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A B S T R A C T

Osteoporosis is a prevalent bone disease that causes fractures in fragile bones, lead-
ing to a decline in daily living activities. Dual-energy X-ray absorptiometry (DXA)
and quantitative computed tomography (QCT) are highly accurate for diagnosing os-
teoporosis; however, these modalities require special equipment and scan protocols. To
frequently monitor bone health, low-cost, low-dose, and ubiquitously available diag-
nostic methods are highly anticipated. In this study, we aim to perform bone mineral
density (BMD) estimation from a plain X-ray image for opportunistic screening, which
is potentially useful for early diagnosis. Existing methods have used multi-stage ap-
proaches consisting of extraction of the region of interest and simple regression to es-
timate BMD, which require a large amount of training data. Therefore, we propose
an efficient method that learns decomposition into projections of bone-segmented QCT
for BMD estimation under limited datasets. The proposed method achieved high ac-
curacy in BMD estimation, where Pearson correlation coefficients of 0.880 and 0.920
were observed for DXA-measured BMD and QCT-measured BMD estimation tasks,
respectively, and the root mean square of the coefficient of variation values were 3.27 to
3.79% for four measurements with different poses. Furthermore, we conducted exten-
sive validation experiments, including multi-pose, uncalibrated-CT, and compression
experiments toward actual application in routine clinical practice.

© 2024 Elsevier B. V. All rights reserved.

1. Introduction

In the last decades, a significant increase in the prevalence of
osteoporosis has been observed. It has become the most com-
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mon metabolic bone disease and is characterized by a contin-
uous loss of bone mass (Compston et al., 2019; Yang et al.,
2020; Zou et al., 2020; Noh et al., 2020; Yu and Xia, 2019). It
affects mostly the elderly population but sometimes affects chil-
dren also(Ward et al., 2020). The measurement of bone mineral
density (BMD), a parameter describing bone strength, is essen-
tial for the diagnosis, treatment, and drug development of osteo-
porosis (Löffler et al., 2020; Ward et al., 2020; Li et al., 2021;
Lorentzon, 2019; Kung et al., 2013; Iki et al., 2001). In routine
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clinical practice, dual-energy X-ray absorptiometry (DXA) (Iki
et al., 2001; Mazess et al., 1990; Blake and Fogelman, 2007;
Kröger et al., 1992; O’Malley et al., 2011; Pisani et al., 2013)
is considered the gold standard for BMD measurement. In
addition, quantitative computed tomography (QCT) (Engelke
et al., 2008; Mueller et al., 2011; Aggarwal et al., 2021; Ziem-
lewicz et al., 2015) has been explored with a view to provide
opportunistic screening. Despite the prevalence of osteoporosis
worldwide, the diagnosis rates for adults remain unacceptably
low in many regions (Snodgrass et al., 2022; Choi et al., 2012;
Papaioannou et al., 2008; McCloskey et al., 2021). Therefore,
there is a strong demand for developing more straightforward
methods of measuring BMD, providing opportunistic screening
for the early detection of osteoporosis, an asymptomatic disease
unless a fracture happens.

Recent studies have focused on the use of deep learning to
estimate BMD or diagnose osteoporosis from plain X-ray im-
ages (Hsieh et al., 2021; Yamamoto et al., 2020; Jang et al.,
2021; Ho et al., 2021; Gu et al., 2022)(Wang et al., 2023), which
are more widespread modalities than DXA and QCT. Most ex-
isting methods directly regress BMD or classify osteoporosis
from regions of interest (ROI) of X-ray images, some of which
achieved high correlations with DXA-measured BMD (Hsieh
et al., 2021; Wang et al., 2023). However, these methods re-
quired large-scale training datasets and did not provide the spa-
tial density distribution of the target bone. Furthermore, they
did not leverage information from CT. The critical requirement
of a large-scale training database would limit the application of
these methods when the target bone of BMD measurement ex-
tends to other anatomical areas (e.g., different positions of the
vertebrae, pelvis, sacrum, etc.).

Different from end-to-end regression, Whitmarsh et al.
(2011) proposed a method of estimating 3D distributions of
QCT-measured BMD from DXA by reconstructing 3D shapes
and BMD distributions with statistical shape modeling, improv-
ing the diagnosis of osteoporosis and fracture risk assessment.
From the viewpoint of X-ray image processing, bone suppres-
sion is one of the main topics (Suzuki et al., 2006; Yang et al.,
2017; Liu et al., 2019; Eslami et al., 2020), enhancing the visi-
bility of other soft tissues to increase the diagnosis rate of soft-
tissue diseases by machines and clinicians. These studies used
convolutional neural networks to suppress bones (Suzuki et al.,
2006; Yang et al., 2017) or decompose into target soft tissues
directly (Eslami et al., 2020), some of which utilized genera-
tive adversarial networks (GANs) (Isola et al., 2017) for their
realistic synthesis abilities. Because those studies focused on
the diagnosis of soft tissues, they did not address the quanti-
tative evaluation of bone decomposition for BMD estimation.
While those studies inspired this one, we propose to learn X-
ray image decomposition into projections of bone-segmented
QCT for BMD estimation, targeting both DXA-measured BMD
(hereafter “DXA-BMD”) and QCT-measured BMD (hereafter
“QCT-BMD”).

Unlike existing BMD estimation methods, we virtually and
automatically mimicked the decomposition procedure (similar
to the DXA scanning) and the measurement procedure, which is
physically and manually conducted in DXA-based BMD mea-
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Fig. 1. Relationship between the intensities of the proximal-femur region
of the DRR and BMD values in datasets of 305 patients. (Left) scatter plots
showing the correlation of the average intensity of ground-truth (GT) DRR
and predicted DRR with DXA-BMD and QCT-BMD evaluated by Pearson
correlation coefficient. (Right) proximal femur ROIs of five representative
cases. ROIs #1 and #2 have similar X-ray intensities but significantly dif-
ferent BMDs, whereas ROIs #3 and #4 have similar BMDs but significantly
different X-ray intensities. The predicted DRRs correctly recovered the in-
tensity of QCT DRR, regardless of the intensity of the input X-ray image.

surement, by fully utilizing rich information from QCT in its
training phase by predicting bone-segmented digitally recon-
structed radiography (DRR), which are projections from seg-
mented QCT. Using GAN, we trained a model to decompose
an X-ray image into the density distribution of a partial bone
defined clinically for BMD measurement. Despite the difficulty
in GAN training, recent studies (Zhao et al., 2020; Zhang et al.,
2020; Wu et al., 2021; Tseng et al., 2021) were able to stabilize
the training and reduce the demand for a large-scale database.
For similar purposes, we introduced the hierarchical learning
(HL) method so that the small-area regions of the target bone
required for BMD estimation were decomposed accurately and
stably even without a large training dataset. Fig. 1 illustrates
the relationship between X-ray images and DXA-BMDs in our
patient dataset, demonstrating the challenge in the task of BMD
prediction based on X-ray images, which showed no correlation
with BMD. The proposed method, which disentangled soft tis-
sues and bone from an X-ray image, accurately predicted the
target bone, showing a high correlation with BMD. Further-
more, we showed improvement by regressing BMD from the
learned representation generated by the encoder of the decom-
position model, demonstrating the effectiveness of the proposed
decomposition learning.

