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permutations

Mohamed Slim Kammoun∗ Mylène Maïda†

October 24, 2023

Abstract

We study the cycle structure of words in several random permutations. We assume that the per-
mutations are independent and that their distribution is conjugation invariant, with a good control
on their short cycles. If, after successive cyclic simplifications, the word w still contains at least two
different letters, then we get a universal limiting joint law for short cycles for the word in these permu-
tations. These results can be seen as an extension of our previous work [Kammoun and Maïda, 2020]
from the product of permutations to any non-trivial word in the permutations and also as an exten-
sion of the results of [Nica, 1994] from uniform permutations to general conjugation invariant random
permutations. In particular, we get optimal assumptions in the case of the commutator of two such
random permutations.

1 Introduction and statement of the results

The object of this paper is to study the behavior of the cycles up to a fixed size for a word in several
independent conjugation invariant random permutations.

We start by recalling that the asymptotics of the short cycle structure of one permutation chosen
uniformly in the symmetric group is well known and Poisson. If we denote by Sn the symmetric group of
size n ∈ N

∗, and by #ℓσ the number of cycles of length ℓ of the permutation σ, we have :

Theorem 1.1. [Arratia et al., 2000, Theorem 3.1] For ρn following the uniform distribution on Sn, for
any d′ ≥ 1,

(#1ρn,#2ρn, . . . ,#d′ρn)
(d)−−−→

n→∞
(ξ1, . . . , ξd′),

where
(d)−−−→

n→∞
is the convergence in distribution and (ξ1, . . . , ξd′) are independent variables, where the dis-

tribution of ξℓ is Poisson with parameter 1
ℓ
.

Moreover, the joint moments converge and in particular,

E (#1ρn) −−−→
n→∞
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It is also known that the asymptotic short cycle structure for words in independent uniformly dis-
tributed permutations is Poisson. More precisely, let k > 1 be fixed and Fk := 〈x1, . . . , xk〉 be the free
group on k generators {x1, . . . , xk}. In the sequel, the index k will always refer to the number of generators.
An element w of Fk can be written

w = xεrkr . . . x
ε1
k1
,

with εj = ±1 and if kj+1 = kj then εj+1 = εj . Such a form is unique, we call it in the sequel the canonical
form of the word w.

For every group G, w = xεrkr . . . x
ε1
k1

induces a word map from the Cartesian product Gk into G by
substitution :

w : Gk → G
(g1, . . . , gk) 7→ gεrkr . . . g

ε1
k1
.

We consider the case when G = Sn, the symmetric group of size n ∈ N
∗, equipped with its composition

law. When g1, . . . , gk is a k-tuple of random permutations, their image by the word map w is again a
random permutation and one can study the distribution of its cycle structure. The more natural case to
consider is independent uniformly distributed random permutations. It has been investigated by Nica,
and more recently by Puder and coauthors. They have shown that the limiting distribution depends only
on the algebraic structure of the word w. For any word Ω, and d ∈ N

∗, Ωd denotes the composition of d
copies of the word Ω. We say that the word w is a power if there exists a word Ω 6= 1 and d ≥ 2 such that
w = Ωd. Note that any word w 6= 1 can be written w = Ωd where Ω is not a power and d ≥ 1. We have
the following :

Proposition 1.2. [Hanany and Puder, 2020, Theorem 1.3] [Nica, 1994, Theorem 1.1] Let w = Ωd 6= 1 be
a word in Fk such that d ≥ 1 and Ω is not a power. Let ρ1,n, . . . , ρk,n be independent and uniformly dis-

tributed on Sn. Then the random vector (#1w(ρ1,n, . . . , ρk,n), ρk,n), . . . ,#d′w(ρ1,n, . . . , ρk,n)) converges
in distribution to a limit that depends only on the power d and the maximal length d′ of the cycles under
consideration. Moreover, the joint moments converge also to the corresponding moments of the limiting
law. In particular,

E (#1w(ρ1,n, . . . , ρk,n)) −−−→
n→∞

ψ(d) (1)

where ψ(d) :=
∑

ℓ|d 1 is the number of divisors of the integer d.

Remarkably, the limiting law does not depend on Ω. In particular, the limiting law is the same if we
replace the word Ω by the word x1 in just one letter.

Our goal in this paper will be to explore universality for these beautiful results. Before stating ours, let
us give a few motivations to explore words in random permutations. The initial motivations of [Nica, 1994]
was related to free probability theory and the notion of asymptotic freeness. Without going too much into
the details, one can say that for a k-tuple of random matrices X1,N , . . . ,Xk,N with a prescribed joint law,
their asymptotic joint distribution in the framework of free probability theory is determined by the limit of
E( 1

N
Trw(X1,N , . . . ,Xk,N )), for any word w. If the random matrices are independent and their distribution

is unitarily invariant, the behavior of the limit is well known and related to the notion of freeness - one says
that such random matrices are asymptotically free. It was natural in this context to ask the same question
for permutation matrices. This is the point of view of Nica. As the trace of a permutation matrix is related
to the number of fixed points, one can see that the question of asymptotic freeness in this case is closely
related to the study of the short cycle structure. In the same direction, one can also mention the theory of
traffic distribution, developed by Male and coauthors (see e.g. [Male, 2020, Au et al., 2021]), exploring the
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case when unitary invariance is replaced by permutation invariance and the notion of second order freeness
introduced by Mingo and Speicher (see e.g. [Mingo and Speicher, 2006, Male, 2021]. Talking about links
with random matrix theory, [Dubach, 2021] studies the total number of cycles for the commutator of two
independent uniform permutations by using a connection with the moments in non-Hermitian random
matrices.
In a series of papers [Puder and Parzanchevski, 2015, Hanany and Puder, 2020, Magee and Puder, 2021],
Puder and coauthors use the properties of the distribution of some statistics of w(ρ1,n, . . . , ρk,n), as the
number of fixed points, short cycles etc. to characterize the algebraic properties of the word w, through
what they call the primitivity rank of the word w. Understanding w(ρ1,n, . . . , ρk,n) can then give access
to properties of the word map for other groups G.

In the present work, the goal is to extend Proposition 1.2 to a k-tuple (σ1,n, . . . , σk,n) of independent

and conjugation invariant random permutations.

Definition 1.3. For any n ≥ 1, let (σ1,n, . . . , σk,n) be random permutations in (Sn)
k. We say that

the (distribution of the) k-tuple (σ1,n, . . . , σk,n) is conjugation invariant if for any fixed permutations
σ1, . . . , σk ∈ Sn, (σ

−1
1 ◦ σ1,n ◦ σ1, . . . , σ−1

k ◦ σk,n ◦ σk) has the same distribution as (σ1,n, . . . , σk,n).

One can give several natural motivations to extend the results known for uniform permutations in this
direction. First, if we go back to the question of asymptotic freeness mentioned above, seeking for universal-
ity for these questions has always been a strong motivation. For example, the work [Benaych-Georges, 2010]
is clearly presented as an extension of [Nica, 1994] with motivations arising from free probability theory
and studies some particular conjugation invariant distributions. It is also worth mentioning a connection
with random maps : in [Budzinski et al., 2019] for example, the study of random maps is strongly related
to the study of the cycle structure of the product of two permutations, one with prescribed cycle structure
(corresponding to the faces of the map), the other being an involution without fixed points (corresponding
to the edges), both naturally inheriting conjugation invariant distributions.

Before stating our theorem, let us detail our assumptions on random permutations having few short
cycles.

Assumption 1.4. Let S1, S2 be two finite subsets of N∗. Let (σn)n∈N∗ be a sequence of random permuta-
tions (with for all n ≥ 1, σn ∈ Sn). We say that the sequence (σn)n∈N∗ has few short cycles with respect
to (S1, S2)

• in the weak sense if

∀i ∈ S1,
#iσn√
n

P−−−→
n→∞

0, (2)

and

∀i ∈ S2,
#iσn
n

P−−−→
n→∞

0, (3)

where
P−−−→

n→∞
stands for the convergence in probability,

• and in the strong sense if

∀p ∈ N
∗, c1, . . . , cp ∈ S1, lim

n→∞
E

(
p∏

i=1

(
#ciσn√

n

))
= 0 (4)

and

∀i ∈ S2, lim
n→∞

E

(
#iσj,n
n

)
= 0. (5)
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Otherwise stated, we ask for a good probabilistic control on some cycles of length less than the maxi-
mum of S1 ∪ S2. This control may be in probability for the weak version or on in mixed moments for the
strong version.

