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Existence of Gibbs point processes with stable infinite range interaction

Introduction

The Gibbs point processes constitute a large class of point processes with interaction between the points. The interaction can be attractive or repulsive, depending on geometrical features, whereas the null interaction is associated to the so-called Poisson point process. The existence of such processes in the infinite volume regime has a long history and is initially related to the existence of thermodynamic behaviours in statistical physics. Now the Gibbs point processes are used in several other applied sciences such as material science, astronomy, epidemiology, plant ecology, seismology, telecommunications, and others. Therefore their existence in the infinite volume regime is also relevant for spatial statistics considerations. In the present paper we give a new proof of the existence of such processes for a large class of infinite range interactions.

The starting point of the theory is an energy function H defined on the space of locally finite configurations in R d . In the following, ω denotes such a point configuration and H(ω) its energy. Then the finite volume Gibbs measure on a bounded set Λ ⊂ R d is simply the probability measure

P Λ = 1 Z Λ e -H π Λ ,
where π Λ is the Poisson point process in Λ with intensity one and Z Λ the normalization constant. The existence of P Λ is guaranteed by the stability condition recalled below. The existence of an infinite volume measure, corresponding to the case "Λ = R d ", is not obvious and can not be achieved by the definition above. In fact, the general strategy is first to obtain a suitable thermodynamic limit for (P Λ ) when Λ tends to R d and then derive a good description of the limiting point by the so-called DLR equations. The first general result in this direction is due to Ruelle in the seventies [START_REF] Ruelle | Superstable interactions in classical statistical mechanics[END_REF][START_REF] Ruelle | Statistical mechanics: Rigorous results[END_REF]. The setting was the pairwise interaction;

H(ω) = x =y∈ω φ(|x -y|),
where the potential φ is assumed regular, which means roughly that φ is summable at infinity (i.e.

+∞ R r d-1 |φ(r)|dr < +∞ for R > 0 large enough) and superstable: there exists two constants A > 0 and B ≥ 0 such that for any bounded set Λ ⊂ R d large enough and for any finite configuration ω in Λ

H(ω) ≥ -B|ω| + A λ d (Λ) |ω| 2 ,
where |ω| denotes the number of points in ω and λ d the Lebesgue measure on R d . Under these two assumptions, Ruelle proved the existence of at least one infinite Gibbs point processes. Similar results has been proved more recently in [START_REF] Kondratiev | Existence of Gibbs state for a non-ideal gas in R d : the case of a pair, long-range interaction[END_REF][START_REF] Kondratiev | Gibbs measures of continuous systems: an analytic approach[END_REF] using functional analysis tools. In any case the superstability assumption is required. As a corollary of our main result we improve these existence results in substituting the superstability assumption by the Stability assumption: there exists a constant B ≥ 0 such that for any finite configuration ω H(ω) ≥ -B|ω|.

Let us note that the difference between stable and superstable potential is in fact weak since any stable potential becomes superstable if a pairwise continuous non-negative and non-null at origin potential is added. However there exists several pairwise stable potential which are not superstable. For instance any continuous, non-negative pairwise potential null at origin is stable without being superstable. Let us note also that several examples of stable (and non-superstable) energy functions have introduced recently in stochastic geometry and spatial statistics [START_REF] Baddeley | Area-interaction point processes[END_REF][START_REF] Dereudre | Existence of Gibbsian point processes with geometry-dependent interactions[END_REF][START_REF] Møller | Power diagrams and interaction processes for unions of discs[END_REF].

A multi-body interaction occurs when the energy function H is decomposed using potentials on pairs, triplets, quadruplets, k-uplets of points (but not only on pairs). Our results do not use and do not depend on such decompositions. Therefore our existence result covers several multi-body interactions, including infinite range cases (examples are given in Section 3). Let us mention that the finite range multi-body interaction have been treated in [START_REF] Belitsky | Uniqueness of Gibbs state for non-ideal gas in R d : the case of multibody interaction[END_REF] using the Dobrushin's criterium.

Our main tool is the compactness of entropy level sets for the local convergence topology. This tool is particularly efficient for proving the tightness of the sequence of finite volume Gibbs point processes. It has been used for the first time in [START_REF] Georgii | Phase transition in continuum Potts models[END_REF] and then a collection of papers followed [START_REF] Dereudre | The existence of quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains[END_REF][START_REF] Dereudre | Existence of Gibbsian point processes with geometry-dependent interactions[END_REF][START_REF] Dereudre | Infinite volume continuum random cluster model[END_REF]. Before the present paper, the entropy strategy has been used only in the setting of finite range or random finite range interaction. As far as we know, it is the first time that it is applied in the setting of pure infinite range interaction. Therefore, our main contribution here was to developed a way to control the decay of the interaction adequately with the entropy approach. It is the reason why we introduce the Intensity Regular assumption (see Definition 2.4). It is called Intensity Regular because the decay of the interaction is controlled via the intensity of the process. This choice is directly related to the entropy bounds which gives a uniform control of intensities for finite volume Gibbs processes within the thermodynamic limit. In the setting of pairwise interaction, our definition is similar to the Regular assumption by Ruelle.

