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Existence of Gibbs point processes with stable
infinite range interaction

David Dereudre 1 and Thibaut Vasseur 2

November 21, 2019

Abstract

We provide a new proof of the existence of Gibbs point processes with infi-
nite range interactions, based on the compactness of entropy levels. Our main
existence theorem holds under two assumptions. The first one is the standard
stability assumption, which means that the energy of any finite configuration
is super-linear with respect to the number of points. The second assumption
is the so-called intensity regularity, which controls the long range of the inter-
action via the intensity of the process. This assumption is new and introduced
here since it is well adapted to the entropy approach. As a corollary of our
main result we improve the existence results by Ruelle for pairwise interac-
tions [14] by relaxing the superstabilty assumption. Note that our setting is
not reduced to pairwise interaction and can contain infinite range multi-body
counterparts.

Key words: DLR equations, entropy bounds, superstable interaction.

1 Introduction

The Gibbs point processes constitute a large class of point processes with interac-
tion between the points. The interaction can be attractive or repulsive, depending
on geometrical features, whereas the null interaction is associated to the so-called
Poisson point process. The existence of such processes in the infinite volume regime
has a long history and is initially related to the existence of thermodynamic be-
haviours in statistical physics. Now the Gibbs point processes are used in several
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other applied sciences such as material science, astronomy, epidemiology, plant ecol-
ogy, seismology, telecommunications, and others. Therefore their existence in the
infinite volume regime is also relevant for spatial statistics considerations. In the
present paper we give a new proof of the existence of such processes for a large class
of infinite range interactions.

The starting point of the theory is an energy function H defined on the space
of locally finite configurations in Rd. In the following, ω denotes such a point
configuration and H(ω) its energy. Then the finite volume Gibbs measure on a
bounded set Λ ⊂ Rd is simply the probability measure

PΛ =
1

ZΛ

e−HπΛ,

where πΛ is the Poisson point process in Λ with intensity one and ZΛ the nor-
malization constant. The existence of PΛ is guaranteed by the stability condition
recalled below. The existence of an infinite volume measure, corresponding to the
case “Λ = Rd”, is not obvious and can not be achieved by the definition above. In
fact, the general strategy is first to obtain a suitable thermodynamic limit for (PΛ)
when Λ tends to Rd and then derive a good description of the limiting point by the
so-called DLR equations. The first general result in this direction is due to Ruelle
in the seventies [14, 15]. The setting was the pairwise interaction;

H(ω) =
∑
x 6=y∈ω

φ(|x− y|),

where the potential φ is assumed regular, which means roughly that φ is summable
at infinity (i.e.

∫ +∞
R

rd−1|φ(r)|dr < +∞ for R > 0 large enough) and superstable:
there exists two constants A > 0 and B ≥ 0 such that for any bounded set Λ ⊂ Rd

large enough and for any finite configuration ω in Λ

H(ω) ≥ −B|ω|+ A

λd(Λ)
|ω|2,

where |ω| denotes the number of points in ω and λd the Lebesgue measure on Rd.
Under these two assumptions, Ruelle proved the existence of at least one infinite
Gibbs point processes. Similar results has been proved more recently in [10, 11] using
functional analysis tools. In any case the superstability assumption is required. As
a corollary of our main result we improve these existence results in substituting
the superstability assumption by the Stability assumption: there exists a constant
B ≥ 0 such that for any finite configuration ω

H(ω) ≥ −B|ω|.
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Let us note that the difference between stable and superstable potential is in
fact weak since any stable potential becomes superstable if a pairwise continuous
non-negative and non-null at origin potential is added. However there exists several
pairwise stable potential which are not superstable. For instance any continuous,
non-negative pairwise potential null at origin is stable without being superstable. Let
us note also that several examples of stable (and non-superstable) energy functions
have introduced recently in stochastic geometry and spatial statistics [1, 5, 13].

A multi-body interaction occurs when the energy function H is decomposed using
potentials on pairs, triplets, quadruplets, k-uplets of points (but not only on pairs).
Our results do not use and do not depend on such decompositions. Therefore our
existence result covers several multi-body interactions, including infinite range cases
(examples are given in Section 3). Let us mention that the finite range multi-body
interaction have been treated in [2] using the Dobrushin’s criterium.

Our main tool is the compactness of entropy level sets for the local convergence
topology. This tool is particularly efficient for proving the tightness of the sequence
of finite volume Gibbs point processes. It has been used for the first time in [8]
and then a collection of papers followed [3, 5, 6]. Before the present paper, the
entropy strategy has been used only in the setting of finite range or random finite
range interaction. As far as we know, it is the first time that it is applied in the
setting of pure infinite range interaction. Therefore, our main contribution here
was to developed a way to control the decay of the interaction adequately with
the entropy approach. It is the reason why we introduce the Intensity Regular
assumption (see Definition 2.4). It is called Intensity Regular because the decay of
the interaction is controlled via the intensity of the process. This choice is directly
related to the entropy bounds which gives a uniform control of intensities for finite
volume Gibbs processes within the thermodynamic limit. In the setting of pairwise
interaction, our definition is similar to the Regular assumption by Ruelle.

As mentioned before, in the setting of pairwise interaction, the entropy strategy
improves the existence results in relaxing the superstability assumption. However
we lose Ruelle’s estimates which ensures existence of moments of any order and some
exponential and super-exponential moments. The entropy approach only provides
moments of order one. Better estimates have to be obtained by different tools.

In the following Section 2, we introduce the definitions and notations for Gibbs
point processes. Our main existence Theorem is also given. Examples of energy
functions are presented in Section 3. Finally, Section 4 is devoted to the proof of
the theorem.
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2 Notations and results

The real d-dimensional space Rd is equipped with the usual Euclidean distance ‖.‖
and its associated Borel σ-algebra. Any set Λ ⊂ Rd is assumed measurable.

