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Abstract

A Poisson outdegree-one graph is an oriented graph based on a Poisson point process such that
each vertex has only one outgoing edge. The paper focuses on the absence of percolation for
such graphs. Our main result is based on two assumptions. The Shield assumption ensures that
the graph is locally determined with possible random horizons. The Loop assumption ensures
that any forward branch of the graph merges on a loop provided that the Poisson point process
is augmented with a finite collection of well-chosen points. Several models satisfy these general
assumptions and inherit in consequence the absence of percolation. In particular, we solve in
Theorem 3.1 a conjecture by Daley et al. on the absence of percolation for the line-segment
model (Conjecture 7.1 of [4], discussed in [7] as well). In this planar model, a segment is growing
from any point of the Poisson process and stops its growth whenever it hits another segment.
The random directions are picked independently and uniformly on the unit sphere. Another
model of geometric navigation is presented and also fulfills the Shield and Loop assumptions.

1 Introduction

Consider the classical nearest neighbour graph based on a planar homogeneous Poisson point
process in which each point is simply connected to its nearest neighbour. The absence of
percolation for this model is due to the fact that almost surely a homogeneous Poisson point
process contains no descending chain. By a descending chain, we mean an infinite sequence
x1, x2, ... of points of the process for which |xi−1 − xi| ≥ |xi − xi+1| for all i ≥ 2. Daley and Last
have shown in [5] that the absence of percolation for the lilypond model can also be obtained
as a consequence of the descending chain argument. In this model a ball is growing with unit
rate from any Poisson point and stops its growth when it hits another ball. Note that the finite
cluster property for this model has first been proved in [6].

When the growing balls are replaced with growing segments the issue is much more compli-
cated. The two-sided line-segment model is defined via a marked homogeneous Poisson point
process X in R

2 × [0; 1] where the marks are independent and uniformly distributed on [0; 1].
At time 0, for any (ξ, u) ∈ X a line-segment centred at ξ starts to grow at unit rate in the
direction πu. A one-sided version also exists in which a one-sided segment grows from ξ with
direction 2πu. In both models, each line-segment ceases to grow when one of its ends hits an-
other segment. The descending chain argument does not work in this setting. Indeed, when a

1



line-segment hits another one, there is no reason that the hit segment is smaller than the hitting
one. Nevertheless the absence of percolation for the two-sided model was conjectured by Daley
et al. (Conjecture 7.1 of [4]) and was proved for the one-sided model in a weaker form (only
the four directions North, East, South and West are allowed) by Hirsch [7]. Although both
references [4, 7] are rather recent it seems that the natural question of percolation for these
line-segments models was known since a while in the probabilistic community. Like any good
conjecture, the percolation question for these line-segments models is easy understanding but
reveals technical hurdles. On the one hand, any local modification of the marked point process
may have huge aftereffects on the final realization of line-segments: see Figure 2. On the other
hand, the sequence of successively hit line-segments presents no Markovian property or renewal
structure.

In this paper, we prove the finite cluster property for the one-sided line-segment model as
a consequence of a general result (Theorem 3.1, our main result) dealing with outdegree-one
graphs. The finite cluster property of the two-sided line segment model can also be obtained
following the strategy we have used, the two-sided version does not contain specificities which
annihilate the proof.

It is easy (and natural) to interpret the geometric graphs mentioned above as (Poisson)
outdegree-one graphs. For the stopped germ-grain models (as lilypond and line-segment models),
an oriented edge from x to y is declared when the grain from x hits the grain from y. For this
reason our main result (Theorem 3.1), presented in the general setting of Poisson outdegree-one
graph, covers naturally the geometrical setting. Since the graph is oriented, we can define the
Forward and Backward sets of any given vertex x: see Figure 1 for an illustration and Section
2.2 for a precise definition. Then, the cluster containing x merely is the union of these both sets.

x

Figure 1: Here is a picture of the cluster of a given vertex x. The gray vertices belong to the
Forward set of x whereas the white ones are in its Backward set.

Thanks to the outdegree-one structure, a forward branch is finite if and only if it contains
a loop. By a loop, we mean an finite sequence x1, x2, . . . , xn of different vertices for which xi is
connected to xi+1 for 1 ≤ i ≤ n − 1 and xn is connected to x1. In Figure 1, the Forward set of x
contains a loop of size 4. A general argument for stationary outdegree-one graphs, called mass
transport principle, ensures that the absence of forward percolation implies the absence of back-
ward percolation. Henceforth, the aim of our work is to provide general assumptions ensuring
that any forward branch of Poisson outdegree-one graphs merges on a loop. This conjecture is
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supported by the following heuristic (to which our proof strategy does not correspond): there
are many loops everywhere in the plane and it is too difficult for an infinite forward branch to
avoid all of them.

In [7], Hirsch proposes such assumptions in the setting of geometrical graphs. In particular,
the author proved a weaker version of the conjecture by Daley et al. for the one-sided line-
segment model in which directions are piked uniformly among North, East, South and West.
Hirsch’s proof consists in stating that any infinite forward branch has to cross a infinite number of
“controlled regions” in which it can merge on a loop with positive probability and independently
of what precedes. To carry out this strategy, Hirsch requires technical assumptions (Section 3
of [7]) which actually are difficult to check even for the one-sided line-segment model with only
four directions. When all directions are allowed, the verification seems likely impossible as says
the author himself.

Our proof (of Theorem 3.1) differs from the Hirsch’s one and deeply exploits the outdegree-
one structure of our models. It is based on the following general statement for Poisson outdegree-
one graphs which can be roughly interpreted as a counterpart of the mass transport principle:
if there exists, with positive probability, an infinite forward branch then the expectation of
the size of a typical backward branch is infinite. Our main contribution is to provide minimal
assumptions guaranteeing that such expectation is finite, and then ensuring the absence of
percolation for a large class of models, containing at least the original line-segment model. As
far as we know, this strategy has never been investigated before for proving the absence of
percolation in any continuous or discrete models.

Let us describe briefly both assumptions of our main theorem. The first one, called the Loop
assumption and denoted by (LA), assumes that any forward branch merges to a loop if the
process is augmented with a finite collection of well-chosen points (without reducing the size
of the backward). Roughly speaking, this assumption assures that a loop is possible along a
forward branch provided that some points are added. The extra condition on the size of the
backward is directly related to the method we use. This condition seems a bit artificial and
could be probably relaxed in the future. However we note that it is relatively easy to check
in all models we met. The second one, called the Shield assumption and denoted by (SA), is
directly inspired from the ones by Hirsch. More or less, it assumes that with high probability,
the graph contains no edge crossing large boxes.

Moreover, the conclusion of Theorem 3.1, i.e. the absence of percolation, does not hold if
only one hypothesis among (LA) and (SA) is satisfied. Whereas the Loop assumption appears
as an essential property to prevent percolation, it is not clear whether the Shield assumption is
really needed. We construct an outdegree-one graph which satisfies only the Loop assumption
and percolates.

As mentioned before our main application is the absence of percolation for the line-segment
model introduced by Daley et al. We investigate also another model which is inspired by the
geometrical navigation defined in [2]. See Theorem 3.2.

The paper is organized as follows. In Section 2, we provide a precise description of Poisson
outdegree-one models and give examples. In Section 3, we formulate our two assumptions and
the main result (Theorem 3.1) ensuring the absence of percolation. Section 4 is devoted to its
proof and finally, in Section 5, we check that both models introduced in Section 2 satisfy the
assumptions of Theorem 3.1.
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2 General model and examples

2.1 Notations

All the models of this paper take place in the Euclidean space R
d. The configuration space C

on R
d with marks in [0; 1] is defined by

C =
{

ϕ ⊂ R
d × [0; 1] ; NΛ(ϕ) < ∞, for any bounded Λ ⊂ R

d
}

where NΛ(ϕ) = #(ϕ ∩ (Λ × [0; 1])) denotes the number of marked points of ϕ whose first
ordinate lies in Λ. Any other choice of compact set for the marks could be considered with
slight modifications in the following. Let us denote by ϕgerms the projection of any given
configuration ϕ ∈ C onto R

d: ϕgerms = {ξ ; (ξ, ·) ∈ ϕ}. For a given subset Λ of Rd, and ϕ ∈ C ,
ϕΛ denotes the set of points of ϕ included in Λ × [0; 1]: ϕΛ = {(ξ, u) ∈ ϕ ; ξ ∈ Λ}.

As usual, the configuration space C is equipped with the σ-algebra

S = σ
(

P(A,n) ; A Borel set of R
d × [0; 1] a Borel set, n ≥ 0

)

,

generated by the counting events P(A,n) = {ϕ ∈ C ; #(ϕ ∩ A) ≤ n}. Similarly, for a any subset

Λ ⊂ R
d, we define the σ-algebra of events in Λ by

SΛ = σ
(

P(A,n) ; A Borel set of Λ × [0; 1], n ≥ 0
)

.

Let v ∈ R
d. The translation operator τv acts on R

d, R
d × [0; 1] and C as follows: for any

w ∈ Rd, x = (ξ, u) ∈ Rd × [0; 1] and ϕ ∈ C , we set τv(w) = v + w, τv(x) = (ξ + v, u)
and τv(ϕ) = ∪x∈ϕ{τv(x)}. Finally, a subset C ′ ⊂ C is said translation invariant whenever
τv(C ′) ⊂ C ′, for any vector v ∈ R

d.

2.2 The outdegree-one model

In our setting, an outdegree-one graph is an oriented graph whose vertex set is given by a
configuration ϕ ∈ C and having exactly one outgoing edge per vertex. Such graph can be
described by a graph function which determines, for any vertex, its outgoing neighbour. Note
that the marks in [0; 1] will be used as random contributions to this connection mechanism. See
examples in Section 2.4.

Definition 2.1 Let C ′ ⊂ C be a translation invariant set. A function h from C ′ × (Rd × [0; 1])
to R

d × [0; 1] is called a graph function if:

(i) ∀ϕ ∈ C ′, ∀x ∈ ϕ, h(ϕ, x) ∈ ϕ\{x};

(ii) ∀v ∈ R
d, ∀ϕ ∈ C ′, ∀x ∈ ϕ, h(τv(ϕ), τv(x)) = τv(h(ϕ, x)).

The couple (C ′, h) is then called an outdegree-one model.