In the assumptions of our results, we will need to choose the sets S1 and S2 according to the word w
we are interested in. We detail now this choice.

For a given word w in Fk, we will alternatively use its canonical form - that we have already introduced
above : w = xεrkr . . . x

ε1
k1
, with εj = ±1 and if kj+1 = kj then εj+1 = εj - and its reduced form. Any word

w ∈ Fk can be written w := xβ1
α1 . . . x

βℓ
αℓ

with βi ∈ Z
∗, ℓ ≥ 1, αi ∈ JkK, αi+1 6= αi, where JkK = {1, . . . , k}.

We call this rewriting the reduced form of the word.
We define the following sets of integers : for any w ∈ Fk with reduced form xβ1

α1 . . . x
βℓ
αℓ

and 1 ≤ j ≤ k,
let

N ′
j(w) := {|βi|, αi = j}, N̂j(w) := {|d| : ∃β ∈ N ′

j(w), d|β} and Nj(w) := Jmax N̂j(w)K∪{N ′
j(w)+N ′

j(w)}.

Note that Nj(w) ⊂ J2max(N̂j(w))K = J2max(N ′
j(w))K.

For example, for w = x1x
3
2x

−1
1 x62, N ′

1(w) = N̂1(w) = {1},N1(w) = {1, 2}, N ′
2(w) = {3, 6}, N̂2(w) =

{1, 2, 3, 6},N2(w) = {1, 2, 3, 4, 5, 6, 9, 12}.

Our main result is the following extension of Proposition 1.2.

Theorem 1.5. Let w be a word in Fk with canonical form w = xεrkr . . . x
ε1
k1
, where k1 6= kr (there is at least

two different letters). We write w = Ωd, with Ω which is not a power and d ≥ 1.
Let σ1,n, . . . , σk,n be independent random permutations, with conjugation invariant distributions such

that ∀j ∈ JkK, the sequence (σj,n)n≥1 has few short cycles with respect to (N̂j(w),Nj(w)) in the strong
sense.

Then, for any d′ ∈ N
∗, (#1w(σ1,n, . . . , σk,n), . . . ,#d′w(σ1,n, . . . , σk,n)) converges in distribution to a

universal limit that depends only on the power d and the maximal length d′ of the cycles under consideration.
Moreover, the joint moments converge also to those of the limit.

The convergence obtained in Theorem 1.5 is a convergence in distribution and for all the moments. By
standard probabilistic arguments, that will be briefly presented at the end of Section 4, the assumptions
can be weakened to get the following corollary.

Corollary 1.6. Let w be a word in Fk with canonical form w = xεrkr . . . x
ε1
k1
, where k1 6= kr (there is at

least two different letters). We write w = Ωd, with Ω which is not a power and d ≥ 1.
Let σ1,n, . . . , σk,n be independent random permutations, with conjugation invariant distributions such

that ∀j ∈ JkK, the sequence (σj,n)n≥1 has few short cycles with respect to (N̂j(w),Nj(w)) in the weak sense.
Then, for any d′ ∈ N

∗, the random vector (#1w(σ1,n, . . . , σk,n), . . . ,#d′w(σ1,n, . . . , σk,n)) converges in
distribution to a universal limit that depends only on the power d and the maximal length d′ of the cycles
under consideration.

Let us first comment on the condition, k1 6= kr. For example, if w = x1x2x
−1
1 , w(σ1, σ2) has the same

cycle structure as σ2 so obviously there is no universality.
One can easily check the following cyclic invariance : for any σ = (σ1, . . . , σk) ∈ S

k
n and w ∈ Fk, for

any ℓ ≥ 1, i ∈ JkK,
#ℓ(σiw(σ)) = #ℓ(w(σ)σi).

Using this remark, one can check that when k1 = kr, there are 3 cases :
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• either w = 1 : in this case there is nothing to prove since w(σ) = In, that fixes all integers,

• or w = w1x
α
j w

−1
1 : in this case, the cycle structure of w(σ) is the same as that of σαj and there is no

universality,

• or w = w1w2 with w1 and w2 two words such that the canonical form of w′ := w2w1 = x
ε′
r′

k′
r′
. . . x

ε′1
k′1

satisfies k′1 6= k′r′ . In this case, the cycle structure of w′ is the same as that of w.

In other words, if, after successive cyclic simplifications, the word w still contains at least two different
letters, then, by applying this word to independent permutations with conjugation invariant distributions
and few short cycles, we get a random permutation with an universal limiting joint distribution for short
cycles.

Similar results have already been proved in the case when the permutations are uniformly chosen
among permutations with restrictions on cycle lengths in [Benaych-Georges, 2010, Theorem 3.7] (the
latter being an extension of [Neagu, 2007], in which only the fixed points of the words in permutations
were studied). They can also be seen as an extension of our previous work [Kammoun and Maïda, 2020]
for the product of permutations to any non-trivial word in the permutations. In the case of the product,
we could get optimal assumptions, requiring the permutations to have only few fixed points and cycles of
size 2. These assumptions were reminiscent of the connectivity assumptions for random maps appearing
in [Budzinski et al., 2019]. In the case when |βi| = 1, for all i ≤ ℓ, we recover the exact same assumptions.
For general words, we nevertheless require a more stringent control on short cycles, that may not be
optimal. Optimality is discussed in Section 5, it does not hold in full generality but we can show that the
assumptions we got for the product are also optimal in the case of the commutator of two permutations.

Note that in this work we focus only on short cycles but in the literature, there is also interest in
the limit shape of the Young diagram associated to the cycle structure of a random permutation. We
refer to [Cipriani and Zeindler, 2015] for further details and exact definitions. This kind of convergence
requires also the study of long cycles, which is an interesting question beyond the scope of this study.
In the framework of conjugation invariant permutations, short cycles are still very interesting since they
gives access to local events i.e. if σn and ρn are conjugation invariant random permutations such that

(#1 σn, . . . ,#ℓ σn)
d
= (#1 ρn, . . . ,#ℓ ρn) for some ℓ < n

2 , then for any 1 ≤ i1, i2, . . . , iℓ ≤ n and for any
1 ≤ j1, j2, . . . , jℓ ≤ n, the equality

P(σn(i1) = j1, . . . σn(iℓ) = jℓ) = P(ρn(i1) = j1, . . . ρn(iℓ) = jℓ)

holds true. This remark is a direct consequence, for example, of [Hamaker and Rhoades, 2022, Equation
(5.68)] (see also [Diaconis, 1989]). Theorem 1.5 can then be seen as a local convergence result.

Acknowledgements: Both authors would like to thank Maxime Février for very useful discussions. S.K.
would also like to thank Zachary Hamaker and Camille Male for bibliographical help. M.M. is partially
supported by the Labex CEMPI (ANR-11-LABX-0007-01) and S.K. is partially supported by a Leverhulme
Trust Research Project Grant (RPG-2020-103), Labex CIMI (ANR-11-LABX-0040) and an ERC Project
LDRAM (ERC-2019-ADG Project 884584).

2 Technical lemmas

The technique of proof is inspired by [Kammoun and Maïda, 2020]. It is based on a graphical representa-
tion of the image of several points by the permutations composing the word w. The strategy of the proof
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will be to identify the class of graphs giving the main contribution in the uniform case and then to show
that, under our assumptions, the non vanishing contributions are the same in the conjugation invariant
case.

Let us introduce some definitions. Some of them have already been used in [Kammoun and Maïda, 2020]
but we will need colored versions of the graphs used therein.