2.1 Finite volume measure

The space of configurations is the set of locally finite subsets of Rd

Ω = {ω ⊂ Rd : |ω ∩∆| <∞, ∀∆ ⊂ Rd, bounded},

where | · | is the cardinal. We denote ω∩∆ by ω∆, the union ω∪ω′ of two configura-
tions by ωω′, the space of finite configurations by Ωf and the space of configurations
in Λ ⊂ Rd by ΩΛ.

Our space is equipped with the sigma field F generated by the counting functions
N∆ : ω 7→ |ω∆| for all ∆ ⊂ Rd bounded. In our setting, a point process is simply a
probability measure on (Ω,F). Note that, with this definition, we identify a point
process with its distribution. We say that the process has a finite intensity if for all
bounded subsets ∆ the expectation EP [|ω∆|] is finite. If we denote this expectation
µ(∆) then µ is a sigma finite measure on Rd called the intensity measure. When
µ = i(P )λd, where λd is the Lebesgue measure on Rd and i(P ) ≥ 0, we simply say
that the point process has intensity i(P ). We also introduce

ξ(P ) = sup
Λ⊂Rd

0<λd(Λ)<+∞

EP [|ωΛ|]
λd(Λ)

and we say that a probability measure P has a bounded intensity if ξ(P ) < +∞.
Obviously, if P has a finite intensity i(P ) then ξ(P ) = i(P ).

A point process P is stationary if for all u ∈ Rd, P = P ◦ τ−1
u , where τu is

the translation of vector u. If a stationary point process has a finite intensity then
its intensity measure is proportional to the Lebesgue measure and has the form
µ = i(P )λd.

The most popular point processes are the Poisson point processes. We consider
here only the homogeneous (or stationary) case where the intensity has the form
µ = zλd. The process is denoted πz, or simply π if z = 1. Recall briefly that πz is
the only point process in Rd with intensity µ = i(P )λd such that any two disjoint
regions of space are independent under πz. See the recent book [12] on the subject.

Let us now define the interaction between the points. We need to introduce an
energy function.

Definition 2.1. An energy function is a measurable function H on the space of
finite configurations Ωf with values in R ∪ {+∞} such that:
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- H is non degenerate: H(∅) < +∞,

- H is hereditary : for all ω ∈ Ωf and x ∈ ω then

H(ω) < +∞⇒ H(ω \ {x}) < +∞,

- H is stationary : for all ω ∈ Ωf and u ∈ Rd

H(τu(ω)) = H(ω).

A crucial assumption is the stability of the energy function.

Definition 2.2. An energy function is said to be stable if there exists a constant
B ≥ 0 such that for all ω ∈ Ωf

H(ω) ≥ −B|ω|.

The assumption [Stable] is standard and have been treated deeply in the liter-
ature (see for instance Section 3.2 in [15]).

Now we can define the Gibbs point processes in finite volume.

Definition 2.3. Let Λ be a bounded subset in Rd. The Gibbs point process on Λ
for the stable energy function H is the probability measure on ΩΛ defined by

PΛ(dω) =
1

ZΛ

e−H(ω)πΛ(dω)

with the normalization constant ZΛ =
∫
e−H(ω)πΛ(dω) called the partition function.

We can check with the properties of H that PΛ is well defined (i.e. 0 < ZΛ <
+∞). In comparison with the standard formalism of Gibbs measures in statistical
physics (see [15] for instance), the activity and inverse temperature parameters are
included in the function H here.

2.2 Infinite volume measure

Let us turn now to the definition of Gibbs point processes in the infinite volume
regime. For the following, we choose the convention ∞ − ∞ = 0. We need to
introduce the local energy which is given by H∆(ω) = H(ω) − H(ω∆c) for a finite
configuration ω ∈ Ωf . It represents the contribution of energy coming from ω∆ in ω
(the difference of energies with and without ω∆). We need to extend this definition
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to an infinite configuration. If (∆l)l≥0 is an increasing sequence of subsets in Rd

with ∆l ↑ Rd, we expect that the following limit exists “ lim
l→+∞

H l
∆(ω)” where

H l
∆(ω) = H(ω∆l

)−H(ω∆l\∆) ∈ R ∪ {+∞}.

In particular, the difference H l+1
∆ (ω)−H l

∆(ω) should go to zero as l goes to infinity.
Our main assumption is a control of the expectation of this difference for point
processes with bounded intensities.

Definition 2.4. An energy function is said intensity regular if for all bounded
subsets ∆ of Rd, we can find an increasing sequence of subsets (∆l)l≥0 with ∆l ↑ Rd

and ∆ ⊂ ∆0, such that for all configuration ω∣∣H l+1
∆ (ω)−H l

∆(ω)
∣∣ ≤ |ω∆|Gl

∆(ω∆c),

where Gl
∆ is a non negative measurable function on Ω∆c such that for any probability

measure P with bounded intensity we have

EP
[
Gl

∆(ω∆c)
]
≤ αl a(ξ(P )),

with a : R+ → R+ an increasing function and (αl)l≥0 a positive summable sequence
(i.e.

∑
l≥0 αl < +∞).

From assumption [intensity regular], we have

+∞∑
l=0

∣∣H l+1
∆ (ω)−H l

∆(ω)
∣∣ ≤ |ω∆|

+∞∑
l=0

Gl
∆(ω∆c),

and we can control the expectation of the second part of the right-hand side

EP

[
+∞∑
l=0

Gl
∆(ω∆c)

]
≤ a(ξ(P ))

+∞∑
l=0

αl < +∞.

Then the local energy is correctly defined for P -almost every configurations ω (with
P a probability measure with bounded intensity) by

H∆(ω) = H0
∆(ω) +

+∞∑
l=0

[
H l+1

∆ (ω)−H l
∆(ω)

]
.