As mentioned before, in the setting of pairwise interaction, the entropy strategy improves the existence results in relaxing the superstability assumption. However we lose Ruelle's estimates which ensures existence of moments of any order and some exponential and super-exponential moments. The entropy approach only provides moments of order one. Better estimates have to be obtained by different tools.

In the following Section 2, we introduce the definitions and notations for Gibbs point processes. Our main existence Theorem is also given. Examples of energy functions are presented in Section 3. Finally, Section 4 is devoted to the proof of the theorem.

Notations and results

The real d-dimensional space R d is equipped with the usual Euclidean distance . and its associated Borel σ-algebra. Any set Λ ⊂ R d is assumed measurable.

Finite volume measure

The space of configurations is the set of locally finite subsets of R d

Ω = {ω ⊂ R d : |ω ∩ ∆| < ∞, ∀∆ ⊂ R d , bounded},
where | • | is the cardinal. We denote ω ∩ ∆ by ω ∆ , the union ω ∪ ω of two configurations by ωω , the space of finite configurations by Ω f and the space of configurations in Λ ⊂ R d by Ω Λ .

Our space is equipped with the sigma field F generated by the counting functions N ∆ : ω → |ω ∆ | for all ∆ ⊂ R d bounded. In our setting, a point process is simply a probability measure on (Ω, F). Note that, with this definition, we identify a point process with its distribution. We say that the process has a finite intensity if for all bounded subsets ∆ the expectation E P [|ω ∆ |] is finite. If we denote this expectation µ(∆) then µ is a sigma finite measure on R d called the intensity measure. When µ = i(P )λ d , where λ d is the Lebesgue measure on R d and i(P ) ≥ 0, we simply say that the point process has intensity i(P ). We also introduce

ξ(P ) = sup Λ⊂R d 0<λ d (Λ)<+∞ E P [|ω Λ |] λ d (Λ)
and we say that a probability measure P has a bounded intensity if ξ(P ) < +∞. Obviously, if P has a finite intensity i(P ) then ξ(P ) = i(P ).

A point process P is stationary if for all u ∈ R d , P = P • τ -1 u , where τ u is the translation of vector u. If a stationary point process has a finite intensity then its intensity measure is proportional to the Lebesgue measure and has the form

µ = i(P )λ d .
The most popular point processes are the Poisson point processes. We consider here only the homogeneous (or stationary) case where the intensity has the form µ = zλ d . The process is denoted π z , or simply π if z = 1. Recall briefly that π z is the only point process in R d with intensity µ = i(P )λ d such that any two disjoint regions of space are independent under π z . See the recent book [START_REF] Last | Lectures on the Poisson process[END_REF] on the subject.

Let us now define the interaction between the points. We need to introduce an energy function.

Definition 2.1. An energy function is a measurable function H on the space of finite configurations Ω f with values in R ∪ {+∞} such that:

-H is non degenerate: H(∅) < +∞, -H is hereditary: for all ω ∈ Ω f and x ∈ ω then

H(ω) < +∞ ⇒ H(ω \ {x}) < +∞, -H is stationary: for all ω ∈ Ω f and u ∈ R d H(τ u (ω)) = H(ω).
A crucial assumption is the stability of the energy function.

Definition 2.2. An energy function is said to be stable if there exists a constant

B ≥ 0 such that for all ω ∈ Ω f H(ω) ≥ -B|ω|.
The assumption [Stable] is standard and have been treated deeply in the literature (see for instance Section 3.2 in [START_REF] Ruelle | Statistical mechanics: Rigorous results[END_REF]). Now we can define the Gibbs point processes in finite volume.

Definition 2.3. Let Λ be a bounded subset in R d . The Gibbs point process on Λ for the stable energy function H is the probability measure on Ω Λ defined by

P Λ (dω) = 1 Z Λ e -H(ω) π Λ (dω)
with the normalization constant Z Λ = e -H(ω) π Λ (dω) called the partition function.

We can check with the properties of H that P Λ is well defined (i.e. 0 < Z Λ < +∞). In comparison with the standard formalism of Gibbs measures in statistical physics (see [START_REF] Ruelle | Statistical mechanics: Rigorous results[END_REF] for instance), the activity and inverse temperature parameters are included in the function H here.

Infinite volume measure

Let us turn now to the definition of Gibbs point processes in the infinite volume regime. For the following, we choose the convention ∞ -∞ = 0. We need to introduce the local energy which is given by H ∆ (ω) = H(ω) -H(ω ∆ c ) for a finite configuration ω ∈ Ω f . It represents the contribution of energy coming from ω ∆ in ω (the difference of energies with and without ω ∆ ). We need to extend this definition to an infinite configuration. If (∆ l ) l≥0 is an increasing sequence of subsets in R d with ∆ l ↑ R d , we expect that the following limit exists " lim l→+∞ H l ∆ (ω)" where

H l ∆ (ω) = H(ω ∆ l ) -H(ω ∆ l \∆ ) ∈ R ∪ {+∞}.
In particular, the difference H l+1 ∆ (ω) -H l ∆ (ω) should go to zero as l goes to infinity. Our main assumption is a control of the expectation of this difference for point processes with bounded intensities. Definition 2.4. An energy function is said intensity regular if for all bounded subsets ∆ of R d , we can find an increasing sequence of subsets (∆ l ) l≥0 with ∆ l ↑ R d and ∆ ⊂ ∆ 0 , such that for all configuration ω

H l+1 ∆ (ω) -H l ∆ (ω) ≤ |ω ∆ |G l ∆ (ω ∆ c ),
where G l ∆ is a non negative measurable function on Ω ∆ c such that for any probability measure P with bounded intensity we have

E P G l ∆ (ω ∆ c ) ≤ α l a(ξ(P )),
with a : R + → R + an increasing function and (α l ) l≥0 a positive summable sequence (i.e. l≥0 α l < +∞).