We summarize our contributions as follows:

• Proposal of a BMD estimation method through X-ray im-
age decomposition.

• Proposal of a hierarchical learning framework for decom-
position into a small target.

• Proposal of a representation learning method for BMD es-
timation using decomposition learning.

• Extensive validation with real clinical datasets involving
variations in patient poses, image compression ratios, and
CT calibration.



Yi Gu et al. /Medical Image Analysis (2024) 3

Bone DRR Proximal femur
(PF) DRR

BMD
Stage #3

Stage #1 Stage #2
Hierarchical Learning (HL)

X-ray Image

Encoder (ME) Decoder (MD)

Regression Head (MR)

Representation

R
ep

re
se

nt
at

io
n

Without training Stage #1 Stage #2
Stage #3

DXA-BMD QCT-BMD

M
od

el
 A

tte
nt

io
n

Regression Learning

Decomposition Learning (BMD-GAN)

BMD

Averaging
intensity

Fig. 2. (Left) Overview of the proposed method consisting of three training stages, where the model first learns X-ray image representation by decomposition
training in stage- one and stage- two with HL applied (Gu et al., 2022) and then learns mapping to BMD by regressing from the learned representation.
(Right) The visualized procedure of shaping representation and model attention shifting with learning stages. The representations were visualized after
being compressed to one-channel images using principal component analysis; the model attention maps were visualized using FullGrad (Srinivas and
Fleuret, 2019)

This paper is built upon our conference paper (Gu et al.,
2022) with extensions into several aspects. From the method-
ological aspect, we explicitly targeted QCT-BMD in addition
to DXA-BMD. We conducted an ablation study on thresholds
for obtaining binarized masks when calculating BMDs from
the predicted DRR. We validated the effectiveness of the pro-
posed decomposition learning by regressing BMD from the
learned representation with a transformer-based regression net-
work. For the dataset aspect, we included more patients who
had undergone X-ray scanning and QCT scanning and had
taken BMD measurements, resulting in 305 patients (increased
from 200 patients) in Gu et al. (2022). We included more X-
ray images imaged with supine, abduction, and adduction poses
in addition to the standing pose. For the experimental aspect,
we evaluated the performance of the proposed method using
the extended dataset and conducted additional validation for ro-
bustness against pose variation, image compression, and uncal-
ibrated CT. We also investigated error sources by identifying
outliers.

2. Related Work

2.1. Grading osteoporosis from X-ray images

Jang et al. (2021) used a VGG16 model with integrated Non-
local Neural Networks to classify osteoporosis from a manually
cropped X-ray image. Hsieh et al. (2021) and Ho et al. (2021)
developed BMD estimation frameworks using localization and
regression models, requiring large-scale databases to achieve
high accuracy. Wang et al. (2023) proposed a Transformer-
based model for BMD estimation from chest X-ray images with
multiple ROIs, simultaneously capturing local and global in-
formation to improve accuracy. Although conventional meth-
ods strove to localize the target regions from an X-ray image
(which lies in 2D space), they did not address the entanglement
of bone and soft tissues (which align in 3D space). We argue
the unsolved tissue entanglement, proposing the utilization of
CT information during training in order to allow the estima-
tion of the spatial density of bone from a plain X-ray image.

Yamamoto et al. (2020) proposed an ensemble model combin-
ing multiple convolutional neural networks, trying to classify
osteoporosis with patients’ clinical covariates that are fused in
the last layer of the model. Though most clinical covariates are
easy to obtain in routine clinical practice and reasonably im-
prove prediction accuracy, we do not use patient characteristics
in our method for better clarification of the improvement.

2.2. Representation learning

Representation learning aims to learn efficient representa-
tions of data whose information is easier to be extracted for
downstream tasks, improving effective learning (Bengio et al.,
2013). Many representation learning methods have been pro-
posed for solving tasks in the fields of natural language pro-
cessing and general image processing. (Devlin et al., 2019;
Noroozi et al., 2017; Chen and He, 2021; Donahue and Si-
monyan, 2019). However, those methods usually rely on large-
scale pretraining (which is hard to achieve using medical im-
ages) and they did not utilize the specialty such as penetrability
in medical images. Zhou et al. (2021) proposed a representa-
tion method for brain tumor segmentation with missing modes
of magnetic resonance images, utilizing the similarity between
multi-modal MR images. Liu et al. (2021) proposed a multi-
view missing data completion framework to learn multi-modal
representation for diagnosing Alzheimer’s disease. In addition
to providing the spatial density of bone for deriving BMD, our
decomposition learning can serve as representation learning for
grading osteoporosis from a plain X-ray image.

2.3. Image-to-image translation

An image-to-image translation (I2I) model tries to map be-
tween source and target image domains. Typically, GANs were
often used to train the I2I model (Isola et al., 2017; Zhu et al.,
2017; Wang et al., 2018). We regard the decomposition task as
an I2I task that aims to translate a plain X-ray image into the de-
composed DRR. Depending on the availability of data, the I2I
model can be trained in a paired (Isola et al., 2017) and unpaired
(Zhu et al., 2017) manner while the paired-trained model usu-
ally learns faster and better. Our method appreciated the paired



4 Yi Gu et al. /Medical Image Analysis (2024)

Segmentation of proximal
femur (PF)  region

Registrated QCT and
PF region segmentation

X-ray image

Bone (Stage #1) PF (Stage #2)

Paried and registrated

DRR

ProjectionQCT and bone segmentation

2D-3D Registration

CT scan

X-ray scan

Patient

Fig. 3. Construction of the training dataset consisting of the intensity calibration of CT (Uemura et al., 2021), bone segmentation (Hiasa et al., 2020), 2D-3D
registration to the X-ray image (Otake et al., 2012) and DRR generation by projecting QCT.

training by utilizing 2D-3D registration (Otake et al., 2012) to
align X-ray images and decomposed DRRs, which are gener-
ated from 3D CT images.

3. Method

Fig. 2 shows an overview of the proposed method that uses
decomposition-based representation learning for BMD estima-
tion. In decomposition training with the proposed BMD-GAN,
an image synthesis model G = {ME ,MD}, which consists of
an encoder backbone ME and a decoder MD, decomposes the
X-ray image into the DRR of the proximal femur region [here-
after “proximal femur region DRR (PF-DRR)”], whose average
intensity provides the predicted BMD. We adopted HRFormer
(YUAN et al., 2021) as the encoder backbone. Our BMD-
GAN applies a hierarchical framework during the training in
which the synthesis model is first trained to extract the pelvis
and femur bones in stage-one and then the proximal femur
region in stage-two. During regression (stage- three) train-
ing, the encoder backbone ME is inherited and connected to
a Transformer-based regression head MR to become a regres-
sion network R = {ME ,MR} for end-to-end training of regress-
ing BMD. The regression head tries to regress BMD from a
learned representation instead of the decomposed PF-DRR for
efficient forwarding. Note that our method is network-agnostic.
Other backbone models and regression heads can be adopted
to achieve decomposition learning and regression learning, re-
spectively.