• We denote by G
n
ℓ the set of oriented graphs with vertices JnK having exactly ℓ (oriented) edges and

G
n the set of oriented graphs with vertices JnK. We allow here loops but not multiple edges.

We denote also by H
n
ℓ the set of oriented graphs with vertices JnK each colored by red or white and

having exactly ℓ (oriented) edges and H
n the set of oriented graphs with vertices JnK, each colored

by red or white. Given a (possibly colored) graph g we denote by Eg the set of its edges.

• Given g ∈ G
n and h ∈ H

n, we say that h is of type g and we denote it by ḣ = g if Eg = Eh i.e. g is
the non-colored version of h.

• For any σ ∈ Sn, we denote by gσ the graph with vertices JnK and oriented edges

n⋃

ℓ=1

{(ℓ, σ(ℓ))} .

• Given g ∈ G
n, we denote by

Sn,g := {σ ∈ Sn,∀(i, j) ∈ Eg, σ(i) = j} .

In other words, Sn,g is the set of permutations σ such that g is a subgraph of gσ.

• A vertex i of g is called isolated if Eg does not contain any edge of the form (i, j) or (j, i) nor a loop
(i, i). Let g ∈ G

n, we denote by g̃ the graph obtained from g after removing isolated vertices.

• A connected component of g is called trivial if it is reduced to one isolated vertex.

• Two graphs (resp. colored graphs) are isomorphic if there exists a permutation of their vertices that
preserves edges (resp. edges and colors). Let R be the equivalence relation on colored graph such
that h1Rh2 if h̃1 and h̃2 are two colored graphs that are isomorphic and Ṙ be the equivalence relation
on non-colored graph such that g1Ṙg2 if g̃1 and g̃2 two graphs that are isomorphic. We denote by
Ĥℓ := ∪n≥1H

n
ℓ /R and Ĝℓ := ∪n≥1G

n
ℓ /Ṙ the respective set of equivalence classes of ∪n≥1H

n
ℓ and

∪n≥1G
n
ℓ and we set Ĥ :=

⋃
ℓ≥1 Ĥℓ and Ĝ :=

⋃
ℓ≥1 Ĝℓ.

We will now introduce the graphs useful for our purpose. We start from an integer m and look at its
orbit along the word w(σ1, . . . , σk). If the reduced form of the word is w = xβℓ

αℓ
. . . xβ1

α1 , we perform from m
a walk of length |β1| on the graph gσα1

, then a walk of length |β2| on the graph gσα2
, etc. This will provide

the vertices and edges of the k graphs corresponding to each permutation and each vertex is colored red
if it is the entering or exiting point of the walks (see the definitions and the proof of Lemma 2.1 below for
more details). In comparison to [Kammoun and Maïda, 2020], considering graphs colored this way will
allow more accurate control to show that the graphs containing loops do not contribute to the limiting
distribution.
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• Let n ∈ N
∗ and σ = (σ1, . . . , σk) ∈ (Sn)

k. Let m ∈ JnK be fixed. For a word with canonical form
w = xεrkr . . . x

ε1
k1
, we define

im,w
0 (σ) := m, im,w

1 (σ) := σε1k1(m), . . . , im,w
r (σ) := σεrkr . . . σ

ε1
k1
(m) = w(σ)(m),

for any a ≥ 1 and 0 ≤ b ≤ r − 1,

im,w
ar+b(σ) := wa(σ)(im,w

b (σ)).

We also define the colors of the vertices as follows : the color of the vertex j with respect to the
permutation σi is given by

c
m,w
i,j (σ) = red, if





j = m and i = k1

or j = w(σ)(m) and i = kr

or ∃ℓ such that j = im,w
ℓ (σ), i ∈ {kℓ, kℓ+1} and kℓ 6= kℓ+1

,

and white otherwise.

For any i ∈ JkK, Gm,w
i (σ) ∈ G

n is the graph with vertices JnK and edges

EGm,w
i (σ) :=


 ⋃

{ℓ:kℓ=i,εℓ=1}

{(
im,w
ℓ (σ), im,w

ℓ+1 (σ)
)}

⋃


 ⋃

{ℓ:kℓ=i,εℓ=−1}

{(
im,w
ℓ+1 (σ), i

m,w
ℓ (σ)

)}

 ,

Hm,w
i (σ) ∈ H

n is the graph with vertices JnK, the color of vertex j being cm,w
i,j (σ), and edges EGm,w

i (σ).

Finally, let Ĝm,w
i (σ) and Ĥm,w

i (σ) be respectively the equivalence class of Gm,w
i (σ) and Hm,w

i (σ).

Given s ⊂ JnK, let Gs,w
i (σ) be the graph such that EGs,w

i (σ) =
⋃

m∈sEGm,w
i (σ) and let Hs,w

i (σ) be the

graph such that EHs,w
i (σ) =

⋃
m∈sEHm,w

i (σ) and the color of a vertex j is red in Hs,w
i (σ) if and only

if the color of j is red in Hm,w
i (σ) for some m ∈ s.

For example, if w = (x21x
3
2)

2, σ1 = (4, 2, 3, 8)(1, 7)(5, 6) and σ2 = (1, 2, 3, 4, 5)(9, 10), we have

G1,w
1 (σ) =

1

2 34

7
, G1,w

2 (σ) =

1 2 3 4

5
,

H1,w
1 (σ) =

1

2 34

7
, H1,w

2 (σ) =

1 2 3 4

5
.

One can notice that for any s, i and w, Gs,w
i (σ) is a subgraph of gσi

. Fro any permutation σ, the graph
gσ and all its subgraphs lie in classes of type Cγ,γ′ , that we define now.

• Let ℓ, ℓ′ ∈ N
∗, γ := (γ1, . . . , γℓ) ∈ (N∗)ℓ and γ

′ := (γ′1, . . . , γ
′
ℓ′) ∈ (N∗)ℓ

′
. We denote by Cγ,γ′ the

set of classes of graphs gγ,γ′ defined as follows : for n ≥ ℓ +
∑ℓ

i=1 γi +
∑ℓ′

i=1 γ
′
i, gγ,γ′ ∈ G

n has
ℓ + ℓ′ non trivial connected components, for any j, j′ ∈ Jℓ + ℓ′K, if j 6= j′ then j and j′ are in two

7



distinct connected components. For j ≤ ℓ′, the component containing j is a directed cycle of length
γ′j (the cycles of length 1 being loops). For ℓ′ + 1 ≤ j ≤ ℓ+ ℓ′, the component containing j has γj
edges and γj + 1 vertices : j is a vertex of incoming degree 0 and outgoing degree 1, that we call
the head, one vertex of incoming degree 1 and outgoing degree 0, that we call the tail and γj − 1
vertices of incoming degree 1 and outgoing degree 1. We call such a component straight. For example,

3

5 61

2 4 7
∈ C(1,2),(2)

(
= C(2,1),(2)

)
.

Note that the multiplicity of the entries in the vectors γ and γ
′ is relevant, but their order is not.

• By convention, we will extend the previous definition to the case when ℓ′ = 0, that is the case when
there is no loop nor cycle. In this case, for ℓ ∈ N

∗, for γ := (γ1, . . . , γℓ) ∈ (N∗)ℓ, we denote by Tγ
the class Cγ,∅ of graphs gγ having ℓ non trivial connected components, all of them being straight,
the component containing j ≤ ℓ having γj edges and these components being pairwise distinct.

For example,

3

5 61

2 4
∈ T(2,1)

(
= T(1,2) = C(2,1),∅

)
.

For a tuple γ := (γ1, . . . , γℓ) ∈ (N∗)ℓ, and h ∈ N
∗, h · γ ∈ (N∗)hℓ is the t-tuple obtained by repeating

h times the t-uple γ.

For example T3·(1,4,5) = T(1,4,5,1,4,5,1,4,5) = T(1,1,1,4,4,4,5,5,5).

• For any j ∈ JkK, we define γi(w) := (|βj |)αj=i, and γ(w) := (γ1(w), . . . , γk(w)).

