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Adjustable-depth quantum circuit for position-dependent coin operators of discrete-time quantum walks

, which achieves a depth that is linear at the cost of introducing an exponential number of ancillas. In this paper, we provide an adjustable-depth quantum circuit for the exact implementation of the position-dependent coin operator. This adjustable-depth circuit consists in (i) applying in parallel, with a linear-depth circuit, only certain packs of coin operators (rather than all of them as in the original linear-depth circuit [1]), each pack contributing linearly to the depth, and in (ii) applying sequentially these packs, which contributes exponentially to the depth.

I. INTRODUCTION

Quantum walks are models of quantum transport on graphs [START_REF] Kempe | Quantum random walks: An introductory overview[END_REF][START_REF] Venegas-Andraca | Quantum walks: a comprehensive review[END_REF]. They exist both in continuous time [START_REF] Farhi | Quantum computation and decision trees[END_REF] and in discrete time [START_REF] Feynman | Quantum Mechanics and Path Integrals[END_REF][START_REF] Aharonov | Quantum random walks[END_REF][START_REF] Bialynicki-Birula | Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata[END_REF]. In terms of computer science, quantum walks are a model of computation, which has been shown to be universal, both in the continuous- [START_REF] Childs | Universal computation by quantum walk[END_REF][START_REF] Childs | Universal computation by multiparticle quantum walk[END_REF] and in the discrete-time case [START_REF] Lovett | Universal quantum computation using the discrete-time quantum walk[END_REF], that is, any quantum algorithm can be written in terms of a quantum walk; moreover, many algorithms solving a variety of tasks have been conceived with quantum walks [START_REF] Rivosh | Coins make quantum walks faster[END_REF][START_REF] Ambainis | Quantum walk algorithm for element distinctness[END_REF][START_REF] Tulsi | Faster quantum-walk algorithm for the twodimensional spatial search[END_REF][START_REF] Roget | Grover search as a naturally occurring phenomenon[END_REF][START_REF] Fredon | Quantum spatial search with electric potential: Longtime dynamics and robustness to noise[END_REF]. In terms of physics, quantum walks are particularly suited to simulate quantum partial differential equations such as the Schrödinger equation or the Dirac equation [START_REF] Strauch | Relativistic quantum walks[END_REF][START_REF] Shikano | From discrete time quantum walk to continuous time quantum walk in limit distribution[END_REF][START_REF] Arrighi | The Dirac equation as a quantum walk: higher dimensions, observational convergence[END_REF][START_REF] D'ariano | Quantum cellular automata and free quantum field theory[END_REF][START_REF] Arnault | Discrete-time quantum walks as fermions of lattice gauge theory[END_REF][START_REF] Di Molfetta | A quantum walk with both a continuous-time limit and a continuous-spacetime limit[END_REF][START_REF] Arnault | Clifford algebra from quantum automata and unitary Wilson fermions[END_REF][START_REF] Debbasch | Action principles for quantum automata and Lorentz invariance of discrete time quantum walks[END_REF][START_REF] Arnault | A single-particle framework for unitary lattice gauge theory in discrete time[END_REF] -the latter being the equation of motion for matter particles which are both quantum and relativistic -, or models of solid-state physics [START_REF] Arnault | Quantum walks in weak electric fields and Bloch oscillations[END_REF].