3.1. Dataset construction

Fig. 3 illustrates the overall dataset construction procedure.
In this study, we constructed two datasets for training different
stages: 1) dataset A, which is used for stage-one training con-
taining X-ray images; QCT; the 3D segmentation masks of the
pelvis and femur, which were automatically obtained by apply-
ing the Bayesian U-net (Hiasa et al., 2020); and GT bone DRR,
which were created from QCT using 2D-3D registration (Otake

et al., 2012) followed by projection with the 3D mask, and 2)
dataset B, which is used for other stages’ training containing
X-ray images; QCT; the 3D mask of the proximal femur re-
gion, which is obtained via manually labeled bony landmarks
defined in (Uemura et al., 2022) by an expert clinician; and the
GT PF-DRR. The construction procedure of dataset B followed
(Uemura et al., 2022). The intensity-based 2D-3D registration
using gradient correlation similarity metrics and the CMA-ES
optimizer (Otake et al., 2012) was performed on each patient’s
X-ray image and QCT. GT DXA-BMD and GT QCT-BMD val-
ues were associated with each patient’s data in dataset B. All X-
ray images and DRRs were normalized into the 256 × 512 size
via central cropping and resizing. The aspect ratio of the orig-
inal X-ray images varied from 0.880 to 1.228 (width/height).
We first split them horizontally in half at the center. Then the
side with the target hip was reshaped to a predefined image size
(256 × 512 in this experiment) by aligning the center of the im-
age and cropping the region outside the image after resizing to
fit the shorter edge of the width and height.

3.2. X-ray image Decomposition

The GAN with conditional discriminators was used to train
the decomposition model. We followed most settings used
in Pix2PixHD (Wang et al., 2018), including the multi-scale
discriminators and the Feature Matching loss, among others.
Instead of the ResNet Generator used in Pix2PixHD (Wang
et al., 2018) and CycleGAN (Zhu et al., 2017), we adopted
the state-of-the-art model HRFormer (YUAN et al., 2021), a
transformer-based model for segmentation, to be the backbone
of the generator G = {ME ,MD}, namely, the HRFormer Gener-
ator. Instead of using the hierarchical structure of the genera-
tor used in Pix2PixHD (Wang et al., 2018), we applied the HL
framework in which a two-stage training is used. In stage one,
the model is trained to decompose an X-ray image into pelvis
and femur bones; in stage two, the target is transferred to the
proximal femur region. During training, we used the adversar-
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Fig. 4. Tuning process of the threshold used to derive BMD from PF-
DRR in stage two. GT-BMD is linearly fitted to the average intensity of the
PF region in PF-DRR. PF-DRR is binarized by thresholding to determine
the pixel count inside the PF region for calculating the average intensity.
The line plot shows the threshold against PCC between GT-BMD and the
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threshold that maximizes PCC. The label images show the binarized results
from a representative case using the chosen thresholds.

ial loss LGAN, which is defined as

LGAN(G,D) = E(IXp,IDRR)
[
log D(IXp, IDRR)

]
+EIXp

[
log
(
1 − D(IXp,G(IXp))

)]
,

(1)

where D, IXp, and IDRR are the discriminator, X-ray im-
age, and decomposed DRR, respectively. We denote EIXp ≜
EIXp∼pdata(IXp) and E(IXp,IDRR) ≜ E(IXp,IDRR)∼pdata(IXp,IDRR). Further-
more, we used the Feature Matching loss LFM proposed in
(Wang et al., 2018), given by

LFM(G,D) = E(IXp,IDRR)

T∑
i=1

1
Ni

FM(G,D(i)), (2)

where D(i), T , and Ni denote the ith-layer feature extractor of the
discriminator D, the total number of layers, and the number of
elements in each layer, respectively. The layer feature matching
criterion FM is defined as

FM(G,D(i)) =
∥∥∥D(i)(IXp, IDRR) − D(i)(IXp,G(IXp))

∥∥∥
1. (3)

We did not use a perceptual loss because a well-pretrained per-
ceptual model is difficult to obtain using a limited-size dataset.
We instead used a simple L1 loss LL1 defined as

LL1(G) = E(IXp,IDRR)
∥∥∥IDRR −G(IXp)

∥∥∥
1. (4)

To maintain the consistency of the structure between the fake
DRR G(IXp) and the true DRR IDRR, we regularized the genera-
tor with the gradient matching constraints proposed in (Penney
et al., 1998), using the gradient correlation loss (Hiasa et al.,
2018) LGC defined as

LGC(G) = E(IXp,IDRR)GC(G). (5)

The criterion GC is defined as

GC(G) = NCC(∇xIDRR,∇xG(IXp))

+ NCC(∇yIDRR,∇yG(IXp)),
(6)

where NCC(A,B) is the normalized cross-correlation of A and
B, and ∇x and ∇y are the x and y components of the gradient
vector, respectively. We introduced hyper-parameters λL1, λGC ,
and λFM to balance the importance of the loss terms summa-
rized as

Ldec = λL1LL1(G) + λGCLGC(G)

+ λFM

∑
k=1,2,3

LFM(G,Dk), (7)

where the multi-scale discriminators D1, D2, and D3 were used
under three resolutions as in (Wang et al., 2018). Thus, the full
objective for decomposition training is defined as

min
G

(
Ldec + max

D1,D2,D3

( ∑
k=1,2,3

LGAN(G,Dk)
))
. (8)

Both stage one and stage two training use the same loss func-
tions.

Once the decomposition was completed, the average inten-
sity of the predicted PF-DRR was calculated. Note that pixels
whose intensities were equal to or greater than the threshold
t were averaged for deriving BMD. The PF-DRR-average of
all training datasets was linearly fitted to DXA-BMD and QCT-
BMD to obtain the slope and intercept, which were used to con-
vert the PF-DRR-average to the BMDs of the test dataset. The
threshold t tuning procedure with GT-PF-DRR is shown in Fig.
4, where we empirically chose values for different situations.

3.3. Regression from learned representation

For the regression head MR, we used several Transformer
blocks before the final fully-connected layer to extract BMD-
related features from a representation learned by the encoder
backbone from an X-ray image. We borrowed the architecture
of the CoAtNet (Dai et al., 2021) as our regression head for
its high performance on image classification tasks by combin-
ing convolution blocks and Transformer blocks. However, we
only used the Transformer blocks from it, which applies input-
independent relative attention. Unlike in CoAtNet whose first
Transformer block takes a representation (i.e., feature maps)
with 1

8 size of the input image, our regression head takes a
higher-resolution representation with 1

4 size learned by the en-
coder ME . The inherited encoder and the regression head form
our regression network R.

During training, a simple L1 loss was used. In addition, we
introduced a predefined sample weight into the loss to improve
unbalanced learning since BMD values are not uniformly dis-
tributed in the real world. The sample weight is calculated ac-
cording to the distance d between the sample’s BMD y and the
average BMD ŷ of the dataset. The distance is defined as

d = |y − ŷ|. (9)

For each X-ray image, its sample weight w is defined as

w = 1.5 −
d − dmin

dmax − dmin
, (10)
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Table 1. Datasets Cohort
Item Dataset A Dataset B
Number of X-ray images 525 1204
Number of patients 275 305
Female, n (%) 236 (85.8) 250 (82.0)
Mean age (sd), years 58.6 (14.3) 57.6 (14.9)
Mean BMI (sd), kg/m2 23.1 (3.8) 23.5 (4.0)
Mean DXA-BMD (sd), g/cm2 n/a 0.759 (0.151)
Median T-score (IQR) n/a -1.2 (-2.1, 0.4)
Osteoporosis w.r.t. DXA-BMD, n (%) n/a 50 (16.4)
Mean CT-BMD (sd), g/cm3 n/a 290 (57)

where the dmin and dmax are the minimum and maximum dis-
tances in the dataset. Thus, the objective of regression training
is defined as

min
R
E(IXp,y,w)w

∣∣∣y − R(IXp)
∣∣∣, (11)

where we denote E(IXp,y,w) ≜ E(IXp,y,w)∼pdata(IXp,y,w). Because we
treat the DXA-BMD and QCT-BMD estimations as indepen-
dent tasks, the sample weight for an X-ray image can be differ-
ent when regressing different BMDs.

