi represents the corresponding percentage 
decrease in accuracy.

RESULTS

Comparative performance analysis 
of machine learning models

According to the AUC index, the varia-
tion in model performance was minimal. All 
four models performed excellently for landslide 
predictive ability with AUC values above 0.95. 
The CART model achieved the highest score 
(AUC=0.971), followed by LR (AUC=0.963), 
with SVM (AUC=0.961) and MDA (0.954) fol-
lowing suit (Figure 4). Evaluating model perfor-
mance relying only on one assessment measure, 
such as AUC, might not be suitable, as a high 
AUC value does not invariably signify elevated 
accuracy in spatial prediction (Kalantar et al., 
2019). Therefore, five statistical measures were 
used: precision, sensitivity, specificity, accuracy, 
and F1-measure. All the results are presented in 
Table 2. The SVM model exhibited superior per-
formance in classifying both landslide and non-
landslide in both the training and test datasets, 

Figure 4. The area under curve (AUC) related to the five employed models: 
support vector machine (SVM), classification and regression trees (CART), logistic 

regression (LR) and multivariate discriminant analysis (MDA)
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achieving accuracies of 89.92% and 83.01%, re-
spectively. The LR model came in second with 
an accuracy of 89.69% and 83.01% for both the 
training and test datasets, subsequently followed 
by the CART with 88.1% for the training data-
set and 69.02% for the test dataset. Finally, the 
MDA model achieved accuracies of 88.24% for 
the training dataset and 75.95% for the test da-
taset. Moreover, the SVM model also showed 
superior performance in terms of precision and 
specificity (non-landslide classification) for the 
test data, with 81.74% and 79.46%, respectively.  
However, the best performance of the training 
data for precision and specificity was attained 
by the MDA model (93.07%, 93.92%), which is 
followed by the LR model (90.15%, 90,36%), 
which is then followed by the SVM model 
(89.89%, 89.97%) and CART model (87.59%, 
87.42%). The CART model achieved the high-
est sensitivity for the training dataset at 90.24%, 
whereas the LR model demonstrated the highest 
sensitivity for the test dataset at 91.60%. Fur-
thermore, the LR model exhibited superior per-
formance in regard to the F1-measure for both 
the training dataset (81.69%) and the test dataset 
(79.12%). It is crucial to highlight that the out-
comes of our research study do not necessarily 
imply that the SVM model is the optimal ma-
chine learning approach for every prediction or 
classification assignment. However, our findings 
demonstrate that the SVM model outperformed 
the other methods in several classification tasks, 
especially the accuracy, indicating its potential 
as a suitable option for landslide susceptibility 
mapping not only in the Rif region but also in 
other similar contexts.

Landslide susceptibility maps

Figure 5 illustrates the landslide susceptibil-
ity maps. The use of the four models resulted in a 
consistent distribution of susceptibility prediction 

categories, with high susceptibility areas primar-
ily concentrated in the northern and northwest-
ern regions of the study area. Conversely, regions 
characterized by low susceptibility were situated 
in the southern part. Meanwhile, areas display-
ing varying degrees of susceptibility, ranging 
from high to moderate, were observed in the 
central, east-central, and west-central regions of 
the study area. Subsequently, the relative pro-
portions of the four classes in each model were 
computed (Figure 6). The proportion of the very 
high susceptible area was comparable between 
the CART and SVM models, constituting 42% 
in both cases, slightly higher for the LR model 
(45%) and lower for the MDA model (40%). 
On the other hand, the differences between the 
models were stronger for the low susceptibility 
category, ranging from 28% for the CART model 
to 37% for the MDA model. For the medium and 
high susceptibility categories, there were some 
similarities between the four models, as they oc-
cupy less than 16%.

Contribution of conditioning factors 
to landslide distribution

Figure 7 illustrates the explanatory vari-
ables’ contribution for each model and is rep-
resented by the number of observations appear-
ing on the x-axis. Precipitation had very high 
DAAC values ranging from 6.52% to 14.66%. 
From this finding, it is concluded that precipita-
tion is the most crucial factor that significantly 
affects the distribution of landslides for each 
classifier in the research region, followed by 
distance to the rivers with DAAC values rang-
ing from 4.21% to 3.04%. However, it appears 
that distance to roads and land cover/land use 
held relatively lower significance within the 
study area, as indicated by the outcomes of the 
four classifiers. The comparative importance of 
precipitation, distance to rivers, land cover, and 