For example, for w = x41x
−3
2 x23x

5
2, γ

1(w) = (4), γ2(w) = (3, 5) and γ3(w) = (2).

The structure of the graphs and their colored versions follow the following rules :

Lemma 2.1. Let w be a word in Fk with reduced form w = x
βq
αq . . . x

β1
α1 , with q ≥ 2 and 1 ≤ i ≤ k. For

any s ⊂ JnK,

1. A connected component of Hs,w
i (σ) either is a cycle or is straight.

2. A connected component of Hs,w
i (σ) has at least one red vertex.

3. If a connected component of Hs,w
i (σ) has exactly one red vertex, then it is a cycle of length d dividing

βℓ for some ℓ such that αℓ = i.

4. If a connected component of Hs,w
i (σ) is straight, then the head and the tail are red.

5. If a connected component of Hs,w
i (σ) has exactly two red points, then it is either
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• a straight component of length |βℓ| for some ℓ such that αℓ = i,

• a cycle of length |βℓ|+ |βℓ′ | for some ℓ, ℓ′ such that αℓ = αℓ′ = i,

• a cycle of length j < |βℓ| for some ℓ such that αℓ = i.

6. Under the condition w(σ)(m) = m, if ℓ is red in Hs,w
i (σ) , then it is red in Hs,w

j (σ) for some j 6= i.

Proof. Let w = x
βq
αq ...x

β1
α1 and σ = (σ1, . . . , σk). For eachm, we can describe the sequence im,w

0 (σ), . . . , im,w
r (σ)

as follows : starting from m, we perform a walk of length |β1| on the graph gσα1
, following the oriented

edges if β1 > 0 or going backward if β1 < 0, then, after |β1| steps, we walk the same way on gσα2
during

|β2| steps etc. The colored graph Hm,w
i (σ) is then the part of gσi

explored by this process where each
vertex is colored by red if and only it is the entering or exiting point for one of the walks. Given this
description, the proof of the lemma is straightforward.

We gather hereafter several technical bounds that we will need in the proofs of our main results. For
σ ∈ Sn and j ∈ JnK, cj(σ) is the length of the cycle of the permutation σ containing j.

For a graph g of class Tγ , the probability of the event {σn ∈ Sn,g} is controlled by the length of the cycle
of a given point, say 1. This is stated in the following lemma that we recall from [Kammoun and Maïda, 2020]:

Lemma 2.2. Let γ := (γ1, . . . , γℓ) ∈ (N∗)ℓ and n ≥ v := ℓ +
∑ℓ

i=1 γi. For any graph g ∈ G
n of class Tγ

and σn a random permutation with conjugation invariant distribution, we have

(
1−

ℓ∑

i=1

P(c1(σn) ≤ γi)−
ℓ− 1

n− 1

ℓ∑

i=1

γi

)
≤ P(σn ∈ Sn,g)(n − ℓ)!

(n− ℓ−∑ℓ
i=1 γi)!

≤ 1.

Proof. This is exactly Lemma 2.9 in [Kammoun and Maïda, 2020].

We will also need a control on P(σn ∈ Sn,g) when g is a graph of class Cγ,γ′ , with ℓ′ > 0. This will
require to look at the length of the cycles of ℓ′ given points, for example 1, . . . , ℓ′, provided they lie in
pairwise distinct cycles. More precidely, we have:

Lemma 2.3. Let γ := (γ1, . . . , γℓ) ∈ (N∗)ℓ, γ ′ := (γ′1, . . . , γ
′
ℓ′) ∈ (N∗)ℓ

′
and n ≥ v := ℓ+

∑ℓ
i=1 γi+

∑ℓ′

i=1 γ
′
i.

For ℓ′ > 0, we define

Aγ
′
=
{
σ ∈ Sn : ∀1 ≤ j ≤ ℓ′ : cj(σ) = γ′j and ,∀1 ≤ j 6= j′ ≤ ℓ′, j and j′ are not in the same cycle

}
.

1. For ℓ′ > 0, if g ∈ G
n is a graph of class Cγ,γ′ , for any random permutation σn with conjugation

invariant distribution, we have

P(σn ∈ Sn,g)(n− ℓ− ℓ′)!

(n− ℓ−∑ℓ
i=1 γi −

∑ℓ′

i=1 γ
′
i)!

≤ P(σn ∈ Aγ
′
).

Moreover,

P(σn ∈ Aγ′
) ≤ E

(
ℓ′∏

i=1

(
#γ′

i
σn

)) (n− ℓ′)!
n!

ℓ′∏

i=1

γ′i. (6)

2. If ρn is distributed according to the uniform law then,

P(ρn ∈ Aγ
′
)

(
1− ℓ

∑ℓ′

i=1(γ
′
i − 1)

n− ℓ′

)(
1− ℓ

∑ℓ
i=1 γi

n−∑ γ′i

)
≤ P(ρn ∈ Sn,g)(n − ℓ− ℓ′)!

(n − ℓ−∑ℓ
i=1 γi −

∑ℓ′

i=1 γ
′
i)!
.
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Proof. Let n ≥ v := ℓ+
∑ℓ

i=1 γi+
∑ℓ′

i=1 γ
′
i and g ∈ G

n be a graph of class Cγ,γ′ . By conjugation invariance,
one can assume without loss of generality that g = gγ,γ′ as in the definition of Cγ,γ′ above and that the
non-isolated vertices are JvK. We denote by

F := {y = (yi)ℓ+ℓ′+1≤i≤v, yi ∈ {ℓ+ ℓ′ + 1, . . . , n},pairwise distincts}

and for any y ∈ F, we denote by gy the graph isomorphic to g obtained from g by fixing the vertices
1, . . . , ℓ+ ℓ′ and, for any i ∈ {ℓ+ ℓ′ + 1, . . . , v}, replacing i by yi.

It is easy to check that, for y, y′ ∈ F, if y 6= y′, we have Sn,gy

⋂
Sn,gy′

= ∅. From there, we easily get
the first bound of point 1.:

P(σn ∈ Sn,g) =
P

(
σn ∈ ⋃y∈F Sn,gy

)

cardF
≤ P(σn ∈ Aγ

′
)

(n−ℓ−ℓ′)!
(n−v)!

.

For the second inequality of point 1., we write

E

(
ℓ′∏

i=1

γ′i
(
#γ′

i
σn

))
=

∑

(i1,...,iℓ′)∈JnKℓ′

E




ℓ′∏

j=1

1{cij (σn)=γ′
i}


 ≥

∑

(i1,...,iℓ′)∈JnKℓ′pairwise distinct

E




ℓ′∏

j=1

1{cij (σn)=γ′
i}




=
n!

(n− ℓ′)!
E




ℓ′∏

j=1

1{cj(σn)=γ′
i}




≥ n!

(n− ℓ′)!
P

(
σn ∈ Aγ′

)
.

We now go to the bound in the uniform case and define :

Bγ,γ′
:= Aγ

′
⋂



ℓ⋂

i=1

γi⋂

j=1

{
σ ∈ Sn, σ

j(i+ ℓ′) > ℓ+ ℓ′
}



Cγ,γ′
:= Aγ

′
⋂



ℓ⋂

i=1

γi⋂

j=1

{
σ ∈ Sn, σ

j(i+ ℓ′) > ℓ′
}

 = Aγ

′
⋂



ℓ′⋂

i=1

γ′
i−1⋂

j=1

{
σ ∈ Sn, σ

j(i) > ℓ+ ℓ′
}

 .

By observing that for g = gγ,γ′ ,

P(σn ∈ Sn,g|σn ∈ Sn \Bγ,γ′
) = 0,

and

P(σn ∈ Sn,g|σn ∈ Bγ,γ′
) =

(n− v)!

(n− ℓ− ℓ′)!
,

we obtain that

P(σn ∈ Sn,g) = P(σn ∈ Bγ,γ′
)

(n− v)!

(n− ℓ− ℓ′)!
.

