
HAL Id: hal-04396175
https://hal.science/hal-04396175v1

Submitted on 16 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Physics-aware modelling of an accelerated particle cloud
Emmanuel Goutierre, Christelle Bruni, Johanne Cohen, Hayg Guler, Michèle

Sebag

To cite this version:
Emmanuel Goutierre, Christelle Bruni, Johanne Cohen, Hayg Guler, Michèle Sebag. Physics-aware
modelling of an accelerated particle cloud. MLPS 2023 - Machine Learning and the Physical Sciences
Workshop 23023 - At the 37th conference on Neural Information Processing Systems (NeurIPS), Dec
2023, New Orleans, United States. �hal-04396175�

https://hal.science/hal-04396175v1
https://hal.archives-ouvertes.fr


Physics-aware Modeling of an Accelerated Particle
Cloud

Emmanuel Goutierre
Université Paris-Saclay, CNRS

LISN, 91190 Gif-sur-Yvette, France
IJCLab, 91405 Orsay, France

emmanuel.goutierre@upsaclay.fr

Christelle Bruni
Université Paris-Saclay, CNRS
IJCLab, 91405 Orsay, France

Johanne Cohen
Université Paris-Saclay, CNRS

LISN, 91190 Gif-sur-Yvette, France

Hayg Guler
Université Paris-Saclay, CNRS
IJCLab, 91405 Orsay, France

Michèle Sebag
Université Paris-Saclay, CNRS, INRIA

LISN, 91190 Gif-sur-Yvette, France

Abstract

Particle accelerator simulators, pivotal for acceleration optimization, are compu-
tationally heavy; surrogate, machine learning-based models are thus trained to
facilitate the accelerator fine-tuning. While these current models are efficient, they
do not allow for simulating the beam at the individual particle-level. This paper
adapts point cloud deep learning methods, developed for computer vision, to model
particle beams.

1 Introduction

In the field of particle accelerator physics, simulators are crucial for optimizing the acceleration
process. These simulators generate (macro-)particles and track their trajectories through the ac-
celerator. They provide data on various parameters such as the beam barycenter, size, charge and
emittance of beams. They can provide all information for the simulated particles to support in-depth
analysis. Monitoring this information is fundamental for effectively controlling particle beams during
acceleration. However, a notable drawback of existing simulators is that they are computationally
heavy, often limiting their extensive usage.

Machine learning (ML) surrogate models emerge as a promising solution to address the computational
challenges encountered with traditional simulators in particle accelerator physics. These models
efficiently generate statistical data about beam properties [4]. However, a significant gap in their
functionalities is that they do not provide detailed information about the individual particles within
the beams, which is only delivered through tracking particles in traditional simulators. This gap
hinders the full grasp of the beam 6D phase space with ML-based models.

This paper is thus devoted to enhancing these surrogate models, allowing them to handle individual
particle data. The proposed approach builds upon advancements in 3D computer vision, paving the
way to efficient handling of 2 or 3D point clouds. Specifically, PointNet [12] involves a specific
architecture for processing point sets, using a shared network to extract features from individual points
and employing a symmetric function to aggregate these features into a global representation of the set.
Considering that a particle beam can be represented as an 8D point set comprising three positional
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dimensions, three momentum dimensions, intrinsic time, and charge, it aligns naturally with the
capabilities of PointNet. 1 Overall, this paper presents the adaptation of PointNet for regression tasks
targeting particle coordinates within the beam.

2 Related Works

Surrogate models of particle accelerators. Surrogate models offer a streamlined approach to
emulating particle accelerator behaviors without the associated computational burden of direct
simulations. Neural network-based surrogates present a viable path to creating rapid and reliable
accelerator models. [4, 9, 8] utilize fully connected neural networks to forecast simulator outputs
based on the accelerator control parameters.

Polynomial chaos expansion, as highlighted in [1], aids in creating surrogate models for cyclotrons,
focusing on evaluating machine sensitivities around specific control settings. Such models have been
instrumental in enhancing multi-objective optimization processes [4]. By incorporating deconvolu-
tional layers post feed-forward stages, [5] projects the Longitudinal Phase Space of beams, while
[14] introduces a convolutional layer for initial laser distribution representation. Further advance-
ments include incorporating deep and invertible neural networks as surrogates, which are efficient
alternatives to computationally intensive physics-based models [2].

Point cloud representation. As an electron beam essentially is a set of 8D points, its representation
can benefit from advances in computer vision and computer graphic applications. Various methods
are developed to capture and analyze the spatial information contained within point clouds.

The first option is based on the voxelization of the space [19], reporting the particle density and
other average specifics in each voxel. This fixed parametric representation suffers from the tradeoff
between the precision τ and the number of voxels in τ8.

The second option pioneered by [16] is based on multiple 2d-projections of the point cloud, processed
using convolutional architectures and concatenated to define an embedding of the distribution.