Discrete-time quantum walks (DQWs), in particular, are discretizations of the Dirac equation which respect both unitarity -as continuous-time quantum walks (CQWs) -and strict locality of the transport (contrary to CQWs), that is, concerning the latter point, they preserve relativistic locality on the lattice [START_REF] Debbasch | Action principles for quantum automata and Lorentz invariance of discrete time quantum walks[END_REF][START_REF] Arrighi | Discrete Lorentz covariance for quantum walks and quantum cellular automata[END_REF][START_REF] Bisio | Quantum walks, deformed relativity and Hopf algebra symmetries[END_REF][START_REF] Debbasch | Discrete geometry from quantum walks[END_REF]. These DQWs combine, as basic ingredients, shifts on the lattice which depend on the internal state of the particle, together with internal-state rotations, called coin operators, that "reshuffle the cards" regarding whether one goes in one direction or another. The Dirac equation coupled to a variety of gauge fields has been shown to be simulatable with DQWs having a coin operator which depends on the position of the walker on the graph [START_REF] Di Molfetta | Quantum walks as massless Dirac fermions in curved space[END_REF][START_REF] Di Molfetta | Quantum walks in artificial electric and gravitational fields[END_REF][START_REF] Arnault | Landau levels for discretetime quantum walks in artificial magnetic fields[END_REF][START_REF] Arnault | Quantum walks and discrete gauge theories[END_REF][START_REF] Arnault | Quantum walks and non-Abelian discrete gauge theory[END_REF][START_REF] Arnault | Quantum walks and gravitational waves[END_REF][START_REF] Arrighi | Quantum walking in curved spacetime: (3+1) dimensions, and beyond[END_REF][START_REF] Arrighi | Dirac equation as a quantum walk over the honeycomb and triangular lattices[END_REF][START_REF] Márquez-Martín | Electromagnetic lattice gauge invariance in two-dimensional discrete-time quantum walks[END_REF][START_REF] Jay | Dirac quantum walks with conserved angular momentum[END_REF]. Position-dependent coin operators also arise when considering randomly chosen coin operators, which are a model of noise in DQWs [START_REF] Kendon | Decoherence can be useful in quantum walks[END_REF][START_REF] Kendon | Decoherence in quantum walks -a review[END_REF][START_REF] Schreiber | Decoherence and disorder in quantum walks: From ballistic spread to localization[END_REF][START_REF] Ahlbrecht | Asymptotic behav-ior of quantum walks with spatio-temporal coin fluctuations[END_REF][START_REF] Di Molfetta | Discrete-time quantum walks in random artificial gauge fields[END_REF][START_REF] Arnault | Quantum simulation of quantum relativistic diffusion via quantum walks[END_REF].

In Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], we have presented different quantum cir-cuits that achieve the implementation of a DQW on the line with such a position-dependent coin operator. In this paper, we propose a family of quantum circuits with adjustable depth, parametrized by a parameter m ∈ N, the extremes of which are (i) the naive circuit of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF] for m = 0, which means that all coin operators are implemented sequentially, and (ii) the linear-depth circuit of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF] for m = n (where n is the number of qubits used to encode the position of the walker in base 2), which means that all coin operators are implemented in parallel. A higher (lower) m means that more (less) coin operators are implemented in parallel, so that one can choose m as best suited for the experimental platform, knowing that a higher m, and hence a smaller depth, requires more ancillary qubits.

In Sec. II, we recall the system on which we work, which is that of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], namely, a DQW on the cycle with N = 2 n nodes, n ∈ N. Such a DQW is made of two operations: a coin rotation C (n) , and a coin-dependent shift operation S (n) . Still in Sec. II, we recall how to implement S (n) with a quantum circuit. In Sec. III, we introduce our adjustable-depth quantum circuit for the implementation of the position-dependent coin rotation C (n) . The idea of this circuit is to (i) apply in parallel, with a linear-depth circuit such as that introduced in Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], only certain packs of coin operators (rather than all of them as in the original linear-depth circuit [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF]), each pack contributing linearly to the depth, and to (ii) apply sequentially these packs, which contributes exponentially to the depth. In Sec. IV, we implement our adjustable-depth quantum circuit on IBM's QASM, the classical simulator of IBM's quantum processors. In Sec. V, we conclude and discuss our results.

II. FRAMEWORK

A. The walk

The system we consider is the same as that of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], namely, a DQW on a cycle with N = 2 n nodes, n ∈ N. Let us briefly recall the features of this system. Each node, labeled as k = 0, . . . , N -1, is associated to a position quantum state |k . Let H pos. be the 2 n -dimensional Hilbert space spanned by the position basis {|k } k=0,...,N -1 . The quantum state of the DQW has an additional, "internal" degree of freedom, which is called the coin. Such a coin belongs to a two-dimensional Hilbert space H 0 , the basis of which is (|↑ , |↓ ) ≡ (|0 , |1 ) ≡ ((1, 0) , (0, 1) ), where denotes the transposition. The total Hilbert space to which the quantum state belongs is therefore H := H pos. ⊗ H 0 . Such a quantum state at time j ∈ N decomposes as follows on the basis of H,

|ψ j = N -1 k=0 ψ ↑ j,k |k |0 + ψ ↓ j,k |k |1 , (1) 
where the complex numbers ψ ↑ j,k and ψ ↓ j,k are the coefficients of the decomposition.

