Genetic algorithms for force polytopes prediction - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Genetic algorithms for force polytopes prediction

Résumé

Knowledge of human’s force capacities enables the design of physical Human-Robot Interaction (pHRI) workspaces. As measuring force capacities for all postures is time consuming, predicting force capacities from a subset of measurements performed in a limited number of postures is crucial. The force capacities can be described as a convex polytope by means of a personalized musculoskeletal (MSK) model (Skuric et al. 2022). However, the tuning of a MSK model is difficult due to the high number of parameters. Thanks to its constraint-free nature on the optimization function, a genetic algorithm is implemented to find a MSK model parameter set, which fits and predicts force polytopes.
Fichier principal
Vignette du fichier
Résumé SB 2023 Gautier Laisné REVISED.pdf (272.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04396514 , version 1 (04-07-2023)
hal-04396514 , version 2 (16-01-2024)

Licence

Identifiants

Citer

Gautier Laisné, Jean-Marc Salotti, Nasser Rezzoug. Genetic algorithms for force polytopes prediction. 48ème Congrès de la Société de Biomécanique, Société de Biomécanique, Oct 2023, Grenoble, France. pp.218, ⟨10.1080/10255842.2023.2246304⟩. ⟨hal-04396514v1⟩
197 Consultations
102 Téléchargements

Altmetric

Partager

More