

Design of a synergistic combined electrodialysis/anodic oxidation system for simultaneous AMX membrane fouling mitigation and enhanced dye degradation

Ahmed Mehellou, Rachid Delimi, Lamia Allat, Ridha Djellabi, Abdelkrim Rebiai, Christophe Innocent

▶ To cite this version:

Ahmed Mehellou, Rachid Delimi, Lamia Allat, Ridha Djellabi, Abdelkrim Rebiai, et al.. Design of a synergistic combined electrodialysis/anodic oxidation system for simultaneous AMX membrane fouling mitigation and enhanced dye degradation. Chemical Engineering and Processing: Process Intensification, 2024, 196, pp.109663. 10.1016/j.cep.2024.109663 . hal-04396276

HAL Id: hal-04396276 https://hal.science/hal-04396276v1

Submitted on 15 Jan2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Design of a synergistic combined electrodialysis/anodic oxidation system for simultaneous AMX membrane fouling mitigation and enhanced dye degradation

Ahmed Mehellou^{a,*}, Rachid Delimi^b, Lamia Allat^b, Ridha Djellabi^c, Abdelkrim Rebiai^a and Christophe Innocent^d

^{*a*} Laboratory of applied chemistry and environment (LCAE), Department of Chemistry, Faculty of Exact Sciences, University of El Oued, 39000, El Oued, Algeria

^b Laboratory of Water Treatment and Valorization of Industrial Wastes, Badji-Mokhtar University, BP 12, Annaba 23005, Algeria

^c Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain

^{*d*} European Institute of Membranes, University of Montpellier II, Montpellier cedex 5, France

The e-mail address of each author

Ahmed Mehellou: <u>mehellou-ahmed@univ-eloued.dz</u>

Rachid Delimi: <u>ltevdi@yahoo.fr</u>

Lamia Allat: serradj.dhia@yahoo.com

Ridha Djellabi: ridha.djellabi@urv.cat

Abdelkrim Rebiai: new.rebiai@gmail.com

Christophe Innocent: christophe.innocent@umontpellier.fr

*Corresponding author

E-mail address: mehellou-ahmed@univ-eloued.dz

Postal address : BP 259 Chouhada, 39028 Guemar El Oued, Algeria.

Abstract

Electrodialysis (ED) is a common process which is widely applied for water purification and desalination or/and chemical species recovery. Solving the fouling of ion-exchange membranes (IEMs) is the bottleneck of this technology for stable processing along with low maintenance at large scale. This work aims to design combined electrodialysis/anodic oxidation (ED-AO) using as-prepared Pb/PbO2 anode to boost the oxidation of organic dye (methyl orange, MO) and overcome the issue of AMX membrane fouling. Hybrid ED-AO process works synergistically to accumulate, by ion-exchange reaction, MO species in the anodic Pb/PbO2 oxidative compartment to be oxidized and mineralized. As compared to single ED, excellent oxidation rates and membrane anti-fouling activities were found in ED-AO process. The characterization of AMX membrane in single ED shows that the fouling was the main issue behind the low oxidation rate, causing as well a significant increase in the cell electrical resistance (CER), unlike in hybrid ED-AO process. Most of operating parameters including applied current density, initial concentration of MO, pH, supporting electrolyte (Na₂SO₄) concentration were investigated. The mechanistic pathways of MO oxidation and anti-fouling activity were discussed in depth. Through ten recycling tests, hybrid ED-AO process showed excellent stability and performance.

Keywords: Electrodialysis, Anodic oxidation, Pb/PbO₂ anode, AMX membrane antifouling, Synergistic oxidation, Hybrid processes.

1. Introduction

The textile industry is considered as one of the major sources of dyes water pollution. The amount of dyes discharged in industrial effluents was estimated at around 15% of total annual production [1]. Many types of discharged organic dyes are non-biodegradable which allows their accumulation in the environment, causing several toxic effects [2]. Numerous conventional methods have been adopted for the treatment of dyes water pollution, such as adsorption [3], membrane filtration [4], photocatalysis [5], biological methods [6] and other advanced oxidation processes [7,8].

There processes have different pros and cons based on the type of application, nature and concentration of dye and so on. Physical removal of dyes from water by adsorption, coagulation or filtration leads to transfer simply the pollution from liquid to solid, which in turn needs further purification. These multi-processes usually are expensive and non-sustainable. The industrial community is seeking for single process to reduce the pollution without creating secondary environmental or technology issues. Synergism in processes is the result of cooperative effects that are higher than the sum of additive effects, and also synergism could solve some technological problem, allowing a continuous and effecting processing.

Conventional electrodialysis (ED) is ion-exchange electro-membrane based technology that has been widely used for ionized species removal or recovery under electric effect. At large scale, it is largely used for seawater desalination [9,10], and the recovery of metals or for the separation in several industrial activities [11]. A lot of research groups are investigating the intensification of ED process at a laboratory scale for many applications such as the removal of metals and heavy metals [12,13], fluoride and nitrate from aqueous solutions [14,15], the production of organic acids [16,17], whey proteins separation [18], and for the environmental protection [19,20].

ED technique has some considerable drawbacks limiting its effectiveness [10,13]. One of the main issues of ED is the membrane fouling during the process [21,22]. This phenomenon is generally due to the deposition of macromolecules or insoluble compounds on the surface and/or into the membrane. The membrane fouling consequently leads to a significant increase in its electrical resistance caused by the passivation of membrane active functional groups [22,23]. This can reduce the efficiency of the process by preventing the transfer of ionic species through the IEMs and also increases the energy consumption [24,25]. In general, the membrane fouling phenomenon can be classified in three types: (i) scaling by mineral precipitation, (ii) adsorption of organic molecules, proteins or colloidal matter and (iii) poisoning of membrane active groups by surfactants [25,26]. Under certain conditions, the fouling of the membranes is mostly irreversible phenomenon, which makes these membranes unusable and therefore must be cleaned or replaced. In the membrane and electromembrane processes, the membrane cleaning or replacement operation is extremely expensive and costs between 40 and 50 % of process cost [27,28]. For this reason, it is very essential to search reliable and guaranteed solutions to reduce the fouling phenomenon caused likely by organic matters.

Among the offered solutions, the coupling of ED processes with other nonconventional methods, such as electrochemical oxidation (ECO) [29–31], photocatalysis [32], electrochlorination [33,34], electro-Fenton [35], bio-electro-Fenton technology [36] and electro-peroxone process [37]. ECO, which is also known as anodic oxidation (AO), is one of the most efficient, less expensive and environmentally-friendly advanced oxidation processes. The AO advantages make this method is most frequently used for the treatment of wastewaters [38]. Furthermore, it has been proven that AO can effectively eliminate the majority of organic pollutants from wastewaters [39–41].

Generally, the AO of organic or inorganic pollutants leads to the formation of simpler, non-toxic and biodegradable compounds [42]. The electrodes used in AO process are insoluble and active or non-active anodes such as boron-doped diamond (BDD), Pt, Gr, Ti/IrO₂, Ti/SnO₂, Ti/RuO₂; PbO₂, SnO₂, etc [42,43]. These electrodes allow a complete oxidation of the most organic molecules into CO₂ and H₂O. Several authors [40,44] have described the degradation mechanisms of organic compounds by AO which generally takes place into two stages:

1st stage: Anodic discharge of water and production of hydroxyl radicals ('OH) on the metal oxide electrode surface (M):

$$H_2 O + M \to M[^{\bullet} OH] + H^+ + e^-$$
 (1)

2nd stage: Oxidation of organic compounds (R) by 'OH radicals:

$$M[^{\bullet}OH] + R \rightarrow M + CO_2 + nH^+ + ne^-$$
 (2)

The different AO advantages make this method a good candidate for combination with conventional ED, in order to realize a simultaneous effective removal of organic pollutants and for mitigating the membrane fouling.

Some recent works have also shown the effectiveness of coupled ED and AO for different uses such as for the removal of antibiotics [45], degradation of 2,4-dichlorophenoxyacetic acid [30,46], removal of synthetic dyes [1] and for the oxidation of mature landfill leachate [47]. For example, Raschitor et al. [46] tested a novel integrated ED/ECO process to concentrate and oxidize simultaneously the 2,4-dichlorophenoxyacetic acid. In this process, the pollutant is transferred through an anionic membrane to an anodic compartment in which it is then concentrated and oxidized. Interestingly, they demonstrated that this combined process improves the

degradation rate by more than twice compared to the conventional ECO. Additionally, in our previous work [48], we studied the removal of sodium dodecyl benzene sulphonate (SDBS) using ED-AO combined system using Ti/SnO₂-Sb₂O₃/PbO₂ as oxidative anode. The results showed that the combination enhanced significantly the SDBS removal rate and also limits the membrane fouling.

The present study aims to investigate the integration of AO in ED to boost the oxidation of anionic azo-dye (methyl orange (MO)), and simultaneously overcome the membrane fouling. The combined AO and ED has two main purposes, (i) realization of *in-situ* electro-oxidation phenomenon in the same anode of ED, (ii) use of a new ED configuration permitting the preliminary removal of MO before its adsorption on the anion-exchange membrane (AEM). Pb/PbO₂ anode was designed to carry out the oxidation process. It is worthy to mention that Pb/PbO₂ have a particular attention at large scale of applications due to its high electro-oxidation efficiency, good electrical conductivity and low cost [49–52].

The Pb/PbO₂ electrode was prepared by formation of PbO₂ layer on lead plate and characterized by SEM-EDS method. The AEM fouling was confirmed by SEM-EDS and FTIR methods. Initially, experiments of ED and ED coupled with AO (ED-AO) were carried out on MO solution to unravel the feasibility and effectiveness of ED-AO hybrid process. The influence of some operating parameters on the efficiency of ED-AO process was studied. Finally, the prepared Pb/PbO₂ electrode reusability was also tested.