The evolution of the quantum state, Eq. ( 1), is governed by the following dynamics,

|ψ j+1 = W (n) |ψ j , (2) 
where the walk operator W (n) is composed of two operations,

W (n) := S (n) C (n) . (3) 
The first operation is a possibly position-dependent total coin operator,

C (n) := N -1 k=0 |k k| ⊗ C k , (4) 
where each C k is a coin operator, that is, here, a 2 × 2 complex matrix acting on H 0 . The second and last operation is a coin-dependent shift operator,

S (n) := N -1 k=0 |k -1 mod N k| ⊗ |0 0| + |k + 1 mod N k| ⊗ |1 1| . (5) 

B. The encoding in base 2

What is the minimum number of entangled qubits, i.e., of wires, that we need in our quantum circuit in order to encode the N = 2 n nodes of the cycle: this minimum number is n, and we call these qubits position qubits.

This naturally provides a base-2 encoding of the position of the walker. Let |k 2 be the writing of |k in base 2, that is:

|k ≡ |k 2 ≡ |b n-1 ...b 0 , (6) 
where b p = 0 or 1 with p = 0, ..., n -1, such that k = n-1 p=0 b p × 2 p . One can thus rewrite Eqs. ( 4) and [START_REF] Feynman | Quantum Mechanics and Path Integrals[END_REF] as

C (n) ≡ 2 n -1 k=0 |k 2 k 2 | ⊗ Ck2 , (7) 
where

Ck2 := C k , (8) 
and,

S (n) ≡ 2 n -1 k=0 |(k -1 mod N ) 2 k 2 | ⊗ |0 0| + |(k + 1 mod N ) 2 k 2 | ⊗ |1 1| . (9) 

C. Final remarks

In order to be able to implement suck a walk W (n) with a quantum circuit, one has to be able to implement the two operators C (n) and S (n) . There are different ways of implementing the coin-dependent shift operator S (n) using a quantum circuit, as recalled in Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF]. The aim of this paper is the quantum-circuit implementation of a position-dependent total coin operator C (n) with a circuit having a depth that can be adjusted at will, which is the subject of the next section.

As mentioned in the introduction, the general idea of the adjustable-depth circuit we introduce in this paper is to (i) apply in parallel, with a linear-depth circuit such as that introduced in Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], only certain packs of coin operators Ck2 (rather than all of them as in the original linear-depth circuit [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF]), each pack contributing linearly to the depth, and to (ii) apply sequentially these packs, which contributes exponentially to the depth.

The total number of coin operators Ck2 is 2 n . The size of the packs, i.e., the number of coin operators that we apply in parallel, is the tunable parameter of our model, and we write it as a power of 2 to simplify the discussion, that is, we write it M = 2 m , m ∈ N. The number of packs is thus 2 n /2 m = 2 n-m . Let us call U (n,m) i , i = 0, ..., 2 n-m -1, the circuit that implements the ith pack of coin operators Ck2 in parallel. The total circuit, which we are going to show implements the coin operator C (n) , thus reads

U (n,m) := 2 n-m -1 L i=0 U (n,m) i , ( 10 
)
where the superscript L means that the terms are multiplied in increasing index order from right to left. The number i is called the stage number.

The ancillae, and more precisions

The number of ancillae necessary to apply each U (n,m) i is: 2 m ancillary position states, and 2 m -1 ancillary coin states. We depict in Fig. 1 the different registers used to implement our circuit U (n,m) . In Fig. 2, we illustrate Eq. ( 10). As in Eq. ( 26) of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], the fact that U (n,m) does the job, i.e., implements C (n) , means that it coincides with C (n) on the Hilbert space spanned by the position qubits plus the coin qubit, provided that we have correctly initialized the ancillary qubits. We are going to detail this in the next paragraph.

Including the ancillae means extending the total Hilbert space H introduced in Sec. II into H := H ⊗ H coins ⊗ H pos. . The last two Hilbert spaces contain respectively the quantum states of the coin and position ancillary qubits. A correctly initialized quantum state |S ∈ H is a state that is arbitrary on H, but has to be equal to |s = 0 |b = 0 on H coins ⊗ H pos. , that is,

|S := 2 n -1 k=0 s0=0,1 α k,s0 |k 2 |s 0 |s = 0 |b = 0 , (11) 
with the α k,s0 's being complex numbers such that

2 n -1 k=0 s0=0,1 |α k,s0 | 2 = 1.
As we said above, that U (n,m) does the job, i.e., implements C (n) , means the following,

U (n,m) |S = C (n) ⊗ I 2 (2 m -1) ⊗ I 2 (2 m ) |S . ( 12 
)
Notice that in Eq. [START_REF] Rivosh | Coins make quantum walks faster[END_REF] we have chosen to represent, in that order: the state of the position qubits |k 2 , the principal coin |s 0 , the ancillary coins |s , and finally the ancillary position |b . This choice has been made for a clearer formulation of the equations. In contrast, in the diagrammatic representations of our circuits, see Figs. 1 and2, the principal coin was placed under the ancillary coins. This choice has been made for a better visual understanding of the functioning of the circuits. , as written in Eq. ( 10).