4. Experiments and Results

We validated our method under the constraint of limited
datasets. Based on the constructed datasets (A and B), we con-
ducted two experiments for 1) evaluating the performance of
the BMD estimation of our method and 2) conducting an abla-
tion study on the proposed hierarchical learning under different
backbone models.

4.1. Dataset

The two datasets (A and B) used in the experiments are sum-
marized in Table 1. Ethical approval was obtained from the
Institutional Review Boards (IRBs) of the institutions partic-
ipating in this study (IRB approval numbers: 21115 for Os-
aka University Hospital and 2021-M-11 for the Nara Institute
of Science and Technology). The constructed dataset A con-
tained 275 cases. Each case had an X-ray image, and its paired
bone DRRs of the left and right sides were split by the verti-
cal middle line, resulting in 525 image pairs after excluding the
images with hip implants. The constructed dataset B contained
305 cases obtained retrospectively from 305 patients (250 fe-
males) who underwent primary total hip arthroplasty between
May 2011 and December 2015. Each case has three or four X-
ray images with different poses and their paired PF-DRR of one
side with their ground-truth DXA-BMD and QCT-BMD. Fig.
5 visualized the T-SNE of the collected multi-pose X-ray im-
ages of dataset B, which includes poses of standing, adduction,
abduction, and supine, suggesting high potential for conduct-
ing multiple clinical validations. The calibration phantom (B-
MAS200, Kyoto Kagaku, Kyoto, Japan) (Uemura et al., 2021),
which is used to convert radiodensity [in Hounsfield units] to
the ground truth QCT-BMD (in mg/cm3), contains known den-
sities of hydroxyapatite Ca10(PO4)6(OH)2. All CT images used
in this study were obtained using the OptimaCT660 scanner
(GE Healthcare Japan, Tokyo, Japan), and all DXA images of
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Fig. 5. T-SNE visualization of X-ray images in dataset B with data col-
lected from 305 patients. Each data point represents an X-ray image. The
horizontal and vertical axes are the first and second dimensions in T-SNE
space, respectively. The X-ray images were collected with different poses
(standing, adduction, abduction, and supine), suggesting a high variability
in the dataset and a high potential for various validations.

the proximal femur were acquired for the operative side (Dis-
covery A, Hologic Japan, Tokyo, Japan) to obtain the ground
truth DXA-BMD.

4.2. BMD estimation experiment

4.2.1. Experimental settings
In this experiment, we tried to estimate DXA-BMD and

QCT-BMD as independent tasks. Dataset A was used for train-
ing stage one of the proposed method, containing 492 pairs of
X-ray images and GT bone DRR. Five-fold cross-validation
was performed on stages two and three using dataset B. We
compared our method with the conventional one proposed by
Hsieh et al. (2021), which directly regresses BMD from an
ROI of an X-ray image obtained using a localization model
that tries to find the proximal femur. When applying the con-
ventional method, we used pre-cropped ROI of the proximal
femur of X-ray images to simulate the most ideal situation.
The proposed and conventional methods were trained using the
same number of patient data to evaluate the effects of utiliz-
ing CT data in training by the proposed method. We evalu-
ated BMD estimation performance by Pearson correlation co-
efficient (PCC), intraclass correlation coefficient (ICC), mean
absolute error (MAE), and standard error of estimate (SEE).
Statistical significance was evaluated using the single-factor re-
peated measures analysis of the variance model. P-values were
used to denote statistical significance. We also evaluated the
reproducibility under the four poses (standing, supine, abduc-
tion, and adduction) using root mean square of the coefficient
of variation (RMS-CV). The results will be reported in Sec.
4.2.2. In addition to using QCT and X-ray images of four
poses, we also conducted three more experiments by 1) train-
ing with the limited-pose dataset, 2) training with uncalibrated
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decomposition method that predicts 2D BMD distribution. 3) Proposed decomp. + reg. is the proposed regression method based on method 2).

Table 2. Summary of BMD estimation experiment result
Pose in

training dataset
Method

DXA-BMD Estimation Accuracy QCT-BMD Estimation Accuracy
PCC↑ ICC↑ MAE↓ SEE↓ RMS-CV↓ PCC↑ ICC↑ MAE↓ SEE↓ RMS-CV↓

Standing,
Supine,

Abduction,
Adduction

Conventional Regression 0.667 0.609 0.091 0.117 6.02% 0.764 0.730 30.3 38.6 5.99%

Proposed

Decomposition using QCT 0.864 0.841 0.058 0.077 3.27% 0.861 0.847 23.1 29.3 3.79%
+Regression (freeze ME) 0.874 0.837 0.057 0.076 3.40% 0.914 0.904 18.4 23.6 3.61%
+Regression (tune R) 0.880 0.848 0.055 0.074 3.35% 0.920 0.909 17.9 22.9 3.36%
Decomposition using CT 0.836 0.814 0.062 0.083 3.53% 0.871 0.852 22.2 28.4 3.78%
+Regression (freeze ME) 0.864 0.829 0.057 0.078 3.54% 0.915 0.905 18.1 23.4 3.73%
+Regression (tune R) 0.872 0.838 0.056 0.076 3.46% 0.922 0.910 17.6 22.7 3.54%

GT-PF-DRR from QCT 0.930 0.928 0.040 0.055 1.39% 0.883 0.877 20.8 27.0 1.24%
GT-PF-DRR from CT 0.921 0.918 0.044 0.059 1.49% 0.893 0.888 19.9 25.8 1.36%

Standing,
Supine

Proposed

Decomposition using QCT 0.855 0.837 0.059 0.079 3.72% 0.851 0.833 23.8 30.3 3.77%
+Regression (freeze ME) 0.862 0.835 0.058 0.078 4.02% 0.909 0.897 18.9 24.3 3.99%
+Regression (tune R) 0.866 0.840 0.057 0.076 3.93% 0.913 0.900 18.6 23.8 3.85%
Decomposition using CT 0.833 0.803 0.063 0.084 3.60% 0.848 0.832 24.0 30.5 4.49%
+Regression (freeze ME) 0.833 0.808 0.063 0.084 4.18% 0.898 0.888 19.9 25.7 4.19%
+Regression (tune R) 0.847 0.823 0.061 0.081 4.28% 0.903 0.893 19.4 25.0 4.12%

CT, and 3) testing with compressed X-ray images for robust-
ness validation against 1) pose variation, 2) un-calibration, and
3) image compression reported in Sec. 4.2.3, Sec. 4.2.5, and
Sec. 4.2.4, respectively. These additional experiments were de-
signed to validate the generalizability of the proposed method
considering the situations that are more likely to happen in real-
world applications. For the training of all stages, we used the
learning rate policy of stochastic gradient descent with warm
restarts (Loshchilov and Hutter, 2017) and AdamW optimizer
(Loshchilov and Hutter, 2019). In stage three training, we fixed
the weights of encoder ME by several epochs at the beginning
and then trained R by the remaining epochs.