In the sequel, let us consider an outdegree-one model (C ′, h) and a configuration ϕ ∈ C ′.
The associated graph is made up of edges (x, h(ϕ, x)), for all x ∈ ϕ. In dimension d = 2, such
graphs are not necessarily planar.
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Let us describe the clusters of this graph. Let x ∈ ϕ. The Forward set For(x, ϕ) of x in ϕ is
defined as the sequence of the outgoing neighbours starting at x:

For(x, ϕ) = {x, h(ϕ, x), h(ϕ, h(ϕ, x)), . . .} .

The Forward set For(x, ϕ) is a branch of the graph, possibly infinite. The Backward set
Back(x, ϕ) of x in ϕ contains all the vertices y ∈ ϕ having x in their Forward set:

Back(x, ϕ) = {y ∈ ϕ ; x ∈ For(y, ϕ)} .

The Backward set Back(x, ϕ) admits a tree structure whose x is the root. The Forward and
Backward sets of x may overlap; they (at least) contain x. Their union forms the Cluster of x
in ϕ:

C(x, ϕ) = For(x, ϕ) ∪ Back(x, ϕ) .

The Cluster C(x, ϕ) is a subset of the connected component of x in ϕ, the absence of infinite
cluster in a given outdegree-one graph is nothing else than the absence of infinite connected
component.

Our main theorem (Theorem 3.1) states that for a large class of random models, all the
clusters are a.s. finite. In particular, it is not difficult to observe that the Forward set For(x, ϕ)
is finite if and only if it contains a loop, i.e. a subset {y0, . . . , yl−1} ⊂ For(x, ϕ), with l ≥ 2, such
that for any 0 ≤ i ≤ l −1, h(ϕ, yi) = yi+1 (where the index i+1 is taken modulo l). In this case,
the integer l is called the size of the loop. Furthermore, the outdegree-one property implies that
there is at most one loop in a cluster. Hence, a finite cluster is made up of one loop with some
finite trees rooted at vertices of the loop (see Figure 1). Obviously, this notion of loops will be
central in our study.

2.3 Random outdegree-one model

Let Q be a probability measure on [0; 1] such Q(θ) > 0 for any open set θ in [0; 1] and let
us denote by λd the Lebesgue measure on R

d. We consider a Poisson point process (PPP) X

on C with intensity λd ⊗ Q. This means that the random variable #(X ∩ A) follows a Poisson
distribution with parameter λd ⊗Q(A), for any bounded Borel set A ⊂ R

d × [0; 1]. By a standard
change of scale, any other (stationary) intensity measure of the form zλd ⊗ Q with z > 0 could
be considered. The process X can also be interpreted as a stationary PPP on R

d with intensity
one in which all the Poisson points are independently marked with distribution Q, and such that
the marks are also independent of the locations of the Poisson points. For the two examples
considered in this work (see Section 2.4), Q is the uniform distribution on [0; 1]. But other mark
distributions could be foreseen: this will be discussed in Section 3.

Finally, let us denote by (Ω, F ,P) a probability space on which the PPP X is defined.

Definition 2.2 Let (C ′, h) be an outdegree-one model. If P(X ∈ C ′) = 1 then the triplet
(C ′, h,X) is called a random outdegree-one model.

2.4 Two examples

Let Q be the uniform distribution on [0; 1].

5



Figure 2: In the left part of the picture, we have drawn the geometric graph defined by a
finite configuration. Two connected components are obtained. In the right part, we only add
one marked point to the configuration. The two initial connected components are modified.
Precisely, any point in the initial configuration has a new cluster.

2.4.1 The line-segment model

Our first model is a unilateral version of the model studied in [4] (called Model 1 therein) and
mentioned in Section 1. It is also a generalization of the model studied in [7].

The line-segment model is based on a stopping germ-grain protocol defined as follows. Let
us consider a marked configuration ϕ in R

2 × [0; 1]. At the same time (say t = 0), for any
marked point (ξ, u) ∈ ϕ, an half line-segment starts growing (at unit rate) from ξ according
to the direction 2πu. Each line-segment ceases to grow whenever its end point hits another
line-segment. But the stopping one continues its growth.

Let us denote by C ′ the configuration space for which the above dynamic is well defined.
This means that each line-segment is eventually stopped by exactly one other line-segment. Of
course, the set C ′ is translation invariant. We can then define a graph function h encoding
the line-segment model: given ϕ ∈ C ′ and x ∈ ϕ, the image h(ϕ, x) refers to the stopping
line-segment of x. This construction clearly provides an outdegree-one graph.

The authors in [4] proved that P(X ∈ C ′) = 1. Roughly speaking, they proved that for
almost all configuration, the unique stopping segment of any point can be determined by a finite
algorithm. Hence they have checked the existence of the two-sided and one-sided line segment
model. Therefore, according to Definition 2.2, (C ′, h,X) is a random outdegree-one model.

2.4.2 The navigation model

Let us define the navigation model introduced in [2]. Let ǫ ∈ (0; π] be an extra parameter and ϕ
be a configuration in R

2 × [0; 1]. Each marked point x = (ξ, u) ∈ ϕ defines a semi-infinite cone
with apex ξ, direction 2πu and opening angle ǫ:

C(x) = ξ +
{

(r cos(α), r sin(α)) ; r > 0 and |α − 2πu| < ǫ
}

.
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Figure 3: Here is a scheme of the navigation model. Remark that in the navigation model, two
marked points suffice to form a loop.

In the navigation model, each marked point x = (ξ, u) is connected to (ξ′, ·) ∈ ϕ where ξ′ is the
closest element to ξ living in the cone C(x), i.e. such that

‖ξ − ξ′‖2 = min
{

‖ξ − ξ′′‖2 ; ξ′′ ∈ C(x) ∩ ϕgerms

}

. (1)

See Figure 3. Of course this connection procedure produces an outdegree-one graph provided
those closest elements exist and are unique. Let us denote by C ′ the set of such configurations.
This is a translation invariant set. In this setting, h(ϕ, x) is defined as the unique marked point
(ξ′, ·) where ξ′ satisfies (1).

Using standard properties of the PPP, it is easy to show that P(X ∈ C ′) = 1 and therefore
(C ′, h,X) is a random outdegree-one model.

In the case where ǫ = π, the marks have no longer importance and the navigation model
actually coincides with the nearest neighbour graph.

3 Results

We first establish in Theorem 3.1 the absence of percolation for all random outdegree-ones
(C ′, h,X) satisfying two general assumptions, namely the Loop and Shield assumptions, which
are described and commented below. Thus, Theorem 3.2 asserts that the line-segment model
and the navigation model verify these two assumptions and therefore do not percolate.

Loop assumption
The Loop assumption (LA) mainly expresses the possibility for any marked point x ∈ ϕ to

break its Forward set by adding a finite sequence of marked points (x1, . . . , xk) to the current
configuration ϕ.

Let ϕ ∈ C ′ and k be a positive integer. The configuration ϕ is said k-looping if for any
x ∈ ϕ, there exists an open ball Ax ⊂ (Rd × [0; 1])k such that, for all (x1, . . . , xk) ∈ Ax:

(i) For(x, ϕ ∪ {x1, . . . , xk}) ⊂ {x, x1, . . . , xk},
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(ii) ∀1 ≤ i ≤ k, xi belongs to the connected component of x in ϕ ∪ {x1, . . . , xk} and

For(xi, ϕ ∪ {x1, . . . , xk}) ⊂ {x, x1, . . . , xk},

(iii) There exists a positive constant C1 which does not depend on x such that

#Back(x, ϕ ∪ {x1, . . . , xk}) ≥ #Back(x, ϕ) − C1

(in N ∪ {∞}).

Given x, the three conditions above can be interpreted as a local modification of the con-
figuration ϕ which breaks the Forward set of x without decreasing too much the cardinality
of its Backward set. Item (i) is very natural to obtain a finite cluster. Item (ii)– combined
with (SA) –will be crucial to localize the added points xi’s around x and then to guarantee the
construction of local events in Section 4.3. Item (iii) is more technical and will appear in the
proof of Proposition 4.4. Let us note that for the line-segment model and the navigation model,
we will prove that Back(x, ϕ) is included in Back(x, ϕ ∪ {x1, . . . , xk}) which implies (iii) with
C1 = 0. Finally, the choice of the integer k will be adapted to the random outdegree-one model
(C ′, h,X).

We will say that the random outdegree-one model (C ′, h,X) satisfies (LA) if there exists a
positive integer k such that

P(X is k-looping ) = 1 .

Shield assumption
The Shield assumption (SA) is a kind of strong stabilizing property for the random outdegree-

one (C ′, h,X) and has been first introduced in a slightly different way in [7].
We will say that the random outdegree-one (C ′, h,X) satisfies (SA) if there exist a positive

integer α and a sequence of events (Em)m≥1 such that:

(i) ∀m ≥ 1, Em ∈ S[−αm;αm]d ;

(ii) P(Em) −→
m→∞

1;

(iii) Consider the lattice Z
d with edges given by {{z, z′}, |z − z′|∞ = 1} and any three disjoint

subsets A1, A2, V of Z
d such that ∀i = 1, 2, the boundary ∂Ai = {z ∈ Z

d\Ai, ∃z′ ∈
Ai, |z − z′|∞ = 1} is included in V . Let us set

Ai =
(

Ai ⊕
[

− 1

2
;

1

2

]d)

\ (V ⊕ [−α; α]d) .

Then, for all m and for any configurations ϕ, ϕ′ ∈ C ′ such that τ−mz(ϕ) ∈ Em for all
z ∈ V , the following holds:

∀x ∈ ϕmA1 , h(ϕ, x) = h(ϕmAc
2

∪ ϕ′
mA2

, x) . (2)

In Condition (iii), the set mV acts as an uncrossable obstacle, i.e. a shield, between sets mA1

and mA2. See Figure 4. Equation (2) says that the outgoing neighbour of any x ∈ ϕmA1 does
not depend on the configuration on mA2. In particular, h(ϕ, x) ∈ ϕmAc

2
.

Here is our main result.
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Figure 4: The white points are the elements of mV while the black ones are those of mA1 (inside
mV ) and mA2 (outside mV ). Red squares are points of ϕ. If τ−mz(ϕ) ∈ Em for all z ∈ V , then
it is impossible for a (red) segment [ξ; ξ′], where x = (ξ, ·) and h(ϕ, x) = (ξ′, ·), to cross the set
m(V ⊕ [−α; α]d) from mA1 to mA2– or from mA2 to mA1 by symmetry of Equation (2) w.r.t.
indexes 1 and 2.