B. General structure of U (n,m) i : that of U (n) lin. of Ref. [1]
As the circuit

U (n) lin. in Ref. [1], each U (n,m) i is made of several operations; more precisely, it reads U (n,m) i := Q (n,m) 1,i † Q (n,m) 2 † Q (n,m) 0,i Q (n,m) 2 Q (n,m) 1,i . (13) 
Let us first briefly recall the operating principle of U . Equation ( 13) is illustrated in Fig. 3.

Now, the central operation, Q (n,m) 0,i , is the same as Q (n) 0 in U (n)
lin. of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], except that we only apply 2 m coin operators Ck2 in parallel instead of 2 n . More precisely, Q

(n,m) 0,i reads Q (n,m) 0,i := I 2 n ⊗   2 m -1 L k=0 K b k ,s k (C i2 m +k )   , (14) 
where I 2 n is applied on the position qubits, and where K a,b (C) corresponds to applying the one-qubit gate C on qubit |b while controlling it on qubit |a (we apply C only if a = 1). In Fig. 4, we illustrate the definition of Q

(n,m) 0,i in Eq. [START_REF] Roget | Grover search as a naturally occurring phenomenon[END_REF]. For m = n, we have a single operator Apart from the fact that we have less ancillae for m < n than for m = n, and that Q (n,m) 0,i only applies 2 m coin operators Ck2 in parallel, the only difference between U (n,m) i and the circuit U (n) lin. of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], is in the operation that initializes the ancillary positions, namely, Q

U n,m=n 0 = U (n) lin. .
(n,m) 1,i
. Let us explain this difference.

Previously, the operator [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF] encoded the ancillary position |b for any position |k 2 . Now, as we apply in parallel packs of 2 m coin operators only, one must only encode the ancillary position for 2 m position states only, not all of them.

Q (n) 1 of Ref.
We call current position state at stage i a position state |k

(i) 2
such that after stage i the coin operator Ck (i) 2 has been applied to the principal coin state |s 0 . There are thus 2 m current position states at each stage i, namely, those for which k (i) = i2 m , ..., (i + 1)2 m -1 (see Eq. ( 14) and Fig. 4).

In Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], the ancillary position is encoded for every position state thanks to the fact that the qubit which encodes the least significant bit of the ancillary position, namely |b 0 , is flipped using a NOT gate, before the application of the series of controlled-SWAP operations (see the operation Q 11 in Fig. 15 of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF]).

Main explanations

To encode only the current position states at each stage i, one has to flip the same qubit |b 0 but only for these position states. Let us explain how to do that. Let |k 2 = |b n-1 ...b 0 be the input position state. The current position states at any stage i have their last n -m bits in common in their binary writing, which is of the form k

(i) 2 := b (i) n-1 ...b (i) 0 .
More specifically, it turns out that these n -m bits in common actually code for the binary writing i 2 of i, that is, we have

i 2 := h n-m-1 ...h 0 (15a) := b (i) n-1 ...b (i) m . (15b) 
Hence, flipping |b 0 only for the current position states at stage i can be done by controlling the NOT gate with positive (i.e., on 1) and/or negative (i.e., on 0) controls on the first n -m position qubits from top to bottom, starting from |b n-1 , such that the NOT gate is activated if and only if

b n-1 ...b m = i 2 . ( 16 
)
This corresponds to applying a certain generalized (nm)-Toffoli gate, where "generalized" means with positive and/or negative controls. As a reminder, an n-Toffoli gate is a NOT gate controlled positively by n qubits.

Note that a 0-Toffoli gate thus denotes a NOT gate.

The encoding performed by Q

(n,m) 1,i is then |b = 0 → |b = (2 k (i) -i2 m ) 2
for the current position states k (i) , and |b = 0 → |b = 0 (i.e., the identity) for the other position states. In Fig. 5, we illustrate the above-mentioned generalized

(n-m)-Toffoli gates of each Q (n,m) 1,i
for n = 3 and m = 1. These generalized (n -m)-Toffoli gates replace the NOT gate at the beginning of

Q 11 in Q 1 of U (n)
lin. in Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF]. In Appendix A, we give the explicit definition of Q

(n,m) 1,i
. In Appendix B, we, for the sake of completeness, write explicitly

Q (n,m) 2
, which initializes the ancillary coins, but as mentioned the only change with respect to Q (n) 2 of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF] is the number of ancillary qubits. In appendices A and B, we have omitted certain identity tensor factors in certain equations, in order to lighten the writing.