4.2.2. Overall performance of BMD estimation
Comparisons of BMD estimation performance between

methods are shown in Fig. 6. The proposed decomposition
method (“proposed decomp.” in Fig. 6), which is the G model
trained with hierarchical learning, improved DXA-BMD esti-
mation PCC and ICC from 0.667 and 0.609 to 0.864 and 0.841,
respectively. A similar trend was also observed for the QCT-
BMD estimation task, where the PCC and ICC were improved
from 0.764 and 0.730 to 0.861 and 0.841 by the proposed de-
composition method, respectively. The estimation performance
was further improved by learning regression from a representa-

tion learned by encoder ME via decomposition training (“pro-
posed decomp. + reg.” in Fig. 6), achieving the highest PCC
and ICC of 0.880 and 0.848s, respectively, for DXA-BMD esti-
mation, and 0.920 and 0.909, respectively, for QCT-BMD esti-
mation. An evaluation summary for full experiments and met-
rics is shown in Table 2. Under the guidance of decomposition
training, regressing BMD already achieved high scores while
freezing model weights of encoder ME , demonstrating success-
ful representation learning by decomposition. Furthermore, fi-
nal tuning for the encoder and regression head improved per-
formance, achieving the highest scores on all metrics we used.
Notice that the decomposition-guided regression even outper-
formed the derivation of QCT-BMD from GT-DRR on most
metrics. RMS-CV values for our methods were 3.27 to 3.79%,
while the acceptable RMS-CV in the DXA-BMD measurement
is 1.8% (Lewiecki et al., 2016). However, this criterion assumes
that the patient pose should be reproduced as much as possi-
ble (whereas in our conditions, the patient poses vary consider-
ably). A video showing prediction samples can be found in the
supplemental materials.

4.2.3. Robustness against pose variation
Unlike DXA scanning, which requires patients to be in a

supine pose, X-ray imaging does not restrict the scanning pose,
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resulting in pose variations, which imply challenges when pre-
dicting the BMD from different poses. To validate robustness
against pose variation, we conducted additional experiments
using training data with poses limited to standing and supine,
which are more commonly accessible in routine clinical prac-
tice, reducing the number of training data from 963 to 481 per
fold.

Fig. 7 compares the BMD estimation performance of the
proposed method between training with full poses (standing,
supine, abduction, adduction) and limited poses (standing,
supine). For the seen poses (standing and supine), limited-
pose training showed a small reduction of PCCs from 0.882 to
0.873 and from 0.919 to 0.916 for DXA-BMD and QCT-BMD,
respectively. For the unseen poses, abduction and adduction,
limited-pose training showed a reduction of PCCs from 0.879 to

0.862 and from 0.922 to 0.912 for DXA-BMD and QCT-BMD,
respectively. Although such slight degradations were observed,
statistical tests via the Tukey HSD pose-wise showed p-values
all higher than 0.05, failing to indicate significant differences
between training with full and limited-pose data. Furthermore,
we checked the prediction consistency between poses. The pro-
posed method showed all PCCs higher than 0.9 for the densely
compared poses on not only seen poses but also unseen poses.
Detailed pose prediction consistency can be found in the sup-
plementary materials.

4.2.4. Robustness against image compression
We validated the proposed method for robustness against im-

age compression since the compressed images are much easier
to obtain in routine clinical practice. This compression valida-
tion is based on full-pose training experiments reported in Sec
4.2.2. We evaluated the performance of the trained models us-
ing X-ray images compressed by the JPEG lossy method.

Fig. 8 shows the relations between the average file sizes
of compressed images and the performance of BMD estima-
tion. As the file size has been significantly reduced by lower
precision and the JPEG algorithm with 100 quality, the pro-
posed decomposition-based regression method’s performance
remains almost unchanged with those with no compression.
Furthermore, we explored the tolerance limitation by inputting
super-compressed images after reducing the JPEG quality. We
found that using the half quality, JPEG 50, slightly hurt over-
all performance, reducing PCCs from 0.880 and 0.920 to 0.877
and 0.918 for DXA-BMD and QCT-BMD estimations, respec-
tively, with only 1.3% average file size of the original, demon-
strating high robustness against significant loss of available in-
formation in X-ray images. Severe performance degradation
was observed from JPEG 10, where the PCCs were reduced to
0.790 and 0.783 for DXA-BMD and QCT-BMD, respectively.
Visualizations of the compression impact on our method can be
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found in the supplementary materials.

4.2.5. Robustness uncalibrated CT
Our method utilized CT information to improve accuracy and

efficiency; however, quantitative CT with phantom calibration
is required, while large-scale CT datasets, which do not con-
tain phantoms for calibration, were not utilized. On the other
hand, uncalibrated CT introduced the domain-shifting problem,
which is a long-standing challenge in image processing. We
validated the proposed method by using uncalibrated CT.

Without using QCT, the proposed method of Decomp. +
Reg. achieved a PCC of 0.872 and 0.922 and ICC of 0.838 and
0.910 for the DXA-BMD and QCT-BMD estimation tasks with
full-pose training, respectively. For limited-pose training, the
proposed method achieved a PCC of 0.847 and 0.903 and ICC
of 0.823 and 0.893 for the DXA-BMD and QCT-BMD estima-
tion tasks, respectively. The Tukey HSD test was performed on
a pose-by-pose basis on the predictions given by the proposed
method with QCT and uncalibrated CT for full-pose training
and limited-pose training separately, and no significant differ-
ences were found between them. The results were expected
as the CT data obtained in our dataset were all from the same
type of scanner. However, the results could be considered as an
upper bound of what can be achieved by training using uncali-
brated CT.

4.2.6. Source for large error
We investigated the error source of the proposed method

in the experiments that use full-pose training data and QCT-
derived DRR. Fig. 9 shows Bland-Altman plots of the DXA-
BMD estimation task (left) and the QCT-BMD estimation task
(right), respectively, by the proposed decomposition-guided re-
gression method. Points beyond the 95% limits of agreement
(i.e., mean ± 1.96SD) are considered sample outliers, where
the SD is the standard deviation of the difference between pre-
diction and ground truth. Each point represents an X-ray im-
age in the corresponding task. The trend showed a bias un-
derestimating and overestimating high-BMD and low-BMD pa-
tients, respectively. One possible bias source could be the lack
of training data in those BMD areas, which introduced unbal-
anced learning, which is a long-standing problem in real-world
applications (Li et al., 2022; Alshammari et al., 2022). Bland-
Altman plots by the conventional and proposed decomposition
methods can be found in supplemental materials.