From assumption [intensity regular], we have

+∞ l=0 H l+1 ∆ (ω) -H l ∆ (ω) ≤ |ω ∆ | +∞ l=0 G l ∆ (ω ∆ c ),
and we can control the expectation of the second part of the right-hand side

E P +∞ l=0 G l ∆ (ω ∆ c ) ≤ a(ξ(P )) +∞ l=0 α l < +∞.
Then the local energy is correctly defined for P -almost every configurations ω (with P a probability measure with bounded intensity) by

H ∆ (ω) = H 0 ∆ (ω) + +∞ l=0 H l+1 ∆ (ω) -H l ∆ (ω) .
In addition, if we introduce the function C l ∆ defined on Ω ∆ c by

C l ∆ (ω ∆ c ) = +∞ j=l G j ∆ (ω ∆ c ),
then for all configurations ω ∈ Ω we have the following approximation result

H ∆ (ω) -H l ∆ (ω) ≤ |ω ∆ |C l ∆ (ω ∆ c ), (1) 
with 

E P [C l ∆ (ω ∆ c )] ≤ a(ξ(P )) ∞ j=l α j . Remark 2.5.
f (ω)P (dω) = f (ω ∆ ω ∆ c ) 1 Z ∆ (ω ∆ c ) e -H ∆ (ω ∆ ω ∆ c ) π ∆ (dω ∆ )P (dω), (2) 
with the normalization constant

Z ∆ (ω ∆ c ) = e -H ∆ (ω ∆ ω ∆ c ) π ∆ (dω ∆ ).
The equations (2) for all ∆ and f are called DLR for Dobrushin-Lanford-Ruelle. To be correctly defined we need to check that 0 < Z ∆ (ω ∆ c ) < +∞ for P almost all configuration ω. A lower bound can easily be obtained with

Z ∆ (ω ∆ c ) ≥ e -H ∆ (ω ∆ c ) π ∆ (∅) = e -λ d (∆) > 0.
To have an upper bound, we use assumptions [Stable] and [Intensity Regular]. From inequality (1) and assuming that H(ω ∆ 0 \∆ ) < +∞ we have

H ∆ (ω) ≥ H 0 ∆ (ω) -|ω ∆ |C 0 ∆ (ω ∆ c ) = H(ω ∆ 0 ) -H(ω ∆ 0 \∆ ) -|ω ∆ |C 0 ∆ (ω ∆ c ) ≥ -(B + C 0 ∆ (ω ∆ c ))|ω ∆ | -B|ω ∆ 0 \∆ | -H(ω ∆ 0 \∆ ).
Then we obtain

Z ∆ (ω ∆ c ) ≤ exp B|ω ∆ 0 \∆ | + H(ω ∆ 0 \∆ ) e (C 0 ∆ (ω ∆ c )+B)|ω ∆ | π ∆ (dω ∆ ) = exp B|ω ∆ 0 \∆ | + H(ω ∆ 0 \∆ ) +∞ n=0 λ d (∆)e (C 0 ∆ (ω ∆ c )+B)) n n! e -λ d (∆) = exp B|ω ∆ 0 \∆ | + H(ω ∆ 0 \∆ ) + λ d (∆) e (C 0 ∆ (ω ∆ c )+B)) -1 < +∞.
If H(ω ∆ 0 \∆ ) = +∞ then, by the hereditary property, for all l ≥ 0 we have H(ω ∆ l \∆ ) = +∞ and H l ∆ (ω) = 0 (according to our convention ∞ -∞ = 0 given above), which gives H ∆ (ω) = 0 and Z ∆ (ω ∆ c ) < +∞.

Our main result is the following theorem which is proved in Section 4.

Theorem 1. For any energy function H satisfying assumptions [Stable] and [Intensity Regular], there exists at least one stationary Gibbs point process P with finite intensity and locally finite energy (i.e.

P (H(ω ∆ ) < ∞, ∀∆ ⊂ R d , bounded) = 1).
Remark 2.7. (temperedness) Our formalism of Gibbs point processes does not really need the introduction of tempered configurations as it is done usually [START_REF] Ruelle | Superstable interactions in classical statistical mechanics[END_REF][START_REF] Kondratiev | Gibbs measures of continuous systems: an analytic approach[END_REF]. But, the definition of DLR equations requires a space of good configurations. In our case, this space is the space of configurations produced by any point processes with bounded intensity. It is not always obvious to compare with the different definitions of temperedness mentioned above.