2. Materials and methods

2.1. Chemicals and Reagents

All chemicals used in this study have an analytical grade and all aqueous solutions were prepared by using double distilled water. MO (molecular formula:

 $C_{14}H_{14}N_3O_3SNa$; molar mass: 327.33 g mol⁻¹) obtained from Alfa Aesar was chosen as an organic pollutant. Sodium sulphate (Na₂SO₄), sodium carbonate (Na₂CO₃), trisodium orthophosphate (Na₃PO₄) and sodium chloride (NaCl) were from BIOCHEM-Chemopharma. Sulfuric acid (H₂SO₄) (96%), hydrochloric acid (HCl) (37%) and sodium hydroxide (NaOH) were purchased from Sigma-Aldrich. Nitric acid (HNO₃) (69%) and oxalic acid (C₂H₂O₄) (99.9%) were from Fluka. Hydrofluoric acid (HF) (48%) and Acetone (100%) was respectively obtained from Nice[®] and VWR. Other chemicals including potassium dichromate (K₂Cr₂O₇), silver sulfate (Ag₂SO₄) and mercuric sulfate (HgSO₄) were purchased from Merck.

2.2. Ions-exchange membranes

The cation and anion exchange membranes (CEM and AEM) used in this study are Neosepta CMX and AMX (Tokuyama Soda Co., Japan) respectively. The ionexchange capacities are 1.4–1.7 meq g⁻¹ and 1.5–1.8 meq g⁻¹ for AMX and CMX membrane respectively. The both membranes have a homogenous hydrocarbonated structure (polystyrene-co-divynilbenzene), with sulphonated functional groups ($-SO_3^-$) for the CMX and quaternary ammonium groups ($-NR_3^+$) for the AMX [53,54]. Before using, the membranes were pretreated with conventional procedure [55]. Firstly, the membranes are submerged in NaOH (1 M) under a slight stirring for 24 h, then, in HCI solution (1 M) for the same period. Finally, these membranes are carefully washed with double distilled water and saved in NaCl solution (0.5 M).

2.3. Pb/PbO₂ electrode preparation

As mentioned before, the anodic oxidation process is carried out using Pb/PbO_2 electrode which is prepared according to the procedure described by several authors [49,56–58]. The preparation of this electrode type is based on the formation of PbO_2

layer on Pb plate surface by electrolysis in H_2SO_4 solution according to the reactions of Eqs. (3), (4), and (5) [49]:

$$Pb + SO_4^{2-} \rightarrow PbSO_4 + 2e^-$$
(3)
$$PbSO_4 + 2UO \rightarrow PbO_4 + SO_2^{2-} + 4U^+ + 2e^-$$
(4)

$$PbSO_4 + 2H_2O \rightarrow PbO_2 + SO_4^{2-} + 4H^+ + 2e^-$$
 (4)

Overall reaction:

$$Pb + 2H_2O \rightarrow PbO_2 + 4H^+ + 4e^-$$
 (5)

For this, a cylindrical Pb plate was pretreated according the procedure reported by Awad and Galwa [56] to ensure good formation of PbO₂ layer. Initially, the Pb surface was roughened by a mechanical abrasion using sand papers to increase the PbO₂ layer adhesion. It was then cleaned with acetone to remove all solid particles and organic matters rested in the surface. Next, the metal surface was washed carefully with an alkali solution containing a mixture of Na₂CO₃ (20 g L⁻¹), NaOH (50 g L⁻¹), Na₃PO₄ (20 g L⁻¹) and H₂SO₄ (2 g L⁻¹). Then, it was cleaned by mixed acid solution (HNO₃ (400 g L⁻¹), HF (5 g L⁻¹)) for 2 min and boiled in oxalic acid solution (100 g L⁻¹) for 5 min. Finally, in order to oxidize the Pb surface into PbO₂, the pretreated Pb plate was placed as anode into electrolysis with H₂SO₄ solution (10 %) at a stable current density (*i*) of 50 mA cm⁻² and duration of 1.5 h [49,57,58]. A stainless steel (SS) electrode was used as the cathode current feeder.

2.4. ED and ED-AO experimental set-up

A three-compartment cylindrical Plexiglas cell (Fig. 1(a)) was constructed in the laboratory. These compartments were separated by a pair of AMX and CMX membranes. Each separating membrane had an effective area of 9.61 cm² which equal to the area of the electrodes placed at the ends of E_1 and E_2 compartments. The diameter and the thickness of each compartment were 3.5 and 1.4 cm, respectively, where the volume is 13.45 cm³. In the case of ED process, two SS electrodes are used.

However, in the ED-AO process, the cathode is SS electrode, while the anode is made of prepared Pb/PbO₂ electrode.

The new ED configuration applied in this study (Fig. 1(a)) is based in the circulation of feed solution (0.5 L containing MO and Na₂SO₄ in all experiments) firstly into the anodic compartment (E₁), and it then circulates in the cathodic compartment (E₂). Finally, this solution is returned in the same tank by performing a closed circuit. The flow rate of feed solution is fixed at 40 mL min⁻¹. In the central compartment (C) (concentrate compartment) which delimited by CMX and AMX membranes circulates 0.25 L of H₂SO₄ (0.05 M). All solutions were agitated in their tanks and injected into the cell compartments by using peristaltic pumps (Masterflex L/S). A stabilized power supply (YD18303D DC Power Supplies) was used to apply an electric field between the electrodes. The current intensity and voltage are controlled by multimeters (Multimetrix DMM121). The duration of all experiments (ED and ED-AO) was fixed at 180 min and regular samples of 5 mL were taken from the feed solution.

2.5. Principles and procedures of ED and ED-AO processes

Schematic representation of the principles and procedures of ED and ED-AO processes is shown in Fig. 1(b) and 1(c). In the two processes, the feed solution containing MO as an organic pollutant and Na₂SO₄ as supporting electrolyte circulates successively into the side compartments (E_1 and E_2). An acidic solution (H₂SO₄, 0.05 M) as concentrate solution circulates in the central compartment (C).

First of all, ED and ED-AO experiments at the same operating conditions were carried out to evaluate the feasibilities of simultaneous MO degradation and AMX membrane fouling mitigation in the ED-AO compared to single ED process. In these experiments, the initial concentrations of MO and Na₂SO₄ in feed solution were 25 mg L⁻¹ and 0.05 M, respectively, with applied current density of 20 mA cm⁻² and natural pH (\approx 6.8). In

the ED process (Fig. 1(b)), MO anionic molecules do not undergo any degradation and cannot cross the AMX membrane. However, as shown in Fig. 1(c), in the ED-AO process, the presence of Pb/PbO₂ anode in E₁ compartment can preliminary degrade the MO molecules. Then, in order to study the influence of operation factors affecting performance of the ED-AO process for treating the MO + Na₂SO₄ mixture solution, the main factors were studied, including applied current density (1, 7.5, 15, 20, 25 and 30 mA cm⁻²), initial MO concentration (5, 10, 25, 50, 75 and 100 mg L⁻¹), initial pH of feed solution (1.5, 3, 6.8 (natural pH), 8.5 and 11.5) and concentration of supporting electrolyte (Na₂SO₄) (0.025, 0.05, 0.1, 0.2 and 0.4 M). The initial pH of the feed solution was adjusted by NaOH (1 M) and H₂SO₄ (1 M) solutions. All the experiments were conducted in three times. In the other hand, the reusability of prepared Pb/PbO₂ electrode was investigated. For this, we subjected it to ten cycles of use in the ED-AO coupling process.

2.6. Analytical methods

A morphological characterization of prepared Pb/PbO₂ electrode was carried out to confirm the formation of PbO₂ layer on the electrode surface. After its preparation, the Pb/PbO₂ electrode surface was softly rinsed with double distilled water and dried at room temperature for a night and analyzed by Scanning electron microscopy (SEM) and by energy dispersive X-ray spectroscopy (EDS) methods. To observe the AMX membrane fouling phenomenon by MO molecules deposition, the AMX pristine membrane and those used in the ED and ED-AO processes were analyzed by Fourier transform infrared (FTIR) and SEM-EDS methods. For this, the membranes samples were dried under vacuum at 50 °C for 4 h [59] and were then analyzed. MEB-EDS and FTIR characterization was respectively done using a Phenom Pro X Scanning Electron Microscope and an Agilent Technologies Cary 630 FTIR Spectrometer.

The membrane fouling phenomenon leads to the increase of its electrical resistance as well as increase in the cell electrical resistance (CER) [22]. It is interesting to follow the CER variation during the processes. The CER variation was calculated by utilizing the voltage measured at regular time intervals during the processes and by Ohm's law application (Eq. (6)) :

$$CER(ohm) = \frac{U(V)}{I(A)}$$
(6)

Where U is the voltage measured during the processes and I is the applied current intensity.

For determinate the decolorization efficiency, the samples of MO feed solution were analyzed by using a UV-Vis spectrophotometer, SP-UV 300 SRB (Specterum Instruments GMBH) with maximum absorption seen at the wavelength of 464 nm [1,60]. The concentration of MO in its samples of aqueous solution was calculated using a calibration curve based on the known concentrations. Finally, the decolorization rate is calculated using Eq. (7).

Decolorization rate (%) =
$$\frac{C_0 - C_t}{C_0} \times 100$$
 (7)

Where: C_0 and C_t are respectively, the MO concentration in the feed solution at initial and t time of the treatment.

In order to evaluate the quality of the treated water, the chemical oxygen demand (COD) removal which also represents global mineralization was determined for the sample of initial feed solution and that taken at the end of process. COD was determined by using the dichromate method followed by photometric measurement. The COD removal rate was calculated as:

$$COD \ removal \ rate \ (\%) = \frac{COD_0 - COD_f}{COD_0} \times 100 \tag{8}$$

Where: COD_0 and COD_f are respectively, the initial and final COD of the feed solution.

3. Results and discussion

3.1. SEM-EDS characterization of prepared Pb/PbO₂ electrode

Several authors have showed the efficiency of PbO₂ layer deposition on lead plate through electrolysis in sulfuric acid solution [49,56,58,61,62]. This method is based on the oxidation of metallic lead and generation of dioxygen on anode surface [61]. Fig. 2 shows SEM images of Pb/PbO₂ electrode surface before and after PbO₂ layer formation. These images show that the original electrode (Fig. 2(a)) has a pseudo homogeneous and relatively uniform surface as well as the pores size was very fine. By contrast, after its electrolysis in sulfuric acid solution as anode for 1.5 h (Fig. 2(b)), the electrode surface is not uniform crystal size and this surface becomes rougher. This can be due to the production of dioxygen on the anode surface which changing the crystal structure during the electrochemical reaction process [58]. From Fig. 2(b) it can be also seen that the formed PbO₂ layer covers the entire electrode surface, along with the formation of tightly packed and pyramid-shaped crystals. In addition, PbO₂ crystal size is approximately uniform.