Theorem 3.1 Any random outdegree-one (C ′, h,X) satisfying (LA) and (SA) does not perco-
late with probability 1:

P(∀x ∈ X, #C(x,X) < ∞) = 1 .

Theorem 3.1 is proved in Section 4 and a sketch is given in Section 4.1.
Checking that both models of Section 2.4 satisfy (LA) and (SA) (this is done in Section 5), we
get:

Theorem 3.2 The line-segment model and the navigation model do not percolate with probabil-
ity 1.

The choice of a suitable integer k such that the random outdegree-one (C ′, h,X) satisfies
(LA) actually depends on the model. For example, 3 marked points suffice to make a loop for
the line-segment model and only 1 for the navigation model: see respectively Propositions 5.1
and 5.5.

Any variant of the line-segment model or the navigation model in which the uniform distri-
bution Q is replaced with a probability measure Q′ defined by

Q′(A) =

∫

A
f(x)Q(dx) ,

where f is a positive function on [0; 1], has to satisfy (LA) and (SA).
Furthermore, the law of the size of a typical cluster for a given model satisfying both assump-

tions (LA) and (SA) would be an interesting further result. It is also possible to investigate
asymptotics of the number of different clusters on expanding windows. In the case of the lily-
pond model some results of this kind have been established in [9].
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Let us end this section with discussing the need for assumptions (LA) and (SA) in Theorem
3.1. To do it, let us consider the Directed Spanning Forest (DSF) in R

2 with direction (1, 0) in
which each Poisson point x in X is connected to its nearest Poisson point h(X, x) having a larger
abscissa, i.e.

h(X, x) := argmin
{‖x − y‖2 : y ∈ X and 〈y − x, (1, 0)〉 ≥ 0

}

,

where 〈·, ·〉 denotes the inner product. See [3] for the study of infinite branches of the DSF.
It is not difficult to check that the DSF is a random outdegree-one model– whithout marks

–satisfying (SA) but not (LA), and percolating since by construction a semi-infinite branch
starts at each vertex.

Now, we are going to modify the DSF into a new random outdegree-one model, say DSF∗

corresponding to a graph function h∗, satisfying this time (LA) but not (SA), and still perco-
lating. Let w : N → (0, +∞) be a decreasing function. For any couple of vertices (x, h(X, x))
such that

(a) x and h(X, x) are mutually (Euclidean) nearest neighbours;

(b) {y ∈ X : h(X, y) = h(X, x)} = {x};

(c) ‖x − h(X, x)‖2 ≤ w(#Back(x,X));

then h∗(X, x) = h(X, x) and h∗(X, h(X, x)) = x (Recall that in the DSF the Backward set
Back(x,X) of any vertex x is a.s. finite : [3], Theorem 8). Otherwise, outgoing edges remain un-
changed. In other words, the only change between the DSF and DSF∗ consists in the possibility
to create a loop of size 2 with the mutual nearest neighbours x and h(X, x) satisfying Items (b)
and (c). First remark that the resulting graph DSF∗ satisfies (LA) with k = 1. Indeed, it is
always possible to add a point x1 as close as we want to x such that:

1. 〈x1 − x, (1, 0)〉 ≥ 0.

2. x and x1 are mutually nearest neighbours in X ∪ {x1}.

3. ‖x − x1‖2 ≤ w(#Back(x,X)).

4. The add of x1 does not reduce the Backward set of x: #Back∗(x,X) ≤ #Back∗(x,X∪{x1}).

Items 1 and 2 ensure that h(X ∪ {x1}, x) = x1. Combined with Item 3, we get that (x, x1)
forms a loop in DSF∗. So Items (i) and (ii) of (LA) are clearly true. In the case where x and
h∗(X, x) form a loop in DSF∗, the add of x1 makes h∗(X, x) (and only it by Item (c)) come out
of the Backward set of x. But this output is offset by the input of x1, which leads to Item 4 and
then to Item (iii) of (LA). Note also that (SA) does not hold for the DSF∗ since we possibly
need to explore all the set Back(x,X) to determine if x and h(X, x) form a loop in DSF∗. It
then remains to show that DSF∗ admits infinite paths. Let (xn)n≥0 be the forward path (in the
DSF) starting at a given vertex x = x0 ∈ X, with h(X, xn) = xn+1 for any n. Let us choose
the decreasing function w such that, for any n, P(‖xn − xn+1‖2 ≤ w(n)) < 2−(n+1). Then, with
positive probability, x admits also an infinite forward path for DSF∗. Indeed,

P
(

#For∗(x,X) < ∞) ≤ P
(∃n ≥ 0, ‖xn − xn+1‖2 ≤ w(#Back(xn,X))

)

≤
∑

n≥0

P
(‖xn − xn+1‖2 ≤ w(n)

)

< 1 .

Hence, among all the (necessarily infinite) forward branches of the DSF, some of them remain
unchanged (and then infinite too) when passing from DSF to DSF∗.
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4 Proof of Theorem 3.1

4.1 Sketch of the proof

We have to prove that any random outdegree-one model satisfying (LA) and (SA) does not
contain any infinite cluster with probability 1, i.e.

P
(∀x ∈ X, #For(x,X) < ∞ and #Back(x,X) < ∞)

= 1 . (3)

First, thanks to a standard mass transport argument (Proposition 4.1 of Section 4.2), we can
reduce the proof of the absence of percolation to the absence of forward percolation:

P
(∀x ∈ X, #For(x,X) < ∞)

= 1 =⇒ P
(∀x ∈ X, #Back(x,X) < ∞)

= 1 . (4)

Then, we proceed by contradiction and assume that, with positive probability, an infinite forward
branch starts at a typical marked point Θ:

P
(

#For(Θ,XΘ) = ∞)

> 0 , (5)

where XΘ denotes the configuration X ∪ {Θ} with Θ = (0, U) and U is an uniform random
variable in [0; 1]. Two central notions here are looping points and almost looping points. To sum
up, a looping point admits a finite Forward set, i.e. a forward branch ending with a loop. An
almost looping point is set to become a looping point by adding some suitable marked points.
See respectively Definitions 4.3 and 4.1. In Section 4.3, we use intensively hypotheses (LA) and
(SA) to prove that (5) forces the infinite branch For(Θ,XΘ) to contain an infinite number of
almost looping points:

P
(

#{y ∈ For(Θ,XΘ); y is an almost looping point of XΘ} = ∞)

> 0 . (6)

This is Proposition 4.2. Heuristically, such event should not occur since it produces an infinite
number of opportunities to break the forward branch by adding points. Precisely, Proposition
4.3 allows to convert the forward result (6) to a backward one:

E
[

#Back(Θ,XΘ)1I{Θ is an almost looping point of XΘ}

]

= ∞ . (7)

Thus, by adding some suitable marked points, (7) implies that the mean size of the Backward
set of a typical looping point is infinite (Proposition 4.4):

E
[

#Back(Θ,XΘ)1I{Θ is a looping point of XΘ}

]

= ∞ . (8)

This actually is the only place where the condition (iii) of (LA) is used. Finally, another
use of the mass transport principle (Proposition 4.5) makes statement (8) impossible. This
contradiction achieves the proof of Theorem 3.1.

4.2 Absence of backward percolation

Using the mass transport principle (Lemma 4.1), we show that the backward percolation is im-
possible whenever the forward percolation does not occur. This standard argument is formulated
in [1] and used p.18 of [8] and p.4 of [7].
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Proposition 4.1 The following implication holds:

P
[∀x ∈ X, #For(x,X) < ∞]

= 1 =⇒ P[∀x ∈ X, #Back(x,X) < ∞] = 1 .

Let us consider a configuration ϕ ∈ C ′ and a bounded subset Λ of Rd. A marked point x ∈ ϕ
is said looping inside Λ (for ϕ) if its Forward set For(x, ϕ) contains a loop {y1, . . . , yl}, and the
center of mass of the set {y1, . . . , yl} belongs to Λ (we will also say that the entire forward set
is looping inside Λ). Thus, for any z ∈ Z

d, let us define the following set:

Qz(ϕ) =
{

x ∈ ϕ; x is looping inside z ⊕
[

− 1

2
;
1

2

]d}

.

Lemma 4.1 Let z ∈ Z
d. Then, E[#Qz(X)] < ∞.

The proof of Lemma 4.1 is based on the mass transport principle.

Proof:[of Lemma 4.1.] By stationarity, it is enough to prove that E[#Q0(X)] is finite. For

y, z ∈ Z
d, we denote by Qy

z(X) the elements x ∈ Qz(X) whose first ordinate is in y ⊕
[

− 1
2 ; 1

2

]d
.

Then,

E[#Q0(X)] =
∑

y∈Zd

E[#Qy
0(X)]

=
∑

y∈Zd

E[#Q0
−y(X)]

where the latter equality is due to the stationarity of the PPP X and the graph function h. Now,
each cluster in X a.s. contains at most one loop. This means that

a.s.
∑

y∈Zd

#Q0
−y(X) ≤ N[− 1

2
, 1

2
]d(X) .

Since the PPP X has intensity 1, it follows E[#Q0(X)] ≤ 1. �

The proof of Proposition 4.1 is an immediate consequence of Lemma 4.1.

Proof:[of Proposition 4.1.] Let us assume that with positive probability there exists x ∈ X

whose Backward set is infinite. By hypothesis, its Forward set a.s. contains a loop. So, we can
find a deterministic z ∈ Z

2 such that

P

[

∃x ∈ X; #Back(x,X) = ∞ and x is looping inside z ⊕
[

− 1

2
;
1

2

]d]

> 0 .

However, on the above event, the random set Qz(X) is infinite which leads to a contradiction
with Lemma 4.1. �
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4.3 An infinite branch of almost looping points

Let us introduce the notion of almost looping points. The integer k below is given by (LA).

Definition 4.1 Let us consider real numbers 0 < r < R, a positive integer K, an open ball
A ⊂ (B(0, r) × [0; 1])k and a configuration ϕ ∈ C ′. A marked point x ∈ ϕ is said a (r, R, K, A)-
almost looping point of ϕ if:

(i) NB(x,R)(ϕ) ≤ K;

(ii) ∀(x1, . . . , xk) ∈ Ax, we have:

(ii-a) For(x, ϕ ∪ {x1, . . . , xk}) ⊂ {x, x1, . . . , xk};

(ii-b) There exists a positive constants C1 which does not depend on x such that
#Back(x, ϕ ∪ {x1, . . . , xk}) ≥ #Back(x, ϕ) − C1 (in N ∪ {∞}).

where Ax = τξ(A) with x = (ξ, ·).
For a (r, R, K, A)-almost looping point, the set A can be interpreted as a suitable region to

break the Forward set of x without reducing its Backward set.
The goal of this section is to show Proposition 4.2. Its proof, given in Section 4.3.1 below,

uses intensively (LA) and (SA).