In addition, if we introduce the function C l
∆ defined on Ω∆c by

C l
∆(ω∆c) =

+∞∑
j=l

Gj
∆(ω∆c),
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then for all configurations ω ∈ Ω we have the following approximation result∣∣H∆(ω)−H l
∆(ω)

∣∣ ≤ |ω∆|C l
∆(ω∆c), (1)

with EP [C l
∆(ω∆c)] ≤ a(ξ(P ))

∞∑
j=l

αj.

Remark 2.5. Assuming that a is an increasing function in the Defintion 2.4 allows
to control the approximation (1) for a sequence (Pn)n≥1 of probability measures.
Indeed, if (Pn) has a uniformly bounded intensity (i.e. ξ(Pn) ≤ ξ for all n ≥ 1),
then the expectation EPn [C l

∆(ω∆c)] is uniformly bounded from above.

We are now able to give the definition of infinite volume Gibbs point processes.

Definition 2.6. A probability measure P on Ω with bounded intensity is a Gibbs
point process for an energy function H, satisfying assumptions [Stable] and [Inten-
sity Regular], if for all bounded subsets ∆ and all bounded measurable functions
f we have∫

f(ω)P (dω) =

∫ ∫
f(ω′∆ω∆c)

1

Z∆(ω∆c)
e−H∆(ω′∆ω∆c )π∆(dω′∆)P (dω), (2)

with the normalization constant Z∆(ω∆c) =
∫
e−H∆(ω′∆ω∆c )π∆(dω′∆).

The equations (2) for all ∆ and f are called DLR for Dobrushin-Lanford-Ruelle.
To be correctly defined we need to check that 0 < Z∆(ω∆c) < +∞ for P almost all
configuration ω. A lower bound can easily be obtained with

Z∆(ω∆c) ≥ e−H∆(ω∆c )π∆(∅) = e−λ
d(∆) > 0.

To have an upper bound, we use assumptions [Stable] and [Intensity Regular].
From inequality (1) and assuming that H(ω∆0\∆) < +∞ we have

H∆(ω) ≥ H0
∆(ω)− |ω∆|C0

∆(ω∆c)

= H(ω∆0)−H(ω∆0\∆)− |ω∆|C0
∆(ω∆c)

≥ −(B + C0
∆(ω∆c))|ω∆| −B|ω∆0\∆| −H(ω∆0\∆).
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Then we obtain

Z∆(ω∆c)

≤ exp
(
B|ω∆0\∆|+H(ω∆0\∆)

) ∫
e(C0

∆(ω∆c )+B)|ω′∆|π∆(dω′∆)

= exp
(
B|ω∆0\∆|+H(ω∆0\∆)

) +∞∑
n=0

(
λd(∆)e(C0

∆(ω∆c )+B))
)n

n!
e−λ

d(∆)

= exp
(
B|ω∆0\∆|+H(ω∆0\∆) + λd(∆)

(
e(C0

∆(ω∆c )+B)) − 1
))

< +∞.

If H(ω∆0\∆) = +∞ then, by the hereditary property, for all l ≥ 0 we have
H(ω∆l\∆) = +∞ and H l

∆(ω) = 0 (according to our convention ∞−∞ = 0 given
above), which gives H∆(ω) = 0 and Z∆(ω∆c) < +∞.

Our main result is the following theorem which is proved in Section 4.

Theorem 1. For any energy function H satisfying assumptions [Stable] and [In-
tensity Regular], there exists at least one stationary Gibbs point process P with
finite intensity and locally finite energy (i.e. P (H(ω∆) <∞, ∀∆ ⊂ Rd, bounded) =
1).

Remark 2.7. (temperedness) Our formalism of Gibbs point processes does not really
need the introduction of tempered configurations as it is done usually [14, 11]. But,
the definition of DLR equations requires a space of good configurations. In our
case, this space is the space of configurations produced by any point processes with
bounded intensity. It is not always obvious to compare with the different definitions
of temperedness mentioned above.

3 Examples

Let us give examples of energy functions satisfying assumptions [Stable] and [In-
tensity Regular] of Theorem 1. Since the assumption [Stable] is studied deeply
in the literature, we focus mainly on interesting examples satisfying assumption [In-
tensity Regular]. In the following, B(z, ρ) is the ball of center z and radius ρ, ⊕
is the Minkowski sum of two sets and cd = λd(B(0, 1)).

Finite range interaction. An energy function H has a finite range if there ex-
ists R > 0 such that for all finite configurations ω ∈ Ωf and bounded subset ∆,
H∆(ω) = H∆

(
ω∆⊕B(0,R)

)
. It is easy to see that a finite range energy function
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verifies assumption [Intensity Regular], with any increasing sequence of subsets
(∆l)l≥0 such that ∆0 = ∆⊕ B(0, R). Therefore in this setting of finite range inter-
action, only the assumption [Stable] is required to ensure the existence of Gibbs
point processes.

Corollary 3.1. For a finite range and stable energy there exists at least one sta-
tionary Gibbs point process with finite intensity and locally finite energy.

This result has been proved previously in [5] (See also [4] for a simpler and
pedagogical proof).

Pairwise interaction An energy functionH is pairwise if there exists a symmetric
function φ : Rd 7→ R ∪ {+∞}, called a potential, such that

H(ω) =
∑
{x,y}⊂ω

φ(x− y).

We do not assume the finite range property and so the support of φ can be un-
bounded. However, we still need an assumption on the long range behaviour of φ.
The potential φ is regular if there exists a decreasing function ψ : R+ → R+ such
that

∫ +∞
A

ψ(r)rd−1dr < +∞ for some A > 0 and |φ(x)| ≤ ψ(‖x‖) for all x ∈ Rd. Let
us show that this energy function satisfies the assumption [Intensity Regular].