In total, since at each stage the ancillary positions are encoded only if we have a current position state at stage i, then it means that the coin operator at a given position is applied only if that position is a current position at stage i: in other words, U (n,m) i coincides on H with (i) the coin operator at a given position if that given position is a current position at stage i, and with (ii) the identity otherwise, which achieves our goal.

D. Depth

The purpose of this adjustable-depth circuit is that, depending on the parameter m, its width and depth will be modified, one for the benefit of the other. Let w(•) and d(•) be respectively the functions that return the width and the depth before compilation of an operator. One also needs to define functions ε w (x) and ε d (x) which return respectively the number of ancillary qubits that may be needed to implement an x-Toffoli gate, and the depth after compilation of the latter. Finally, δ i,j is the Kronecker symbol.

Since one uses n position qubits, 2 m coin qubits and 2 m ancillary position qubits, the width of U (n,m) reads As for the total depth of the circuit, we show in Appendix C that it is given by

w(U (n,m) ) = n + 2 m+1 + ε w (n -m) . (17) 
d(U (n,m) ) = 2 n-m (20m + 2ε d (n -m) + 8δ m,0 -5) -2 .
(18) As shown in Ref. [START_REF] Saeedi | Linear-depth quantum circuits for n-qubit toffoli gates with no ancilla[END_REF], one can implement an n-Toffoli gate linearly in n without using any ancilla. Therefore, one can consider the term ε d (n-m) to be linear in n-m, and ε w (n -m) = 0. We finally remark the exponential dependence in the number of packs n-m, namely, 2 n-m , and the linear dependence in the number m of position qubits involved per pack, namely, 20m (plus the linear dependence of ε d (n -m) in n -m).

In Fig. 6, we present the different width and depth complexities of U (n,m) for some remarkable values of m, with N = 2 n . m Depth complexity Width complexity 

m = 0 O(log 2 (N )N ) O(log 2 (N )) m = n 2 O(log 2 (N ) √ N ) O( √ N ) m = n O(log 2 (N )) O(N )

IV. IMPLEMENTATION

We have implemented our adjustable-depth quantum circuit on IBM's QASM, the classical simulator of IBM's quantum processors, thanks to the software Qiskit.

In Fig. 7, we show how this quantum circuit looks like for n = 2 position qubits and an adjustable parameter m = 0, 1, 2. In Appendix E, we give the pseudo-code used in order to generate these circuits.

In Fig. 8, we show the probability distribution obtained after 100 time steps of running different circuits, with coin operators parametrized by

K(α, θ, φ, λ) := e iα cos θ 2 -e iλ sin θ 2 e iφ sin θ 2 e i(φ+λ) cos θ 2 , ( 19 
)
with angles taken at random for each coin operators C i , in the intervals

α, θ ∈ [0, π[ and φ, λ ∈ [-π, π[ . ( 20 
)
The values obtained are given in Table 9.

In Fig. 10, we show, as a function of m, the depth, width and size of our adjustable-depth quantum circuit, after compilation by QASM. The size is the number of one-and two-qubit gates involved in the circuit. The compilation has been done with the following set of universal gates: 

R X (θ) := cos θ 2 -i sin θ 2 -i sin θ 2 cos θ 2 (21a) R Y (θ) := cos θ 2 -sin θ 2 sin θ 2 cos θ 2 (21b) R Z (λ) := e -i λ 2 0 0 e i λ
CN OT :=       1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0       . ( 21e 
)
As m increases, the depth decreases but the width increases, which is expected (the decrease of the depth being the purpose of increasing m, and the increase of the width being the consequence of needing to add ancillary wires in order to decrease the depth). Moreover, it is interesting to note the following non-trivial behavior: the number of gates decreases as m increases, which may come from the fact that, as m increases, the number of multi-Toffoli gates decreases (indeed, these multi-Toffoli gates have a high cost in terms of number of one-and two-qubit gates needed to implement them).