Examples

Let Finite range interaction. An energy function H has a finite range if there exists R > 0 such that for all finite configurations ω ∈ Ω f and bounded subset ∆, H ∆ (ω) = H ∆ ω ∆⊕B(0,R) . It is easy to see that a finite range energy function verifies assumption [Intensity Regular], with any increasing sequence of subsets (∆ l ) l≥0 such that ∆ 0 = ∆ ⊕ B(0, R). Therefore in this setting of finite range interaction, only the assumption [Stable] is required to ensure the existence of Gibbs point processes.

Corollary 3.1. For a finite range and stable energy there exists at least one stationary Gibbs point process with finite intensity and locally finite energy.

This result has been proved previously in [START_REF] Dereudre | Existence of Gibbsian point processes with geometry-dependent interactions[END_REF] (See also [START_REF] Dereudre | Introduction to the theory of Gibbs point processes[END_REF] for a simpler and pedagogical proof).

Pairwise interaction An energy function H is pairwise if there exists a symmetric function φ : R d → R ∪ {+∞}, called a potential, such that

H(ω) = {x,y}⊂ω φ(x -y).
We do not assume the finite range property and so the support of φ can be unbounded. However, we still need an assumption on the long range behaviour of φ. The potential φ is regular if there exists a decreasing function ψ : R + → R + such that +∞ A ψ(r)r d-1 dr < +∞ for some A > 0 and |φ(x)| ≤ ψ( x ) for all x ∈ R d . Let us show that this energy function satisfies the assumption [Intensity Regular].

Let ∆ be a bounded subset of R d . We choose z ∈ R d and ρ > 0 such that ∆ ⊂ B(z, ρ) and we introduce ∆ l = B(z, ρ + A + l). We have

H l ∆ (ω) = {x,y}⊂ω∩∆ l {x,y}∩∆ =∅ φ(x -y),
which gives

H l+1 ∆ (ω) -H l ∆ (ω) = x∈∆ y∈∆ l+1 \∆ l φ(x -y). By definition, if x ∈ ∆ and y ∈ ∆ l+1 \ ∆ l then x -y ≥ A + l and |φ(x - y)| ≤ ψ(A + l). Introducing the function G l ∆ (ω ∆ c ) = |ω ∆ l+1 \∆ l |ψ(A + l) we have |H l+1 ∆ (ω) -H l ∆ (ω)| ≤ |ω ∆ |G l ∆ (ω ∆ c
) with

E P G l ∆ (ω ∆ c ) ≤ ξ(P )λ d (∆ l+1 \ ∆ l )ψ(A + l) ≤ ξ(P )c d (ρ + A + l + 1) d -(ρ + A + l) d ψ(A + l) ≤ ξ(P )c d d(ρ + A + l + 1) d-1 ψ(A + l) Since +∞ A
ψ(r)r d-1 dr < +∞ and ψ is decreasing, we have that

l≥0 (ρ + A + l + 1) d-1 ψ(A + l) < +∞.
Hence the energy H satisfies the assumption [Intensity Regular] with a = id and

α l = c d d(ρ + A + l + 1) d-1 ψ(A + l).
Corollary 3.2. For a stable pairwise energy associated to a regular potential, there exists at least one stationary Gibbs point process with finite intensity and locally finite energy.

The stability assumption for a pairwise potential is delicate and has been investigated long time ago. We refer to [START_REF] Ruelle | Statistical mechanics: Rigorous results[END_REF] for several results. Let us mention that a non-negative potential which is equal to zero in the neighbourhood of zero and positive outside this neighbourhood is a simple example of a Stable but not Superstable potential.

Note that the sum of two energy functions satisfying assumption [Intensity Regular], satisfies the assumption [Intensity Regular] as well. The following corollary follows.

Corollary 3.3. For a stable energy function, which is the sum of a finite range energy function and a pairwise energy function associated to a regular potential, there exists at least one stationary Gibbs point process with finite intensity and locally finite energy.

Cloud interaction In this last example, we provide an energy function which is infinite range and not reducible, at any scale, to a pairwise interaction. It is a multibody interaction between a germ-grain interaction (see for instance the Quermass model [START_REF] Dereudre | The existence of quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains[END_REF] or the Widom-Rowlinson interaction [START_REF] Widom | New model for the study of liquid-vapor phase transitions[END_REF]) and a pairwise interaction. We call it cloud interaction because each point of the configuration is diluted in a cloud around itself and the pairwise interaction is integrated on this cloud. Precisely for any finite configuration ω

H(ω) = x∈ω L R (ω) φ(x -y)dy where L R (ω) = x∈ω B(x, R
) is the cloud produced by the configuration ω (R > 0 is a fixed parameter) and φ : R d → R ∪ {∞} is a symmetric function. This energy function can be viewed as an approximation of the pairwise interaction introduced above. Indeed H(ω)/R d tends to the pairwise interaction function (times a multiplicative constant) when R goes to zero.

We assume that there exists a decreasing function ψ : R + → R + such that ψ(r)r d-1 dr < +∞ and |φ(x)| ≤ ψ( x ) for all x ∈ R d . This ensures that the energy function is well-defined and satisfies the assumption

[Stable] since |H(ω)| ≤ |ω| |ψ(r)|r d-1 dr.
Note that H is not superstable. Indeed, it would require that for all ω ∈ Ω Λ , H(ω) ≥ -B|ω| + A|ω| 2 /λ d (Λ) with B ≥ 0 and A > 0 which is impossible with the previous upper-bound of H.