Let ∆ be a bounded subset of Rd. We choose z ∈ Rd and ρ > 0 such that
∆ ⊂ B(z, ρ) and we introduce ∆l = B(z, ρ+ A+ l). We have

H l
∆(ω) =

∑
{x,y}⊂ω∩∆l

{x,y}∩∆ 6=∅

φ(x− y),

which gives

H l+1
∆ (ω)−H l

∆(ω) =
∑
x∈∆

∑
y∈∆l+1\∆l

φ(x− y).

By definition, if x ∈ ∆ and y ∈ ∆l+1 \ ∆l then ‖x − y‖ ≥ A + l and |φ(x −
y)| ≤ ψ(A + l). Introducing the function Gl

∆(ω∆c) = |ω∆l+1\∆l
|ψ(A + l) we have

|H l+1
∆ (ω)−H l

∆(ω)| ≤ |ω∆|Gl
∆(ω∆c) with

EP
[
Gl

∆(ω∆c)
]
≤ ξ(P )λd(∆l+1 \∆l)ψ(A+ l)

≤ ξ(P )cd
(
(ρ+ A+ l + 1)d − (ρ+ A+ l)d

)
ψ(A+ l)

≤ ξ(P )cdd(ρ+ A+ l + 1)d−1ψ(A+ l)
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Since
∫ +∞
A

ψ(r)rd−1dr < +∞ and ψ is decreasing, we have that∑
l≥0

(ρ+ A+ l + 1)d−1ψ(A+ l) < +∞.

Hence the energy H satisfies the assumption [Intensity Regular] with a = id and
αl = cdd(ρ+ A+ l + 1)d−1ψ(A+ l).

Corollary 3.2. For a stable pairwise energy associated to a regular potential,
there exists at least one stationary Gibbs point process with finite intensity and locally
finite energy.

The stability assumption for a pairwise potential is delicate and has been inves-
tigated long time ago. We refer to [15] for several results. Let us mention that a
non-negative potential which is equal to zero in the neighbourhood of zero and posi-
tive outside this neighbourhood is a simple example of a Stable but not Superstable
potential.

Note that the sum of two energy functions satisfying assumption [Intensity
Regular], satisfies the assumption [Intensity Regular] as well. The following
corollary follows.

Corollary 3.3. For a stable energy function, which is the sum of a finite range
energy function and a pairwise energy function associated to a regular potential,
there exists at least one stationary Gibbs point process with finite intensity and locally
finite energy.

Cloud interaction In this last example, we provide an energy function which is
infinite range and not reducible, at any scale, to a pairwise interaction. It is a multi-
body interaction between a germ-grain interaction (see for instance the Quermass
model [3] or the Widom-Rowlinson interaction [16]) and a pairwise interaction. We
call it cloud interaction because each point of the configuration is diluted in a cloud
around itself and the pairwise interaction is integrated on this cloud. Precisely for
any finite configuration ω

H(ω) =
∑
x∈ω

∫
LR(ω)

φ(x− y)dy

where LR(ω) =
⋃
x∈ω

B(x,R) is the cloud produced by the configuration ω (R > 0 is a

fixed parameter) and φ : Rd 7→ R∪{∞} is a symmetric function. This energy func-
tion can be viewed as an approximation of the pairwise interaction introduced above.
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Indeed H(ω)/Rd tends to the pairwise interaction function (times a multiplicative
constant) when R goes to zero.

We assume that there exists a decreasing function ψ : R+ → R+ such that∫
ψ(r)rd−1dr < +∞ and |φ(x)| ≤ ψ(‖x‖) for all x ∈ Rd. This ensures that the

energy function is well-defined and satisfies the assumption [Stable] since

|H(ω)| ≤ |ω|
∫
|ψ(r)|rd−1dr.

Note that H is not superstable. Indeed, it would require that for all ω ∈ ΩΛ,
H(ω) ≥ −B|ω| + A|ω|2/λd(Λ) with B ≥ 0 and A > 0 which is impossible with the
previous upper-bound of H.

Concerning assumption [Intensity Regular], for ∆ a bounded subset of Rd,
the local energy is given by

H l
∆(ω) = H(ω∆l

)−H(ω∆l\∆)

=
∑
x∈ω∆l

∫
LR(ω∆l

)

φ(‖x− y‖)dy −
∑

x∈ω∆l\∆

∫
LR(ω∆l\∆)

φ(‖x− y‖)dy

=
∑

x∈ω∆l\∆

∫
LR(ω∆l

)\LR(ω∆l\∆)

φ(‖x− y‖)dy +
∑
x∈ω∆

∫
LR(ω∆l

)

φ(‖x− y‖)dy.

We can find z ∈ Rd and ρ > 0 such that ∆ ⊂ B(z, ρ) and, for the following, we
choose ∆0 = B(z, ρ+ 2R), which implies that

LR(ω∆l
) \ LR(ω∆l\∆) = LR(ω∆0) \ LR(ω∆0\∆)

def
= LR∆(ω).

Using this notation we have

H l
∆(ω) =

∑
x∈ω∆l\∆

∫
LR∆(ω)

φ(‖x− y‖)dy +
∑
x∈ω∆

∫
LR(ω∆l

)

φ(‖x− y‖)dy.

The first term corresponds to the interaction of the points outside of ∆ with the
cloud created by the points in ∆ and the second corresponds to the interaction of
the points in ∆ with the full cloud. We can compute the cost of adding a shell

H l+1
∆ (ω)−H l

∆(ω) =
∑

x∈ω∆l+1\∆l

∫
LR∆(ω)

φ(‖x− y‖)dy

+
∑
x∈ω∆

∫
LR(ω∆l+1

)\LR(ω∆l
)

φ(‖x− y‖)dy.
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If we choose ∆l = B(z, ρ+2R+ l), for x ∈ ω∆l+1\∆l
and y ∈ LR∆(ω) or for x ∈ ω∆

and y ∈ LR(ω∆l+1
) \ LR(ω∆l

) then we have ‖x− y‖ > A+ l. Then we have

|H l+1
∆ (ω)−H l

∆(ω)| ≤
(
|ω∆l+1\∆l

|λd(LR∆(ω)) + |ω∆|λd(LR(ω∆l+1\∆l
))
)
ψ(A+ l).