Table 2. The performance of four models in the terms of evaluation measures

Measures
MDA LR SVM CART

Training Test Training Test Training Test Training Test

Precision 93.07% 70.12% 90.15% 81.62% 89.89% 81.74% 87.59% 71.43%

Specificity 93.92% 61.77% 90.36% 78.06% 89.97% 79.46% 87.42% 65.82%

Sensitivity 82.56% 91.60% 89.16% 90.29% 89.94% 89.24% 90.24% 77.69%

Accuracy 88.24% 75.95% 89.69% 83.01% 89.92% 83.01% 89.10% 69.02%

F1-measure 77.79% 60.84% 81.24% 79.12% 81.66% 72.48% 80% 54.67%
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distance to roads was similar among the four 
models. However, the relative importance of 
the remaining conditioning factors varied sig-
nificantly across the models. Notably, the SVM 
model attributed the highest DAAC value to 
precipitation (14.66%), marking it as the most 
influential factor. It was followed by slope 
(5.25%), distance to rivers (4.16%), altitude 
(2.84%), and distance to faults (2.84%).

DISCUSSION

Factors contributing to landslide 
risk in the Rif region  

The investigation into landslide susceptibil-
ity is essential in land management, planning, 
and the development of hilly regions. These sus-
ceptibility maps are valuable tools for govern-
ment agencies, offering essential guidance for 

Figure 5. Landslide susceptibility maps of Taounate province using the 
four models (a) CART, (b) SVM, (c) LR and (d) MDA

Figure 6. The percentages of areas occupied by four susceptibility levels (low, medium, high, very high)
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effective decision-making in landslide hazard and 
risk analysis, as well as for general planning and 
assessment of landslides (Roccati et al., 2019). 
This study is innovative as it marks the initial 
endeavor to produce a comprehensive landslide 
susceptibility map encompassing the entire study 
region. The results revealed that nearly half, ap-
proximately 40% to 45%, of the study area ex-
hibits a high susceptibility to landslides, as con-
firmed by the four machine learning models (Fig-
ure 6). Furthermore, the four susceptibility maps 
generated by machine learning show a uniform 
distribution of the different susceptibility levels, 
highlighting the study area’s north-northeast re-
gions as the most susceptible to landslides. Con-
currently, the southern region is characterized as 
having a low susceptibility to landslides (Figure 
5). The region exhibiting a notably elevated sus-
ceptibility to landslides is characterized by high 
precipitation, particularly in the north, along with 
contrasting relief. Flat and gentle slopes identify 
the low susceptible as gentle slopes. In summary, 
the landslide susceptibility maps produced in this 
study offer valuable resources for urban planners, 
government entities, and non-governmental or-
ganizations. These maps can aid in the effective 
management of human activities, resources, and 

infrastructure development within the region. The 
increased human activities in the region, com-
bined with the landslide susceptibility maps gen-
erated, have the potential to enable local authori-
ties to precisely identify areas at high risk and put 
in place early warning and preventive strategies 
for disaster mitigation. 

Recent studies have noted a continuous in-
crease in the frequency of extreme precipita-
tion events in Mediterranean regions (Fiori et 
al., 2014; Tramblay & Somot, 2018), translating 
into the more frequent occurrence of natural haz-
ards, especially landslides and floods. The domi-
nance of precipitation (DAAC between 16.72 and 
14.66) over other factors in mapping landslide-
prone areas was expected since precipitation 
is regarded as the primary triggering factor for 
landslide movement and degradation, particularly 
in mountainous terrains (Argyriou et al., 2022; 
D’Ippolito et al., 2023; Tsunetaka, 2021). These 
results and findings are in line with the climatic 
characteristics of the study area, which includes 
both the Rifian region and the wider Mediter-
ranean region. These areas are distinguished by 
substantial rainfall during the wet season (from 
November to February) and during summer, of-
ten in the form of storms (Senoussi et al., 1999). 

Figure 7. The contribution of the explanatory variables using DAAC for 
(a) CART, (b) SVM, (c) (LR) and (d) MDA models
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Moreover, several studies have indicated that the 
effect of climate change through severe drought 
during the year, followed by aggressive precipi-
tation, affects the stability of slopes at different 
temporal and geographical scales, triggering 
landslides (Stoffel et al., 2014). Precipitation re-
duces friction between substances and increases 
the pressure of water in soil pores, thus increasing 
the risk of breakage (Earth Science Data Systems, 
2020). The impact of rainy events on landslide 
triggers in the Rif region has been documented 
by El Kharim et al., 2021. Their landslide inven-
tory in Chefchaouen, located west of our study 
area, established a strong correlation between soil 
movement and rainfall. Furthermore, they ob-
served that the fastest soil movement coincides 
with the rainiest months, specifically January and 
February. During these months, the layers consti-
tuting the core of both old and recent landslides 
experience accelerated gravitational deformation 
compared to other periods of the year.