For the DXA-BMD estimation task, there are 57 outlier sam-
ples in Fig. 9. We carefully checked their X-ray imaging con-
ditions, including the tension peak of the X-ray tube in kV,
exposure, and magnification; however, we found no particular
trend or strong correlation with the estimation error. Addition-
ally, we checked the correlation between the estimation error
and the patient’s femur position with respect to the pelvis (i.e.,
joint angle). Fig. 10 shows the correlation to the flexion an-
gle, where the estimation outlier rates are 3.93% and 22.41% in
the normal- and abnormal-degree patients, respectively, imply-
ing potential estimation error introduced by patient positioning
(Uemura et al., 2023). When correlating to other angles, the
estimation outlier rates in the normal- and abnormal-degree pa-
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tients are 4.18% and 11.11%, respectively, for the abduction an-
gle, and 5.37% and 8.96%, respectively, for the external rotation
(ER) angle. Scatter plots representing the correlation between
the estimation error and abduction and ER angles can be found
in supplemental materials. Another possible error source could
be hip diseases in patients. In our dataset, most patients had de-
veloped hip diseases (e.g., osteonecrosis and osteoarthritis), and
some even had developed severe forms of these diseases, which
may have caused the measurement to be inaccurate. We identi-
fied four outlier patients (outliers 1 to 4) in Fig. 9 (left), whose
points of all poses were indicated as outlier samples. The DXA-
BMD of the four outlier patients were in the high-BMD area.
Fig. 11 (left) shows the X-ray images and their paired PF-DRRs
of the outlier-1 patient. The patient’s Kellgren-Lawrence grade
(Kohn et al., 2016) was 4 (the highest level), and the patient
was classified as level II of Crowe (Sugano et al., 1998); i.e.,
high-severity hip osteoarthritis. Referring to the QCT-BMD of
outlier 1, we found that the QCT-BMD is below the distribution
average, and our method accurately predicted it.

A similar analysis was performed for the QCT-BMD estima-
tion task as well. Fig. 9 (right) indicated 18, 17, 17, and 16
outlier samples in the standing, supine, abduction, and adduc-
tion poses, respectively. Fig. 11 (right) shows visualization for
outlier-5 patients. The PF of this patient had almost no neck
part, where the clear clinical definition for the landmarks used
to measure QCT-BMD is not available for such cases, resulting



10 Yi Gu et al. /Medical Image Analysis (2024)

DXA-BMD estimation outlier case (Crowe II, KL 4)
[DXA-BMD=0.990 (g/cm2), QCT-BMD=281 (mg/cm3)] 

QCT-BMD estimation outlier case (Crowe I, KL 4)
[DXA-BMD=0.370 (g/cm2), QCT-BMD=112 (mg/cm3)] 

Standing

X
-r

ay
 im

ag
e

PF
-D

R
R

B
in

ar
iz

ed
 la

be
l

Supine Abduction Adduction

Pred. DXA-BMD [AE]
Pred. QCT-BMD [AE]

0.618 [0.372] 
271 [10] 280 [1] 270 [11] 277 [4]

0.774 [0.216] 0.708 [0.282] 0.666 [0.324] 0.431 [0.061] 0.407 [0.037]
184 [73] 184 [72] 185 [74] 185 [73]

0.405 [0.035] 0.448 [0.078]

Fig. 11. Outlier cases in the DXA-BMD estimation task (left) and the QCT-BMD estimation task (right). The PF-DRR and label images are cropped with
the same bounding box to align the horizontal view. The red arrows indicate the edge of the femoral head included in the PF region due to hip deformation,
potentially introducing errors in BMD estimation.

in undefined measurements. Sources of error other than dis-
eases and training data scales are open for deeper exploration.

4.2.7. Implementation details
The encoder backbone we adopted is HRFormer-B, which

is a middle-size model. Our decoder followed the upsampling
parts of the GlobalGenerator in Pix2PixHD, consisting of sev-
eral convolution layers and transpose-convolution layers. In the
regression head, we used Transformer blocks of S3-TFMRel and
S4-TFMRel from CoAtNet We replaced the Batch Normaliza-
tion and Instance Normalization with Group Normalization, ex-
cept for the Layer Normalization used in Transformer. We set
λL1, λGC , and λFM to 100, 1, and 10, respectively. The initial
learning rate and weight decay were 6 × 10−5 and 1 × 10−2, re-
spectively, except for tuning the end-to-end regression in stage
three, which used 8 × 10−6 as the initial learning rate. For all
our methods (i.e., decomposition and decomposition + regres-
sion), we train 630 epochs in stage one. For the decomposition
method, we trained 150 epochs in stage two. For decomposi-
tion + regression, we trained 630 and 310 epochs in stages two
and three, respectively, and tuned end-to-end regression with
70 epochs. Data augmentation included random rotation(±25),
shear(±9), translation(±0.3), scaling(±0.3), brightness(±0.5),
contrast(±0.5), and horizontal and vertical flipping. When im-
plementing the conventional method for BMD estimation, we
followed most settings and training protocols; however, the to-
tal number of epochs was set to 400, and we did not perform
validation to capture the best model during training because we
observed worse performance with our limited-size dataset.

4.3. Ablation study on hierarchical learning
4.3.1. Experimental settings

The ablation study aims to compare decomposition perfor-
mances between 1) model backbones and 2) models with and
without hierarchical learning. In addition to the ResNet and
HRFormer, we compared two more models that were used
for semantic segmentation as the backbone of the generator–
DAFormer Hoyer et al. (2022), and HRNetV2 Wang et al.
(2021), namely, DAFormer Generator and HRNet Genera-
tor, respectively. Though these state-of-the-art models have
been proven to have high performance in segmentation tasks,
their ability to decompose images has not been thoroughly as-
sessed. We set the ResNet Generator without HL as the base-
line method. Dataset A was used to train stage-one models.
For stage two, we only used 200 cases of standing pose from
dataset B with five-fold cross-validation. We also compared
our best decomposition method with the conventional method
Hsieh et al. (2021) on the DXA-BMD estimation task using
our limited dataset. To evaluate the performance of image de-
composition, we used the peak signal-to-noise ratio (PSNR),
multi-threshold dice coefficient (DC), ICC, and PCC of the av-
erage intensity of PF-DRR. To evaluate BMD estimation, we
used ICC, PCC, MAE, and SEE.

4.3.2. Decomposition performance
The decomposition accuracy, as evaluated by PSNR and DC

is shown in Fig. 12 (a), where a significant improvement in HL
was observed. The high performance of the HRFormer Gener-
ator with HL in DC indicated the ability to maintain the silhou-
ette of the decomposed structure. The high PSNR suggested the
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Fig. 12. Ablation study results of X-ray image decomposition. (a) Evaluation of image decomposition for ResNet (baseline) without HL, HRFormer without
HL, and HRFormer with HL. (b) The Convergence analysis of each backbone without and with HL. (c) The ROI of the input X-ray image and GT-DRR,
and the comparison of the training progress between (d) without HL and (e) with HL. Without HL in (d), predicted BMD became zero at 150 and 300 due
to instability of decomposition in several cases

Table 3. Summary of the ablation study results.
Image Decomposition Accuracy DXA-BMD Estimation Accuracy