Concerning assumption [Intensity Regular], for ∆ a bounded subset of R d , the local energy is given by

H l ∆ (ω) = H(ω ∆ l ) -H(ω ∆ l \∆ ) = x∈ω ∆ l L R (ω ∆ l ) φ( x -y )dy - x∈ω ∆ l \∆ L R (ω ∆ l \∆ ) φ( x -y )dy = x∈ω ∆ l \∆ L R (ω ∆ l )\L R (ω ∆ l \∆ ) φ( x -y )dy + x∈ω ∆ L R (ω ∆ l ) φ( x -y )dy.
We can find z ∈ R d and ρ > 0 such that ∆ ⊂ B(z, ρ) and, for the following, we choose ∆ 0 = B(z, ρ + 2R), which implies that

L R (ω ∆ l ) \ L R (ω ∆ l \∆ ) = L R (ω ∆ 0 ) \ L R (ω ∆ 0 \∆ ) def = L R ∆ (ω).
Using this notation we have

H l ∆ (ω) = x∈ω ∆ l \∆ L R ∆ (ω) φ( x -y )dy + x∈ω ∆ L R (ω ∆ l ) φ( x -y )dy.
The first term corresponds to the interaction of the points outside of ∆ with the cloud created by the points in ∆ and the second corresponds to the interaction of the points in ∆ with the full cloud. We can compute the cost of adding a shell

H l+1 ∆ (ω) -H l ∆ (ω) = x∈ω ∆ l+1 \∆ l L R ∆ (ω) φ( x -y )dy + x∈ω ∆ L R (ω ∆ l+1 )\L R (ω ∆ l )
φ( x -y )dy.

If we choose ∆ l = B(z, ρ + 2R + l), for x ∈ ω ∆ l+1 \∆ l and y ∈ L R ∆ (ω) or for x ∈ ω ∆ and y ∈ L R (ω ∆ l+1 ) \ L R (ω ∆ l ) then we have x -y > A + l. Then we have

|H l+1 ∆ (ω) -H l ∆ (ω)| ≤ |ω ∆ l+1 \∆ l |λ d (L R ∆ (ω)) + |ω ∆ |λ d (L R (ω ∆ l+1 \∆ l )) ψ(A + l).
With the union bound we have

λ d (L R ∆ (ω)) ≤ |ω ∆ |c d R d and λ d (L R (ω ∆ l+1 \∆ l ))) ≤ |ω ∆ l+1 \∆ l |c d R d . If we introduce the function G l ∆ (ω ∆ c ) = 2|ω ∆ l+1 \∆ l |c d R d ψ(A+l) we obtain |H l+1 ∆ (ω)- H l ∆ (ω)| ≤ |ω ∆ |G l ∆ (ω ∆ c ) with E P G l ∆ (ω ∆ c ) ≤ ξ(P )λ d (∆ l+1 \ ∆ l )ψ(A + l) ≤ ξ(P )dc d (ρ + A + l + 1) d-1 ψ(A + l). Since +∞ A ψ(r)r d-1 dr < +∞ and ψ is decreasing it implies l≥0 (ρ + A + l + 1) d-1 ψ(A + l) < +∞.
Hence the energy H satisfies assumption [Intensity Regular].

Corollary 3.4. For the cloud interaction, there exists at least one stationary Gibbs point process with finite intensity and locally finite energy.

4 Proof of the theorem

Construction of an infinite volume measure

The first step of the proof is to build an accumulation point of a sequence of finite volume Gibbs measures. Using entropy bounds and the stability of the energy, we prove the existence of such an accumulation point for the local convergence topology. This strategy and its tools have been used several time in the literature ( [START_REF] Dereudre | The existence of quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains[END_REF], [START_REF] Dereudre | Introduction to the theory of Gibbs point processes[END_REF], [START_REF] Dereudre | Existence of Gibbsian point processes with geometry-dependent interactions[END_REF], [START_REF] Dereudre | Infinite volume continuum random cluster model[END_REF]) and we recall here only the main ideas.

For n a positive integer, we denote by Λ n the set ] -n, n] d . We consider the sequence of Gibbs measures in finite volume given by

P n (dω) = P Λn (dω) = 1 Z n e -H(ω) π Λn (dω),
with the normalization constant Z n = e -H(ω) π Λn (dω). Since our tension tool will be defined for stationary measures, we need to modify (P n ) n≥1 . We defined the periodized version P per n by the probability measure

u∈Z d P n • τ -1 2nu
, and the stationnarized version by Given two probabilities measures µ and ν on Ω, we recall that the relative entropy of µ with respect to ν on Λ is defined as

P sta n = 1 λ d (Λ n ) Λn P per n • τ -1 u du.
I Λ (µ|ν) = log f dµ Λ if µ Λ ν Λ and f = dµ Λ dν Λ +∞ otherwise.
Definition 4.2. Let µ be a stationary probability measure with finite intensity on Ω. For z > 0 the specific entropy of µ with respect to π z is defined by