In nearly all machine learning models, after 
precipitation, the secondary factors influencing 
landslide susceptibility mapping include slope, 
distance to rivers, elevation, and distance faults 
(Figure 7).  These four factors are associated with 
the geo-morphology characteristics of the study 
area, as the Rif region is known for its rugged 

topography, rough relief, and steep slopes. Geo-
logically, it is a seismically active area with active 
regional faults and large shearing areas (Poujol et 
al., 2014). Such conditions made the drainage net-
work flow mainly on fault corridors, deep valleys 
with steep slopes, following their orientation and 
adopting their structuring, leading to the formation 
of several types and patterns of drainage, especial-
ly trellis, rectangular, and barbed network patterns, 
which reflect an intense structural geological con-
trol on the drainage network (Bouramtane et al., 
2020). As a result, the development of landslides 
frequently begins with the incision of rivers along 
the main faults and valleys, which defines the 
rhythm of the landscape’s evolution. The slopes 
of the hills then respond to this incision by desta-
bilizing the slopes’ base and increasing the mois-
ture content of the soil, leading to landslides, and 
risk is thus concentrated at the drainage networks 
(Figure 8) (Clapuyt et al., 2019). Furthermore, this 
frequently observed spatial proximity of landslides 
to drainage networks is known as connectivity; it 
is crucial for large landslides in high-relief areas, 
and it is one of the distributional characteristics 
of landslides that determine their role as a natural 
hazard (Li et al., 2016; Roback et al., 2018).

The incorporation of the “distance to faults” 
factor among the prominent variables implies an 

Figure 8. A map displaying landslides near faults and rivers: (a) near a fault and (b) near a stream
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association with the landslides identified in the 
study area, particularly those situated in close 
proximity to the major faults within the study area 
(Figure 8). This indicates the influence of tectonic 
activity on landslide risk, particularly the occur-
rence of co-seismic landslides. These co-seismic 
landslides are a significant secondary natural haz-
ard in earthquake-prone mountainous regions, 
such as the Rif structural zone (Hovius et al., 
2011; Roback et al., 2018). Indeed, the Rif struc-
tural zone, particularly its eastern part covering the 
province of Taounate, experienced its last major 
earthquake of Mw 6.4 in 2004 and its most recent 
Mw 5.2 earthquake on 07/01/2023, with several 
Mw 4 to 4.9 earthquakes occurring throughout 
2022. However, no studies have been conducted 
to date that directly link the study area’s seismic 
activity to the occurrence of its landslides. 

Performance evaluation of machine learning 
models for landslide susceptibility mapping

Several statistical methodologies have been 
recently employed to model landslide susceptibil-
ity in some limited areas of Taounate province in 
the Rif Mountains, including Ain aicha, Ourha, 
Oudka, and Taounate City. However, compared 
to conventional statistical analysis, machine learn-
ing methods demonstrate enhanced efficiency in 
addressing real-world challenges, such as land-
slide occurrences (B. Zhao et al., 2022). Machine 
learning methods have become increasingly valu-
able tools for decision-makers as they facilitate the 
identification of relationships between geological, 
topographical, climatic factors, human activities, 
and landslide events. Hence, comparative stud-
ies are needed to evaluate the performance of the 
models under the same conditions and make a fair 
judgment about their capabilities (Rahmati et al., 
2019). In this present study, four machine learning 
models, namely SVM, CART, LR, and MDA, were 
compared and evaluated to map landslide suscep-
tibility and identify the most significant causative 
factors. All four machine learning methods dem-
onstrated excellent performance, highlighting the 
robust capabilities of machine learning modeling 
in the study area, with AUC scores ranging from 
0.954 to 0.971 (Figure 4). The CART model dem-
onstrated superior performance with an AUC value 
of 0.971. However, based on the evaluation met-
rics such as accuracy (89.92%, 83.01%), precision 
(81.74%), specificity (79.46%), and F1-measure 
(81.66), the SVM model performs at the highest 

level (Table 2). SVM is, therefore, the most appro-
priate choice for mapping landslide susceptibility 
in mountainous regions. In this present study, our 
results align with earlier research conducted by 
Naceur et al., 2022, who employed models like 
Weight of Evidence (WoE), Radial Basis Function 
Network (RBFN), and SVM in the high Atlas of 
Morocco; Yousefi et al., 2020, conducted research 
in a mountainous region in Iran, utilizing General-
ized Linear Model (GLM); Functional Discrimi-
nant Analysis (FDA) and SVM; Pham et al., 2016, 
who applied Naïve Bayes (NB), Bayesian Network 
(BN), Naïve Bayes (NB), LR, SVM and Fisher’s 
Linear Discriminant Analysis (FLDA) in India; 
Xie et al., 2021 conducted a study in China to as-
sess landslide susceptibility using various methods, 
including SVM, and subsequently compared their 
performance. The SVM model achieved greater 
predictive accuracy due to its reliance on mini-
mizing structural risk over traditional empirical 
risk minimization, aiming for a globally optimal 
solution for solving complex nonlinear problems 
(C. Zhou et al., 2018). It is suitable for predicting 
high-dimensional data, can also work on small 
data sets, and is robust when dealing with slight 
sample variations (Youssef & Pourghasemi, 2021). 
However, SVM is not an interpretable model, and 
it consumes much memory and time compared to 
other models (Marjanović et al., 2011). 