Moreover, by definition, Bγ,γ′ ⊂ Cγ,γ′ ⊂ Aγ
′
and then

P(σn ∈ Bγ,γ′
) = P(σn ∈ Bγ,γ′ |σn ∈ Cγ,γ′

)P(σn ∈ Cγ,γ′ |σn ∈ Aγ
′
)P(σn ∈ Aγ

′
).
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For any conjugation invariant permutation,

P(σn ∈ Cγ,γ′ |σn ∈ Aγ′
) ≥ 1−

ℓ′∑

i=1

γ′
i−1∑

j=1

ℓ∑

p=1

P

(
σjn(i) = p+ ℓ′|σn ∈ Aγ′

)
= 1−

ℓ′∑

i=1

ℓ(γ′i − 1)

n− ℓ′
.

When ρn is a uniform random permutation, then conditionally to {ρn ∈ Cγ′,γ}, the restriction of ρn to
JnK \ {σj(i), 1 ≤ i ≤ ℓ, 1 ≤ j ≤ γ′i} is uniform. Therefore,

P(ρn ∈ Bγ,γ′ |ρn ∈ Cγ,γ′
) ≥ 1− ℓ

∑ℓ
i=1 γi

n−∑ γ′i
.

This concludes the proof of the lower bound in the uniform case.

3 Asymptotics of fixed points

For readability reasons, before proving the general statements, we will prove the convergence of the number
of fixed points under weaker assumptions. The statement is the following :

Theorem 3.1. Let w be a word in Fk with canonical form w = xεrkr . . . x
ε1
k1
, where k1 6= kr (there is at least

two different letters). For j ≤ k, we denote by rj := card{i, ki = j}. We write w = Ωd, with Ω which is
not a power and d ≥ 1.

Let σ1,n, . . . , σk,n be independent random permutations, with conjugation invariant distributions satis-
fying the following assumptions:

∀j ∈ JkK,∀p ∈ N
∗, c1, . . . , cp ∈ N̂j(w) such that

p∑

i=1

ci ≤ rj, lim
n→∞

E

(
p∏

i=1

(
#ciσj,n√

n

))
= 0 (7)

and

∀j ∈ JkK,∀i ∈ Nj(w), lim
n→∞

E

(
#iσj,n
n

)
= 0. (8)

Then we have that
E (#1w(σ1,n, . . . , σk,n)) −−−→

n→∞
ψ(d),

where we recall that ψ(d) is the numbers of divisors of the integer d.

In particular, in the case when d = 1, Theorem 3.1 reads :

Corollary 3.2. Let Ω ∈ Fk with canonical form Ω = xεrkr . . . x
ε1
k1

6= 1 with k1 6= kr, and which is not a
power.

Under Assumptions (7) and (8), we have that

E (#1Ω(σ1,n, . . . , σk,n)) −−−→
n→∞

1.

We start with the identification of the graphs that are contributing to the limit in the uniform case :
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Proposition 3.3. Let w = Ωd be a word such that Ω is not a power. We write the reduced form of Ω as
xβℓ
αℓ
. . . xβ1

α1 , with αℓ 6= α1. Assume that ρ1,n, . . . , ρk,n are independent and uniformly distributed on Sn.

Then, for any ĝ1, ĝ2, . . . ĝk ∈ Ĝ,

lim
n→∞

nP
(
∀i ∈ JkK, Ĝ1,w

i (ρ1,n, . . . , ρk,n) = ĝi, c1(w(ρ1,n, . . . , ρk,n)) = 1
)
=
∑

h|d

k∏

i=1

1{ĝi=T
h·γi(Ω)

},

where the sum runs over all divisors h of d and ∀i ∈ JkK, γi(Ω) = (|βj |)αj=i.

Proof. We first recall that for any random permutation τn,

E(#1(τn)) = E

(
n∑

i=1

1{ci(τn)=1}

)
=

n∑

i=1

E(1{ci(τn)=1}) =
n∑

i=1

P(ci(τn) = 1)

and if τn is conjugation invariant then P(ci(τn) = 1) = P(c1(τn) = 1) and

E(#1(τn)) = nP(c1(τn) = 1).

According to Proposition 1.2, for ρ1,n, . . . , ρk,n independent and uniformly distributed,

lim
n→∞

E(#1w(ρ1,n, . . . , ρk,n)) = ψ(d).

This is equivalent to the following:

lim
n→∞

∑

(ĝi)1≤i≤k

nP
(
∀i ∈ JkK, Ĝ1,w

i (ρ1,n, . . . , ρk,n) = ĝi, c1(w(ρ1,n, . . . , ρk,n)) = 1
)
= ψ(d).

Our candidates for being the main contributions are the k-tuples of classes (Th·γ1(Ω), . . . ,Th·γk(Ω)) with

γi(Ω) = (|βj |)αj=i and h|d. As there are ψ(d) such k-tuples, one only needs to show that

lim
n→∞

nP
(
∀i ∈ JkK, Ĝ1,w

i (ρ1,n, . . . , ρk,n) = Th·γi(Ω), c1(w(ρ1,n, . . . , ρk,n)) = 1
)
≥ 1.

We denote by t :=
∑ℓ

i=1 |βi| the total length of the word Ω and r = td the length of w. Let h|d and,
for n large enough, let j1, j2, . . . , jht−1 be ht− 1 indices in {2, . . . , n} which are two by two distinct.

Let σ := (σ1, . . . , σk) be such that

i1,w0 (σ) = 1, i1,w1 (σ) = j1, , . . . , i
1,w
ht−1(σ) = jht−1, i

1,w
ht (σ) = 1.

By construction, ∀1 ≤ i ≤ k, Ĝ1,w
i (σ) = Th·γi(Ω). To simplify the notations, for any i ∈ JkK, we denote by

gi := G1,w
i (σ). By Lemma 2.2 and independence, we have the following lower bound :

P (∀i ∈ JkK, ρi,n ∈ Sn,gi)

≥
k∏

i=1

(n − hℓi − h
∑ℓi

j=1 γ
i
j(Ω))!

(n− hℓi)!


1− h

ℓi∑

j=1

P(c1(ρn,i) ≤ γij(Ω))−
hℓi − 1

n− 1
h

ℓi∑

j=1

γij(Ω)


 ,

where ℓi is the number of non-trivial connected components of γi(Ω).
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From there, we get that

P

(
∀i ∈ JkK, Ĝ1,w

i (ρ1,n, . . . , ρk,n) = Th·γi(Ω), c1(w(ρ1,n, . . . , ρk,n)) = 1
)

≥
k∏

i=1

(n − hℓi − h
∑ℓi

j=1 γ
i
j(Ω))!

(n− hℓi)!


1−

ℓi∑

j=1

P(c1(ρn,i) ≤ γij(Ω))−
hℓi − 1

n− 1
h

ℓi∑

j=1

γij(Ω)


 (n− 1)!

(n− ht)!

Since, for any i ∈ JkK,
∑ℓi

j=1 P(c1(ρi,n) ≤ γij(Ω)) +
hℓi−1
n−1 h

∑ℓi
j=1 γ

i
j(Ω) → 0, and we get that

lim inf
n→∞

nP
(
∀i ∈ JkK, Ĝ1,w

i (ρ1,n, . . . , ρk,n) = Th·γi(Ω), c1(w(ρ1,n, . . . , ρk,n)) = 1
)

≥ lim inf
n→∞

n
1

nh
∑k

i=1

∑ℓi
j=1 γ

i
j(Ω)

nht−1 ≥ 1,

where the last inequality comes from the fact that
∑k

i=1

∑ℓi
j=1 γ

i
j(Ω) = t. This concludes the proof.

We are now ready for the proof of Theorem 3.1.

Proof. It is enough to show that, under the assumptions (7) and (8), for any ĝ1, ĝ2, . . . ĝk ∈ Ĝ,

lim
n→∞

nP
(
∀i ∈ JkK, Ĝ1,w

i (σ1,n, . . . , σk,n) = ĝi, c1(w(σ1,n, . . . , σk,n)) = 1
)
=
∑

h|d

k∏

i=1

1{ĝi=T
h·γi(Ω)}.