Proposition 4.2 If P(#For(Θ,XΘ) = ∞) > 0 then, there exists a deterministic quadruplet
(r, R, K, A) such that:

P

(

#{y ∈ For(Θ,XΘ); y is a (r, R, K, A)-almost looping point of XΘ} = ∞
)

> 0 . (9)

4.3.1 Construction of shields

Let us first enrich the sequence of events (Em)m≥1 given by (SA) into a new sequence (E ′
m)m≥1.

To do it, we need to introduce some definitions.

Definition 4.2 Let ϕ ∈ C ′ and m ≥ 1.

1. A vertex z ∈ Z
d is said m-shield for ϕ if τ−mz(ϕ) ∈ Em.

2. A vertex z ∈ Z
d is said m-protecting for ϕ if for all y ∈ Z

d such that ‖y − z‖∞ ∈
{0, 2α, 4α, . . . , 2kα, 2(k + 1)α, 2(k + 2)α} (where α is given by (SA)) then y is m-shield
for ϕ.

3. A marked point x ∈ ϕ is said m-protected in ϕ if there exists a m-protecting vertex z ∈ Z
d

for ϕ such that x belongs to (mz ⊕ [−αm; αm]d) × [0; 1].

Roughly speaking, a m-protecting vertex z is surrounded by k + 2 circles (w.r.t. the ‖ · ‖∞-
norm) made up of m-shield vertices. Therefore this is also true for a m-protected marked point
x. Thanks to (SA), each of these circles constitutes an uncrossable obstacle for a single edge
(x, h(ϕ, x)): see Figure 4.

Given a vertex z ∈ Z
d and two positive integers m, l ∈ N

∗, let us set

Sm(z, l) :=
(

mz ⊕ [−(2l + 1)αm; (2l + 1)αm]d
)

× [0; 1] .

Now, we can define for any integer m ≥ 1 the event E ′
m as the conjunction of the following

statements:
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• 0 is m-protecting for X ;

• #(X ∩ Sm(0, k + 2)) ≤ Km ;

• ∀x ∈ X[−αm;αm]d , rad(Ax) > δm ;

where Km, δm are positive real numbers, and rad(Ax) denotes the radius of the open ball Ax

defined in (LA).
The use of (SA) allows to assert that the open ball Ax, for any m-protecting point x ∈ ϕ,

can be localized from the configuration ϕ only observed through a deterministic and bounded
region around x. This is the meaning of the next lemma which will be proved in Section 4.3.2.

Lemma 4.2 For any m ≥ 1, the event E ′
m is S[−α′m;α′m]d-measurable where α′ := α(2k + 5).

Given a configuration ϕ ∈ C ′ and x ∈ ϕ, we say that x is m-good for ϕ if there exists a
vertex z ∈ Z

d such that τ−mz(ϕ) ∈ E ′
m and x ∈ ϕmz⊕[−αm;αm]d . Then, for m large enough, the

number of m-good marked points in a infinite typical forward branch is infinite with positive
probability:

Lemma 4.3 Assume that P(#For(Θ,XΘ) = ∞) > 0. Then there exists an integer m0 such
that, for all m ≥ m0,

P

(

#{x ∈ For(Θ,XΘ); x is m-good for XΘ} = ∞
)

> 0 .

Proof: Let us first prove that the random field

Ξm :=
(

1I{τ−mz(X)/∈E ′

m}

)

z∈Zd

does not percolate in Z
d, with probability 1 and for m large enough. On the one hand, the

probability that 0 is m-protecting for X tends to 1 as m → ∞ thanks to (SA). So, one can find a
sequence of integers (Km)m≥1 tending to infinity and a sequence of positive real numbers (δm)m≥1

tending to zero such that the event E ′
m also has a probability tending to 1 as m → ∞. Hence,

the probability that τ−mz(X) ∈ E ′
m goes to 1 as well. On the other hand, by Lemma 4.2, E ′

m is
S[−α′m;α′m]d-measurable, where α′ = α(2k + 5). This implies that the event {τ−mz(X) ∈ E ′

m}
only depends on the states of vertices y ∈ Z

d such that d(y, z) ≤ 2(2k + 5)α. We can then
apply a classic stochastic domination result due to Liggett et al [11]: the random field Ξm is
dominated by an independent Bernoulli field with parameter p(m) tending to 0 as m tends to
infinity. This Bernoulli site percolation, on the lattice Z

d with the ‖ · ‖∞ graph structure, does
not percolate provided p(m) is sufficiently close to 0. As a consequence, there exists m0 such
that for all m ≥ m0,

P

(

{z ∈ Z
d ; τ−mz(X) /∈ E

′
m} does not percolate in Z

d
)

= 1 . (10)

Combining (10) with the fact that, thanks to (SA), it is forbidden to go from one “bad” con-
nected component to another one via a single edge, we conclude that the infinite set For(Θ,XΘ)
a.s. goes through an infinite number of m-protecting vertices z such that τ−mz(XΘ) ∈ E ′

m. �
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This section ends with the proof of Proposition 4.2.

Proof:[of Proposition 4.2.] Assume that P(#For(Θ,XΘ) = ∞) > 0 and let us choose m ≥ m0

where the integer m0 is given by Lemma 4.3. Hence, the set of marked points x ∈ For(Θ,XΘ)
which are m-goods for XΘ is infinite with positive probability. We have to state that an infinite
number of them are (r, R, K, A)-almost looping points of XΘ for some deterministic quadruplet
(r, R, K, A).

Let x ∈ For(Θ,XΘ) be such m-good marked point for XΘ. It is in particular m-protected
in XΘ by some z ∈ Z

d. Lemma 4.4 proved in Section 4.3.2 says that the corresponding set Ax–
given by (LA) –is included in the marked hypercube Sm(z, k)k. So,

τ−ξ(Ax) ⊂ Sm(0, k + 1)k

where x = (ξ, ·).
Now, let us consider a finite covering of the compact set Sm(0, k + 1)k by open euclidean

balls {Kj , 1 ≤ j ≤ j(m)} of radii δm

2 . Since the open ball τ−ξ(Ax) is of radius larger than
δm, it necessarily contains one of the Kj ’s. We can now conclude by the pigeonhole principle.
There exists a deterministic index 1 ≤ j0 ≤ j(m) such that, with positive probability, an
infinite number of m-good marked points x ∈ For(Θ,XΘ) satisfy τξ(Kj0) ⊂ Ax where x = (ξ, ·).
Hence, by (LA), the deterministic set Kj0 satisfies Item (ii) of Definition 4.1 for all these m-
good marked points which actually are (r, R, K, A)-almost looping points of XΘ with A = Kj0,
K = Km and any couple (r, R) such that

Kj0 ⊂ (B(0, r) × [0; 1])k ⊂ (B(0, R) × [0; 1])k ⊂ Sm(0, k + 2)k .

�

4.3.2 Proof of Lemma 4.2

Since Em is S[−αm;αm]d-measurable by (SA), the event {0 is m-protecting for X} is clearly
S[−α′m;α′m]d-measurable with α′ := α(2k + 5). In order to prove that the same holds for E ′

m, we
need to localize the set Ax, given by (LA), for any x ∈ X[−αm;αm]d .

Lemma 4.4 Let ϕ ∈ C ′ and m ≥ 1. Let us consider a marked point x ∈ ϕ which is m-protected
in ϕ by 0. Then, the set Ax is included in the marked hypercube

Ax ⊂ Sm(0, k)k .

Proof: Let us consider a k-tuple (x1, . . . , xk) in Ax and assume that one of these vertices does
not belong to Sm(0, k). So, one of the k circles of m-shield vertices (for ϕ) included in Sm(0, k)
contains no xi’s: there exists j ∈ {1, . . . , k} such that

∀i ∈ {1, . . . , k}, xi /∈
⋃

z′∈V

(mz′ ⊕ [−αm; αm]d) × [0; 1] , (11)

where V := {z′ ∈ Z
d; ‖z′‖∞ = 2αj}. Thus, let us apply the third item of (SA) to the set

V and the configuration φ := ϕ ∪ {x1, . . . , xk}. We can do it since by hypothesis φ and ϕ are
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equal on mV ⊕ [−αm; αm]d which means that the vertices of V are still m-shield for φ. So,
set

⋃

z′∈V mz′ ⊕ [−αm; αm]d cannot be crossed by an edge of the graph built on φ. But Item
(ii) of (LA) guarantees that x and the xi’s are in the same connected component in φ and
their Forward sets are included in {x, x1, . . . , xk}. This is possible only if an edge crosses the
⋃

z′∈V mz′ ⊕ [−αm; αm]d. We just have seen that such situation was forbidden. �

Lemma 4.5 Let ϕ ∈ C ′ such that the vertex 0 is m-protecting. Let x ∈ ϕ[−αm;αm]d . Then,

for any k-tuple (x1, . . . , xk) ∈ Sm(0, k)k, the control of the three items of (LA) only depends on
φ ∩ Sm(0, k + 2) where φ := ϕ ∪ {x1, . . . , xk}.

x

x1

x2

x3

Sm(0, k)

Sm(0, k + 2)c

Figure 5: On this picture, k = 3 marked points, denoted by x1, x2 and x3, are added to the
configuration ϕ in which x is m-protected by 0. Remark that the three items of (LA) are
satisfied with the new configuration φ := ϕ ∪ {x1, . . . , xk}. The Forward sets of x and the
xi’s are included in {x, x1, x2, x3}. Moreover, the add of the xi’s destroys some edges started
from marked points of ϕ and also creates new ones. This second phenomenon explains that the
Backward set of x increases here– which is allowed by the third item of (LA).

Combining the two previous lemmas, we deduce Lemma 4.2. This section ends with the
proof of Lemma 4.5.