V. CONCLUSIONS AND DISCUSSION

In this paper, we have provided a family of quantum circuits that implement a DQW on the line, with the following characteristics. This family is parametrized by m ∈ N. For m = 0, the circuit coincides with the naive circuit of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], which means that all the coin operators at each site of the line are implemented sequentially. For m = n, the number of qubits used to encode the position of the walker, the circuit coincides with the lineardepth circuit of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], which means that all the coin operators are implemented in parallel. A circuit with a given arbitrary m means that the circuit contains 2 n-m packs, each of them containing 2 m coin operators implemented in parallel. A higher (lower) m means that more (less) coin operators are implemented in parallel, so that one can choose m as best suited for the experimental platform, knowing that a higher m, and hence a smaller depth, requires more ancillary qubits. It would be interesting to characterize the specific properties of DQWs, such as strict locality, at the level of their quantum-circuit translation [START_REF] Piroli | Quantum cellular automata, tensor networks, and area laws[END_REF]. It surely would be very interesting to extend the results of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF] and of this paper to quantum cellular automata (QCAs), which are multiparticle generalizations of DQWs [START_REF] Arrighi | An overview of quantum cellular automata[END_REF][START_REF] Farrelly | A review of quantum cellular automata[END_REF]. Given that there are already some QCAs which simulate quantum electrodynamics in 1 + 1, 1 + 2 and 1 + 3 dimensions [START_REF] Arrighi | A quantum cellular automaton for one-dimensional QED[END_REF][START_REF] Sellapillay | A discrete relativistic spacetime formalism for 1 + 1-QED with continuum limits[END_REF][START_REF] Eon | A relativistic discrete spacetime formulation of 3+1 QED[END_REF], this would mean having a quantum circuit which simulates some quantum field theory while implementing the strict locality of the transport. If more properties or symmetries of the continuum model are preserved by the QCA that simulates it, such as Lorentz symmetry [START_REF] Debbasch | Action principles for quantum automata and Lorentz invariance of discrete time quantum walks[END_REF][START_REF] Arrighi | Discrete Lorentz covariance for quantum walks and quantum cellular automata[END_REF][START_REF] Bisio | Quantum walks, deformed relativity and Hopf algebra symmetries[END_REF][START_REF] Debbasch | Discrete geometry from quantum walks[END_REF] or gauge invariance [START_REF] Arrighi | A quantum cellular automaton for one-dimensional QED[END_REF][START_REF] Sellapillay | A discrete relativistic spacetime formalism for 1 + 1-QED with continuum limits[END_REF][START_REF] Eon | A relativistic discrete spacetime formulation of 3+1 QED[END_REF], such a quantum-Figure 8: Final probability distribution obtained by running 10000 times a given circuit with n = 3 position qubits up to 100 time steps. In the left figure, we show the histograms for the naive circuit and the linear-depth circuit of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], for our adjustable-depth circuit with m = 2, and for a direct simulation of the walk (i.e., without mapping it onto a quantum circuit), which we have called "Matrix simulation" in Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF] instead of "Direct simulation"; the angles used for the different coin operators are given in Table 9. In the right figure, we show the histograms for different choices of the adjustable parameter m = 0, 1, 2, 3. circuit translation program would provide quantum circuits for quantum field theories, which respect many of the symmetries of the continuum model, which is not only a guarantee of numerical accurateness, but also provides an alternate, lattice definition of these theories, endowed with all the symmetries required by physical principles, thus creating a new, lattice paradigm for such physical theories, phrased in terms of quantum circuits and thus directly implementable on most-used quantum hardware. Finally, a question which is interesting is the following. Imagine that a certain algorithm is conceived with quantum walks, say, DQWs, and we want to run it with a quantum circuit. If we use the known algorithms that translate a DQW into a quantum circuit, do we obtain an algorithm that is as efficient as the original one made with a DQW, or do we have to modify it to reach the original efficiency?

α θ φ λ C0 2 
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On behalf of all authors, the corresponding authors state that there is no conflict of interest. . So, what we can do is simply applying a NOT gate before applying a positive control in order to obtain a negative control, and then we just wait until the application of Q (n,m) 11,i † to undo these operations on the n -m last position qubits. One thus has to flip the qubit, i.e., to (i) apply a NOT gate on |b j , with j = m, . . . , n -1, whenever the bit h j-m of i 2 is equal to 0, and then to (ii) apply a positive control, which delivers in total a negative control on |b j .