Let g be of class Tγ, with γ = (γ1, γ2, . . . , γℓ). Then, by Lemma 2.2, for any random permutation σn
with conjugation invariant distribution on Sn and ρn uniformly distributed we have

P(σn ∈ Sn,g) ≤
1

1− 1
n

∑ℓ
i=1 γi − ℓ−1

n−1

∑ℓ
i=1 γi

P(ρn ∈ Sn,g). (9)

Therefore, for any ε > 0, there exists n0 such that for any n ≥ n0,

P(σn ∈ Sn,g) ≤ (1 + ε)P(ρn ∈ Sn,g). (10)

Similarly, for any random permutation σn with conjugation invariant distribution on Sn satisfying As-
sumption (8), we have

P(σn ∈ Sn,g) ≥
(
1−

ℓ∑

i=1

P(c1(σn) = i)− ℓ− 1

n− 1

ℓ∑

i=1

γi

)
P(ρn ∈ Sn,g) ≥ (1− ε)P(ρn ∈ Sn,g). (11)

Therefore, if for any i ∈ JkK, there exists γi such that ĝi = Tγi , from Proposition 3.3, we get that

lim
n→∞

nP
(
∀i ∈ JkK, Ĝ1,w

i (σ1,n, . . . , σk,n) = ĝi, c1(w(σ1,n, . . . , σk,n)) = 1
)
=
∑

h|d

k∏

i=1

1{ĝi=T
h·γi(w)

}.

We now want to show that graphs containing loops do not contribute. Let g be a fixed (non-colored)
graph. If h is a colored graph such that ḣ = g, then ĥ belongs to a finite set of classes of colored graphs,
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with cardinal independent of n. Therefore, if we fix some classes of colored graphs (ĥi)1≤i≤k such that one
of the components is not straight, it is enough to show that

lim
n→∞

nP
(
∀i ∈ JkK, Ĥ1,w

i (σ1,n, . . . , σk,n) = ĥi, c1(w(σ1,n, . . . , σk,n)) = 1
)
= 0. (12)

One can assume that there exists (σ1, . . . , σk) such that c1(w(σ1,n, . . . , σk,n)) = 1 and ∀i ∈ JkK,

Ĥ1,w
i (σ1, . . . , σk) = ĥi, otherwise (12) is trivial. To simplify the notations, we denote in the sequel

hi := H1,w
i (σ1, . . . , σk), for any i ∈ JkK.

Let h̃i be the same graph as hi after removing one edge from each cycle having at least two red vertices.

In particular, h̃i and hi have the same set of non-trivial vertices. We denote by Cγi,γ′i

the class of
˙̃
hi, ℓi

and ℓ′i being the number of non-zero components of γi and γ′i respectively. Let Vi be the set of non-trivial
vertices of hi and ri is the number of red vertices of hi.

A direct consequence of Lemma 2.1 is that

card

(
k⋃

i=1

Vi

)
≤

k∑

i=1

(card(Vi)− ri/2) ≤
k∑

i=1

ℓi∑

j=1

γij +

ℓ′i∑

j=1

(
γ′j

i − 1/2
)
=: deg.

There is at most O(ndeg−1) possible k-tuples of graphs (h′i, . . . , h
′
k) such that ∀i ∈ JkK, ĥ′i = ĥi and

there exists (σ1, . . . , σk) satisfying ∀i ∈ JkK, Ĥ1,w
i (σ1, . . . , σk) = ĥ′i and c1(w(σ1, . . . , σk)) = 1. Indeed, one

need to choose at most deg − 1 non-trivial vertices in J2, nK (1 is a non-trivial vertex), and then choose
their positions (not all choices are admissible).

We have

P

(
∀i ∈ JkK, Ĥ1,w

i (σ1,n, . . . , σk,n) = ĥi, c1(w(σ1,n, . . . , σk,n)) = 1
)

≤ O(ndeg−1)P
(
∀i ∈ JkK,H1,w

i (σ1,n, . . . , σk,n) = hi

)

≤ O(ndeg−1)P
(
∀i ∈ JkK, σi,n ∈ Sn,ḣi

)

≤ O(ndeg−1)

k∏

i=1

P

(
σi,n ∈ S

n,ḣi

)

By Lemma 2.3, we have

P

(
σi,n ∈ S

n,ḣi

)
≤ P

(
σi,n ∈ S

n,
˙̃
hi

)
= O

(
n−

∑ℓi
j=1 γ

i
j−

∑ℓ′i
j=1 γ

′
j
i+ℓ′i

)
P(σ1,n ∈ Aγ

′i

). (13)

Moreover, when ℓ′i 6= 0, by Lemma 2.1, for any j ≤ ℓ′i, γ
′i
j |βℓ for some ℓ such that αℓ = i. Consequently,

using (6) and Assumption (7),

P(σi,n ∈ Aγ′i

) ≤ o(n
ℓ′i
2 )O(n−ℓ′i) = o(n−

ℓ′i
2 )

Therefore, if there exists i ≤ k such that ℓ′i 6= 0, then (12) holds.

14



We now consider the case when ∀i ≤ k, ℓ′i = 0. It means that every cycle of the hi’s has at least two
red vertices. In this case, by Lemma 2.1, we have

card

(
k⋃

i=1

Vi

)
≤

k∑

i=1

(card(Vi)− ri/2) ≤
k∑

i=1

ℓi∑

j=1

γij = deg.

The second inequality is strict as soon as one component has at least three red vertices. In this case, we

trivially bound P(σi,n ∈ Aγ′i

) by 1 in (13) to conclude the proof.
If all the components have at most two red vertices, then, by Lemma 2.1, the components are straight

or a cycle of length |βℓ|+ |βℓ′ | for some ℓ and ℓ′ or a cycle of length j < |βℓ| for some ℓ such that αℓ = i,
for some 1 ≤ i ≤ k. In this case, one can conclude similarly to the preceding case, using Assumption (7)
to conclude.

4 Proof of Theorem 1.5 and Corollary 1.6

Let us first introduce some more notations. Let λ = (λ1, . . . , λm) be a Young diagram, that is a sequence
of nonnegative integers in decreasing order λ1 ≥ . . . ≥ λm ≥ 0. It is customary to represent them with λi
empty boxes on row number i. For two Young diagrams λ, µ, we say that µ ⊂ λ if µ can be obtained from

λ by removing some rows of λ. We denote by ℓ(λ) the number of non-empty rows of λ and |λ| =∑ℓ(λ)
i=1 λi

the number of boxes of the diagram.

For example, µ = (3, 1) = ⊂ = (3, 3, 1) = λ

For any pair (λ, µ) of Young diagrams such that µ ⊂ λ, for any n ≥ ℓ(λ), an admissible filling of type
(λ, µ, n) is a filling of µ such that

• all entries are in JnK and are pairwise distinct,

• the entries in the first column are increasing,

• in every row, the first entry is the smallest entry,

• ∀i ≤ ℓ(λ), i is in a row of µ of length λi.

Let Kλ,µ,n be the number of admissible fillings of type (λ, µ, n). For example,

• K(3,1),(1),n = 0, because 1 should be in a row of µ of length 3.

• K(2,2,2,1),(2,1),n = 0, because 1, 2 and 3 should go in the first row of µ, which has only two boxes.

• K(3,3,1),(3,1),n = 2(n− 3) because the only admissible fillings in this case are of the form 1 2 j
3

and

1 j 2
3

for some 4 ≤ j ≤ n.

An important remark is that, for any Young diagram λ, we obviously have λ ⊂ λ and, for any n ≥ |λ|,

Kλ,λ,n =
(n− ℓ(λ))!

(n− |λ|)! ,
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because 1, 2, . . . , ℓ(λ) should go in the first position of each row of λ and we then complete freely the
|λ| − ℓ(λ) remaining boxes with distinct numbers between ℓ(λ) + 1 and n. By a similar argument, for any
µ ⊂ λ, there exists Cλ,µ such that for any n ≥ |λ|,

Kλ,µ,n = Cλ,µ

(n − ℓ(λ))!