Proof: Lemma 4.4 ensures that the set Ax is included in the marked hypercube Sm(0, k)k.
This implies the following important fact. The vertices of V := {z′ ∈ Z

d ; ‖z′‖∞ = 2α(k + 1)}
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which were m-shield for ϕ (since 0 is m-protecting for ϕ) are still m-shield for φ. Indeed, the
configurations ϕ and φ coincide on the set mV ⊕ [−αm; αm]d and Em is S[−αm;αm]d-measurable.

Let us pick (x1, . . . , xk) ∈ Sm(0, k)k . Look at Figure 5 for an example. Let us first check
that For(x, φ) ⊂ {x, x1, . . . , xk}. It is sufficient to determine the oriented edges starting from the
points x, x1, . . . , xk in the graph built on φ. By the previous remark, we can use the third item
of (SA) w.r.t. the set V : the set mV ⊕ [−αm; αm]d splits the space into two disjoint connected
components where the bounded one is Sm(0, k). The oriented edges starting from φ ∩ Sm(0, k)
do not depend on φ ∩ Sm(0, k + 1)c. Hence, we can determine the outgoing edges of x, x1, . . . , xk

without consider φ outside Sm(0, k + 1). So, the control of Item (i) of (LA) only depends on
φ ∩ Sm(0, k + 1). The same argument works as well for Item (ii) of (LA) and leads to the same
conclusion.

It then remains to prove that the verification of Item (iii) of (LA) only depends on φ ∩
Sm(0, k + 2). To do it, we have to prove that the outgoing vertex h(φ, y), for any vertex y such
that h(φ, y) 6= h(ϕ, y) i.e. for any y whose outgoing edge is altered when adding x1, . . . , xk, can
be identified thanks to φ ∩ Sm(0, k + 2). Let us pick such a vertex y. The previous argument
involving vertices of the set V = {z′ ∈ Z

d ; ‖z′‖∞ = 2α(k + 1)} (combined with (SA))
forces y to belong to Sm(0, k + 1). Thus, the same argument used this time with the set
V ′ := {z′ ∈ Z

d ; ‖z′‖∞ = 2α(k + 2)} (this is the reason why we need k + 2 circles of m-shield
vertices in the Definition 4.2) implies that the outgoing vertex h(φ, y) does not depend on what
happens outside Sm(0, k + 2). �

4.4 From Forward set to Backward set

In this section, it is stated that the mean size of the Backward set of a typical almost looping
point is infinite whenever the Forward set of a typical marked point contains an infinite number
of almost looping points with positive probability. Above all, this result allows to convert a
forward result to a backward one.

Proposition 4.3 If there exist a quadruplet (r, R, K, A) such that

P

(

#{y ∈ For(Θ,XΘ); y is a (r, R, K, A)-almost looping point of XΘ} = ∞
)

> 0 , (12)

then
E

[

#Back(Θ,XΘ)1I{Θ is a (r, R, K, A)-almost looping point of XΘ}

]

= ∞ . (13)

Proof: Let us fix parameters r, R, K, A such that (12) holds. Let us denote by For∗(Θ,XΘ) the
subset of For(Θ,XΘ) made up of (r, R, K, A)-almost looping points:

For∗(Θ,XΘ) = {y ∈ For(Θ,XΘ); y is a (r, R, K, A)-almost looping point of XΘ} .

We need to bound from below the density of For∗(Θ,XΘ). The next result will be proved at the
end of the section.

Lemma 4.6 There exists a function g : N → N such that limn→∞ g(n) = ∞ and

P

(

∀n ≥ 1, #
(

For∗(Θ,XΘ) ∩ ([−n; n]d × [0; 1])
)

≥ g(n)
)

> 0 .
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We will say that a marked point x is dense for X if for any n ≥ 1,

#
(

For∗(x,X) ∩ ([−n; n]d × [0; 1])
)

≥ g(n) .

Lemma 4.6 asserts that, with positive probability, Θ is dense in XΘ.
Let Λn = [−n; n]d × [0; 1] for n ≥ 1. The Campbell Mecke Formula (see for example [10])

allows to write:

E

[

#Back(Θ,XΘ)1I{Θ is a (r, R, K, A)-almost looping point of XΘ}

]

=
1

(4n)d
E





∑

x∈X∩Λ2n

#Back(x,X)1I{x is a (r, R, K, A)-almost looping point of X}



 .

If the marked point x ∈ Λn is dense for X then there exist at least g(n) marked points in Λ2n ∩X

having x in their Backward sets. This is here that the passage from the Forward set to the
Backward set happens. Henceforth,

E

[

#Back(Θ,XΘ)1I{Θ is a (r, R, K, A)-almost looping point of XΘ}

]

≥ g(n)

(4n)d
E





∑

x∈Λn∩X

1I{x is dense for X}





=
1

2d
g(n)P(Θ is dense in XΘ).

Let us tend n to infinity. By Lemma 4.6, (13) follows. �

Proof:[of Lemma 4.6] Let (an)n≥1 be a sequence of positive real numbers whose sum
∑

n an

equals α/2 where α = P(#For∗(Θ,XΘ) = ∞) > 0 by hypothesis. Thus, we define a (nonde-
creasing) sequence of integers (nk)k≥1 and a sequence of events (Bk)k≥0 as follows. At first, let
us define B0 as the event {#For∗(Θ,XΘ) = ∞} and n1 as the first integer n such that

P

(

B0 ∩
{

#
(

For∗(Θ,XΘ) ∩ ([−n; n]d × [0; 1])
)

≥ 1
})

≥ α − a1 .

Since the above probability tends to α as n tends to infinity, n1 is well defined. We also denote
by B1 the following event:

B1 = B0 ∩
{

#
(

For∗(Θ,XΘ) ∩ ([−n1; n1]d × [0; 1])
)

≥ 1
}

.

Thus, for any k ≥ 2, we define by induction the integer nk as the first integer n such that

P

(

Bk−1 ∩
{

#
(

For∗(Θ,XΘ) ∩ ([−n; n]d × [0; 1])
)

≥ k
})

≥ α −
∑

1≤i≤k−1

ai .

We also set
Bk = Bk−1 ∩

{

#
(

For∗(Θ,XΘ) ∩ ([−nk; nk]d × [0; 1])
)

≥ k
}

.

Finally, let us define a function g by g(n) =
∑

k 1I[nk,nk+1[ (n). The value g(n) gives the number
of nk’s smaller than n. The function g has been built so as to satisfy

P





⋂

k≥1

Bk



 ≤ P

(

∀n ≥ 1, #For∗(Θ,XΘ) ∩ ([−n; n]d × [0; 1]) ≥ g(n)
)

.
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Finally, to conclude, it suffices to remark that ∩k≥1Bk occurs with probability larger than
α − ∑

k≥1 ak which is equal to α
2 . �

4.5 From almost looping points to looping points

A looping point is a marked point whose Forward set admits a localized loop– actually, only its
center of mass is localized.

Definition 4.3 Let r < R be some positive real numbers and K be a positive integer. Let
ϕ ∈ C ′. A marked point x ∈ ϕ is a (r, R, K)-looping point of ϕ if

(i) NB(x,R)(ϕ) ≤ K;

(ii) x is looping inside the ball B(x, r) for ϕ (definition given in Section 4.2).

So, a (r, R, K, A)-almost looping point x of ϕ becomes a (r, R, K + k)-looping point of
ϕ∪{x1, . . . , xk} when the k marked points x1, . . . , xk are added in Ax. Proposition 4.4 establishes
a link between almost looping points and looping points.

Proposition 4.4 If there exist a quadruplet (r, R, K, A) such that

E

[

#Back(Θ,XΘ)1I{Θ is a (r,R,K,A)−almost looping point for XΘ}

]

= ∞ (14)

then
E

[

#Back(Θ,XΘ)1I{Θ is a (r,R,K+k)−looping point for XΘ}

]

= ∞ . (15)

The rest of this section is devoted to the proof of Proposition 4.4. Let us first state without
proof a technical lemma (Exercise 4.10 of [10]).

Lemma 4.7 Let Λ be a bounded Borelian of Rd with positive Lebesgue measure. Let us denote
by U the uniform distribution on Λ. Let us consider (Xi)1≤i≤k i.i.d. random vectors on Λ× [0; 1]
with distribution U ⊗ Q which are also independent with X. Let us set X

′ = X ∪ {X1, . . . , Xk}
the extended point process. Then the law Π′ of X

′ is absolutely continuous with respect to the
law Π of X (i.e. the Poisson Point distribution) with density

Π
′

(dϕ)

Π(dϕ)
=

1

λd(Λ)k
NΛ(ϕ) (NΛ(ϕ) − 1) . . . (NΛ(ϕ) − k + 1) . (16)

Proof:[of Proposition 4.4.] Let a quadruplet (r, R, K, A) such that (14) occurs. Our goal is to
prove that the expectation in (15), denoted by I , is infinite. Lemma 4.7 applied to the set
Λ = B(0, R) allows to write:

I ≥ E

[

#Back(Θ,XΘ)1I{Θ is looping inside B(0, r) for XΘ}1I{k≤NB(0,R)(X)≤K+k−1}

]

=

∫

C ′

#Back(Θ, ϕΘ)1I{Θ is looping inside B(0, r) for ϕΘ}1I{k≤NB(0,R)(ϕ)≤K+k−1}Π(dϕ)

=

∫

C ′

#Back(Θ, ϕΘ)1I{Θ is looping inside B(0, r) for ϕΘ}1I{k≤NB(0,R)(ϕ)≤K+k−1}
Π

′

(dϕ)

f(ϕ)
,
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where f(ϕ) is the density given in (16). Provided k ≤ NB(0,R)(X) ≤ K + k − 1, the ratio 1/f(ϕ)
is larger than some constant C > 0. It follows:

I ≥ C

∫

C ′

#Back(Θ, ϕΘ)1I{Θ is looping inside B(0, r) for ϕΘ}1I{k≤NB(0,R)(ϕ)≤K+k−1}Π′(dϕ)

≥ C

∫

A
E

[

#Back(Θ,XΘ ∪ {x1, . . . , xk})

×1I{Θ is looping inside B(0, r) for XΘ ∪ {x1, . . . , xk}}1I{NB(0,R)(X)≤K−1}

]

(U ⊗ Q)k[dx1 . . . dxk]

≥ C(U ⊗ Q)k(A)
(

E

[

#Back(Θ,XΘ)1I{Θ is a (r,R,K,A)-almost looping point of XΘ}

]

− C1

)

which is infinite by hypothesis (we have (U ⊗Q)k(A) > 0). This concludes the proof. It is worth
pointing out here that the condition (ii-b) is used to obtain the latter inequality. �

4.6 Proof of Theorem 3.1: conclusion.

Another use of the mass transport principle, especially Lemma 4.1, leads to the next result: the
Backward set of a typical looping point has a finite mean size.