I z (µ|π z ) = lim n→+∞ I Λn (µ |π z ) λ d (Λ n ) = sup Λ⊂R d 0<λ d (Λ)<+∞ I Λ (µ|π z ) λ d (Λ) . (3) 
For details we refer to Chapter 15 of [START_REF] Georgii | Gibbs measures and phase transitions[END_REF]. The next result, stated in [START_REF] Georgii | Large deviations and the maximum entropy principle for marked point random fields[END_REF], is our tension tool. In order to apply this proposition in our case, we need to compute the specific entropy of the probability measure P sta n . Using the affine property of the specific entropy, it is well known that

I z (P sta n ) = 1 λ d (Λ n ) I Λn (P n |π z ).
What remains is to compute the relative entropy of the Gibbs measure P n with respect to the Poisson point process π z on Λ n

I Λn (P n |π z ) = log dP n dπ z dP n = log dP n dπ + log dπ dπ z dP n = -log(Z n ) -H(ω) + log e (z-1)λ d (Λn) 1 z |ω| P n (dω) = (z -1)λ d (Λ n ) -log(Z n ) + [-H(ω) -log(z)|ω|] P n (dω).
Under π z , the random variable |ω Λn | follows a Poisson law of parameter zλ d (Λ n ) and so

E π z e |ω Λn | = e -zλ d (Λn) ∞ p=0 (zλ d (Λ n )) p p! e p = exp(zλ d (Λ n )(e -1)).
Then we obtain

i(P sta n )λ d (Λ n ) = E P sta n [|ω Λn |] ≤ (ze + H(∅))λ d (Λ n
), and since ξ( Pn ) ≤ i(P sta n ), we deduce the lemma.

4.2 Some remarks on the local energy Lemma 4.5. If P is a point process with bounded intensity, then for P almost all ω the following equivalence holds for all l ≥ 0

H ∆ (ω) = +∞ ⇐⇒ H l ∆ (ω) = +∞. Proof.
Let ω be a configuration. With our convention ∞ -∞ = 0 and the intensity regular assumption, for l ≥ 1 having H l ∆ (ω) = +∞ implies that H l-1 ∆ (ω) = +∞ and H l+1 ∆ (ω) = +∞. Then by induction we deduce that for all l ≤ 1 we have H l ∆ (ω) = +∞ if and only if H 0 ∆ (ω) = +∞. The local energy is defined by

H ∆ (ω) = H 0 ∆ (ω) + +∞ l=0 H l+1 ∆ (ω) -H l ∆ (ω) ,
and since for a point process P with bounded intensity the second part of the right hand side is finite we deduce that for P -almost all ω, H ∆ (ω) = +∞ if and only if H 0 ∆ (ω). Lemma 4.5 ensures that the event {H ∆ (ω) = +∞} is local. In particular, the hard-core part of the energy has to be finite range.

For a finite configuration ω ∈ Ω f , the sum in the definition of the local energy H ∆ (ω) is a finite sum, and then Lemma 4.5 also holds. Hence we can write

H ∆ (ω) = H l ∆ (ω) = H(ω ∆ l ) -H(ω ∆ c l ) = H(ω) -H(ω ∆ c
) for some l ≥ 0 (depending on ω). Moreover, thank to hereditary of the energy and our convention ∞ -∞ = 0, we have for all ω ∈ Ω f

H(ω) = H ∆ (ω) + H(ω ∆ c ).
This equality is useful for proving the DLR equations for finite volume Gibbs measures.

The DLR equation

We prove in this section that the accumulation point P satisfies the DLR equations stated in Definition 2.6. By a standard monotone class argument we can replace the class of bounded measurable functions by the class of bounded local functions. Let f be a bounded local function, ∆ be a bounded measurable subset of R d , we have to show

f dP = f ∆ dP with f ∆ (ω) = f (ω ∆ ω ∆ c ) 1 Z ∆ (ω ∆ c ) e -H ∆ (ω ∆ ω ∆ c ) π ∆ (dω ∆ ).
We fix > 0.

Step 1. There exists K > 0 such that for all k ≥ K , we have

P (|ω ∆ | > k) ≤ ε, this implies that for all k ≥ K , f ∆ (ω)P (dω) -f ∆ (ω)1 |ω ∆ |≤k P (dω) ≤ f ∞ ε. (4) 
The introduction of this indicator function will be usefull in step 4.

Step 2 We approximate f ∆ by f l ∆,k which corresponds to the approximation of the local energy H ∆ by H l ∆ and a restriction to configurations having less than k points in ∆, which means

f l ∆,k (ω) = 1 Z l ∆,k (ω ∆ c ) f (ω ∆ ω ∆ c )e -H l ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |≤k π ∆ (dω ∆ ), with the normalization constant Z l ∆,k (ω ∆ c ) = e -H l ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |≤k π ∆ (dω ∆ )
. We prove that we can find K ≥ K and l (depending on K) such that :

f ∆ (ω)1 |ω ∆ |≤K P (dω) -f l ∆,K (ω)1 |ω ∆ |≤K P (dω) ≤ 6 f ∞ ε. (5) 
We introduce an event A ε such that P (A ε ) ≤ ε. Its precise definition is given later. We have