With the union bound we have

λd(LR∆(ω)) ≤ |ω∆|cdRd and λd(LR(ω∆l+1\∆l
))) ≤ |ω∆l+1\∆l

|cdRd.

If we introduce the functionGl
∆(ω∆c) = 2|ω∆l+1\∆l

|cdRdψ(A+l) we obtain |H l+1
∆ (ω)−

H l
∆(ω)| ≤ |ω∆|Gl

∆(ω∆c) with

EP
[
Gl

∆(ω∆c)
]
≤ ξ(P )λd(∆l+1 \∆l)ψ(A+ l)

≤ ξ(P )dcd(ρ+ A+ l + 1)d−1ψ(A+ l).

Since
∫ +∞
A

ψ(r)rd−1dr < +∞ and ψ is decreasing it implies∑
l≥0

(ρ+ A+ l + 1)d−1ψ(A+ l) < +∞.

Hence the energy H satisfies assumption [Intensity Regular].

Corollary 3.4. For the cloud interaction, there exists at least one stationary Gibbs
point process with finite intensity and locally finite energy.

4 Proof of the theorem

4.1 Construction of an infinite volume measure

The first step of the proof is to build an accumulation point of a sequence of finite
volume Gibbs measures. Using entropy bounds and the stability of the energy, we
prove the existence of such an accumulation point for the local convergence topology.
This strategy and its tools have been used several time in the literature ([3], [4], [5],
[6]) and we recall here only the main ideas.

For n a positive integer, we denote by Λn the set ] − n, n]d. We consider the
sequence of Gibbs measures in finite volume given by

Pn(dω) = PΛn(dω) =
1

Zn
e−H(ω)πΛn(dω),

with the normalization constant Zn =
∫
e−H(ω)πΛn(dω). Since our tension tool will

be defined for stationary measures, we need to modify (Pn)n≥1. We defined the peri-
odized version P per

n by the probability measure
⊗
u∈Zd

Pn ◦ τ−1
2nu, and the stationnarized

version by

P sta
n =

1

λd(Λn)

∫
Λn

P per
n ◦ τ−1

u du.

12



Definition 4.1. A function f is said local if there exists a bounded set ∆ such that
f is F∆ measurable (i.e. for all configurations ω in Ω, we have f(ω) = f(ω∆)). A
sequence of measures (µn) converges to µ for the local convergence topology if for
all bounded local functions f ∫

fdµn →
n→+∞

∫
fdµ.

Given two probabilities measures µ and ν on Ω, we recall that the relative entropy
of µ with respect to ν on Λ is defined as

IΛ(µ|ν) =

{ ∫
log fdµΛ if µΛ � νΛ and f = dµΛ

dνΛ

+∞ otherwise.

Definition 4.2. Let µ be a stationary probability measure with finite intensity on
Ω. For z > 0 the specific entropy of µ with respect to πz is defined by

Iz(µ|πz) = lim
n→+∞

IΛn(µ |πz)
λd(Λn)

= sup
Λ⊂Rd

0<λd(Λ)<+∞

IΛ(µ|πz)
λd(Λ)

. (3)

For details we refer to Chapter 15 of [7]. The next result, stated in [9], is our
tension tool.

Proposition 4.3. For any z > 0 and c > 0, the set of probability measures

{µ stationary with finite intensity, Iz(µ) ≤ c}
is compact and sequentially compact for the local convergence topology.

In order to apply this proposition in our case, we need to compute the specific
entropy of the probability measure P sta

n . Using the affine property of the specific
entropy, it is well known that

Iz(P
sta
n ) =

1

λd(Λn)
IΛn(Pn|πz).

What remains is to compute the relative entropy of the Gibbs measure Pn with
respect to the Poisson point process πz on Λn

IΛn(Pn|πz) =

∫
log

(
dPn
dπz

)
dPn

=

∫ [
log

(
dPn
dπ

)
+ log

(
dπ

dπz

)]
dPn

=

∫ [
− log(Zn)−H(ω) + log

(
e(z−1)λd(Λn)

(
1

z

)|ω|)]
Pn(dω)

= (z − 1)λd(Λn)− log(Zn) +

∫
[−H(ω)− log(z)|ω|]Pn(dω).

13



The normalization constant can easily be bounded from below

Zn =

∫
e−Hdπ ≥ e−H(∅)e−λ

d(Λn).

Then, using the stability of H, we have

IΛn(Pn|πz) ≤ zλd(Λn) +H(∅) +

∫
(B − log(z))|ω|Pn(dω).

If we choose z > 0 such that B − log(z) ≤ 0, we have Iz(P
sta
n ) ≤ z + H(∅) for

all n ≥ 1. According to Proposition 4.3 we can exhibit a sub-sequence of (P sta
n )n≥1

which converges to a stationary measure P with finite intensity. To simplify the
notations, we can suppose that we have changed the indexation of the sequence
(Λn)n≥1 such that (P sta

n )n≥1 converges locally to P .
We can prove that P is also an accumulation point of the sequence

P̄n =
1

λd(Λn)

∫
Λn

Pn ◦ τ−1
u du.