Proposition 4.5 Any triplet (r, R, K) satisfies

E

[

#Back(Θ,XΘ)1I{Θ is a (r, R, K)-looping point of XΘ}

]

< ∞ . (17)

Proof: Let r < R be some positive real numbers and K be a positive integer. Let us pick ǫ > 0
small enough so that D1 ⊂ D2 where

D1 =
⋃

η∈
[

− ǫ
2

; ǫ
2

]d

B(η, r) and D2 =
⋂

η∈
[

− ǫ
2

; ǫ
2

]d

B(η, R) .

Let I be the expectation in (17). Using the Campbell Mecke Formula on the set M = [− ǫ
2 ; ǫ

2 ]d×
[0; 1], we can write:

I =
1

ǫd
E





∑

x∈X∩M

#Back(x,X)1I{For(x,X) is looping inside B(x,r)}1I{NB(x,R)(X)≤K}





≤ 1

ǫd
E





∑

x∈X∩M

#Back(x,X)1I{For(x,X) is looping inside D1}1I{ND2
(X)≤K}



 (18)

≤ K

ǫd
E

[

#{y ∈ X; For(y,X) is looping inside D1}
]

,

since each marked point y whose Forward set is looping inside D1 is counting at most K times
in the sum of (18). Thus, Lemma 4.1 allows to conclude. �

It only remains to combine the different pieces of the proof of Theorem 3.1.
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Proof:[of Theorem 3.1.] By Proposition 4.1, it is enough to show that a.s. the Forward set
For(x,X) of any x ∈ X is finite. The Campbell Mecke Formula gives:

E





∑

x∈X

1I{#For(x,X)=∞}



 =

∫

P
(

#For(x,X ∪ {x}) = ∞)

λd ⊗ Q(dx) .

By stationarity, we have to prove that P(#For(Θ,XΘ) = ∞) = 0 where Θ = (0, U) and U is a
uniform r.v. in [0; 1], and XΘ = X ∪ {Θ}.

If the probability P(#For(Θ,XΘ) = ∞) was positive then, by Propositions 4.2, 4.3 and 4.4,
there would exist a triplet (r, R, K) such that

E

[

#Back(Θ,XΘ)1I{Θ is a (r,R,K+k)−looping point for XΘ}

]

= ∞

which is in contradiction with Proposition 4.5. �

5 Proof of Theorem 3.2

This section is devoted to the verifications of (LA) and (SA) for the Line-segment model
and the Navigation model.

5.1 Line-segment model

Let us introduce some notations decribing the geometry of this model. Given a marked point
x = (ξ, u) ∈ R

2 × [0; 1], we denote by l(x) = {ξ + t−→u , t ∈ R+} the (semi-infinite) ray starting
from ξ in the direction −→u = (cos(2πu), sin(2πu)). Thus, let us set

l(X) =
⋃

x∈X

l(x) .

For ϕ ∈ C
′

and x = (ξ, u) ∈ ϕ, we denote by hg(ϕ, x) ∈ R
2 the intersection point between l(x)

and l(h(ϕ, x)). Roughly speaking, hg(ϕ, x) represents the impact point of the stopped segment
starting from ξ on the stopping segment starting from ξ′, where (ξ′, ·) = h(ϕ, x).

5.1.1 Loop assumption

Let us prove that the Line-segment model satisfies (LA) with k = 3.

Proposition 5.1 With probability 1, X is a 3-looping configuration.

Consider a configuration ϕ ∈ C ′ and an element x = (ξ, u) ∈ ϕ. The first step consists in
stating that only a finite number of growing segments are stopped by [ξ; hg(x, ϕ)]. See Lemma
5.1 below. This will allow us to exhibit a small region close to the impact point hg(ϕ, x) where
we could easily add a loop made up of 3 segments, that the growing segment x will hit. See
Figure 6.

Let us denote by B the set of open discs in R
2, and by C ′′ the following measurable set:

C
′′ =

{

ϕ ∈ C
′ ; ∀B ∈ B, #{x = (ξ, u) ∈ ϕ : [ξ; hg(ϕ, x)] ∩ B 6= ∅} < +∞

}

.
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x = (ξ, u)

h(ϕ, x)

z1

z2

Figure 6: On this picture, the set Back−1(ϕ, x) = {y ∈ ϕ, h(ϕ, y) = x} is made up of the marked
points z1 and z2. The blue circle delimits the ball B(w, r′). It is worth pointing out here that
B(w, r′) has to avoid any growing segment y ∈ X, and not only y ∈ Back−1(ϕ, x), so that the
added marked points (in red) may stop the growing segment x without decreasing its Backward
set.

Remark that the measurability of C ′′ is based on the one of hg : (ϕ, x) ∈ C ′×R
2 → hg(ϕ, x) ∈ R

2.
For this, we refer the reader to Section 4 of [4].

Lemma 5.1 With probability 1, X belongs to C ′′.

We are now able to prove Proposition 5.1.

Proof: Let us first introduce the set of marked points of a configuration ϕ which are stopped
by x:

Back−1(ϕ, x) = {y ∈ ϕ, h(ϕ, y) = x} .

Let ϕ ∈ C ′′ and x = (ξ, u) ∈ ϕ. Recall that the impact point hg(ϕ, y) of a marked point
y ∈ Back−1(ϕ, x) belongs to [ξ; hg(ϕ, x)]. Since Back−1(ϕ, x) is finite, we can exhibit a positive
real number r such that

[hg(ϕ, x) − r−→u ; hg(ϕ, x)] ∩
{

hg(ϕ, y), y ∈ Back−1(ϕ, x)
}

= ∅ . (19)

Let us set w = hg(ϕ, x) − r
2
−→u . Statement (19) ensures the existence of a positive radius r′ such

that




⋃

y=(η,v)∈ϕ

[η; hg(ϕ, y)]



 ∩ B(w, r′) = [ξ; hg(ϕ, x)] ∩ B(w, r′) (20)

on the one hand, and
2r′ ≤ ‖ξ − w‖2 − r′ (21)

on the other hand. The obtained ball B(w, r′) is actually a suitable region in which we could
create an obstacle for the growing segment x without altering any other growing segment.
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Besides, condition (21) ensures that any marked point added in B(w, r′) could not be stopped
by the growing segment x.

Let us consider the set Ax of triplets (x0, x1, x2) ∈ (B(w, r′) × [0; 1])3 such that:

(i) h(xi, ϕ ∪ {x0, x1, x2}) = xi+1 for i = 0, 1, 2 (where the index i + 1 is taken modulo 3);

(ii) The triangle defined by the vertices hg(xi, ϕ ∪ {x0, x1, x2}), i = 0, 1, 2, is included in
B(w, r′) and contains the center w.

It is not difficult too see that Ax contains a non-empty open set Ax ⊂ (B(w, r
′

) × [0; 1])3.
When a triplet (x0, x1, x2) ∈ Ax is added to ϕ, then by (21), (i) and (ii), the growing segment
x hits the loop produced by x0, x1, x2:

For(x, ϕ ∪ {x0, x1, x2}) = {x, x0, x1, x2},

∀0 ≤ i ≤ 2, For(xi, ϕ ∪ {x0, x1, x2}) = {x0, x1, x2}.

Then the first two items of (LA) are checked. Morever, condition (20) in conjunction with
(i) and (ii) imply that no growing segment except x is changing by the adding marked points
{x0, x1, x2}, the third item of (LA) is also checked and:

Back(x, ϕ ∪ {x0, x1, x2}) = Back(x, ϕ) .

This achieves the proof of Proposition 5.1. �

Proof:[of Lemma 5.1.] Using classical arguments, it is sufficient to prove that:

P (#{x = (ξ, ̟) ∈ X ; [ξ; hg(X, x)] ∩ B(0, 1) 6= ∅} < +∞) = 1 .

We will show that:

E = E (#{x = (ξ, u) ∈ X ; [ξ; hg(X, x)] ∩ B(0, 1) 6= ∅}) < +∞ .

Let us apply the Campbell-Mecke formula:

E = zπ + z

∫

(B(0,1)×[0;1])c
E

(

1I{[x;,hg(X∪{x},x)]∩B(0,1)6=∅}

)

λ2(dξ)Q(du),

≤ zπ + 2πz

∫ 1

0

(∫ +∞

1
P (‖ξ − hg(X ∪ {x}, x)‖ ≥ r − 1) rdr

)

Q(du),

≤ zπ + 2πz

∫ 1

0

(∫ +∞

1
P (‖hg (X ∪ {(0, u)}, (0, u)) ‖ ≥ r − 1) rdr

)

Q(du).

By isotropy, for all u ∈ [0, 1] and for all r > 0,

P (‖hg (X ∪ {(0, u)}, (0, u)) ‖ ≥ r) = P (‖hg(X ∪ {(0, 0)}, (0, 0))‖ ≥ r) ,

where (0, 0) denotes the marked vertex located at the origin with direction (1, 0). Schreiber
& Soja have proved (Theorem 4 in [12]) that there exist c, c′ > 0 such that the probability
P (‖hg(X ∪ {(0, 0)}, (0, 0))‖ ≥ r) is smaller than ce−c′r for all r ≥ 0. This exponential decay
ensures that E is finite. �
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5.1.2 Shield assumption

In order to prove (SA), we need to construct building blocks called shield hexagons which
together will formed uncrossable walls. To do it, let us start with introducing an hexagonal
tessellation.

Let us consider the triangular lattice whose vertex set is

Π =
{

a
−→
i + b

−→
j : a, b ∈ Z

}

,

where
−→
i = (

√
3. cos(π

6 ),
√

3. sin(π
6 )) and

−→
j = (0,

√
3). The usual graph distance on Π is denoted

by dΠ. We also denote resp. by Bn(z) and Sn(z) the (closed) ball and sphere with center z and
radius n w.r.t. dΠ.

For any z ∈ Π, let Hex(z) be the Voronoi cell of z w.r.t. the vertex set Π:

Hex(z) =
{

y ∈ R
2, ‖y − z‖2 ≤ inf

w∈Π\{z}
‖y − w‖2

}

.