The results of elementary analysis by EDS of the electrode surface before and after electrolysis are presented in Fig. 2 and Table 1. Firstly, the obtained spectrogram (Fig. 2(c)) indicates the presence of C in electrode surface before electrolysis. This is probably due to the organic trace substances rested from the electrode preparation procedure [63]. Furthermore, this analysis shows that the O and Pb elements are present in electrodes samples before (Fig. 2(c)) and after (Fig. 2(d)) electrolysis. However, the atomic percentage (Table 1) of O is increased in 3 times after electrolysis) to 1:1.53 (after electrolysis).

3.2. SEM-EDS and FTIR characterization of AMX membranes

In order to investigate the efficiency of AMX membrane fouling mitigation in the ED-AO process compared to single ED process, the membranes used in the both processes were analyzed by SEM-EDS and FTIR. These experiments were carried out at the same operating conditions. Fig. 3 shows the SEM images and EDS spectrograms of the AMX pristine membrane, and those used in the studied processes. Table 2 also illustrates the atomic percentage of chemical elements contained in the membrane surfaces. SEM images of pristine membrane (Fig. 3(a)) showed its plane surface. The comparison of this image with those of membranes used in ED (Fig. 3(b)) and in ED-AO (Fig. 3(c)) shows that the morphologies of membrane surface are changed. This difference is undoubtedly due to the formation of organic matters agglomeration. From the Fig. 3(b), it can be seen a large amount of MO agglomerates was deposited and covering an important part of the membrane. It was also observed that the formation of MO agglomerates at the AMX surface is less pronounced in the case of ED-AO process (Fig. 3(c)).

Indeed, this morphological analysis clearly shows the fouling of the membrane used in ED by MO deposition. However, the surface of membrane used in the ED-AO is less fouled with MO deposits. These results allow demonstrating the significant membrane fouling by MO deposition during the ED compared to ED-AO. Similar results are obtained in our previous work for the AMX membrane fouling by sodium dodecyl benzene sulphonate [48].

From the EDS spectrograms (Fig. 3(d), 3(e) and 3(f)) and the atomic percentage of chemical elements (Table 2) we firstly note the presence of Cl on the pristine membrane surface. However, this chlorine will be disappeared in the cases of used membranes. The chlorine came from the membrane equilibration by HCl and NaCl solutions during its pretreatment procedure. Additionally, all spectrograms show the

presence of C, O and N which constitute the AMX membrane structure [53,54]. However, only the membranes used in ED and ED-AO processes showed the presence of sulfur. This sulfur is due to the adsorption of MO on the membrane surface. The presence of sulfur and the increase of atomic percentage of oxygen (from 6.73 to 12.65 and 18.38 %) and nitrogen (from 5.16 to 11.64 and 16.14%) (Table 2) in the cases of used membranes confirm the presence of MO on membrane surface for both processes. One can also see that the atomic percentages of oxygen and sulfur for the membrane of ED-AO (18.38 and 3.13 % respectively) are more important compared to those of membrane used in ED (12.65 and 2.37 % respectively), whereas it is the opposite for nitrogen. This it means that the amount of sulfate ions (SO^{2–}) in the membrane of ED-AO is more important, while the membrane of ED is richer into MO. Finally, these results demonstrated that the membrane fouling phenomenon by MO is more significant in the case of ED compared to ED-AO process.

The AMX membranes' fouling by MO deposition during the processes was also investigated by FTIR. Fig. 4 shows the obtained spectra for the AMX pristine membrane, and for those used in ED and ED-AO processes. Several peaks observed on the pristine membrane spectrum are also present on the spectra of used membranes. Moreover, the comparison of these spectra reveals the presence of new peaks for the used membranes characterizing the presence of MO on their surfaces. The first peak is observed at 1605.9 cm⁻¹, this peak corresponds to the azo group (-N=N-) present in MO structure. Two others peaks at 1519 and 1444 cm⁻¹ are probably due to the C–H bending in the C=C–H plane. The sulphonic group characterizing MO dye was confirmed with an intense peak appeared at 1359 cm⁻¹.

Two peaks are produced at 1035.9 and 946.1 cm^{-1} which are attributed to the ring vibration. Stretching of aromatic benzene ring was confirmed with a peak at 822 cm^{-1} .

The last peaks centered at 698.23, 624.94 and 570.93 cm^{-1} corresponding to C–S stretching vibrations.

On the other hand, it was noted that there is not a notable difference between both spectra of used membranes (in ED and in ED-AO), except different intensities in some peaks. This difference means that the membrane fouling is more significant in the case of ED compared with that in ED-AO. Finally, the results of SEM-EDS and FTIR characterization of the AMX membranes mean that the coupling of AO to ED process reduces the membrane fouling by MO deposition.

3.3. Efficiency of ED-AO coupling in MO removal and AMX membrane antifouling

To evaluate the performance of combined ED-AO on AMX membrane fouling mitigation and MO degradation, ED and ED-AO processes were compared. These experiments were carried out at the same operating conditions and during the same duration. The results are expressed by using the variation of CER (Fig. 5(a)) and decolorization rate (Fig. 5(b)) during the processes. COD removal and decolorization efficiencies (Fig. 5(c)) determined in the end of each experiment will be also discussed. In electromembrane process, the CER control is a main factor for detecting the membrane fouling phenomenon, because the deposition of particles or/and organic molecules on the membrane surface leads to the increase of its electrical resistance and consequently causing the increase of CER [64]. Therefore, Fig. 5(a) shows a significant increase of CER during the ED process where it starts from 58 to reach at 130.46 ohm after 180 min of process. This notable increase of CER during the ED indicates the continuous fouling of the AMX membrane by MO⁻ anionic molecules accumulation. The molecular size of MO made it more difficult to pass through the AMX membrane which causing its fouling. While under the same conditions and for the same duration,

the CER in the ED-AO process changes slightly between 46.02 and 58.53 ohm. From the Fig. 5(a) it can be also seen that the CER has been reduced 2.2 times after 3 hours of process by the presence of AO. Accordingly, the coupling of AO to the ED process allows keeping a slight change of CER and consequently attenuates considerably the AMX membrane fouling. From the same figure (Fig. 5(a)), it was also found that the CER at time 0 is slightly different in the two processes (58 and 46.02 ohm for ED and ED-AO respectively). This is probably due to the anode nature (into SS for ED and into Pb/PbO₂ for ED-AO), because the Pb/PbO₂ electrode has a good electrical conductivity compared to the several others types of electrodes [65].

From Fig. 5(b), it was found that the ED-AO process presents a better decolorization effect on the MO molecules where the decolorization rate is reaching around 73.48 % after 180 min of treatment. By contrast, in the case of ED process the decolorization rate increases slightly during the first 60 min until 26.92 % and it could reach 32.98 % at the end of experiment. This 26.92 % of decolorization is possibly due to the MO anionic molecules adsorption in the AMX membrane surface in a significant way during the cited duration. However, in ED-AO there is an ECO process on Pb/PbO₂ electrode which strongly contributes in MO degradation by following the reactions of Eqs. 9 and 10.

$$PbO_2 + H_2O \to PbO_2[^{\bullet}OH] + H^+ + e^-$$
 (9)

$$PbO_{2}[^{\bullet}OH]_{n} + MO \rightarrow PbO_{2} + CO_{2} + nH^{+} + ne^{-}$$
 (10)

As shown in Fig. 5(c), it was also inferred that the COD removal rate reflecting the mineralization of feed solution is the better in the case of ED-AO with a value of 68.36 %. However, it does not exceed 30.21 % in ED process. Indeed, the presence of Pb/PbO₂ electrode in ED cell improved the decolorization and COD removal rates approximately 2.2 times after 3 hours of process. In addition, the comparison between

the decolorization rate and COD removal rate values into the end of the both processes (Fig. 5(c)) reveals that there is not a notable difference between them. Indeed, the efficiency of Pb/PbO₂ electrode into degradation of several organic pollutants was demonstrated in numerous previous studies [57,51,66–68], where, in most cases a pseudo-total degradation of these organic pollutants into CO₂ and H₂O was obtained. These results showed clearly the benefit of the introduction of AO on a Pb/PbO₂ electrode into ED process for attenuate the AMX membrane fouling and for enhance the MO azo-dye degradation. Generally, the efficiency of electrodes based on lead dioxide (PbO₂) surfaces in electro-oxidation organics is could be explained by its good characteristics such as: the high oxygen overpotential and high electrical conductivity [51,56].

3.4. Effect of operating parameters on ED-AO efficiency

The effect of some operating parameters such as: applied current density, initial MO concentration, initial pH of feed solution and concentration of supporting electrolyte were studied in order to improve the electro-oxidation of MO and to reduce simultaneously the AMX membrane fouling in ED-AO process. The results of this study are presented generally in term of variation of CER and decolorization rate during the process and in term of COD removal rate determined in the end of each experiment. In addition, the pseudo-first-order model was occasionally applied to discuss the kinetics of MO degradation.

3.4.1. Effect of applied current density

In an ED-AO coupling process, the role of applied electric field is double: transports the ionic species across the IEMs and generates the hydroxyl radicals ('OH) on the Pb/PbO₂ electrode surface for degrading the MO molecules. Accordingly, the effect of various current densities $(1 - 30 \text{ mA cm}^{-2})$ on the ED-AO process was investigated. It

was demonstrated that the current density applied in AO processes must be highest possible for achieving the maximum processing efficiency [65,69,70]. However, in this study, it is worth noting that, we did not work at very high densities for avoid approaching to the value of limiting current density. Because in ED process, when this value is exceeded, the concentration polarization phenomenon in membranes surface is started which leads to a considerably increase of membranes electrical resistance [71,72].