See Lemma 3.5 [3] for details.
We need to verify that P has locally finite energy. If ∆ is bounded subset of Rd,

the event {H(ω∆) < +∞} is a locall event and

P (H(ω∆) < +∞) = lim
n→+∞

P̄n(H(ω∆) < +∞) = 1,

because by hereditary we have P̄n(H(ω∆) = +∞) = 0. We deduce, using again
hereditary, that

P
(
H(ω∆) < +∞,∀∆ ⊂ Rd, bounded

)
= P (H(ωΛn)) < +∞, ∀n ≥ 1) = 1.

Let us finish this section by giving the crucial property of uniform control of
intensities for the sequence (P̄n)

Lemma 4.4. We can find ξ ≥ i(P ) such that for all integers n ≥ 1, ξ(P̄n) ≤ ξ.

Proof. We use the entropic inequality
∫
gdµ ≤ I(µ|ν) + log

(∫
egdν

)
to obtain

EP sta
n

[|ωΛn|] ≤ IΛn(P sta
n |πz) + log

(
Eπz

[
e|ωΛn |

])
.

Using the expression of the specific entropy as a supremum (3), we have

IΛn(P sta
n |πz) ≤ Iz(P

sta
n )λd(Λn) ≤ (z +H(∅))λd(Λn).

14



Under πz, the random variable |ωΛn| follows a Poisson law of parameter zλd(Λn)
and so

Eπz
[
e|ωΛn |

]
= e−zλ

d(Λn)

∞∑
p=0

(zλd(Λn))p

p!
ep = exp(zλd(Λn)(e− 1)).

Then we obtain

i(P sta
n )λd(Λn) = EP sta

n
[|ωΛn|] ≤ (ze+H(∅))λd(Λn),

and since ξ(P̄n) ≤ i(P sta
n ), we deduce the lemma.

4.2 Some remarks on the local energy

Lemma 4.5. If P is a point process with bounded intensity, then for P almost all
ω the following equivalence holds for all l ≥ 0

H∆(ω) = +∞ ⇐⇒ H l
∆(ω) = +∞.

Proof. Let ω be a configuration. With our convention∞−∞ = 0 and the intensity
regular assumption, for l ≥ 1 having H l

∆(ω) = +∞ implies that H l−1
∆ (ω) = +∞

and H l+1
∆ (ω) = +∞. Then by induction we deduce that for all l ≤ 1 we have

H l
∆(ω) = +∞ if and only if H0

∆(ω) = +∞.
The local energy is defined by

H∆(ω) = H0
∆(ω) +

+∞∑
l=0

[
H l+1

∆ (ω)−H l
∆(ω)

]
,

and since for a point process P with bounded intensity the second part of the right
hand side is finite we deduce that for P -almost all ω, H∆(ω) = +∞ if and only if
H0

∆(ω).

Lemma 4.5 ensures that the event {H∆(ω) = +∞} is local. In particular, the
hard-core part of the energy has to be finite range.

For a finite configuration ω ∈ Ωf , the sum in the definition of the local energy
H∆(ω) is a finite sum, and then Lemma 4.5 also holds. Hence we can write

H∆(ω) = H l
∆(ω) = H(ω∆l

)−H(ω∆c
l
) = H(ω)−H(ω∆c)

for some l ≥ 0 (depending on ω). Moreover, thank to hereditary of the energy and
our convention ∞−∞ = 0, we have for all ω ∈ Ωf

H(ω) = H∆(ω) +H(ω∆c).

This equality is useful for proving the DLR equations for finite volume Gibbs mea-
sures.
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4.3 The DLR equation

We prove in this section that the accumulation point P satisfies the DLR equations
stated in Definition 2.6. By a standard monotone class argument we can replace the
class of bounded measurable functions by the class of bounded local functions. Let
f be a bounded local function, ∆ be a bounded measurable subset of Rd, we have
to show

∫
fdP =

∫
f∆dP with

f∆(ω) =

∫
f(ω′∆ω∆c)

1

Z∆(ω∆c)
e−H∆(ω′∆ω∆c )π∆(dω′∆).

We fix ε > 0.

Step 1. There exists K ′ > 0 such that for all k ≥ K ′, we have P (|ω∆| > k) ≤ ε,
this implies that for all k ≥ K ′,∣∣∣∣∫ f∆(ω)P (dω)−

∫
f∆(ω)1|ω∆|≤kP (dω)

∣∣∣∣ ≤ ‖f‖∞ε. (4)

The introduction of this indicator function will be usefull in step 4.

Step 2 We approximate f∆ by f l∆,k which corresponds to the approximation of

the local energy H∆ by H l
∆ and a restriction to configurations having less than k

points in ∆, which means

f l∆,k(ω) =
1

Z l
∆,k(ω∆c)

∫
f(ω′∆ω∆c)e−H

l
∆(ω′∆ω∆c )1|ω′∆|≤kπ∆(dω′∆),

with the normalization constant Z l
∆,k(ω∆c) =

∫
e−H

l
∆(ω′∆ω∆c )1|ω′∆|≤k

π∆(dω′∆). We

prove that we can find K ≥ K ′ and l (depending on K) such that :∣∣∣∣∫ f∆(ω)1|ω∆|≤KP (dω)−
∫
f l∆,K(ω)1|ω∆|≤KP (dω)

∣∣∣∣ ≤ 6‖f‖∞ε. (5)

We introduce an event Aε such that P (Aε) ≤ ε. Its precise definition is given
later. We have∣∣∣∣∫ f∆(ω)1|ω∆|≤kP (dω)−

∫
f l∆,k(ω)1|ω∆|≤KP (dω)

∣∣∣∣
≤
∫
Acε
|f∆(ω)− f l∆,k(ω)|1|ω∆|≤kP (dω) + 2‖f‖∞ε. (6)
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We must estimate the approximation error

f∆(ω)− f l∆,k(ω)

=
1

Z∆(ω∆c)

∫
f(ω′∆ω∆c)

(
e−H∆(ω′∆ω∆c ) − e−Hl

∆(ω′∆ω∆c )1|ω′∆|≤k

)
π∆(dω′∆)

+

(
1

Z∆(ω∆c)
− 1

Z l
∆,k(ω∆c)

)∫
f(ω′∆ω∆c)e−H

l
∆(ω′∆ω∆c )1|ω′∆|≤kπ∆(dω′∆).