The set Hex(z) is a regular hexagon centred at z. For any integer n > 0, let us introduce the
hexagonal complex of size n centred in z as

Hexn(z) =
⋃

y∈Bn(z)

Hex(y) .

Given ξ ∈ R
2, we also set Hexn(ξ) = Hexn(0) + ξ. Finally, for any integer n > 0, we define the

hexagonal ring Cn(ξ) by Cn(ξ) = Hexn(ξ) \ Hexn−1(ξ) (with Hex0(·) = ∅).

Let us now specify the regions on which depend the growing segments. Let x = (ξ, u) ∈
R

2 × [0; 1] and r > 0. Here, the crucial point is to remark that the indicator function

1I{‖ξ−hg(X∪{x},x)‖≤r} is SB(ξ+r−→u ,r)-measurable. (22)

See Figure 7. Let ϕ ∈ C ′ and Λ be an open bounded region in R
2. For each marked point

x = (ξ, u) ∈ ϕΛ, we set

r(x, Λ) = sup{r ≥ 0, B(ξ + r−→u , r) ⊂ Λ} .

Hence, for all r ≤ r(x, Λ), it is possible to know when we observe the configuration ϕ only
through the window Λ if ‖ξ − hg(ϕ, x)‖ is smaller than r or not. Henceforth, we define the
decision set of the growing segment x through Λ as

DΛ(x) = B(ξ + r(x, Λ)−→u , r(x, Λ)) .

So, for a given marked point x = (ξ, u) ∈ ϕΛ, two situations may occur. If the stopping
vertex of x in ϕ belongs to the decision set DΛ(x) then the whole segment [ξ, hg(ϕ, x)] is observed
knowing ϕΛ. In this case, we set fΛ(ϕ, x) = hg(ϕ, x). Otherwise, we can only assert that the
line-segment x will be longer than r(x, Λ). In that case, fΛ(ϕ, x) = ξ + r(x, Λ)−→u . In both
situations,

[ξ; fΛ(ϕ, x)] ⊂ [ξ; hg(ϕ, x)] .

The previous considerations lead to the next result:
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x y1

y2

Λ

DΛ(x)

Figure 7: The set Λ is a regular hexagon. The decision set DΛ(x) is delimited by a red circle. It
contains two marked points y1, y2 ∈ ϕ which could stop the growing segment x before ξ+r(x, Λ)u.
To check it, it is enough to observe the configuration ϕ inside the blue dashed circles which are
themselves included in DΛ(x).

Lemma 5.2 With the above notations, the random set

GΛ(ϕ) :=
⋃

x∈ϕΛ

[ξ; fΛ(ϕ, x)]

is SΛ-measurable.

Proof: Let x = (ξ, u) ∈ ϕΛ. By construction, the random segment [ξ; fΛ(ϕ, x)] contains all the
information available on the segment x = (ξ, u) when we only observe ϕ through the decision set
DΛ(x) = B(ξ + r(x, Λ)−→u , r(x, Λ)): either it is still alive at ξ + r(x, Λ)−→u or it has been stopped
before. By definition of r(x, Λ), [ξ; fΛ(ϕ, x)] is SΛ-measurable. �

We can now introduce the central notion of shield hexagons.The hexagon Hex(ξ) is ǫ-shield
(for ϕ) whenever the set GHex(ξ)(ϕ) produces a barrier in the strip Hex(ξ) \ (ξ + ǫHex(0)) dis-
connecting the inside part ξ + ǫHex(0) from the outside part Hex(ξ)c.

Definition 5.1 Let ϕ ∈ C
′

, ǫ ∈ (0, 1) and ξ ∈ R
2. The hexagon Hex(ξ) is said ǫ-shield for ϕ if

for all a, b ∈ R
2 such that a /∈ Hex(ξ) and b ∈ ξ + ǫHex(0), we have

(a; b) ∩ GHex(ξ)(ϕ) 6= ∅ .

Moreover, for any integer n > 0 and {zi}1≤i≤n ⊂ Π, the collection {Hex(zi)}1≤i≤n is said ǫ-shield
for ϕ if for each index i, Hex(zi) is ǫ-shield for ϕ.

It is not difficult to be convinced (using many small segments, all the smaller as ǫ → 1) that
this event occurs with positive probability:

∀ǫ ∈ (0; 1), pǫ = P [Hex(0) is ǫ-shield] > 0 . (23)

The notion of decision sets DΛ(·)– and also GΛ(·) –have been introduced to use the inde-
pendence property of the Poisson point process X. Indeed, by Lemma 5.2, for any vertices
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z 6= z
′ ∈ Π, the hexagons Hex(z) and Hex(z′) are independently ǫ-shield.

The next step consists in using ǫ-shield hexagons as building blocks to create obstacles.
Precisely:

Definition 5.2 Let m ∈ N
∗ be an integer and ϕ ∈ C

′

a marked configuration. Any η ∈ R
2 is

said m-shielded for ϕ if:

(♣) For all x = (ξ, u) ∈ ϕHex2m(η)c , [ξ; hg(ϕ, x)] ∩ Hexm(η) = ∅;

(♠) For all x ∈ ϕHexm(η), hg(ϕ, x) ∈ Hex2m(η).

If η is m-shielded for ϕ then conditions (♣) and (♠) roughly asserts that it is impossible for
a growing segment to cross Hex2m(η) \ Hexm(η) respectively from the outside part Hex2m(η)c

and from the inside part Hexm(η).
In the sequel, we will establish the existence of an event Em ∈ SHex2m(0) such that, on Em,

0 is a.s. m-shielded (Proposition 5.2). Actually, it will be required to get the event Em that
Hex2m(0) \ Hexm(0) contains many ǫ-shield hexagons. In a second time, we will prove that the
probability of Em tends to 1 as m → ∞ (Proposition 5.3).

Let us introduce some notations needed to define the event Em. Let η ∈ ∂Hexm(0) where
∂Λ denotes the topological boundary of Λ ⊂ R

2. For any v ∈ [0; 1], we define the (semi-infinite)
ray starting from η in the direction −→v = (cos(2πv), sin(2πv)) by l(η, −→v ) = {η + t−→v , t ≥ 0}.
Thus, we denote by L m the set of rays l(η, −→v ) coming from ∂Hexm(0) which do not overlap
the topological interior of Hexm(0):

L
m = {l(η, −→v ), l(η, −→v ) ∩ Int(Hexm(0)) = ∅ and (η, v) ∈ ∂Hexm(0) × [0; 1]} .

For each ray l ∈ L m, let us consider the set of hexagons included in Hex2m(0) \ Hexm(0) and
crossed by l:

Cross(l) = {Hex(z), m + 1 ≤ dΠ(0, z) ≤ 2m and l ∩ Hex(z) 6= ∅} .

This set can be partitioned into different floors Crossi(l), for m + 1 ≤ i ≤ 2m, where Crossi(l)
denotes the set of hexagons of Cross(l) included in Ci(0). We can observe that, for each l ∈ L m,
there exists m + 1 ≤ i(l) ≤ 2m such that for all i(l) ≤ i ≤ 2m, Crossi(l) contains at most three
hexagons.
Thus, the set Cross(l) is said ǫ-uncrossable for ϕ if we can find two consecutive floors Crossi(l)
and Crossi+1(l), for some index i(l) ≤ i ≤ 2m − 1, which are both ǫ-shield for ϕ. We can then
define the event Em as:

Em(ǫ) =
⋂

l∈L m

{Cross(l) is ǫ-uncrossable for X} (24)

which is SHex2m(0)-measurable by construction.

Proposition 5.2 There exists ǫ ∈ (0, 1) (close to 1) such that, a.s. on the event Em(ǫ), 0 is
m-shielded.
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Proof: Assume that the event Em(ǫ) is satisfied. Then, to prove that 0 is m-shielded, i.e. to
prove (♣) and (♠), it is enough to state that any ray l ∈ L m crosses the inside part z + ǫHex(0)
of an ǫ-shield hexagon Hex(z).

Let us consider a ray l ∈ L m and a vertex z ∈ B2m(0)\Bi(l)−1(0). Let us define dz,l as
follows:

dz,l = sup
x∈l∩Hex(z)

d(x, ∂Hex(z))

and dz,l = 0 if l ∩ Hex(z) is empty (where the above distance d is euclidean). Thus, we set

γ = inf
l∈L m

sup{dz,l , z ∈ Bn(0)\Bi(l)−1(0) and Hex(z) is ǫ-shield} .

On the event Em(ǫ), any ray l crosses two consecutive ǫ-shield floors. Hence, the hexagonal
construction ensures that the above infimum γ is positive (see Figure 8). So, ǫ = 1 − γ/2 is
suitable. �
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z

z′

l

∂Hexm(0)

∂Hex2m(0)

Figure 8: Here is a ray l ∈ L m (in red) starting at ∂Hexm(0) and crossing two consecutive
ǫ-shield floors, say Crossi(l) and Crossi+1(l). Each hexagon Hex(z) belonging to these two floors
has its inside part, i.e. z + ǫHex(0), colored in blue. As this picture suggests, when ǫ is close to
1, it becomes impossible for the ray l to avoid the inside parts of hexagons of two consecutive
floors.

In the sequel, we merely write Em instead of Em(ǫ) where ǫ is given by Proposition 5.2. Its
probability tends to 1 with m;

Proposition 5.3 The probability of the event Em tends to 1 as m tends to +∞.

Proof: First, let us reduce the infinite intersection defining the event Em in (24) to a finite one.
Let z ∈ Sm+1(0) and z′ ∈ S2m(0). Let us consider the set Cross(z, z′) made up of hexagons
Hex(z′′), z′′ ∈ Π, which are crossed by a ray l ∈ L m starting at some η ∈ ∂Hex(z) and exiting
Hex2m(0) through Hex(z′). As previously, we divide the set Cross(z, z′) into different floors
Crossi(z, z′), for m + 1 ≤ i ≤ 2m, where Crossi(z, z′) denotes the set of hexagons of Cross(z, z′)
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included in Ci(0).
There exists m + 1 ≤ i(z, z′) ≤ 2m such that for all i(z, z′) ≤ i ≤ 2m, Crossi(z, z′) contains at
most three hexagons.Thus, Cross(z, z′) is said ǫ-uncrossable for X if we can find two consecutive
floors Crossi(z, z′) and Crossi+1(z, z′), for some index i(l) ≤ i ≤ 2m − 1, which are both ǫ-shield
for X. Hence,

⋂

z∈Sm+1(0),z′∈S2m(0)

{

Cross(z, z′) is ǫ-uncrossable for X
} ⊂ Em . (25)

Since Sm+1(0) × S2m(0) contains 36(m + 1)(2m) vertices, the expected result follows from the
inclusion (25) and the limit: for m sufficiently large, for all z ∈ Sm+1(0) and z′ ∈ S2m(0),

P
[

Cross(z, z′) is not ǫ-uncrossable for X
] ≤ (1 − p6

ǫ)
m
10 , (26)

where pǫ = P[Hex(0) is ǫ-shield].
We obtain

{Cross(z, z
′

) is not ǫ − uncrossable for X} ⊂
2m−1

⋂

k=i(z,z′)

Uk

where Uk = {Crossk(z, z′) and Crossk+1(z, z′) are ǫ − shield for X}c.
To obtain an independence property under the Poisson point process law, we need to consider
disjoint subsets of hexagons:

Tm =

⌊
2m−1−i(z,z′)

2
⌋

⋂

k=0

Ui(z,z′)+2k.