Method
Mean PSNR Mean DC ICC PCC Mean AE SEE ICC PCC PCC w.r.t. QCT-BMD

ResNet 30.688 0.658 -0.278 0.006 0.117 0.157 -0.024 -0.208 -0.130
+ HL 39.105 0.952 0.866 0.894 0.057 0.074 0.872 0.879 0.818
DAFormer 36.874 0.926 0.538 0.671 0.085 0.114 0.639 0.680 0.632
+ HL 37.994 0.945 0.853 0.875 0.057 0.078 0.856 0.865 0.799
HRNet 36.996 0.931 0.369 0.650 0.097 0.127 0.537 0.581 0.640
+HL 39.971 0.958 0.883 0.920 0.057 0.074 0.870 0.878 0.843
HRFormer 36.594 0.927 0.255 0.495 0.109 0.143 0.313 0.400 0.498
+ HL 40.168 0.961 0.910 0.927 0.053 0.071 0.882 0.888 0.853

superior capability of the quantitative decomposition compared
with the same generator without HL and the baseline method.
Fig. 12 (b) shows the training progress for each backbone with
and without HL, in which the robust convergence was achieved
consistently using HL, even with only a few epochs. One case
was randomly chosen to track progress during training, which
is shown in Fig. 12 (d) and (e). The qualitative comparison
demonstrated that the target region was well-formed in the early
epoch using HL, suggesting the effectiveness of HL. A sum-
mary of the experimental results for all backbones is shown in
Table 3.

4.3.3. BMD estimation accuracy
A comparison of the BMD estimation performance between

the conventional method and the proposed HRFormer Genera-
tor with HL is shown in Fig. 13 The proposed method achieved
high PCC of 0.882 and 0.888 (compared to 0.361 and 0.447),
respectively, demonstrating the effectiveness of the estimation
strategy of the proposed method that extracts the density distri-
bution of the target region of the bone. We evaluated 13 more

cases for which repeated X-ray images (acquired in the stand-
ing and supine positions on the same day) were available. The
average coefficient of variation was 3.06% ± 3.22% when the
best model, HRFormer with HL, was used.

5. Discussion

5.1. Generalizability

We showed the robustness of the proposed method against
pose variation, image compression, and uncalibrated CT to-
ward clinical application. As shown in Fig. 7, training with
fewer poses did not result in significant degradation even dur-
ing evaluations with X-ray images of unseen poses. The dense
comparison between predictions from different poses suggested
the high consistency against pose variations for X-ray images
of seen and unseen poses. In the image compression experi-
ment, our method showed high robustness against image com-
pression. The performance was stable unless the X-ray images
were heavily compressed, as shown in Fig. 8. Training our
method with uncalibrated CT achieved PCC of 0.872 and 0.922
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Fig. 13. Results of BMD estimation using a limited dataset. (a) Correlation of the predicted BMD with DXA-BMD and QCT-BMD. (b) Boxplot of the
absolute error (AE) of the predicted BMD. The BMD predicted using the proposed method clearly shows a higher correlation with DXA-measured and
QCT-measured BMDs and smaller absolute errors.

for DXA-BMD and QCT-BMD estimation, respectively, which
are slightly different from training with QCT as shown in Table
2. Our results suggested that the calibration may not be needed
as long as CT images are taken using the same type of scanner.

5.2. Difference in DXA-BMD and QCT-BMD estimation

We noticed the performance gap between estimating DXA-
BMD and QCT-BMD. When deriving BMD from GT-PF-DRR,
the performance for DXA-BMD, which achieved a PCC of
0.930, is much higher than that for QCT-BMD, which achieved
a PCC of 0.883. However, our decomposition-guided regres-
sion method showed the opposite by achieving a PCC of 0.880
and 0.920 for DXA-BMD and QCT-BMD, respectively in Fig.
6. The 2D modalities such as DXA and PF-DRR are projected
from 3D spaces, losing partial information of posterior parts.
The average intensity of PF-DRR may be better to fit DXA-
BMD because PF-DRR and DXA are in the same 2D space.
However, one may need to consider the information loss that
occurs during the projection when using DXA-BMD as the
ground truth. On the other hand, the QCT-BMD, which is de-
rived via a 3D modality, appears to be easier to regress by mod-
els not only for our method but also the conventional method
we compared with. QCT-BMD could serve as additional su-
pervision for potential improvement in DXA-BMD estimation.
Furthermore, this phenomenon may suggest the model’s ability
to infer 3D information from a 2D modality, encouraging us to
recover the 3D spatial density of bone from a plain X-ray image
in the future.

5.3. Learning and predicting 2D BMD distribution

A unique feature of our method is that it produces the pixel-
wise BMD estimation, representing the 2D BMD distribution of
the PF bone in addition to the predicted DXA-BMD in stage 2,
improving explainability. Indeed, one can tell that the predicted
BMD is incorrect before knowing the predicted BMD value if
the model fails to produce a reasonable PF-DRR, which inspires

us to develop a failure detection mechanism for actual clinical
applications. This ability was obtained by learning the mapping
from an X-ray image to PF-DRR, suggesting better use of the
texture pattern inside the bone, which is potentially helpful for
the fracture risk prediction, as it has been shown to be factorized
by the texture of the bone(Dong et al., 2015; Farzi et al., 2022).

5.4. Method limitations

Although the proposed method demonstrated high perfor-
mance and robustness in limited datasets, the large-error source
is unclear, and the performance on a large-scale dataset was not
evaluated. We will collect more data and validate the method
using larger datasets collected from different centers, involv-
ing more variation. The error source analysis showed that hip
disease in patients resulted in erroneous segmentation of the
PF region, which introduced estimation error. We will improve
the segmentation processing pipeline to handle the diseased hip
more robustly. Although our method can localize the proxi-
mal femur region from an X-ray image, detecting key points is
unavailable. We will incorporate key points detection, which
could be useful in actual applications and potentially improve
the model’s understanding of the patient’s hip joint pose. Our
method used 2D-3D registration, which may limit the applica-
tion. We will investigate the performance with unpaired decom-
position, which does not require registration. Furthermore, we
will generalize our method to other target structures, such as the
spine.

6. Summary

We developed a technique for estimating BMD from a plain
X-ray image through decomposition learning using CT, which
additionally provides the spatial density distribution of the tar-
get bone. Our method disentangles the soft tissue and bone
from an X-ray image to improve the BMD estimation accu-
racy, efficiently leveraging information from a small number
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of datasets consisting of X-ray images, BMD values, and CT
of the same patient. We first used the proposed HL framework
to train a model to decompose an X-ray image into PF-DRR,
then trained a regressor to estimate BMD from the representa-
tion learned via decomposition learning. Our method showed
significant performance on DXA-BMD estimation and QCT-
BMD estimation tasks with limited datasets. The proposed
HL framework stabilized the decomposition training and im-
proved decomposition accuracy as shown in the ablation study.
Furthermore, we demonstrated the high robustness of the pro-
posed method of BMD estimation with the validations of multi-
pose X-ray images, image compression, and uncalibrated CT,
demonstrating the high potential for opportunistic screening in
clinical practice.

Acknowledgments

This work was funded by MEXT/JSPS KAKENHI
(19H01176, 20H04550, 21K16655).

Code availability

The source code of our method is available from the authors
(gu.yi.gu4@is.naist.jp, otake@is.naist.jp, yoshi@is.naist.jp)
upon reasonable request for research activity.