Thus, we replace T (n,m) i by

T (n,m) i := K multi α,b 0 (X) (n -m)-Toffoli       n-1 k=m g bk i,k-m bit flips ⊗I 2 m ⊗ I 2 (2 m ) ⊗ I 2 (2 m )       , ( A7 
) which we call almost generalized multi-Toffoli gate. In this equation, the function g b k i,j indicates when to place the NOT gates on the control position qubit |b k : (A9)

g b k i,j := X if i 2 j mod 2 = 0 I 2 otherwise . ( A8 
In Appendix D, we present an alternative method for reducing the amount of NOT gates used in the generalized multi-Toffoli gate.

b. The controlled SWAPs

We can write

B j :=   2 j -1 k=1 E s j+k-1 b k ,b k +2 j   E bj b 0 ,b 2 j , ( A10 
)
where E a b,c denotes the controlled-SWAP operation that swaps |b and |c , controlling this by |a . 

:= I 2 n ⊗ I 2 (2 m ) ⊗   m-2 L j=0   2 m-j-1 -2 k=0 K b 2 m -1-2 j+1 ( 1 2 +k) ,b 2 m -1-k2 j+1 (X)     , (B2) while the explicit definition of Q (n,m) 21 reads Q (n,m) 21 := I 2 n ⊗   m-1 L j=0 C m,j   2 j -1 k=0 E b (k+1)2 m-j -1 s k2 m-j ,s 2 m-j ( 1 2 +k)     , (B3) 
where the CNOTs following the controlled SWAPs are given by Let us notice that h b k i,j implements the NOT gates as in the naive circuit of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF]. In Fig. 14 

C m,j :=    2 j+1 -2 l=0 K b 2 m -1-2 m-j-1 ( 1 2 +l) ,b 2 m -1-l2 m-j-1 (X) if j < m -1 I 2 (2 m ) ⊗ I 2 (2 m ) if j = m -1 (B4)

Figure 1 :

 1 Figure 1: Registers necessary for the implementation of U (n,m) .

Figure 2 :

 2 Figure 2: Decomposition of U (n,m) in 2 n-m packs U (n,m) i

;

  we then swap the state of the principal coin |s 0 onto the ancillary coins via Q (n,m) 2 ; we then apply the running, pack i of coin operators in parallel, via Q (n,m) 0,i ; finally, the ancillary coin states are reset via Q (n,m) 2 † , and the ancillary position states are reset via Q (n,m) 1,i †

Figure 3 :

 3 Figure 3: Decomposition of each U (n,m) i

Figure 4 :

 4 Figure 4: Quantum circuits implementing Q (n=3,m=1) 0,i for i = 0, 1, 2, 3, that is, we implement, at each stage, 2 m = 2 coin operators (out of 2 n = 8) in parallel.

Figure 5 :

 5 Figure 5: We choose n = 3 and m = 1. On the far left, there is a circuit with only a NOT gate on |b 0 , which is what would be used at the beginning of the controlled-SWAP operations of each Q (n,m) 1,i , if there was no difference

Figure 6 :

 6 Figure 6: Depth and width complexity of our adjustable-depth quantum circuit U (n,m) , implementing the position-dependent coin operator, for remarkable values of m, where we recall that N = 2 n .

2

 2 

Figure 7 :

 7 Figure 7: Our adjustable-depth quantum circuit for n = 2 position qubits, and packs of size 2 m , m = 0 (top circuit), 1 (middle circuit), and 2 (bottom circuit), which means that 2 m coin operators are executed in parallel at each of the 2 n-m stages in the quantum circuit.

Figure 9 :

 9 Figure 9: Values of the angles of the coin operators, chosen for our implementation of the different circuits in Fig. 8. The parametrization is given in Eq. (19).

Figure 10 :

 10 Figure 10: Depth, width, and size of the adjustable-depth quantum circuit, after compilation, for n = 4 (left plots) and n = 8 (right plots), as a function of the adjustable parameter m.

Figure 11 :

 11 Figure 11: Quantum circuits implementing Q (n=3,m=2) 1,i for i = 0, 1.

  ) Moreover, K multi α,b 0 (C) is the multiply controlled operation that applies gate C on qubit |b 0 whenever all qubits are 1 in the set of n -m control qubits α := n-1 k=m {|b k } .

Figure 12 :

 12 Figure 12: Quantum circuits implementing Q (n=3,m) 2, for m = 0, 1, 2, 3.

Figure 13 :

 13 Figure 13: A way of expressing the SWAP operation, with 3 CNOT gates.

  , we show how part of the NOT gates of the almost generalized multi-Toffoli gates ( T (n,m) i ) † and T (n,m) i+1cancel between each other, and which NOT gates remain, that we encode via h b k i,j .