The third option, introduced by PointNet [12], relies on direct processing of the points within the
point cloud. Given a set of particles {xi}in Rd sampled after distribution D, PointNet computes
D#f = {f (xi)} with f a mapping from Rd to Rd′

, and returns an aggregation of D#f through a
symmetric function g. The merit of the approach is that aggregation function g is learned and can
adapt to the varying densities and scales of the data. The versatility of this architecture inspires
numerous development of applications in computer vision, from object classification to semantic
segmentation [13, 20, 18].

3 The LinacNet approach

The proposed approach emulates the physical structure of the accelerator, involving a sequence
of N = 25 segments. Each segment operates on the beam, a set of particles emitted by the
former segment, and propagates it according to its control parameters (settings of the various
electromagnetic elements attached to the segment), aimed at specific purposes (e.g. controlling
the deviation or the diameter of the beam) through diverse physic mechanisms. In the following,
Di = {(xi,j , yi,j) , j = 1 . . . n} denotes the (ground truth) set of n particles forming the input beam
of the i-th segment, with xi,j in R8 describing the position and speed of the j-th particle and yi,j in
{0, 1} stating whether the particle is present or has been deviated before reaching segment i. The
number n of particles is set to 10,000 in the experiments.

Architectures. According to physics [17], the propagation of each particle depends on the whole
set of particles. For this reason, the propagation effectuated by the i-th segment is modeled using a
PointNet architecture. Each layer uses the GELU activation function.

Two PointNet architectures are compared (Fig. 1): in LINACNET.(a), the control settings are part of
the input of the PointNet module, whereas in LINACNET.(b), they are concatenated to the output of

1 Graph Neural Networks (GNN) constitute another way of representing interacting particles. After prelimi-
nary experiments, however, full GNN shows that beam simulator modelling is too computationally expensive. A
partial GNN architecture is considered in Section 3.
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the PointNet module. The question is whether PointNet better exploits the control settings to form
the aggregated representation of the beam or is better used to augment the aggregated representation.

The PointNet’s max operator is replaced by a weighted average operator to reflect better the overall
distribution, where the particle weight is set to the probability of its presence.

Two baseline architectures are also considered to assess the importance of particle interactions. The
first baseline architecture is a Siamese network [3], involving a (single, shared) MLP that predicts
each particle coordinates at a segment’s end based on its initial coordinates and the segment control
settings.

The second baseline architecture is GNN-like, where the aggregation operation is performed on k
local clusters. Each cluster is associated with a (uniformly sampled) particle referred to as a seed,
and particles are related to the cluster of their nearest seed. The local information of each particle
f (xi) is concatenated with the aggregation of the information of its cluster before the last regression
module. In our experiments, the number k of clusters is set to 100 (1% of the number n of particles).

Input n× d

MLP [32, 32]

Control

Shared MLP
[64, 64]

n× 64

Shared MLP [128, 256]

n× 256 Weighted Average 1× 256

Concatenate

MLP [32, 32]

Control

Shared MLP
[128, 128, 128, d]

Output n× d

PointNet Base Architecture

(a) (b)

Residual

Figure 1: LINACNET Architecture. In LINACNET.(a), the local control settings are provided as input
of the particles processed by PointNet. In LINACNET.(b), the control settings is concatenated to the
output of the PointNet. Each layer is followed by a GELU [7] activation function.

Losses and training strategies. As the whole accelerator is composed of a sequence of segments,
the global architecture of LINACNET is made of the composition of neural nets emulating segments
0 to N − 1. The loss associated with the i-th neural net includes the mean square error for every
particle (MSE: ‖x̂i,j − xi,j‖2) augmented with the cross entropy for the presence indicator yi,j (CE:
yi,j log ŷi,j +(1− yi,j) log (1− ŷi,j)). The training strategy comes into three modes. In independent
mode, each neural net receives as input the (ground truth) distribution Di and computes the loss
associated with the predicted D̂i+1, noted L(D̂i,i+1, Di+1). The weakness of the independent mode
is that it does not account for the propagation of the errors along the successive segments.
In end-to-end mode (E2E), each neural net receives as input the output of the previous segment, and
the associated loss is noted L(D̂0,i+1, Di+1).
In hybrid mode, the overall loss is a weighted combination of the independent and E2E losses:

L =

N−1∑
i=0

λL(D̂i,i+1, Di+1) + (1− λ)L(D̂0,i+1, Di+1) (1)

Experimental setting. The goal of the experiments is to comparatively investigate the merits of the
different architectures and losses, and the impact of the trade-off weight λ on the overall performance.
The overall dataset includes 14000 simulations, computed by Astra [6] and uniformly divided into a
training set (80%), a validation set (10%) and a test set (10%). The overall dimension of the control
settings is 24 [11].