f ∆ (ω)1 |ω ∆ |≤k P (dω) -f l ∆,k (ω)1 |ω ∆ |≤K P (dω) ≤ A c ε |f ∆ (ω) -f l ∆,k (ω)|1 |ω ∆ |≤k P (dω) + 2 f ∞ ε. (6)
We must estimate the approximation error

f ∆ (ω) -f l ∆,k (ω) = 1 Z ∆ (ω ∆ c ) f (ω ∆ ω ∆ c ) e -H ∆ (ω ∆ ω ∆ c ) -e -H l ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |≤k π ∆ (dω ∆ ) + 1 Z ∆ (ω ∆ c ) - 1 Z l ∆,k (ω ∆ c ) f (ω ∆ ω ∆ c )e -H l ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |≤k π ∆ (dω ∆ ).
Since the difference between the normalization constants is

Z l ∆,k (ω ∆ c ) -Z ∆ (ω ∆ c ) = e -H l ∆ (ω ∆ ω ∆ c ) -1 |ω ∆ |≤k e -H ∆ (ω ∆ ω ∆ c ) π ∆ (dω ∆ ),
we obtain the upper-bound

|f ∆ (ω) -f l ∆,k (ω)| ≤ 2 f ∞ Z ∆ (ω ∆ c ) e -H ∆ (ω ∆ ω ∆ c ) -e -H l ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |≤k π ∆ (dω ∆ ) = 2 f ∞ Z ∆ (ω ∆ c ) e -H ∆ (ω ∆ ω ∆ c ) -e -H l ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |≤k π ∆ (dω ∆ ) + 2 f ∞ Z ∆ (ω ∆ c ) e -H ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |>k π ∆ (dω ∆ ). (7) 
Using Lemma 4.5, the inequality |e b -e a | ≤ |b -a|e |b-a|+a and the approximation (1) we obtain the upper-bound

e -H l ∆ (ω ∆ ω ∆ c ) -e -H ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |≤K ≤ KC l ∆ (ω ∆ c )e KC l ∆ (ω ∆ c )-H ∆ (ω ∆ ω ∆ c ) . (8) 
By combining ( 7) and ( 8) we have

|f ∆ (ω) -f l ∆,k (ω)| ≤ 2 f ∞ KC l ∆ (ω ∆ c )e KC l ∆ (ω ∆ c ) + 2 f ∞ Z ∆ (ω ∆ c ) e -H ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |>k π ∆ (dω ∆ ). ( 9 
)
Now we need to control the two terms of the right part of [START_REF] Georgii | Large deviations and the maximum entropy principle for marked point random fields[END_REF]. For the second one, by the dominated convergence theorem, we can find K ≥ K such that

1 Z ∆ (ω ∆ c ) e -H ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |>K π ∆ (dω ∆ )P (dω) ≤ ε.
Once K is chosen, we can control the first term. If W : R + → R + is the inverse function of x → xe x (W is the so-called Lambert function), using Markov's inequality we have

P KC l ∆ (ω ∆ c )e KC l ∆ (ω ∆ c ) > ε = P (KC l ∆ (ω ∆ c ) > W (ε)) ≤ KE P [C l ∆ (ω ∆ c )] W (ε)
.

As E P [C l ∆ (ω ∆ c )] goes to zero when l goes to infinity, we can choose l (depending on K) such that P KC l ∆ (ω ∆ c )e KC l ∆ (ω ∆ c ) > ε ≤ ε.

Introducing the event A ε = {KC l ∆ (ω ∆ c )e KC l ∆ (ω ∆ c ) > ε} in [START_REF] Dereudre | Infinite volume continuum random cluster model[END_REF] and with our choice of K and l, we have finally the approximation [START_REF] Dereudre | Existence of Gibbsian point processes with geometry-dependent interactions[END_REF].

According to Lemma 4.4, the point processes ( Pn ) n≥1 have uniformly bounded intensities and, as mentionned in Remark 2.5, the expectations E Pn [C l ∆ (ω ∆ c )] is bounded from above uniformly in n ≥ 1. Hence l could be chosen such that for all n ≥ 1

Pn

KC l ∆ (ω ∆ c )e KC l ∆ (ω ∆ c ) > ε ≤ ε, (10) 
it will be useful later, in Step 4.

Step 3. For n large enough (depending on K and l) we have

f l ∆,K (ω)1 |ω ∆ |≤K P (dω) -f l ∆,K (ω)1 |ω ∆ |≤K Pn (dω) ≤ f ∞ ε. (11) 
It is simply a consequence of the local convergence of the sequence ( Pn ) n≥1 to P .