From Fig. 6(a), it could be seen that for the two lowest current densities (1 and 7.5 mA cm^{-2}) the CER increases drastically. The similar trend was observed previously in the case of ED (Section 3.3). The increase of CER at low densities is likely as a result of the continuous AMX membrane fouling by MO accumulation. However, the increase of the current density at more than 15 mA cm⁻² makes a slightly variation of CER, especially for the two highest densities (25 and 30 mA cm⁻²). The increase in current density reinforces more the degradation of MO by electro-oxidation, and consequently attenuates its adsorption at AMX membrane surface.

Additionally, as shown in Fig. 6(b) and 6(c), the increase of current density boosts considerably the degradation of MO in terms of the decolorization and COD removal. Particularly, the decolorization and COD removal efficiencies improved significantly (from 42 to 68 % and from 41 to 61 %, respectively) when current density increased from 7.5 to 15 mA cm⁻². By contrast, at low current densities, the decolorization and COD removal rates were the lowest. For example, at density of 1 mA cm⁻², no obvious degradation of MO was observed, because these results are extremely similar to those obtained previously for the ED process (Section 3.3), where there is not any electro-oxidation. The decolorization and COD removal obtained at low current densities is

mainly due to the adsorption of MO in the AMX membrane surface, but not to the electro-oxidation phenomenon.

On the other hand, the decolorization of MO solution by electro-oxidation on Pb/PbO₂ electrode has been followed with pseudo-first-order kinetic by applying of Eq. (11). From the obtained results (Fig. 6(d) and Table 3), it was observed that the rate constant (k) for densities 1, 7.5, 15, 20, 25 and 30 mA cm⁻² were increased as follow, 0.24×10^{-2} , 0.31×10^{-2} , 0.66×10^{-2} , 0.73×10^{-2} , 0.99×10^{-2} and 1.04×10^{-2} min⁻¹, respectively. From which it was noted that, the increase in the applied current density obviously accelerated the MO degradation reactions.

$$C_t = C_0 e^{-kt} \tag{11}$$

Where, C_0 and C_t are respectively, the MO concentration in the feed solution at initial and t time of the treatment, and k is the rate constant (min⁻¹).

Indeed, it was inferred that the increase of applied current density simultaneously improving the MO degradation and reducing the membrane fouling which is reflected by the decrease of CER. The applied current contributes directly in the generation of hydroxyl radicals ('OH) (Eq. (9)) on the Pb/PbO₂ electrode. For that reason, the higher current density led to the production of larger amount of 'OH and consequently improved the degradation efficiency of organic pollutant (e.g., MO) [73,74,75].

On the other hand, it was also observed that the two densities 25 and 30 mA cm⁻² gave approximately the similar results, although the current density increased by 5 mA cm⁻². This is probably explained by secondary reactions occurred at higher current density such as oxygen evolution (Eq. (12)), which compete with the MO degradation reaction (Eq. (10)) [76]. Based on these results, the density of 25 mA cm⁻² was chosen for the rest of the work.

$$PbO_2[^{\bullet}OH] \to PbO_2 + \frac{1}{2}O_2 + H^+ + e^-$$
 (12)

The effect of initial MO concentration $(5 - 100 \text{ mg L}^{-1})$ on the degradation efficiency and AMX membrane fouling in ED-AO process was investigated. The obtained results were displayed in Fig. 7. From the Fig. 7(a), it can be observed that for all MO concentrations varing in the range $5 - 25 \text{ mg L}^{-1}$, there was no obvious effect of these concentrations on the CER. However, for concentrations equal to or higher than 50 mg L⁻¹, the increasing of MO concentration increases significantly the CER during the process. This evolution of CER in the cases of three highest MO concentration signifies that, the abundance of large amount of MO⁻ anion in close proximity to the membrane surface reinforces its fixation over the membrane active functional sites. The molecular size of MO⁻ ion and its high concentration in the solution makes it more difficult for this organic anion to pass through the AMX membrane or to desorb toward the solution. The adsorption of large amount of organic compound ions (e.g., MO⁻) in the membrane surface leads to its continuous fouling which consequently leads to the deterioration of its electrical proprieties [23,77]. For that reason, the CER increases considerably during the process when the organic compound concentration in the solution is very higher.

On the other hand, the increase of initial MO concentration from 5 to 100 mg L^{-1} decreased gradually the decolorization efficiencies (from 88.21 to 68.23%) and the COD removal rates (from 85.44 to 57.35%) (Fig. 7(b)). Several authors [1,51,78] attributed the decreasing of decolorization efficiency for the higher initial dye concentration to the competition of generated intermediate by-products, with the original dye molecules to react with oxidizing species through the ECO process. Moreover, at constant current density, the increasing of organic compound concentration (e.g., MO) leads to a decrease in the 'OH/MO molar ratio, which

consequently decreases the probability of encounter between 'OH radicals and MO molecules [48].

In addition, from the Fig. 7(b), it can be seen that the increase of the initial concentration from 5 to 100 mg L⁻¹ leads to the increase of the difference between decolorization and COD removal rates. Meanly, there is not any consistency between them during the increase of initial concentration. The possible reason is that, with the increase of initial MO concentration, the most of generated 'OH radicals can be consumed during the oxidation of MO into by-products, but not by the mineralization into CO₂ and H₂O [76,79]. Finally, the concentration 25 mg L⁻¹ was adopted in the rest of the work to avoid any obvious increase in CER and any strong decrease in process efficiency.

3.4.3 Effect of pH of feed solution

In ECO processes, the pH of pollutant solution affects the 'OH generated amounts, oxygen overpotential and stability of electrodes, which consequently affects the efficiency of the process [41,65]. For this, some experiments of ED-AO on MO solution (25 mg L⁻¹) were performed at different initial pH values varying in the range 1.5 - 11.5.

As shown in Fig. 8(a) and 8(b), the variation of pH value from 6.8 (natural pH) to 11.5 has no obvious effect on the decolorization and COD removal. However, the decolorization and COD removal rates were increased from 82.16 to 97.62 % and from 76.33 to 95.75%, respectively when pH was adjusted from 6.8 to 3. In addition, at strong acid pH (pH 1.5) the decolorization of MO solution was total (> 99 %) and the COD removal was quasi-total (> 98 %). Above results indicated that lower pH values were the benefit of the MO degradation and mineralization in ED-AO process. In addition, from the Fig. 8(a) it can be also seen that the decolorization rate reaches about

 93 and 70 % after the first 60 min for the two acidic pHs 1.5 and 3, respectively, while within the same time it does not exceed 49 % for pHs equal to or higher than 6.8. Accordingly, the results of kinetic analysis (Fig. 8(c) and Table 3) also showed that the rate constant (k) values in the cases of acid pH were the highest. Subsequently, k decreased with the increase of pH value indicating that, the lower the pH, the more rapidly the MO degradation reaction.

Many previous works [63,74,80–82] have reported that the AO of organic compounds is favored in acid pHs. A study by Ghalwa et al. [66] also found that the maximum removal of linuron and COD are obtained at pH 1.5 by using Pb/PbO₂ electrode, which is in agreement with that obtained in this study for MO degradation. Maharana et al. [74] and Zhao et al. [80] have mentioned that the generation of 'OH radical is more favored at the low pH level. In contrast, the increase of pH value decreases the 'OH generated amount. Li et al. [83] have also ascribed the improvement of degradation of Reactive Blue 19 in acidic conditions and in presence of SO₄^{2–} to the production of sulfate radicals (SO₄⁻⁻) and peroxodisulfate ions (S₂O₈^{2–}) by acid-catalyzed reactions according to Eqs. (13), (14), (15), and (16). These species present a high oxidation power and it could quickly attack any organic pollutant [84–86], increasing consequently the degradation rate. In addition, since its electrophilic characteristic, the SO₄⁻⁻ radical is considered as stronger oxidant of organic matter (e.g., MO) when compared with 'OH. Therefore, a smaller amount of this oxidant is sufficient to ensure complete mineralization [86,87].

$$SO_4^{2-} + H^+ \to HSO_4^- \tag{13}$$

$$2HSO_4^- \to S_2O_8^{2-} + 2H^+ + 2e^- \tag{14}$$

- $S_2 O_8^{2-} + H^+ \to H S_2 O_8^-$ (15)
- $HS_2 O_8^- \to SO_4^{\bullet-} + SO_4^{2-} + H^+$ (16)

On the other hand, the decrease of decolorization and COD removal rates at pHs \geq 6.8, especially for alkaline pHs (8.5 and 11.5) (Fig. 8(a) and 8(b)) compared to acidic pHs is probably due to the evolution of oxygen generation which is favored into alkaline medium [62,88]. Consequently, the evolution of oxygen (Eqs. (12) and (17)) reduces the current efficiency and it can also prevent the diffusion of organic anions towards the anode surface [89].

$$2H_2 0 \to O_2 + 4H^+ + 4e^- \tag{17}$$

In this manner, the decolorization and mineralization of MO solution is favored in acidic pH. Therefore, in the ED-AO process, working in acidic conditions can accelerate significantly the degradation of organics contained in the solution, thus reduce the possibility of membrane fouling by these organics.

3.4.4. Effect of supporting electrolyte concentration

In ECO processes, the role of supporting electrolyte is normally to provide a conductive medium and to decrease the voltage drop. Sodium sulfate (Na₂SO₄) is usually used for its high solubility, its good conductivity and no parasitic reactions occurred with the use of this electrolyte [82,90]. Consequently, in order to investigate their effect on MO degradation by ED-AO, different concentrations (0.025 - 0.4 M) of Na₂SO₄ supporting electrolyte were applied.

The obtained results (Fig. 9(a) and 9(b)) show that the increase in Na₂SO₄ concentration into the range 0.025 - 0.1 M resulted a significant increase in both decolorization and COD removal rates where reached 98.67 and 96.17%, respectively. However, for the two highest concentrations (0.2 and 0.4 M), a total decolorization (>99%) with a slight regression in COD removal (from 96.17 to 92.27% and to 89.35%) were registered. It is also noticeable that the degradation of MO in the cases of three highest concentrations of Na₂SO₄ (0.1, 0.2 and 0.4 M) (Fig. 9(c) and Table 3) is very faster

during the first 60 min (k= 3.39×10^{-2} , 4.34×10^{-2} and 5.21×10^{-2} min⁻¹, respectively), then it became relatively slower (k= 1.91×10^{-2} , 2.13×10^{-2} and 2.02×10^{-2} min⁻¹ respectively) until the end of experiment. This tendency was not observed for the two others concentrations (0.025 and 0.05 M), where the degradation rate is slow from the starting of the experiment.