Since the difference between the normalization constants is

Z l
∆,k(ω∆c)− Z∆(ω∆c) =

∫ (
e−H

l
∆(ω′∆ω∆c ) − 1|ω′∆|≤ke

−H∆(ω′∆ω∆c )
)
π∆(dω′∆),

we obtain the upper-bound

|f∆(ω)− f l∆,k(ω)| ≤ 2‖f‖∞
Z∆(ω∆c)

∫ ∣∣∣e−H∆(ω′∆ω∆c ) − e−Hl
∆(ω′∆ω∆c )1|ω′∆|≤k

∣∣∣ π∆(dω′∆)

=
2‖f‖∞
Z∆(ω∆c)

∫ ∣∣∣e−H∆(ω′∆ω∆c ) − e−Hl
∆(ω′∆ω∆c )

∣∣∣1|ω′∆|≤kπ∆(dω′∆)

+
2‖f‖∞
Z∆(ω∆c)

∫
e−H∆(ω′∆ω∆c )1|ω′∆|>kπ∆(dω′∆). (7)

Using Lemma 4.5, the inequality |eb − ea| ≤ |b − a|e|b−a|+a and the approximation
(1) we obtain the upper-bound∣∣∣e−Hl

∆(ω′∆ω∆c ) − e−H∆(ω′∆ω∆c )
∣∣∣1|ω′∆|≤K ≤ KC l

∆(ω∆c)eKC
l
∆(ω∆c )−H∆(ω′∆ω∆c ). (8)

By combining (7) and (8) we have

|f∆(ω)− f l∆,k(ω)| ≤ 2‖f‖∞KC l
∆(ω∆c)eKC

l
∆(ω∆c )

+
2‖f‖∞
Z∆(ω∆c)

∫
e−H∆(ω′∆ω∆c )1|ω′∆|>kπ∆(dω′∆). (9)

Now we need to control the two terms of the right part of (9). For the second one,
by the dominated convergence theorem, we can find K ≥ K ′ such that∫

1

Z∆(ω∆c)

∫
e−H∆(ω′∆ω∆c )1|ω′∆|>Kπ∆(dω′∆)P (dω) ≤ ε.

Once K is chosen, we can control the first term. If W : R+ → R+ is the inverse
function of x 7→ xex (W is the so-called Lambert function), using Markov’s inequality
we have

P
(
KC l

∆(ω∆c)eKC
l
∆(ω∆c ) > ε

)
= P (KC l

∆(ω∆c) > W (ε)) ≤ KEP [C l
∆(ω∆c)]

W (ε)
.
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As EP [C l
∆(ω∆c)] goes to zero when l goes to infinity, we can choose l (depending on

K) such that

P
(
KC l

∆(ω∆c)eKC
l
∆(ω∆c ) > ε

)
≤ ε.

Introducing the event Aε = {KC l
∆(ω∆c)eKC

l
∆(ω∆c ) > ε} in (6) and with our choice

of K and l, we have finally the approximation (5).
According to Lemma 4.4, the point processes (P̄n)n≥1 have uniformly bounded

intensities and, as mentionned in Remark 2.5, the expectations EP̄n [C l
∆(ω∆c)] is

bounded from above uniformly in n ≥ 1. Hence l could be chosen such that for all
n ≥ 1

P̄n

(
KC l

∆(ω∆c)eKC
l
∆(ω∆c ) > ε

)
≤ ε, (10)

it will be useful later, in Step 4.

Step 3. For n large enough (depending on K and l) we have∣∣∣∣∫ f l∆,K(ω)1|ω∆|≤KP (dω)−
∫
f l∆,K(ω)1|ω∆|≤KP̄n(dω)

∣∣∣∣ ≤ ‖f‖∞ε. (11)

It is simply a consequence of the local convergence of the sequence (P̄n)n≥1 to P .

Step 4. For all n ≥ 1 we show the approximation∣∣∣∣∫ f l∆,K(ω)1|ω∆|≤KP̄n(dω)−
∫
f∆,K(ω)1|ω∆|≤KP̄n(dω)

∣∣∣∣ ≤ 4‖f‖∞ε, (12)

where

f∆,K(ω) =
1

Z∆,K(ω∆c)

∫
f(ω′∆ω∆c)e−H∆(ω′∆ω∆c )1|ω′∆|≤Kπ∆(dω′∆),

with the normalization constant Z∆,K(ω∆c) =
∫
e−H∆(ω′∆ω∆c )1|ω′∆|≤K

π∆(dω′∆).

Similarly to the upper-bounds (7) and (8) we obtain

|f l∆,K(ω)− f∆,K(ω)| ≤ 2‖f‖∞
Z∆,K(ω∆c)

∫
|e−H∆(ω′∆ω∆c ) − e−Hl

∆(ω′∆ω∆c )|1|ω′∆|≤Kπ∆(dω′∆)

≤ 2‖f‖∞eKC
l
∆(ω∆c )KC l

∆(ω∆c).