(n− |µ|)! = Cλ,µn
|µ|−ℓ(λ)(1 + o(1)). (14)

Let us now go to the proof of Theorem 1.5 itself. The scheme is similar to the proof of Theorem 3.1,
except we have to follow simultaneously the trajectory of several starting points 1, 2, . . . ,m. As we will
see, a crucial point is that it is enough to consider the case when they lie in different cycles. We introduce
the following event : for a Young diagram λ, j ≤ ℓ(λ), k1, . . . , kj distinct integers in Jℓ(λ)K, we denote by

Aλ,Ω
k1,...,kj

:=
{
σ ∈ (Sn)

k,∀i ≤ j, cki(Ω(σ)) = λki

and ∀i 6= j, ki and kj lie in pairwise distinct cycles of Ω(σ)} .

It is an extension of the event Aγ′
defined in Lemma 2.3, in the sense that if λ is a Young diagram

with rows γ′1, . . . , γ
′
ℓ in decreasing order then Aλ,x1

1,...,ℓ(λ) = Aγ′
.

The first key step is the following lemma :

Lemma 4.1. Let σn and ρn be two conjugation invariant random permutations in Sn. Then the following
two properties are equivalent :

1. For any Young diagram µ, limn→∞ nℓ(µ)P
(
σn ∈ Aµ,x1

1,...,ℓ(µ)

)
= limn→∞ nℓ(µ)P

(
ρn ∈ Aµ,x1

1,...,ℓ(µ)

)
.

2. For any P ∈ R[x1, x2, . . . , xd′ ], monomial,

lim
n→∞

E (P (#1σn, . . . ,#d′σn)) = lim
n→∞

E (P (#1ρn, . . . ,#d′ρn)) .

Proof. For any m ∈ N
∗, p1, . . . , pm ∈ N,

anp1,...,pm := E

((
n∑

i=1

1{ci(σn)=1}

)p1

. . .

(
n∑

i=1

1{ci(σn)=m}

)pm
)

=
∑

1 ≤ i1
1
, . . . , i1

p1

im
1

, . . . , im
pm

≤ n

P

(
∀j ≤ m,∀s ≤ pj , cijs(σn) = j

)
.

We denote by λ the Young diagram (m, . . . ,m, . . . , 1, . . . , 1) where j appears pj times. For any j ≤ m, let

us denote by tj := card{ij1, . . . , ijpj} ≤ pj the number of distinct indices among ij1, . . . , i
j
pj and π the Young

tableau (m, . . . ,m, . . . , 1, . . . , 1) where j appears tj times so that ℓ(π) = t1 + · · ·+ tm.. Note that π ⊂ λ.
Then, by conjugation invariance of the distribution, we have,

P

(
∀j ≤ m,∀s ≤ pj , cijs(σn) = j

)
= P

(
∀j ≤ m,∀s such that 1 +

j−1∑

ℓ=1

tℓ ≤ s ≤
j∑

ℓ=1

tℓ, cs(σn) = j

)
,
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so that

anp1,...,pm =
∑

π⊂λ

nt1+...+tm(1 + o(1))




m∏

j=1

P(pj , tj)


P (∀i ≤ t1 + . . .+ tm, ci(σn) = πi)

=
∑

π⊂λ

nℓ(π)(1 + o(1))




m∏

j=1

P(pj , tj)


P (∀i ≤ ℓ(π), ci(σn) = πi) ,

where P(p, t) is the number of partitions of p with t parts.

We now denote by Bπ = {σ ∈ Sn,∀i ≤ ℓ(π), ci(σ) = πi}.
∀σ ∈ Bπ, we define fπ(σ) as follows : let πσ be the Young diagram following the cycle structure of

σ restricted to the cycles having at least one element in Jℓ(π)K. Then fπ(σ) is the filling of πσ with the
elements of the cycles of σ starting with the smallest element in each cycle and so that the first column is
increasing.

For example, for σ = (1, 7, 8)(9, 3, 2)(4, 6)(10, 13, 6)(12, 11) and π = (3, 3, 3, 2), fπ(σ) =
1 7 8
2 9 3
4 6

.

Note that for n large enough, fπ(σ) is necessarily an admissible filling of type (π, πσ , n). We have then,

P(σn ∈ Bπ) =
∑

µ⊂π

∑

f admissible filling of type (π,µ,n)

P(fπ(σn) = f).

By conjugation invariance, for any admissible filling of type (π, µ, n),

P(fπ(σn) = f)
(n− ℓ(µ))!

(n− |µ|)! = P(σn ∈ Aµ,x1

1,...,ℓ(µ))

so that

P (∀i ≤ ℓ(π), ci(σn) = πi) =
∑

µ⊂π

Kπ,µ,n

Kµ,µ,n

P

(
σn ∈ Aµ,x1

1,...,ℓ(µ)

)
.

anp1,...,pm = (1 + o(1))


nℓ(λ)P

(
σn ∈ Aλ,x1

1,...,ℓ(λ)

)
+

∑

µ⊂λ,λ6=µ

Cλµ

nℓ(λ)Kλ,µ,n

Kµ,µ,n

P

(
σn ∈ Aµ,x1

1,...,ℓ(µ)

)



= (1 + o(1))


nℓ(λ)P

(
σn ∈ Aλ,x1

1,...,ℓ(λ)

)
+

∑

µ⊂λ,λ6=µ

C ′
λ,µn

ℓ(µ)
P

(
σn ∈ Aµ,x1

1,...,ℓ(µ)

)

 ,

where in the last equality, we have used (14). By replacing σn by ρn in the previous calculus, the first
implication is direct and the other implication can be obtained by iteration on ℓ(λ).

We give now the counterpart of Proposition 3.3.
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Proposition 4.2. Let Ω a word which is not a power. Suppose that its reduced form xβℓ
αℓ
. . . xβ1

α1 , satisfies
αℓ 6= α1. Assume that ρ1,n, . . . , ρk,n are independent and uniformly distributed on Sn. Then, for any

ĝ1, ĝ2, . . . ĝk ∈ Ĝ, for any Young diagram µ,

lim
n→∞

nℓ(µ)P
(
∀i ∈ JkK, ĜJℓ(µ)K,Ω

i (ρ1,n, . . . , ρk,n) = ĝi and (ρ1,n, . . . , ρk,n) ∈ Aµ,Ω
1,...,ℓ(µ)

)

=

k∏

i=1

1{ĝi=T
|µ|·γi(Ω)

}, (15)

where we recall that |µ| =
∑ℓ(µ)

j=1 µj . Consequently, if σ1,n, . . . , σk,n are independent, with conjugation
invariant distribution satisfying Assumptions (4) and (5), then, for any Young diagram µ, we have that

P

(
(σ1,n, . . . , σk,n) ∈ Aµ,Ω

1,...,ℓ(µ)

)
= P

(
(ρ1,n, . . . , ρk,n) ∈ Aµ,Ω

1,...,ℓ(µ)

)
(1 + o(1)). (16)

Proof. A direct consequence of Proposition 1.2 and Lemma 4.1 is that for any Ω which is not a power,

P

(
(ρ1,n, . . . , ρk,n) ∈ Aµ,Ω

1,...,ℓ(µ)

)
= P

(
ρ1,n ∈ Aµ,x1

1,...,ℓ(µ)

)
(1 + o(1)).

Since, when n > |µ|,
P

(
ρ1,n ∈ Aµ,x1

1,...,ℓ(µ)

)
=

(n− ℓ(µ))!

n!
,

we have,

lim
n→∞

nℓ(µ)P
(
(ρ1,n, . . . , ρk,n) ∈ Aµ,Ω

1,...,ℓ(µ)

)
= 1.