The greatly improvement in decolorization can possibly be attributed to the contribution of the mediated oxidation of MO by $S_2O_8^{2-}$ and direct oxidation by SO_4^{--} , which are formed from the oxidation and 'OH attack of SO_4^{2-} according to Eqs. (18), (19), and (20) [63,85,91]. Probably, the same reason made the COD removal increased for the range 0.025 - 0.1 M of Na₂SO₄, although it has slightly regressed in the cases of the two others concentrations (0.2 and 0.4 M). Moreover, the increasing in supporting electrolyte concentration improves the medium conductivity, and consequently accelerates charge and mass transfer, thus benefiting the ECO reactions [90].

$$2SO_4^{2-} \to S_2O_8^{2-} + 2e^- \tag{18}$$

$$^{\bullet}OH + SO_4^{2-} \to OH^- + SO_4^{\bullet-}$$
 (19)

$$2SO_4^{\bullet-} \to S_2 O_8^{2-} \tag{20}$$

Ma et al. [91] and Zhang et al. [92] have inferred that the oxidation of $SO_4^{2^-}$ into $S_2O_8^{2^-}$ is increasingly favored with the increase in its concentration. However, these authors have also found that at moderately high current density and with the increase of Na₂SO₄ concentration, a slight abatement in the degradation of targeted organics is registered. The same trend was observed in this study concerning the regression of COD removal for concentrations of Na₂SO₄ at more than 0.1 M (Fig. 9(b)). The negative effect of Na₂SO₄ at higher concentrations on the completely mineralization of organics, is possibly ascribed to the following reasons:

- i) The consumption of generated 'OH by SO4²⁻ at anode surface for giving SO4⁻⁻ (Eq. (19)) which is retransformed into S2O8²⁻ (Eq. (20)). The S2O8²⁻ ion is relatively stable at room temperature [83], so it is majority in the system, this it makes the degradation of small molecules of by-products generated in the middle of degradation process is more difficult.
- ii) The competition between SO₄²⁻ oxidation (Eq. (18)) and 'OH generation (Eq. (9)) at the surface of anode. This can reduce the extent of the direct oxidation of organic compounds (e.g., generated by-products) by 'OH and consequently affects their completely mineralization [83,91].

On the other hand, a slightly decrease of CER after about 90 min of process was obtained when the Na₂SO₄ concentration equal to or higher than 0.1 M (Fig. 9(d)), where it reaches in the end of experiments at 38.85, 32.53 and 29.25 ohm for concentrations 0.1, 0.2 and 0.4 M respectively. In contrast, a slightly increase of CER is observed in the cases of the two lowest concentrations (0.025 and 0.05 M) and values of 61.75 and 50.38 ohm were respectively registered at the end of experiments. In fact, the increase of supporting electrolyte concentration not only improves the MO degradation for attenuate the membrane fouling, but also increases significantly the feed solution conductivity. In view of this, the better concentration of Na₂SO₄ is 0.1 M because it gives a quasi-total decolorization (> 98%), the best COD removal (96.27%) and a CER approximately constant.

3.5. Reusability of Pb/PbO2 electrode

The reusability and continued effectiveness of electrodes is an important factor for a practical application, especially at industrial scale. Herein, ten experiments of ED-AO were performed at optimal conditions ($i = 25 \text{ mA cm}^{-2}$, $[MO]_0 = 25 \text{ mg L}^{-1}$, natural pH (≈ 6.8) and $[Na_2SO_4] = 0.1$ M). The results of Pb/PbO₂ electrode reusability are mainly

discussed in term of decolorization and COD removal efficiencies after 3 hours of treatment. Besides, to confirm whether its reuse affects the membrane fouling mitigation, the CER values determined at the end of experiments are also discussed. As shown in Fig. 10, the decolorization rate remained virtually constant (balancing between 97.45 and 99.37 %) during 10 cycles. However, COD removal rate slightly decreases from the seventh cycle, where it has reached at 86 % in the tenth cycle. The regression in COD removal is probably due to the fact that the reuse of Pb/PbO₂ electrode for seven cycles makes the degradation of generated by-products is more difficult. This is can be explained by the change of electrode surface properties, which can reduce slightly the extent of the hydroxyl radicals generation. On the other hand, Fig. 10 shows that there is not obviously evolution in CER value, where it does not deviate from the range 37.75 - 41.91 ohm in the all cycles. Mainly, there is not any significant fouling of the AMX membrane during these experiments.

4. Conclusions

A novel configuration of ED with AO integration was investigated in order to eliminate the MO anionic azo-dye, and to reduce simultaneously the AMX membrane fouling. From this work, the following conclusions can be taken:

- The characterization results showed that the PbO₂ layer has been successfully and effectively deposited at Pb plate surface by using electrolysis in acidic solution. In addition, the membrane fouling by deposited MO was less significant in the case of ED-AO compared to ED process. Besides, the presence of sulfate ions in the membrane of ED-AO was the strongest.
- The results of ED and ED-AO experiments demonstrated that the coupling of AO to ED process attenuated significantly the membrane fouling caused by MO deposition.
 The presence of Pb/PbO₂ electrode in ED cell also reduced the CER and improved

the decolorization and COD removal rates approximately 2.2 times after 3 hours of process.

- The study of operating parameters effect on ED-AO process showed that the increase of applied current density improving the MO degradation and reducing simultaneously the CER evolution. In the other hand, the increase of initial MO concentration decreased gradually the decolorization and COD removal efficiencies. The decolorization and mineralization of MO solution is favored in acidic pH. It was also found that the increase in Na₂SO₄ concentration as supporting electrolyte led to a significant increase in MO degradation, where a pseudo-total and total decolorization was obtained when the concentration is high. However, a slight regression in the mineralization for the highest concentrations was observed. In all cases, the improvement of decolorization and mineralization of MO led to reducing the CER evolution and the AMX membrane fouling successively.
- The study of Pb/PbO₂ electrode reusability showed that the decolorization of MO solution remained effective (≥ 97 %) during ten cycles of use. However, there is a slight regression in COD removal begins from the seventh cycle.

Finally, this work showed clearly the benefit of AO combined with ED process to control the AMX membrane fouling and for enhanced MO azo-dye degradation. ED-AO could be a useful synergistic process for enhanced oxidation of organic pollutants along with continuous processing which are very recommended factors at large scale.

CRediT authorship contribution statement

A. Mehellou: Writing, Experimental and characterization, R. Delimi: Visualization, Supervision and Methodology, L. Allat: Visualization and Methodology, R. Djellabi: Writing, Visualization, Validation and Revision, A. Rebiai: Writing and English revision, C. Innocent: Supervision and Methodology.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The authors sincerely thank the Ministry of Higher Education and Scientific Research of Algeria for the financially support for this work. The authors also would like to acknowledge the European Institute of Membranes (Montpellier, France) for their collaboration.

References

- [1] Shi, J., Zhang, B., Liang, S., Li, J., Wang, Z. (2018). Simultaneous decolorization and desalination of dye wastewater through electrochemical process. Environmental Science and Pollution Research, 25, 8455-8464. <u>https://doi.org/10.1007/s11356-017-1159-8</u>.
- [2] Mani, S., Chowdhary, P., Bharagava, R. N. (2019). Textile wastewater dyes: toxicity profile and treatment approaches. Emerging and eco-friendly approaches for waste management, 219-244. <u>https://doi.org/10.1007/978-981-10-8669-4_11</u>.
- [3] Yagub, M. T., Sen, T. K., Afroze, S., Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in colloid and interface science, 209, 172-184. <u>https://doi.org/10.1016/j.cis.2014.04.002</u>.
- [4] Muthu, S. S., Khadir, A. (2022). Membrane Based Methods for Dye Containing Wastewater. Springer Singapore.
- [5] Saeed, M., Muneer, M., Haq, A. U., Akram, N. (2022). Photocatalysis: An effective tool for photodegradation of dyes—A review. Environmental Science and Pollution Research, 29, 293–311. <u>https://doi.org/10.1007/s11356-021-16389-7</u>.
- [6] Zafar, S., Bukhari, D. A., Rehman, A. (2022). Azo dyes degradation by microorganisms-An efficient and sustainable approach. Saudi Journal of Biological Sciences, 103437. <u>https://doi.org/10.1016/j.sjbs.2022.103437</u>.
- [7] Brillas, E., Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166, 603-643. https://doi.org/10.1016/j.apcatb.2014.11.016.
- [8] Martínez-Sánchez, C., Robles, I., Godínez, L. A. (2022). Review of recent developments in electrochemical advanced oxidation processes: application to remove dyes, pharmaceuticals, and pesticides. International Journal of

Environmental Science and Technology, 19(12), 12611-12678. https://doi.org/10.1007/s13762-021-03762-9.