References

Aggarwal, V., Maslen, C., Abel, R.L., Bhattacharya, P., Bromiley, P.A., Clark,
E.M., Compston, J.E., Crabtree, N., Gregory, J.S., Kariki, E.P., Harvey,
N.C., Ward, K.A., Poole, K.E.S., 2021. Opportunistic diagnosis of os-
teoporosis, fragile bone strength and vertebral fractures from routine CT
scans; a review of approved technology systems and pathways to im-
plementation. Ther. Adv. Musculoskelet. Dis. 13, 1759720X211024029.
doi:10.1177/1759720X211024029.

Alshammari, S., Wang, Y.X., Ramanan, D., Kong, S., 2022. Long- Tailed
Recognition via Weight Balancing, in: 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE, New Orleans,
LA, USA. pp. 6887–6897. URL: https://ieeexplore.ieee.org/

document/9880440/, doi:10.1109/CVPR52688.2022.00677.
Bengio, Y., Courville, A., Vincent, P., 2013. Representation Learning: A Re-

view and New Perspectives. IEEE Transactions on Pattern Analysis and
Machine Intelligence 35, 1798–1828. doi:10.1109/TPAMI.2013.50.

Blake, G.M., Fogelman, I., 2007. Role of dual-energy X-ray absorptiometry in
the diagnosis and treatment of osteoporosis. J. Clin. Densitom. 10, 102–110.
doi:10.1016/j.jocd.2006.11.001.

Chen, X., He, K., 2021. Exploring Simple Siamese Representation Learning,
in: in Proc. 2021 CVPR, pp. 15750–15758.

Choi, Y.J., Oh, H.J., Kim, D.J., Lee, Y., Chung, Y.S., 2012. The prevalence of
osteoporosis in Korean adults aged 50 years or older and the higher diagnosis
rates in women who were beneficiaries of a national screening program: The
Korea National Health and Nutrition Examination Survey 2008–2009. J.
Bone Miner. Res. 27, 1879–1886.

Compston, J.E., McClung, M.R., Leslie, W.D., 2019. Osteoporosis. Lancet
(London, England) 393, 364–376.

Dai, Z., Liu, H., Le, Q.V., Tan, M., 2021. CoAtNet: Marrying convolution and
attention for all data sizes, in: NeurIPS, pp. 3965–3977.

Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding, in: Pro-
ceedings of the 2019 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pp. 4171–4186. doi:10.18653/v1/
N19-1423.

Donahue, J., Simonyan, K., 2019. Large Scale Adversarial Representation
Learning, in: Advances in Neural Information Processing Systems.

Dong, X.N., Pinninti, R., Lowe, T., Cussen, P., Ballard, J.E., Paolo, D.D.,
Shirvaikar, M., 2015. Random field assessment of inhomogeneous bone
mineral density from DXA scans can enhance the differentiation between
postmenopausal women with and without hip fractures. J Biomech 48,
1043–1051. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4380795/, doi:10.1016/j.jbiomech.2015.01.030.

Engelke, K., Adams, J.E., Armbrecht, G., Augat, P., Bogado, C.E., Bouxsein,
M.L., Felsenberg, D., Ito, M., Prevrhal, S., Hans, D.B., Lewiecki, E.M.,
2008. Clinical use of quantitative computed tomography and peripheral
quantitative computed tomography in the management of osteoporosis in
adults: The 2007 iscd official positions. J. Clin. Densitom. 11, 123–162.

Eslami, M., Tabarestani, S., Albarqouni, S., Adeli, E., Navab, N., Adjouadi, M.,
2020. Image-to-images translation for multi-task organ segmentation and
bone suppression in chest x-ray radiography. IEEE Trans. Med. Imaging 39,
2553–2565.

Farzi, M., Pozo, J.M., McCloskey, E., Eastell, R., Harvey, N.C., Frangi,
A.F., Wilkinson, J.M., 2022. Quantitating Age-Related BMD Textu-
ral Variation from DXA Region-Free-Analysis: A Study of Hip Frac-
ture Prediction in Three Cohorts. Journal of Bone and Mineral Research
37, 1679–1688. URL: https://onlinelibrary.wiley.com/doi/abs/
10.1002/jbmr.4638, doi:10.1002/jbmr.4638.

Gu, Y., Otake, Y., Uemura, K., Soufi, M., Takao, M., Sugano, N., Sato, Y., 2022.
BMD-GAN: Bone mineral density estimation using x-ray image decomposi-
tion into projections of bone-segmented quantitative computed tomography
using hierarchical learning, in: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S.,
Li, S. (Eds.), MICCAI, Springer Nature Switzerland, Cham. pp. 644–654.

Hiasa, Y., Otake, Y., Takao, M., Matsuoka, T., Takashima, K., Carass, A.,
Prince, J.L., Sugano, N., Sato, Y., 2018. Cross-Modality Image Synthesis
from Unpaired Data Using CycleGAN, in: Gooya, A., Goksel, O., Oguz, I.,
Burgos, N. (Eds.), MICCAIW Simulation and Synthesis in Medical Imag-
ing, Springer International Publishing, Cham. pp. 31–41. doi:10.1007/
978-3-030-00536-8_4.

Hiasa, Y., Otake, Y., Takao, M., Ogawa, T., Sugano, N., Sato, Y., 2020. Auto-
mated muscle segmentation from clinical CT using Bayesian U-Net for per-
sonalized musculoskeletal modeling. IEEE Trans. Med. Imaging 39, 1030–
1040.

Ho, C.S., Chen, Y.P., Fan, T.Y., Kuo, C.F., Yen, T.Y., Liu, Y.C., Pei, Y.C., 2021.
Application of deep learning neural network in predicting bone mineral den-
sity from plain X-ray radiography. Arch. Osteoporos. 16, 153.

Hoyer, L., Dai, D., Van Gool, L., 2022. DAFormer: Improving network archi-
tectures and training strategies for domain-adaptive semantic segmentation,
in: CVPR, pp. 9924–9935.

Hsieh, C.I., Zheng, K., Lin, C., Mei, L., Lu, L., Li, W., Chen, F.P., Wang, Y.,
Zhou, X., Wang, F., Xie, G., Xiao, J., Miao, S., Kuo, C.F., 2021. Auto-
mated bone mineral density prediction and fracture risk assessment using
plain radiographs via deep learning. Nat. Communi. 12, 5472.

Iki, M., Kagamimori, S., Kagawa, Y., Matsuzaki, T., Yoneshima, H., Marumo,
F., for JPOS Study Group, 2001. Bone mineral density of the spine, hip and
distal forearm in representative samples of the japanese female population:
Japanese population-based osteoporosis (JPOS) study. Osteoporos. Int. 12,
529–537.

Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation
with conditional adversarial networks, in: in Proc. 2017 CVPR, pp. 5967–
5976.

Jang, R., Choi, J.H., Kim, N., Chang, J.S., Yoon, P.W., Kim, C.H., 2021. Pre-
diction of osteoporosis from simple hip radiography using deep learning al-
gorithm. Sci. Rep. 11, 19997. doi:10.1038/s41598-021-99549-6.

Kohn, M.D., Sassoon, A.A., Fernando, N.D., 2016. Classifications in Brief:
Kellgren-Lawrence Classification of Osteoarthritis. Clin Orthop Relat Res
474, 1886–1893. doi:10.1007/s11999-016-4732-4.
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