The events (U2k)k are mutually independent and

{Cross(z, z
′

) is not ǫ − uncrossable for X} ⊂ Tm.

We have introduced in (23) the probability pǫ = P [Hex(0) is ǫ − shield for X]. Then, for
i(z, z′) ≤ k ≤ 2m, we have P[Uk] ≤ 1 − p6

ǫ . It is relatively easy to check that, for m suffi-

ciently large, for all (z, z′) ∈ Sm+1(0) × S2m(0), we have: ⌊2m−1−i(z,z′)
2 ⌋ + 1 ≥ m

10 . It implies the
existence of a bound for P[Tm]:

P [Tm] ≤ (1 − p6
ǫ)

m
10 .

Then,

P

[

Cross(z, z
′

) is not ǫ − shield for X

]

≤ (1 − p6
ǫ)

m
10 .

�

From now on, we claim that:

Proposition 5.4 The line-segment model satisfies (SA) for α = 32 and Em = Em ∩ E2m.

Proof: We have to check that the line-segment model satisfies the three items of (SA). By
definition, the event Em = Em ∩ E2m ∈ SHex4m(0). Item (i) follows from the fact that any

η ∈ Hex4m(0) satisfies ‖η‖ ≤ 4m
√

3 + 1 ≤ 8m. Item (ii) is given by Proposition 5.3. So, it only
remains to check Item (iii).
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For this purpose, let us consider three disjoint subsets V, A1, A2 of Z
2 such that ∂A1 and

∂A2 are included in V . Let also for i ∈ {1, 2},

Ai =

(

Ai ⊕ [−1

2
,
1

2
]2

)

\ (V ⊕ [−α, α]2) .

Thus, let m be a positive integer and ϕ, ϕ′ ∈ C ′ such that τ−mz(ϕ) ∈ Em, for all z ∈ V . We
have to check that

∀x ∈ ϕmA1 , h(ϕ, x) = h(ϕ̄, x) , (27)

where ϕ̄ denotes the configuration ϕmAc
2

∪ ϕ′
mA2

. The reason why (27) holds can be roughly
expressed as follows. The replacement of the configuration ϕ with ϕ̄, which actually concerns
only the set mA2, may generate some modifications in the graph on the set mAc

2 but not beyond
the obstacle mV . Then, the graph on mA1 is preserved.

Let us start with splitting the set mAc
2 into three disjoint subsets: mA1, Shield := mV ⊕

Hex2m(0) and Bound :=
(

mV ⊕ [−αm; αm]2
) \ Shield. Since mV ⊕ Hex4m(0) is included in

Bound and Em is SHex4m(0)-measurable then

∀z ∈ V, τ−mz(ϕ̄) ∈ Em . (28)

In other words, the shield structure of vertices mz, z ∈ V , is preserved when passing from ϕ to
ϕ̄. Hence, any x = (ξ, ·) ∈ ϕShield belongs to a set Hex2m(mz) where mz ∈ mV is 2m-shielded
(thanks to E2m). Property (♠) of Definition 5.2 then ensures that hg(ϕ, x) is in mz ⊕ Hex4m(0),
i.e. ‖ξ − hg(ϕ, x)‖ ≤ diam Hex4m(0) ≤ 16m. To sum up, for all x ∈ ϕShield,

B(hg(ϕ, x), ‖ξ − hg(ϕ, x)‖) ⊂ mV ⊕ [−32m; 32m]2 .

The above inclusion justifies the choice α = 32. It also ensures that the replacement of ϕ with
ϕ′ outside of mV ⊕ [−32m; 32m]2 does not impact the geometric edges starting from vertices of
ϕShield. So,

∀x ∈ ϕShield, h(ϕ̄, x) = h(ϕ, x) . (29)

It then remains to show that (27) is a consequence of (28) and (29). When passing from ϕ
to ϕ̄, the line-segment of a marked point x ∈ ϕmAc

2
can be modified in two different ways:

• Either the line-segment of x is shorter for ϕ̄ than for ϕ, i.e. x admits a new outgoing
neighbor y.

• Or the line-segment of x is longer for ϕ̄ than for ϕ, i.e. its original stopping line-segment
has been stopped before by some marked point y.

In both cases, we say that the marked point y modifies x. It belongs to ϕ′
mA2

, or to ϕmAc
2

but
with the condition that h(ϕ, y) 6= h(ϕ̄, y). Hence, from any x0 ∈ ϕ′

mA2
, may start a sequence of

marked points (xi)0≤i≤n such that xi modifies xi+1. Now, (28) and (29) prevents such sequence
to cross the set Shield = mV ⊕Hex2m(0). By contradiction, let us assume that xn ∈ mA1. Since
(29) prevents the xi’s to belong to Shield, it necessarily exists an index 0 ≤ i0 < n such that the
line-segment of xi0 crosses mV ⊕ Hexm(0). But this is forbidden by (28): each mz, for z ∈ V ,
is m-shielded (thanks to Em). So Property (♣) of Definition 5.2 applies. �
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5.2 Navigation model

Let 0 < ǫ < π
2 . Given a configuration ϕ ∈ C

′

, let us recall that the stopping vertex of
x = (ξ, u) ∈ ϕ is the closest element of ϕgerms ∩ C(x) to ξ, where

C(x) = {(r cos(α), r sin(α)); r > 0 and |α − 2πu| < ǫ} .

If (η, v) = h(ϕ, x) then the impact point of x in the Navigation model is hg(ϕ, x) = η.

5.2.1 Loop assumption

The Navigation model satisfies (LA).

Proposition 5.5 Each configuration of C
′

is 1 − looping.

Proof: Let ϕ ∈ C
′

and x = (ξ, u) ∈ ϕ. Let us introduce the stopped cone starting from x:

Cstop(x) = {(r cos(α), r sin(α)); 0 < r < ‖ξ − hg(ϕ, x)‖ and |α − 2πu| < ǫ} .

Hence, Cstop(x)∩ϕgerms = ∅. Let dx > 0 small enough so that ϕB(ξ,dx) only contains the point ξ.
Thus, let us consider an open ball Ax ⊂ R

2 × [0; 1] such that any marked point y = (η, v) ∈ Ax

satisfies η ∈ B(ξ, dx) ∩ Cstop(x) and ξ ∈ C(y). Thenceforth, we get h(ϕ ∪ {y}, x) = y and
h(ϕ ∪ {y}, y) = x (see Figure 9) which respectively imply

For(x, ϕ ∪ {y}) = {x, y} and Back(x, ϕ) ∪ {y} ⊂ Back(x, ϕ ∪ {y}) .

Let us justify this latter inclusion. It is possible that η belongs to the stopped cone Cstop(z)
(w.r.t. ϕ) of a given marked point z ∈ ϕ, which forces h(ϕ ∪ {y}, z) = y. Since y belongs to
Back(x, ϕ ∪ {y}), the same holds for z. If z was already in the backward of x (for ϕ), it is still
in (but for ϕ ∪ {y}). See Figure 9. �

x

h(ϕ, x)

z

y

Figure 9: The adding of the marked point y breaks the edges from x to h(ϕ, x), and from z to
x. However, for the configuration ϕ ∪ {y}, z is still in the backward of x.
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5.2.2 Shield assumption

Let us split the square [−m; m]2 into κ = (2⌊m1/2⌋)2 congruent subsquares Qm
1 , . . . , Qm

κ (⌊·⌋
denotes the integer part). Each of these subsquares has an area equal to

(

2m

2⌊m1/2⌋

)2

,

i.e. of order m. Thus, we define the event Em as follows:

Em =
⋂

1≤i≤κ

{

#XQm
i

≥ 1
}

.

Proposition 5.6 For α = 1, the Navigation model satisfies (SA) w.r.t. the family of events
(Em)m≥1.

x = (ξ, u)

Figure 10: Black points are vertices mz for z ∈ V . The event Em realized on each z ⊕ [−m; m]2

provides a shield between mA1 and mA2. Indeed, the cone Cstop(x) cannot overlap mA2 without
containing a subsquare z + Qm

i .

Proof: Let us first remark that the event Em is S[−m,m]2-measurable and its probability tends
to 1. So the first two items of (SA) are satisfied with α = 1.

Let us focus on Item (iii). Hence, let us consider V, A1, A2 ⊂ Z
2 such that the topological

conditions of (SA) occur. Let us set

Ai =

(

Ai ⊕ [−1

2
,

1

2
]2

)

\ (V ⊕ [−α, α]2)

for i ∈ {1, 2}. Let ϕ ∈ C
′

satisfying ϕ − mz ∈ Em, for any vertex z ∈ V . Let x = (ξ, u) ∈ ϕ
be a marked point whose first coordinate belongs to mAi. If the cone C(x) does not overlap
mAj, with j = 3 − i, then the outgoing vertex h(ϕ, x) does not depend on possible changes on
ϕmAj

. From now on, let us assume that C(x) ∩ mAj is not empty (see Figure 10). It is then
sufficient to remark that for any m ≥ m0(ǫ), the stopped cone Cstop(x) does not overlap mAj.
Otherwise, for m large enough, it would contain at least one subsquare z + Qm

i for some z ∈ V
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and 1 ≤ i ≤ κ and so at least a marked point (since ϕ− mz ∈ Em) which is forbidden. Hence, as
previously, the outgoing vertex h(ϕ, x) remains unchanged whatever the configuration ϕ inside
mAj. �
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