The LINACNET model is trained on an Nvidia A100 SXM4 80 Go GPU. 2 The impact of the E2E vs
independent loss is investigated by varying the trade-off parameter λ in [0, 1]. The inference time per

2Using the RAdam optimizer [10], with dynamic learning rate adjustments (halving every ten epochs upon
stagnation of validation loss), with batch size 16, aggregated gradients across 4 batches and gradient clipping at
10 for stability. Training is stopped after 80 hours or after 20 epochs without a loss improvement.
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batch is 0.8 seconds, significantly faster than the 192 minutes required for a 1-core CPU to simulate
the same 16 instances in the batch with Astra.

4 Results

Hybrid loss, Overall results. For a hybrid loss with λ = .5, using architecture LINACNET.(a), the
particle predictions at the output of the accelerator are quite good, as measured from the R2 indicator
above .99 (Table 1) and as visually evidenced in Fig. 2. Most surprisingly, however, it turns out that
the end predictions are slightly (but statistically significantly) better than the predictions at the end
of the first segment (bottom line in Table 1). A tentative interpretation of this fact is that the first
segment appears to be the most complex one, particularly from a numerical viewpoint, as it increases
the particle speed from 0 to a fraction of the speed of light in this only segment.

Figure 2: Predicted vs. actual values of the particle coordinates at the end of the accelerator
for LINACNET.(a) with hybrid loss (λ = 0.5). The spread of data points along the diagonal line
underscores the low disparity of errors for the particle beam coordinates.

Table 1: LINACNET.(a), hybrid loss (λ = .5): R2 score of the model prediction over the 8 particle
coordinates.

x y z px py pz t q

R2
(
D̂0,N , DN

)
0.9918 0.9934 0.9999 0.9926 0.9926 0.9989 0.9999 0.9978

R2
(
D̂0,1, D1

)
0.9847 0.9780 0.9924 0.9754 0.9754 0.9871 0.9933 0.9956

Impact of the architecture. The histogram of the independent losses, aggregated over all segments
on the test samples and displayed in Fig. 3, shows that LINACNET.(a) dominates LINACNET.(b),
with a difference that is significant at level 10−4 after paired t-test: the impact of the control settings
associated with each segment is slightly better taken into account when provided to the PointNet
module. The significant overlap of the two histograms however suggests that the difference is not
critical for the overall result.

Impact of the architecture. The histogram of the independent losses aggregated over all segments
on the test samples and displayed in Fig. 3, shows that LINACNET.(a) dominates LINACNET.(b),
with a difference that is significant at level 10−4 after paired t-test: the impact of the control settings
associated with each segment is slightly better taken into account when provided to the PointNet
module. The significant overlap of the two histograms suggests that the difference is not critical for
the overall result.

The Siamese architecture performs significantly worse than LINACNET on the first segment (Table 2).
This result confirms the importance of particle interactions regarding the modeling of an accelerated
beam. The GNN-like model performance, though better than the Siamese, is lower than the LINAC-
NETs; this suggests that particle interactions extend beyond local neighborhoods, emphasizing the
advantage of modeling particle interactions at the global, PointNet-like level.

4



Figure 3: Impact of the LINACNET architecture
(LINACNET.(a) in blue, LINACNET.(b) in or-
ange): histograms of independent losses over all
segments (λ = 1).

Figure 4: Independent and E2E losses for dif-
ferent values of λ. The markers’ size indicates
the error’s standard deviation across the test set
(1400 samples).

Table 2: Comparative validation of LINACNET and baseline architectures on the first segment.

Architecture Loss

LINACNET.(a) 2.43 · 10−5

LINACNET.(b) 2.29 · 10−5

Siamese 2.62 · 10−4

GNN-like 1.08 · 10−4

Impact of the training strategy. The impact of the trade-off parameter λ is depicted in Fig. 4,
with two lessons. Firstly and as expected, the independent loss’s magnitude increases when the
associated weight λ decreases. Secondly, and more surprisingly, the magnitude of the E2E loss
cannot be decreased to 0, whatever the value of λ. Complementary experiments, taking inspiration
from [15] and considering the simulator modeling as the multi-objective optimization problem aimed
at minimizing both the independent and the E2E losses, have been conducted with a sophisticated
adaptive schedule of the trade-off weight λ, to no avail. Furthermore, complementary experiments
with λ = 1 (independent loss only) show that the E2E loss increases up to 105 because the errors
done in each segment cumulate and exponentially increase.

5 Discussion and Perspectives

The main contribution of this paper is to demonstrate the feasibility of predicting the whole beam
behavior in a particle accelerator. This result, original to our best knowledge, relies on adapting
computer vision approaches to the particle physics domain.

The presented experiments and the discussion shed some light on the difficulty of the compound
optimization problem associated with modelling the different segments, opening several perspectives
for further research. The first perspective is to design a curriculum learning schedule, gradually
optimizing the i-th neural net using E2E loss while freezing the i′ < i neural modules. Another
perspective, building upon the fact that a pretty small weight on the E2E loss prevents the explosion
of the errors, is to revisit the projection of the gradients proposed in [15]: the goal is to avoid any
progress made on the independent losses from deteriorating the E2E loss.
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