- [9] Baker, R. W. (2012). Membrane technology and applications. John Wiley & Sons.
- [10] Al-Amshawee, S., Yunus, M. Y. B. M., Azoddein, A. A. M., Hassell, D. G., Dakhil, I. H., Hasan, H. A. (2020). Electrodialysis desalination for water and wastewater: A review. Chemical Engineering Journal, 380, 122231. <u>https://doi.org/10.1016/j.cej.2019.122231</u>.
- [11] Schorr, M. (Ed.). (2011). Desalination: Trends and technologies. BoD-Books on Demand.
- [12] Gering, K. L., & Scamehorn, J. F. (1988). Use of electrodialysis to remove heavy metals from water. *Separation Science and Technology*, 23(14-15), 2231-2267. <u>https://doi.org/10.1080/01496398808058452</u>.
- [13] Juve, J. M. A., Christensen, F. M. S., Wang, Y., Wei, Z. (2022). Electrodialysis for metal removal and recovery: A review. *Chemical Engineering Journal*, 435, 134857. <u>https://doi.org/10.1016/j.cej.2022.134857</u>.
- [14] Xu, D., Li, Y., Yin, L., Ji, Y., Niu, J., Yu, Y. (2018). Electrochemical removal of nitrate in industrial wastewater. Frontiers of environmental science & engineering, 12, 1-14. <u>https://doi.org/10.1007/s11783-018-1033-z</u>.
- [15] Aliaskari, M., Schäfer, A. I. (2021). Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater. Water Research, 190, 116683. <u>https://doi.org/10.1016/j.watres.2020.116683</u>.
- [16] Huang, C., Xu, T., Zhang, Y., Xue, Y., Chen, G. (2007). Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. Journal of membrane science, 288(1-2), 1-12. https://doi.org/10.1016/j.memsci.2006.11.026.
- [17] Wang, Y., Zhang, X., Xu, T. (2010). Integration of conventional electrodialysis and electrodialysis with bipolar membranes for production of organic acids. Journal of Membrane Science, 365(1-2), 294-301. <u>https://doi.org/10.1016/j.memsci.2010.09.018</u>.
- [18] Casademont, C., Sistat, P., Ruiz, B., Pourcelly, G., & Bazinet, L. (2009). Electrodialysis of model salt solution containing whey proteins: Enhancement by pulsed electric field and modified cell configuration. *Journal of membrane science*, 328(1-2), 238-245. <u>https://doi.org/10.1016/j.memsci.2008.12.013</u>.
- [19] Dumée, L., Scholes, C., Stevens, G., & Kentish, S. (2012). Purification of aqueous amine solvents used in post combustion CO2 capture: A review. *International Journal of Greenhouse Gas Control*, 10, 443-455... <u>https://doi.org/10.1016/j.ijggc.2012.07.005</u>.
- [20] Gurreri, L., Tamburini, A., Cipollina, A., Micale, G. (2020). Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. *Membranes*, 10(7), 146. <u>https://doi.org/10.3390/membranes10070146</u>.
- [21] Oztekin, E., & Altin, S. (2016). Wastewater treatment by electrodialysis system and fouling problems. Tojsat, 6(1), 91-99.

- [22] Wang, W., Fu, R., Liu, Z., Wang, H. (2017). Low-resistance anti-fouling ion exchange membranes fouled by organic foulants in electrodialysis. Desalination, 417, 1-8. <u>https://doi.org/10.1016/j.desal.2017.05.013</u>.
- [23] Mikhaylin, S., Bazinet, L. (2016). Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control. Advances in colloid and interface science, 229, 34-56. <u>https://doi.org/10.1016/j.cis.2015.12.006</u>.
- [24] Banasiak, L. J., Schäfer, A. I. (2009). Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. Journal of Membrane Science, 334(1-2), 101-109. <u>https://doi.org/10.1016/j.memsci.2009.02.020</u>.
- [25] Hansima, M. A. C. K., Makehelwala, M., Jinadasa, K. B. S. N., Wei, Y., Nanayakkara, K. G. N., Herath, A. C., Weerasooriya, R. (2021). Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: A review. Chemosphere, 263, 127951. https://doi.org/10.1016/j.chemosphere.2020.127951.
- [26] Guo, W., Ngo, H. H., Li, J. (2012). A mini-review on membrane fouling. Bioresource technology, 122, 27-34. <u>https://doi.org/10.1016/j.biortech.2012.04.089</u>.
- [27] Grebenyuk, V.D., Chebotareva, R. D., Peters, S., Linkov, V. (1998). Surface modification of anion-exchange electrodialysis membranes to enhance anti-fouling characteristics. Desalination, 115(3), 313-329. <u>https://doi.org/10.1016/S0011-9164(98)00051-4</u>.
- [28] Mallya, D. S., Abdikheibari, S., Dumée, L. F., Muthukumaran, S., Lei, W., Baskaran, K. (2023). Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation–A review. Chemosphere, 138070. https://doi.org/10.1016/j.chemosphere.2023.138070.
- [29] Yeon, K. H., Song, J. H., Shim, J., Moon, S. H., Jeong, Y. U., Joo, H. Y. (2007). Integrating electrochemical processes with electrodialysis reversal and electrooxidation to minimize COD and TN at wastewater treatment facilities of power plants. Desalination, 202(1-3), 400-410. https://doi.org/10.1016/j.desal.2005.12.080.
- [30] Llanos, J., Raschitor, A., Cañizares, P., Rodrigo, M. A. (2018). Exploring the applicability of a combined electrodialysis/electro-oxidation cell for the degradation of 2, 4-dichlorophenoxyacetic acid. Electrochim. Acta 269, 415–421. <u>http://dx.doi.org/10.1016/j. electacta. 2018.02.153</u>.
- [31] Pan, Z., Song, C., Li, L., Wang, H., Pan, Y., Wang, C., Li, J., Wang, T., Feng, X. (2019). Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects. Chemical Engineering Journal, 376, 120909. <u>https://doi.org/10.1016/j.cej.2019.01.188</u>.
- [32] Aydin, M. I., Selcuk, H. (2023). Development of a UV-based photocatalytic electrodialysis reactor for ion separation and humic acid removal. International Journal of Environmental Science and Technology, 20(6), 5913-5924. <u>https://doi.org/10.1007/s13762-022-04358-7</u>

- [33] Badruzzaman, M., Oppenheimer, J., Adham, S., Kumar, M. (2009). Innovative beneficial reuse of reverse osmosis concentrate using bipolar membrane electrodialysis and electrochlorination processes. Journal of Membrane Science, 326(2), 392-399. <u>https://doi.org/10.1016/j.memsci.2008.10.018</u>.
- [34] Llanos, J., Cotillas, S., Cañizares, P., Rodrigo, M. A. (2014). Novel electrodialysis-electrochlorination integrated process for the reclamation of treated wastewaters. Separation and Purification Technology, 132, 362-369. <u>https://doi.org/10.1016/j.seppur.2014.05.017</u>.
- [35] Leng, Q., Xu, S., Wu, X., Wang, S., Jin, D., Wang, P., Wu, D., Dong, F. (2022). Degrade methyl orange by a reverse electrodialysis reactor coupled with electrochemical direct oxidation and electro-Fenton processes. Electrocatalysis, 13(3), 242-254. <u>https://doi.org/10.1007/s12678-022-00712-y</u>.
- [36] Li, X., Jin, X., Zhao, N., Angelidaki, I., & Zhang, Y. (2017). Novel bio-electro-Fenton technology for azo dye wastewater treatment using microbial reverseelectrodialysis electrolysis cell. Bioresource technology, 228, 322-329. <u>https://doi.org/10.1016/j.biortech.2016.12.114</u>.
- [37] Wu, D., Zhou, C., Lu, G., Zhou, Y., Shen, Y. (2019). Simultaneous membrane fouling mitigation and emerging pollutant benzophenone-3 removal by electroperoxone process. Separation and Purification Technology, 227, 115715. <u>https://doi.org/10.1016/j. seppur.2019.115715</u>.
- [38] Moreira, F. C., Boaventura, R. A., Brillas, E., Vilar, V. J. (2017). Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217-261. <u>https://doi.org/10.1016/j.apcatb.2016.08.037</u>.
- [39] Martínez-Huitle, C. A., Panizza, M. (2018). Electrochemical oxidation of organic pollutants for wastewater treatment. Current Opinion in Electrochemistry, 11, 62-71. <u>https://doi.org/10.1016/j.coelec.2018.07.010</u>.
- [40] Hu, Z., Cai, J., Song, G., Tian, Y., Zhou, M. (2021). Anodic oxidation of organic pollutants: anode fabrication, process hybrid and environmental applications. Current Opinion in Electrochemistry, 26, 100659. <u>https://doi.org/10.1016/j.coelec.2020.100659</u>.
- [41] Jiang, Y., Zhao, H., Liang, J., Yue, L., Li, T., Luo, Y., Liu, Q., Lu, S., Asiri, A.M., Gong, Z., Sun, X. (2021). Anodic oxidation for the degradation of organic pollutants: anode materials, operating conditions and mechanisms. A mini review. Electrochemistry Communications, 123, 106912. <u>https://doi.org/10.1016/j.elecom.2020.106912</u>.
- [42] Zaviska, F., Drogui, P., Mercier, G., Blais, J. F. (2009). Advanced oxidation processes for waters and wastewaters treatment : Application to degradation of refractory pollutants, Journal of Water Science, 22(4), 535–564, <u>https://doi.org/10.7202/038330ar</u>.
- [43] Panizza, M., Cerisola, G. (2010). Applicability of electrochemical methods to carwash wastewaters for reuse. Part 1: Anodic oxidation with diamond and lead dioxide anodes. Journal of Electroanalytical Chemistry, 638(1), 28-32. https://doi.org/10.1016/j.jelechem.2009.11.003.