Step 4. For all n ≥ 1 we show the approximation

f l ∆,K (ω)1 |ω ∆ |≤K Pn (dω) -f ∆,K (ω)1 |ω ∆ |≤K Pn (dω) ≤ 4 f ∞ ε, (12) 
where

f ∆,K (ω) = 1 Z ∆,K (ω ∆ c ) f (ω ∆ ω ∆ c )e -H ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |≤K π ∆ (dω ∆ ),
with the normalization constant Z ∆,K (ω

∆ c ) = e -H ∆ (ω ∆ ω ∆ c ) 1 |ω ∆ |≤K π ∆ (dω ∆ ).
Similarly to the upper-bounds ( 7) and ( 8) we obtain

|f l ∆,K (ω) -f ∆,K (ω)| ≤ 2 f ∞ Z ∆,K (ω ∆ c ) |e -H ∆ (ω ∆ ω ∆ c ) -e -H l ∆ (ω ∆ ω ∆ c ) |1 |ω ∆ |≤K π ∆ (dω ∆ ) ≤ 2 f ∞ e KC l ∆ (ω ∆ c ) KC l ∆ (ω ∆ c ).
From our previous choice of K and l in estimate [START_REF] Kondratiev | Existence of Gibbs state for a non-ideal gas in R d : the case of a pair, long-range interaction[END_REF], and using a restriction to a specific event as in [START_REF] Dereudre | Infinite volume continuum random cluster model[END_REF], we obtain the approximation [START_REF] Last | Lectures on the Poisson process[END_REF].

Using the local convergence of (P n ) n≥1 to P again, we have, for n large enough

f (ω)1 |ω ∆ |≤K Pn (dω) -f (ω)1 |ω ∆ |≤K P (dω) ≤ f ∞ ε.
With our choice of K we have P (|ω ∆ | > K) ≤ ε and we obtain [START_REF] Ruelle | Superstable interactions in classical statistical mechanics[END_REF].

Conclusion

Gathering approximations (4), ( 5), ( 11), ( 12), ( 13) and ( 14), we have finally

f ∆ dP -f dP ≤ 16 f ∞ ε.
The inequality is true for every > 0, this ends the proof of Theorem 1.

  us give examples of energy functions satisfying assumptions [Stable] and [Intensity Regular] of Theorem 1. Since the assumption [Stable] is studied deeply in the literature, we focus mainly on interesting examples satisfying assumption [Intensity Regular]. In the following, B(z, ρ) is the ball of center z and radius ρ, ⊕ is the Minkowski sum of two sets and c d = λ d (B(0, 1)).

Definition 4 . 1 .

 41 A function f is said local if there exists a bounded set ∆ such that f is F ∆ measurable (i.e. for all configurations ω in Ω, we have f (ω) = f (ω ∆ )). A sequence of measures (µ n ) converges to µ for the local convergence topology if for all bounded local functions f f dµ n → n→+∞ f dµ.

Proposition 4 . 3 .

 43 For any z > 0 and c > 0, the set of probability measures {µ stationary with finite intensity, I z (µ) ≤ c} is compact and sequentially compact for the local convergence topology.

  Assuming that a is an increasing function in the Defintion 2.4 allows to control the approximation (1) for a sequence (P n ) n≥1 of probability measures. Indeed, if (P n ) has a uniformly bounded intensity (i.e. ξ(P n ) ≤ ξ for all n ≥ 1), then the expectation E Pn [C l ∆ (ω ∆ c )] is uniformly bounded from above. We are now able to give the definition of infinite volume Gibbs point processes.Definition 2.6. A probability measure P on Ω with bounded intensity is a Gibbs point process for an energy function H, satisfying assumptions [Stable] and [Intensity Regular], if for all bounded subsets ∆ and all bounded measurable functions f we have
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The normalization constant can easily be bounded from below Z n = e -H dπ ≥ e -H(∅) e -λ d (Λn) .

Then, using the stability of H, we have

If we choose z > 0 such that B -log(z) ≤ 0, we have I z (P sta n ) ≤ z + H(∅) for all n ≥ 1. According to Proposition 4.3 we can exhibit a sub-sequence of (P sta n ) n≥1 which converges to a stationary measure P with finite intensity. To simplify the notations, we can suppose that we have changed the indexation of the sequence (Λ n ) n≥1 such that (P sta n ) n≥1 converges locally to P . We can prove that P is also an accumulation point of the sequence

See Lemma 3.5 [START_REF] Dereudre | The existence of quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains[END_REF] for details. We need to verify that P has locally finite energy. If ∆ is bounded subset of R d , the event {H(ω ∆ ) < +∞} is a locall event and

because by hereditary we have Pn (H(ω ∆ ) = +∞) = 0. We deduce, using again hereditary, that

Let us finish this section by giving the crucial property of uniform control of intensities for the sequence ( Pn ) Lemma 4.4. We can find ξ ≥ i(P ) such that for all integers n ≥ 1, ξ( Pn ) ≤ ξ.

Proof. We use the entropic inequality gdµ ≤ I(µ|ν) + log e g dν to obtain

Using the expression of the specific entropy as a supremum (3), we have

Step 5. We use the DLR equations for finite volume Gibbs processes to prove that

and if we denote

we have the approximation

Let us detail the term

For u ∈ Λ * n , using the fact that τ u (ω)

Then, by a similar calculation, we find

But we can write the measure in finite volume as

, and integration with respect of the measure π τ -1 u (∆) will give the normalization constant (thanks to the indicator function introduce in Step 1). After simplification we have for the translated

This DLR type equation is then verified for the mixture P * n f ∆,K (ω)1 |ω ∆ |≤K P * n (dω) = f (ω)1 |ω ∆ |≤K P * n (dω).

Since we have the approximation

we obtain finally (13).

Step 6. We show the last approximation