The CART model exhibited superior perfor-
mance compared to all other models, as shown 
by the AUC and sensitivity indexes (AUC=0.971; 
sensitivity= 90.24%). This can be attributed to the 
capability of decision tree models to effectively 
address nonlinear problems and work on high-
dimensional data accurately (Razi & Athappilly, 
2005). However, decision trees tend to overfit and 
do not generalize well to new data, and a slight 
change in the data can produce a very different de-
cision tree (Hong, 2023). The results do not neces-
sarily indicate that LR and MDA have the lowest 
predictive ability since they demonstrated high 
accuracy in AUC and some classification tasks.
LR performed the best in terms of the F1-measure 
index and the second-highest AUC rate of 0.963. 
However, MDA performed best in terms of ac-
curacy and specificity of training data (93.07%, 
93.92%), as well as the sensitivity of test data 
(91.6%), which is considered a very good result for 
a linear model (Figure 4, Table 2). Moreover, the 
advantage of using the nonparametric MDA algo-
rithm lies in its ability to perform effectively in the 
presence of complex associations (Pourghasemi 
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et al., 2021). The LR and MDA models are sen-
sitive to linear correlation of influencing factors, 
which are not adept at modeling complex non-
linear problems (C. Zhou et al., 2018). However, 
the fact that the LR and MDA results are highly 
satisfactory and comparable to those of the SVM 
and CART models suggests the presence of a 
likely linear correlation between landslide occur-
rence and geo-environmental factors, which are 
likely the primary drivers of the landslide issue in 
the study region. Furthermore, using LR or MDA 
has a significant advantage in efficiently interpret-
ing their findings. This is due to the standardized 
coefficients generated (Figure 9) by the LR model 
and the correlation factors (Figure 10) identified 
by the MDA model, which allows the identifica-
tion of the processes that condition natural hazards 
through their interpretation of the LR model.

CONCLUSIONS

Identifying robust and efficient models to re-
duce errors in landslide susceptibility modeling 

and delimitation of landslide-prone areas is es-
sential. The primary objective of this study is to 
evaluate four machine learning models (SVM, 
CART, LR, and MDA) for the purpose of map-
ping landslide-prone regions and gaining insights 
into the geo-environmental processes governing 
landslides in one of the most impacted areas in 
North Africa. 255 landslides were identified and 
collected with 15 landslide conditioning factors 
to develop the four machine-learning models. The 
dataset was divided into ten random divisions: 
30% of the dataset was allocated for testing, while 
70% was reserved for training. Six statistical mea-
sures, namely accuracy, precision, sensitivity (re-
call), specificity, F1-measure (or F1-score), and 
receiver operating characteristics (ROC), were 
used to compare the four models. The findings of 
the causal significance analysis indicate that land-
slides are primarily triggered by rainfall. Most 
of these occurrences are observed on slopes near 
rivers and faults, highlighting the significant in-
fluence of precipitation on landslides in the Rif 
mountains. The comparison results demonstrate 
that all four models have excellent and relatively 

Figure 9. Standardized logistic regression coefficients of LR model

Figure 10. Factors correlation of MDA model
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similar performance (ROC curve > 0.954), but 
the SVM model performs best. The SVM model 
achieved the highest accuracy and F1-measure for 
the training data and the highest accuracy, preci-
sion, and specificity for the test data. Although the 
prediction accuracy of LR and MDA models is 
not as high as that of SVM, they outperformed the 
other models in some tasks and offer the advantage 
of providing more interpretable results regarding 
landslide hazard conditioning processes. Areas 
with a very high susceptibility to landslides make 
up nearly half of the study area, ranging from 40% 
to 45%. These areas are situated in the north and 
northwest, characterized by heavy precipitation 
and high relief. All four landslide models demon-
strated strong performance in landslide suscepti-
bility assessment, with the SVM model standing 
out as the top performer. Consequently, it is rec-
ommended for use in the creation of improved 
landslide susceptibility maps to enhance landslide 
hazard management. This study offers valuable in-
sights for decision-makers in devising disaster risk 
reduction strategies in North Africa, particularly 
in regions sharing similar geo-environmental and 
climatic conditions. For future studies, it is essen-
tial to account for the distinct characteristics and 
influential factors specific to each type of landslide 
when crafting predictive models for their occur-
rence. Additionally, the combination of SVM with 
LR or MDA holds the potential to enhance model 
performance and offer a more comprehensible in-
terpretation of landslide mechanisms.
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