- [44] McBeath, S. T., Wilkinson, D. P., & Graham, N. J. (2019). Application of borondoped diamond electrodes for the anodic oxidation of pesticide micropollutants in a water treatment process: a critical review. *Environmental Science: Water Research & Technology*, 5(12), 2090-2107. <u>https://doi.org/10.1039/C9EW00589G</u>.
- [45] Shi, L., Hu, Z., Wang, Y., Bei, E., Lens, P. N., Thomas, O., Hu, Y., Chen, C., Zhan, X. (2021). In situ electrochemical oxidation in electrodialysis for antibiotics removal during nutrient recovery from pig manure digestate. Chemical Engineering Journal, 413, 127485. <u>https://doi.org/10.1016/j.cej.2020.127485</u>.
- [46] Raschitor, A., Llanos, J., Cañizares, P., Rodrigo, M. A. (2017). Novel integrated electrodialysis/electro-oxidation process for the efficient degradation of 2, 4-dichlorophenoxyacetic acid. Chemosphere, 182, 85-89. https://doi.org/10.1016/j.chemosphere.2017.04.153.
- [47] Bagastyo, A. Y., Sari, P. P. I., Direstiyani, L. C. (2021). Effect of chloride ions on the simultaneous electrodialysis and electrochemical oxidation of mature landfill leachate. Environmental Science and Pollution Research, 28, 63646-63660. <u>https://doi.org/10.1007/s11356-020-11519-z</u>.
- [48] Allat, L., Delimi, R., Mehellou, A. (2022). Mitigation of an anion exchange membrane fouling by coupling electrodialysis to anodic oxidation. Chemical Engineering Research and Design, 186, 136-148. <u>https://doi.org/10.1016/j.cherd.2022.07.042</u>.
- [49] Quiroz, M. A., Reyna, S., Martinez-Huitle, C. A., Ferro, S., De Battisti, A. (2005).
 Electrocatalytic oxidation of p-nitrophenol from aqueous solutions at Pb/PbO2 anodes. Applied Catalysis B: Environmental, 59(3-4), 259-266.
 <u>https://doi.org/10.1016/j.apcatb.2005.02.009</u>.
- [50] Panizza, M., Sirés, I., Cerisola, G. (2008). Anodic oxidation of mecoprop herbicide at lead dioxide. Journal of Applied Electrochemistry, 38, 923-929. <u>https://doi.org/10.1007/s10800-008-9497-3</u>.
- [51] Yahiaoui, I., Aissani-Benissad, F., Madi, K., Benmehdi, N., Fourcade, F., Amrane, A. (2013). Electrochemical pre-treatment combined with biological treatment for the degradation of methylene blue dye: Pb/PbO₂ electrode and modelingoptimization through central composite design. Industrial & Engineering Chemistry Research, 52(42), 14743-14751. <u>https://doi.org/10.1021/ie401367q</u>.
- [52] Zhou, Q., Zhou, X., Zheng, R., Liu, Z., Wang, J. (2022). Application of lead oxide electrodes in wastewater treatment: A review. Science of The Total Environment, 806, 150088. <u>https://doi.org/10.1016/j.scitotenv.2021.150088</u>.
- [53] Xu, T. (2005). Ion exchange membranes: State of their development and perspective. Journal of membrane science, 263(1-2), 1-29. https://doi.org/10.1016/j.memsci.2005.05.002.
- [54] Kariduraganavar, M. Y., Nagarale, R. K., Kittur, A. A., Kulkarni, S. S. (2006). Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications. Desalination, 197(1-3), 225-246. <u>https://doi.org/10.1016/j.desal.2006.01.019</u>.
- [55] Mehellou, A., Delimi, R., Benredjem, Z., Innocent, C. (2015). Affinity of cationexchange membranes towards metallic cations: application in continuous

electropermutation. Separation Science and Technology, 50(4), 495-504. <u>https://doi.org/10.1080/01496395.2014.968260</u>.

- [56] Awad, H. S., Galwa, N. A. (2005). Electrochemical degradation of Acid Blue and Basic Brown dyes on Pb/PbO2 electrode in the presence of different conductive electrolyte and effect of various operating factors. Chemosphere, 61(9), 1327-1335. <u>https://doi.org/10.1016/j.chemosphere.2005.03.054</u>.
- [57] Vazquez-Gomez, L., de Battisti, A., Ferro, S., Cerro, M., Reyna, S., Martínez-Huitle, C. A., Quiroz, M. A. (2012). Anodic oxidation as green alternative for removing diethyl phthalate from wastewater using Pb/PbO2 and Ti/SnO2 anodes. Clean–Soil, Air, Water, 40(4), 408-415. <u>https://doi.org/10.1002/clen.201000357</u>.
- [58] Wang, Y. S., Yang, F., Liu, Z. H., Yuan, L., & Li, G. (2015). Electrocatalytic degradation of aspen lignin over Pb/PbO2 electrode in alkali solution. Catalysis Communications, 67, 49-53. <u>https://doi.org/10.1016/j.catcom.2015.03.033</u>.
- [59] Choi, J. H., Moon, S. H. (2003). Structural change of ion-exchange membrane surfaces under high electric fields and its effects on membrane properties. Journal of Colloid and Interface Science, 265(1), 93-100. <u>https://doi.org/10.1016/S0021-</u> 9797(03)00136-X.
- [60] Adachi, A., Ouadrhiri, F. E., Kara, M., El Manssouri, I., Assouguem, A., Almutairi, M. H., ... & Lahkimi, A. (2022). Decolorization and degradation of methyl orange azo dye in aqueous solution by the electro fenton process: Application of optimization. Catalysts, 12(6), 665. https://doi.org/10.3390/catal12060665.
- [61] Li, X., Pletcher, D., Walsh, F. C. (2011). Electrodeposited lead dioxide coatings. Chemical Society Reviews, 40(7), 3879-3894. <u>https://doi.org/10.1039/C0CS00213E</u>.
- [62] Barbari, K., Delimi, R., Benredjem, Z., Saaidia, S., Djemel, A., Chouchane, T., ... & Oturan, M. A. (2018). Photocatalytically-assisted electrooxidation of herbicide fenuron using a new bifunctional electrode PbO₂/SnO₂-Sb₂O₃/Ti//Ti/TiO₂. Chemosphere, 203, 1-10. <u>https://doi.org/10.1016/j.chemosphere.2018.03.126</u>.
- [63] Saaidia, S., Delimi, R., Benredjem, Z., Mehellou, A., Djemel, A., Barbari, K. (2017). Use of a PbO₂ electrode of a lead-acid battery for the electrochemical degradation of methylene blue. Separation Science and Technology, 52(9), 1602-1614. <u>http://dx.doi.org/10.1080/01496395.2017.1291681</u>.
- [64] Zhao, Z., Shi, S., Cao, H., Li, Y. (2017). Electrochemical impedance spectroscopy and surface properties characterization of anion exchange membrane fouled by sodium dodecyl sulfate. Journal of Membrane Science, 530, 220-231. <u>https://doi.org/10.1016/j.memsci.2017.02.037</u>.
- [65] Niu, J., Li, Y., Shang, E., Xu, Z., Liu, J. (2016). Electrochemical oxidation of perfluorinated compounds in water. Chemosphere, 146, 526-538. <u>https://doi.org/10.1016/j.chemosphere.2015.11.115</u>.
- [66] Ghalwa, N. A., Hamada, M., Shawish, H. M. A., Shubair, O. (2016). Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and

C/PbO2 electrodes. Arabian Journal of Chemistry, 9, S821-S828. https://doi.org/10.1016/j.arabjc.2011.08.006.

- [67] Othmani, A., Kesraoui, A., Akrout, H., López-Mesas, M., Seffen, M., Valiente, M. (2019). Use of alternating current for colored water purification by anodic oxidation with SS/PbO₂ and Pb/PbO₂ electrodes. Environmental Science and Pollution Research, 26, 25969-25984. <u>https://doi.org/10.1007/s11356-019-05722-W</u>.
- [68] Chen, Z., Xie, G., Pan, Z., Zhou, X., Lai, W., Zheng, L., Xu, Y. (2021). A novel Pb/PbO2 electrodes prepared by the method of thermal oxidation-electrochemical oxidation: Characteristic and electrocatalytic oxidation performance. Journal of Alloys and Compounds, 851, 156834. https://doi.org/10.1016/j.jallcom.2020.156834.
- [69] Lin, H., Niu, J., Ding, S., Zhang, L. (2012). Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO₂–Sb, Ti/SnO₂–Sb/PbO₂ and Ti/SnO₂–Sb/MnO₂ anodes. Water research, 46(7), 2281-2289. https://doi.org/10.1016/j.watres.2012.01.053.
- [70] Yu, H., Song, Y., Zhao, B., Lu, Y., Zhu, S., Qu, J., ... & Qin, W. (2018). Efficient Electrocatalytic Degradation of 4-Chlorophenol Using a Ti/RuO 2–SnO 2–TiO 2/PbO 2–CeO 2 Composite Electrode. Electrocatalysis, 9, 725-734. https://doi.org/10.1007/s12678-018-0484-0.
- [71] Choi, J. H., Lee, H. J., Moon, S. H. (2001). Effects of electrolytes on the transport phenomena in a cation-exchange membrane. Journal of colloid and interface science, 238(1), 188-195. <u>https://doi.org/10.1006/jcis.2001.7510</u>.
- [72] Lee, H. J., Strathmann, H., Moon, S. H. (2006). Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity. Desalination, 190(1-3), 43-50. https://doi.org/10.1016/j.desal.2005.08.004.
- [73] Niu, J., Bao, Y., Li, Y., Chai, Z. (2013). Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2–Sb electrodes. Chemosphere, 92(11), 1571-1577. <u>https://doi.org/10.1016/j.chemosphere.2013.04.035</u>.
- [74] Maharana, D., Xu, Z., Niu, J., Rao, N. N. (2015). Electrochemical oxidation of 2,
 4, 5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes. Chemosphere, 136, 145-152.
 https://doi.org/10.1016/j.chemosphere.2015.04.100.
- [75] Xu, Z., Liu, H., Niu, J., Zhou, Y., Wang, C., Wang, Y. (2017). Hydroxyl multiwalled carbon nanotube-modified nanocrystalline PbO2 anode for removal of pyridine from wastewater. Journal of hazardous materials, 327, 144-152. <u>https://doi.org/10.1016/j.jhazmat.2016.12.056</u>.
- [76] Duan, X., Xu, F., Wang, Y., Chen, Y., Chang, L. (2018). Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution. Electrochimica Acta, 282, 662-671. <u>https://doi.org/10.1016/j.electacta.2018.06.098</u>.
- [77] Suwal, S., Doyen, A., Bazinet, L. (2015). Characterization of protein, peptide and amino acid fouling on ion-exchange and filtration membranes: Review of current

and recently developed methods. Journal of Membrane Science, 496, 267-283. https://doi.org/10.1016/j.memsci.2015.08.056.

- [78] Panizza, M., Oturan, M. A. (2011). Degradation of Alizarin Red by electro-Fenton process using a graphite-felt cathode. Electrochimica Acta, 56(20), 7084-7087. <u>https://doi.org/10.1016/j.electacta.2011.05.105</u>.
- [79] Comninellis, C., Pulgarin, C. (1991). Anodic oxidation of phenol for waste water treatment. Journal of applied electrochemistry, 21, 703-708. <u>https://doi.org/10.1007/BF01034049</u>.
- [80] Zhao, B. X., Li, X. Z., Peng, W. (2007). Degradation of 2, 4-dichlorophenol with a novel TiO₂/Ti-Fe-graphite felt photoelectrocatalytic oxidation process. Journal of Environmental Sciences, 19(8), 1020-1024. <u>https://doi.org/10.1016/S1001-0742(07)60165-X</u>.
- [81] Giraldo, A. L., Erazo-Erazo, E. D., Flórez-Acosta, O. A., Serna-Galvis, E. A., & Torres-Palma, R. A. (2015). Degradation of the antibiotic oxacillin in water by anodic oxidation with Ti/IrO2 anodes: evaluation of degradation routes, organic by-products and effects of water matrix components. Chemical Engineering Journal, 279, 103-114. <u>https://doi.org/10.1016/j.cej.2015.04.140</u>.
- [82] Asim, S., Zhu, Y., Batool, A., Hailili, R., Luo, J., Wang, Y., Wang, C. (2017). Electrochemical treatment of 2, 4–dichlorophenol using a nanostructured 3D–porous Ti/Sb–SnO2–Gr anode: Reaction kinetics, mechanism, and continuous operation. Chemosphere, 185, 11-19. https://doi.org/10.1016/j.chemosphere.2017.06.125.
- [83] Li, W., Liu, G., Miao, D., Li, Z., Chen, Y., Gao, X., ... & Yu, Z. (2020). Electrochemical oxidation of Reactive Blue 19 on boron-doped diamond anode with different supporting electrolyte. Journal of Environmental Chemical Engineering, 8(4), 103997. <u>https://doi.org/10.1016/j.jece.2020.103997</u>.
- [84] Liang, C., Wang, Z. S., Bruell, C. J. (2007). Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere, 66(1), 106-113. <u>https://doi.org/10.1016/j.chemosphere.2006.05.026</u>.
- [85] Mora-Gómez, J., García-Gabaldón, M., Carrillo-Abad, J., Montañés, M. T., Mestre, S., Pérez-Herranz, V. (2020). Influence of the reactor configuration and the supporting electrolyte concentration on the electrochemical oxidation of Atenolol using BDD and SnO2 ceramic electrodes. Separation and Purification Technology, 241, 116684. <u>https://doi.org/10.1016/j.seppur.2020.116684</u>.
- [86] Ushani, U., Lu, X., Wang, J., Zhang, Z., Dai, J., Tan, Y., ... & Zhen, G. (2020). Sulfate radicals-based advanced oxidation technology in various environmental remediation: A state-of-the-art review. Chemical Engineering Journal, 402, 126232. <u>https://doi.org/10.1016/j.cej.2020.126232</u>.
- [87] Tully, F. P., Ravishankara, A. R., Thompson, R. L., Nicovich, J. M., Shah, R. C., Kreutter, N. M., & Wine, P. H. (1981). Kinetics of the reactions of hydroxyl radical with benzene and toluene. The Journal of Physical Chemistry, 85(15), 2262-2269. <u>https://doi.org/10.1021/j150615a025</u>.
- [88] Li, Q., Zhang, Q., Cui, H., Ding, L., Wei, Z., Zhai, J. (2013). Fabrication of cerium-doped lead dioxide anode with improved electrocatalytic activity and its

application for removal of Rhodamine B. Chemical Engineering Journal, 228, 806-814. <u>https://doi.org/10.1016/j.cej.2013.05.064</u>.

- [89] Song, S., Fan, J., He, Z., Zhan, L., Liu, Z., Chen, J., Xu, X. (2010). Electrochemical degradation of azo dye CI Reactive Red 195 by anodic oxidation on Ti/SnO2–Sb/PbO2 electrodes. Electrochimica Acta, 55(11), 3606-3613. <u>https://doi.org/10.1016/j.electacta.2010.01.101</u>.
- [90] Nidheesh, P. V., Gandhimathi, R. (2012). Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination, 299, 1-15. <u>https://doi.org/10.1016/j.desal.2012.05.011</u>.
- [91] Ma, P., Ma, H., Sabatino, S., Galia, A., Scialdone, O. (2018). Electrochemical treatment of real wastewater. Part 1: Effluents with low conductivity. Chemical Engineering Journal, 336, 133-140. <u>https://doi.org/10.1016/J.CEJ.2017.11.046</u>.
- [92] Zhang, C., He, Z., Wu, J., Fu, D. (2015). The peculiar roles of sulfate electrolytes in BDD anode cells. Journal of The Electrochemical Society, 162(8), E85. DOI: 10.1149/2.0361508jes

Fig. 1. (a) Experimental set-up; Procedures and principle of (b) ED and (c) ED-AO. (1): ED cell; (2): Power supply; (3) and (4): Multimeters; (5): Peristaltic pump; (6): SS electrode; (7): SS electrode in ED process or Pb/PbO₂ electrode in ED-AO process; (8): Feed solution tank; (9): Concentrate solution tank; (10): Magnetic stirrer.

Fig. 2. SEM images of Pb/PbO₂ electrode (**a**) before electrolysis (**c**) its EDS spectrogram, (**b**) after electrolysis (**d**) its EDS spectrogram.

Fig. 3. SEM images of AMX (a) pristine membrane (d) its EDS spectrogram, (b) membrane used in ED (e) its EDS spectrogram, (c) membrane used in ED-AO (f) its EDS spectrogram. (ED and ED-AO operating conditions: i = 20 mA cm⁻², [MO]₀ = 25 mg L⁻¹, natural pH (≈ 6.8) and [Na₂SO₄] = 0.05 M).

Fig. 4. FTIR Spectra of AMX pristine membrane, and those used in ED and ED-AD processes.

Fig. 5. Representation of (a) CER variation, (b) decolorization rate variation and (c) COD removal and decolorization efficiencies in the ED and ED-AO processes. (ED and ED-AO operating conditions: $i = 20 \text{ mA cm}^{-2}$, $[\text{MO}]_0 = 25 \text{ mg L}^{-1}$, natural pH (≈ 6.8) and $[\text{Na}_2\text{SO}_4] = 0.05 \text{ M}$).

Fig. 6. Representation of (a) CER variation, (b) COD removal rate, (c) decolorization rate variation and (c) pseudo-first-order kinetics for different applied current densities. (ED-AO operating conditions: $[MO]_0 = 25 \text{ mg L}^{-1}$, natural pH (≈ 6.8) and $[Na_2SO_4] = 0.05 \text{ M}$).

Fig. 7. Representation of (a) CER variation, (b) COD removal and decolorization efficiencies for different initial MO concentrations. (ED-AO operating conditions: $i = 25 \text{ mA cm}^{-2}$, natural pH (≈ 6.8) and [Na₂SO₄] = 0.05 M).

Fig. 8. Representation of (a) decolorization rate variation, (b) COD removal rate values and (c) pseudo-first-order kinetics for different pHs. (ED-AO operating conditions: $i = 25 \text{ mA cm}^{-2}$, $[\text{MO}]_0 = 25 \text{ mg L}^{-1}$ and $[\text{Na}_2\text{SO}_4] = 0.05 \text{ M}$).

Fig. 9. Representation of (a) decolorization rate variation, (b) COD removal rate, (c) pseudo-first-order kinetics and (d) CER variation for different supporting electrolyte (Na₂SO₄) concentrations. (ED-AO operating conditions: i = 25 mA cm⁻², [MO]₀ = 25 mg L⁻¹, and natural pH (≈ 6.8)).

Fig. 10. MO degradation efficiency (decolorization and COD removal) and CER value at the end of ED-AO experiment using Pb/PbO₂ electrode for 10 cycles. (ED-AO operating conditions: i = 25 mA.cm⁻², [MO]₀ = 25 mg L⁻¹, natural pH (≈ 6.8) and [Na₂SO₄] = 0.1 M).

Table 1

Chemical elements analysis results of Pb/PbO_2 electrode surface by EDS before and

after electrolysis.

Pb/PbO2 electrode	Atomic percentage (%)			
	Pb	0	С	
Before electrolysis	67.30	20.67	12.03	
After electrolysis	39.45	60.55	0	

Table 2

Chemical elements analysis results of the membrane surface by EDS.

AMX	Atomic	Atomic percentage (%)					
	С	Ο	Cl	Ν	S		
Pristine membrane	82.88	6.73	5.22	5.16	0		
Membrane used in ED	68.84	12.65	0	16.14	2.37		
Membrane used in ED-AO	66.85	18.38	0	11.64	3.13		

Table 3

Pseudo-first-order kinetic parameters.

Parameter	Value	e	$k(10^{-2} \min^{-1})$	R ²
$i (\text{mA cm}^{-2})$	1		0.24	0.9972
	7.5		0.31	0.9985
	15		0.66	0.9848
	20		0.73	0.999
	25		0.99	0.9973
	30		1.04	0.998
pН	1.5		3.70	0.9786
	3		2.18	0.9887
	6.8		0.94	0.9956
	8.5		0.86	0.9994
	11.5		0.81	0.9984
[Na ₂ SO ₄]	0.025		0.85	0.9989
(M)	0.05		0.94	0.9956
0.	0.1	Part 1	3.39	0.9779
	0.1	Part 2	1.91	0.9655
	0.2	Part 1	4.34	0.9974
	0.2	Part 2	2.13	0.9309
	0.4	Part 1	5.21	0.991
	0.4	Part 2	2.02	0.9797

Highlights

- Electrodialysis membranes fouling leads to the increase of cell electrical resistance.
- ED-AO coupling reduces successfully the AMX membrane fouling by organics.
- ED-AO coupling intensifies the decolorization and COD removal.

- Hybrid ED-AO efficiency strongly depends on the current density, organic pollutant concentration, pH of feed solution and concentration of supporting electrolyte.

Graphical Abstract

Click here to access/download;Graphical Abstract;Graphical abstract.tif 👱

●: Methyl orange (MO); ●: Hydroxyl radicals ('OH); ●: Cation and ●: Anion of supporting electrolyte.

Declaration of interests

⊠The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Dr. Ahmed Mehellou Laboratory of applied chemistry and environment (LCAE), Department of Chemistry, Faculty of Exact Sciences, University of El Oued, 39000, El Oued, Algeria Email: <u>mehellou-ahmed@univ-eloued.dz</u>

Statement of novelty and significance

Water pollution by organic dyes is considered one of the most dangerous pollution forms. Numerous methods have been investigated for the treatment of such pollution. However, very few works have been reported on the study treating this type of pollution by electrodialysis process. This is probably due to the problem of membranes fouling by dye molecules.

In this work, a new combination of electrodialysis/anodic oxidation (ED-AO) was achieved, in order to intensify the degradation of an organic dye and to solve the problem of membranes fouling by this pollutant. The results show an excellent performance of the hybrid ED-AO system.