From our previous choice of K and l in estimate (10), and using a restriction to a
specific event as in (6), we obtain the approximation (12).
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Step 5. We use the DLR equations for finite volume Gibbs processes to prove that∣∣∣∣∫ f∆,K(ω)1|ω∆|≤KP̄n(dω)−
∫
f(ω)1|ω∆|≤KP̄n(dω)

∣∣∣∣ ≤ 2‖f‖∞ε. (13)

Let us introduce Λ∗n = {u ∈ Λn : τ−1
u (∆) ⊂ Λn}. Note that if ∆ ⊂ Λk and n ≥ k

then Λn−k ⊂ Λ∗n and (n− k)d/nd ≤ λd(Λ∗n)/λd(Λn) ≤ 1. We choose n large enough
such that λd(Λ∗n)/λd(Λn) ≥ 1− ε, and if we denote

P̄ ∗n =
1

λd(Λn)

∫
Λ∗n

Pn ◦ τ−1
u ,

we have the approximation∣∣∣∣∫ f∆,K(ω)1|ω∆|≤KP̄n(dω)−
∫
f∆,K(ω)1|ω∆|≤KP̄

∗
n(dω)

∣∣∣∣ ≤ ‖f‖∞ε.
Let us detail the term∫

f∆,K(ω)1|ω∆|≤KP̄
∗
n(dω)

=
1

λd(Λn)

∫
Λ∗n

∫
f∆,K(τu(ω))1|τu(ω)∆|≤KPn(dω)du

=
1

λd(Λn)

∫
Λ∗n

∫∫
f(ω′∆τu(ω)∆c)

1

Z∆,K(τu(ω)∆c)
e−H∆(ω′∆τu(ω)∆c )1|ω′∆|≤Kπ∆(dω′∆)

1|τu(ω)∆|≤KPn(dω)du.

For u ∈ Λ∗n, using the fact that τu(ω)∆c = τu
(
ωτ−1

u (∆)c

)
, that π∆ has the same law

than πτ−1
u (∆) ◦ τ−1

u and that H∆(τu(ω)) = Hτ−1
u (∆)(ω), we have

Z∆,K(τu(ω)∆c) =

∫
e
−H∆

(
ω′∆τu

(
ω
τ−1
u (∆)c

))
1|ω′∆|≤Kπ∆(dω′∆)

=

∫
e
−H∆

(
τu

(
ω′
τ−1
u (∆)

ω
τ−1
u (∆)c

))
1∣∣ω′

τ−1
u (∆)

∣∣≤Kπτ−1
u (∆)

(
dω′

τ−1
u (∆)

)
=

∫
e
−H

τ−1
u (∆)

(
ω′
τ−1
u (∆)

ω
τ−1
u (∆)c

)
1∣∣ω′

τ−1
u (∆)

∣∣≤Kπτ−1
u (∆)

(
dω′

τ−1
u (∆)

)
= Zτ−1

u (∆),K

(
ωτ−1

u (∆)c

)
.
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Then, by a similar calculation, we find∫
f∆,K(τu(ω))1|τu(ω)∆|≤KPn(dω)

=

∫∫
f
(
τu
(
ω′
τ−1
u (∆)

ωτ−1
u (∆)c

)) 1

Zτ−1
u (∆),K

(
ωτ−1

u (∆)c

)e−Hτ−1
u (∆)

(
ω′
τ−1
u (∆)

ω
τ−1
u (∆)c

)
1|ω′

τ−1
u (∆)

|≤Kπτ−1
u (∆)(dω

′
τ−1
u (∆)

)1|ω
τ−1
u (∆)

|≤KPn(dω).

But we can write the measure in finite volume as

Pn(dω) =
1

Zn
e
−H

τ−1
u (∆)

(
ω
τ−1
u (∆)

ω
τ−1
u (∆)c

)
e
−H
(
ω
τ−1
u (∆)c

)
πz

Λn\τ−1
u (∆)

(
dωτ−1

u (∆)c

)
πτ−1

u (∆)

(
dωτ−1

u (∆)

)
,

and integration with respect of the measure πτ−1
u (∆) will give the normalization

constant (thanks to the indicator function introduce in Step 1). After simplification
we have for the translated Pn ◦ τ−1

u with u ∈ Λ∗n a finite volume DLR equation∫
f∆,K(τu(ω))1|τu(ω)∆|≤KPn(dω)

=
1

Zn

∫∫
f
(
τu
(
ω′
τ−1
u (∆)

ωτ−1
u (∆)c

))
e
−H
(
ω′
τ−1
u (∆)

ω
τ−1
u (∆)c

)
1|τu(ω)∆|≤K

πz
Λn\τ−1

u (∆)

(
dωτ−1

u (∆)c

)
πτ−1

u (∆)

(
dω′

τ−1
u (∆)

)
=

∫
f(τu(ω))1|τu(ω)∆|≤KPn(dω).

This DLR type equation is then verified for the mixture P̄ ∗n∫
f∆,K(ω)1|ω∆|≤KP̄

∗
n(dω) =

∫
f(ω)1|ω∆|≤KP̄

∗
n(dω).

Since we have the approximation∣∣∣∣∫ f(ω)1|ω∆|≤KP̄
∗
n(dω)−

∫
f(ω)1|ω∆|≤KP̄n(dω)

∣∣∣∣ ≤ ‖f‖∞ε,
we obtain finally (13).

Step 6. We show the last approximation∣∣∣∣∫ f(ω)1|ω∆|≤KP̄n(dω)−
∫
f(ω)P (dω)

∣∣∣∣ ≤ 2‖f‖∞ε. (14)
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Using the local convergence of (Pn)n≥1 to P again, we have, for n large enough∣∣∣∣∫ f(ω)1|ω∆|≤KP̄n(dω)−
∫
f(ω)1|ω∆|≤KP (dω)

∣∣∣∣ ≤ ‖f‖∞ε.
With our choice of K we have P (|ω∆| > K) ≤ ε and we obtain (14).

Conclusion Gathering approximations (4), (5), (11), (12), (13) and (14), we have
finally ∣∣∣∣∫ f∆dP −

∫
fdP

∣∣∣∣ ≤ 16‖f‖∞ε.

The inequality is true for every ε > 0, this ends the proof of Theorem 1.
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