If r is the total length of the word Ω written under its canonical form and t = r · |µ| − ℓ(µ), let
j1, . . . , jt be t indices in {ℓ(µ) + 1, . . . , n} which are two by two distinct. Let (g1, . . . , gk) be equal to

(GJℓ(µ)K,Ω
1 (σ), . . . ,GJℓ(µ)K,Ω

k (σ)) when

i1,Ω
µ1

0 (σ) = 1, i1,Ω
µ1

1 = j1, , . . . , i
1,Ωµ1

µ1r
(σ) = 1,

i2,Ω
µ2

0 (σ) = 2, i2,Ω
µ2

1 = jµ1r, . . . , i
2,Ωµ1

µ2r
(σ) = 2,

. . .

i
ℓ(µ),Ω

µℓ(µ)

0 (σ) = ℓ(µ), i
ℓ(µ),Ω

µℓ(µ)

1 (σ) = j
1+

∑ℓ(µ)−1
i=1 (r·µi−1)

, . . . , i1,Ω
µℓ(µ)

µℓ(µ)r
(σ) = ℓ(µ).

For such a k-tuple of graphs, by Lemma 2.3 and independence, we have the following lower bound :

P (∀i ∈ JkK, ρi,n ∈ Sn,gi)

≥
k∏

i=1

(n− |µ|ℓi − |µ|∑ℓi
j=1 γ

i
j(Ω))!

(n− |µ|ℓi)!


1− |µ|

ℓi∑

j=1

P(c1(ρn,i) ≤ γij(Ω))−
|µ|ℓi − 1

n− 1
|µ|

ℓi∑

j=1

γij(Ω)


 ,

where ℓi is the number of non-trivial connected components of γi(Ω).
From there, as in proof of proposition 3.3, we get that

lim inf
n→∞

nℓ(µ)P
(
∀i ∈ JkK, ĜJℓ(µ)K,Ω

i (ρ1,n, . . . , ρk,n) = T|µ|·γi(Ω) and (ρ1,n, . . . , ρk,n) ∈ Aµ,Ω
1,...,ℓ(µ)

)
≥ 1.
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This concludes the proof of (15). Using similar arguments as in the proof of Theorem 3.1, we get that if
σn satisfies Assumptions (4) and (5), then (16) holds.

We can now conclude the proof of Theorem 1.5 itself.

Proof. We assume that w = Ωd, with d ≥ 1 and Ω is not a power. Let d′ ∈ N
∗ be fixed. If σn :=

(σ1,n, . . . , σk,n) satisfy (4) and ρn := (ρ1,n, . . . , ρk,n) are independent and uniformly distributed, we want
to show that (16) implies that for any monomial P,

lim
n→∞

E (P (#1w(σn), . . . ,#d′w(σn))) = lim
n→∞

E (P (#1w(ρn), . . . ,#d′w(ρn))) . (17)

Indeed, it was proved in [Nica, 1994] that the right handside depends only on d and P. The first remark
is that, for any monomial P, there exists a polynomial Q, such that for any fixed σ := (σ1, . . . , σk),

P (#1w(σ), . . . ,#d′w(σ)) = Q(#1Ω(σ), . . . ,#dd′Ω(σ)).

Indeed, for any j ∈ N
∗,

#1w(σ)
j =

n∑

i=1

1w(σ)j(i)=i =

n∑

i=1

1ci(w(σ)))|j

= j#jw(σ) +
∑

r|j,r 6=j

r#rw(σ).

On the other hand,

#1w(σ)
j = #1Ω(σ)

dj =
∑

r|dj
r#rΩ(σ).

Therefore, by induction, for any j ∈ N
∗, #jw(σ) can be expressed as a linear combination of {#rΩ(σ)}r|dj

and it is enough to show Theorem 1.5 in the particular case when d = 1. As a consequence of Lemma 4.1,
we have that, if for any Young diagram µ,

lim
n→∞

nℓ(µ)P
(
Ω(σn) ∈ Aµ,x1

1,...,ℓ(µ)

)
= lim

n→∞
nℓ(µ)P

(
Ω(ρn) ∈ Aµ,x1

1,...,ℓ(µ)

)
,

then for any P ∈ R[x1, x2, . . . , xd′ ], monomial,

lim
n→∞

E (P (#1Ω(σn), . . . ,#d′Ω(σn))) = lim
n→∞

E (P (#1Ω(ρn), . . . ,#dd′Ω(ρn))) .

The convergence of joint moments is therefore a direct consequence of (16) and the convergence in distri-
bution follows.

We now go to the proof of Corollary 1.6. Assume that (σ1,n, . . . , σk,n) satisfies the assumptions of
Corollary 1.6. For every j ≤ k, let τj,n be a random permutation, independent of (σ1,n, . . . , σk,n), with
Ewensn(0) distribution (that is the uniform law on the subset of Sn of permutations having exactly one
cycle). We now define, for every j ≤ k,

σ̃j,n :=

{
σj,n, if ∀i ∈ N̂j(w),

#iσj,n√
n

≤ 1,

τj,n, otherwise.

Then (σ̃1,n, . . . , σ̃k,n) satisfies the assumptions of Theorem 1.5 and (#1w(σn), . . . ,#d′w(σn)) and
(#1w(σ̃n), . . . ,#d′w(σ̃n)) have asymptotically the same distribution.
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5 Discussion about optimality

In this last section, we make a few remarks on the optimality of our conditions (4), (5), (7) and (8) on short
cycles. We hereafter only consider the case when the permutations are independent and have conjugation
invariant distributions. In several cases, in particular the commutator, We can claim that these conditions
are sharp. In [Kammoun and Maïda, 2020] we already discussed the case of the product.

5.1 Optimality for the commutator

• Assumption (4) is optimal in the sense that if, for some ℓ ≥ 1, we have

lim inf
n→∞

n−
ℓ
2 min(E((#1 σn)

ℓ),E((#1 ρn)
ℓ)) = εℓ > 0,

then lim inf
n→∞

E((#1([σn, ρn])
ℓ) ≥ E(ξℓ1) + ε2ℓ .

Indeed, one can see that if g is the class of the graph with adjacency matrix Iℓ, the event

{(ĜJℓK,[x1,x2]
1 (σn, ρn), ĜJℓK,[x1,x2]

2 (σn, ρn)) = (ĝ, ĝ)} will contribute to the limit, leading to the term
ε2ℓ in the limit.

• Similarly, Assumption (5) is optimal in the sense that if

lim inf
n→∞

(
min(E(#2 σn),E(#2 ρn))

n

)
= ε′ > 0, then lim inf

n→∞
E

(
(#1([σn, ρn]))

2
)
≥ 2 + ε′4.

Indeed, as above, if ĝ′ is the class of the graph with adjacency matrix




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , the event

{(Ĝ{1,2},[x1,x2]
1 (σn, ρn), Ĝ{1,2},[x1,x2]

2 (σn, ρn)) = (ĝ′, ĝ′)} will contribute to the limit.

5.2 Non-optimality in the general framework

On the other hand, one can find words for which the conditions are not optimal. We mention hereafter
a few examples where, by easy considerations, sometimes using our previous results on the product, one
could improve the assumptions on short cycles.

• Take for example the case w = x1x
3
2. Using our conditions in the case of the product, one could give

conditions on fixed points and two cycles of σ32, that is conditions on cycles of length 1, 3, 6 on σ2.
Our theorem gives conditions on cycles of lengths, 1, 2, 3, 6 therefore being suboptimal.

• More generally, if w = w1w2 where w1 and w2 have disjoint supports, one can try to apply the
product theorem to get weaker conditions. For example, for w = (x1x2)x3 asking that the number
of fixed points of x1x2 are less than ε

√
n and the number of two-cycles of x1x2 is less that εn can

be obtained with only conditions on fixed points of σ1,n and σ2,n.

• In a similar spirit, if for some j ≤ k, gcdN ′
j = d 6= 1 for some j, one can obtain in many cases better

conditions by considering xdj as a new subword y in w.

The table below summarizes some cases where we checked whether our conditions are optimal or not.
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w Optimality of our conditions

x1x2 Yes

x1x
2
2 Yes

[x1, x2] Yes

x1x
3
2 No

x1x2x3 No

x1x2x1x2 Yes

x21x
−2
2 Yes

x3x1x
−1
3 x2 No
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