Figure 14 :

 14 Figure 14: In the top figure, we show U (n=3,m=0) . In the middle figure, we replace the generalized multi-Toffoli gates by the T (n,m) i

DATA AVAILABILITY

Data will be made available upon reasonable request.

of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF] is, apart from the number of ancillary qubits, the fact that the first NOT gate of

11 is replaced by a generalized (n -m)-Toffoli gate in Q (n,m) 11,i (that we are going to define). To describe Q (n,m) 1,i explicitly, we thus follow exactly the construction of Q (n) 1 in Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF]Appendix C3]. Thus, the explicit definition of operator Q (n,m) 1,i can be written

where Q

(n,m) 10

makes the copies of the values of the position qubits on the ancillary coins, in order to be able to perform the controlled SWAPs in parallel via Q (n,m) 11,i , and then one undoes the copies via

. The amount of copies and SWAPs is no longer quantified by n as in Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF], but by the parameter m. On Fig. 11, we have depicted the quantum circuits implementing Q We have

where ∀j ≥ 0, q (n,m) 10

with

where we have defined

and where we remind the reader that K a,b (C) corresponds to applying the one-qubit gate C on qubit |b while controlling it on qubit |a (we apply C only if a = 1). , and of the controlled-SWAP operations. We can write it as

where we are going to define T (n,m) i and the B j 's below.

a. The generalized multi-Toffoli gate

What we call generalized multi-Toffoli gate is a multi-Toffoli gate for which the controls can be positive (i.e., on 1) or negative (i.e., on 0). The question here is how to express a negative control in terms of a positive control.

A first, naive idea is to express a negative control by the sequence of a NOT gate, then, a positive control, and finally another NOT gate. But, have in mind that we do not apply Q In this appendix, we give an explicit definition of

, which is the same as that of Q (n) 2 of Ref. [START_REF] Nzongani | Quantum circuits for discrete-time quantum walks with position-dependent coin operator[END_REF] except for the number of ancillary wires. In Fig. 12, we show the quantum circuits implementing Q (n,m) 2

for n = 3 and In this appendix, we prove the result for the depth of the circuit, given in Eq. ( 18). First, we recall that the depth of a SWAP operation counts for 3, as shown in Fig. 13. Now, the depth of U (n,m) , defined in Eqs. ( 10) and ( 13), is

Since we apply 2 m coin operators in parallel with Q

, defined in Eq. ( 14) and illustrated in Fig. 4, we have that

The depth of the operator

, defined in Eqs. (B1), (B2), (B3) and (B4), and illustrated in Fig. 12, is

If m = 0, we get a negative depth for d(Q

), and the minimum value of the depth must be 0. To solve this problem we perform the following modification,

Moreover, we have that

) .

(C5)

Lastly, the depth of the operator Q

, defined in Eqs. (A1), (A2) and (A6), and illustrated in Fig. 11, is,

where

and

If m = 0 we obtain a negative depth for d(Q

(n,m) 10,i ); we therefore perform the following modification,

As shown in Eq. (A6), the operator Q (n,m) 11,i can be separated into two operations: the (n -m)-Toffoli gate on |b 0 , and the series of controlled SWAPs. Let us first treat the (n -m)-Toffoli gate. As mentionned in Sec. III C, one has to flip some of the position qubits before applying the (n -m)-Toffoli gate; the only pack i for which no flip is needed is when i = 2 n-m -1, i.e., the last pack; therefore, we get a contribution 1

11,i ), where we recall that ε d (n -m) denotes the depth of the (n -m)-Toffoli gate. Let us now treat the controlled SWAPs. The depth of the non-parallelized controlled SWAPs is 3 m-1 k=0 2 k = 3(2 m -1); however, as one parallelizes this step in the circuit, the depth becomes only 3m. Therefore, the depth of Q (n,m) 11,i finally reads

Inserting Eqs. (C7), (C9) and (C10) into Eq. (C6), one gets,

Moreover, we have that

Inserting now Eqs. (C5) and (C12), and then (C2), (C4) and (C11d), into the expression of d(U

) given by Eq. (C1b), we obtain

The only term of d(U (n,m) i

) which depends on i is -2δ i,2 n-m -1 , which is equal to -2 when i = 2 n-m -1 and 0 for the rest; thus, inserting Eq. (C13d) into Eq. (C1a), we get

which is the result announced in Eq. ( 18). The NOT gates applied in order to realize the almost generalized multi-Toffoli gate T (n,m)

Appendix E: Pseudo-code

The pseudo-code used to code, with Qiskit, the adjustable-depth quantum circuit, is given below: