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1. Context

Renewable energy sources are forcing power grid operators to
review their grid management strategies

Réseau de Transport d’Electricité (RTE) is developing new adaptive
zonal automatons

- Each automaton monitors a zone of the power grid (up to 40
lines) thanks to an optimization algorithm.

- An automaton can act on the power grid configuration and on the
electricity production.

- Each automaton can receive a target path or additional
information from operators to decide the appropriate actions to be
done. Examples of target path include (un)desirable configurations in
future hours or information about other zones.

2. Objective

Design a decision support assistant for the supervision
of zonal automatons able to recommend relevant target
paths/information for automatons based on the power grid's
configuration and constraints
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Example of a simulated power grid
3. Collaborative Multi-Agent Reinforcement Learning

A decentralized approach can improve the scalability
compared to traditional reinforcement learning methods.

The supervision of automatons can be modeled as a Decentralized
Partially Observable Markov Decision Process (Dec-POMDP) [1].
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Decentralized multi-agent reinforcement learning

For example, each agent can be associated with a sub-group of
automatons and their zones. At each timestep ¢:

1. Agent 7 gets an observation of the i*" sub-group of zones

2.Agent ¢ chooses an action according to its observation. An action
means here, transmitting a chosen target paths to the i™" sub-group of
automatons.

3. Actions of agents are combined and executed on the environment

4. A global reward representing the safety of the hole grid is returned

Advantages and limits:

- A decentralized strategy would allow to reduce the observation
and action space and enable inference in parallel.

- Literature lacks decentralized policies under stochastic conditions

4. How to emulate a zonal automaton?

To obtain reasonable computation times during training, we need
a trade-off between speed and realism.

We will try to emulate an automaton with a RL agent able to:
1. Operate the grid

2. Follow a target setpoint

We designed an agent able to operate a 14-nodes power grid
by controlling storage power

Performance of our agent on a 14-nodes simulated power grid
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We designed an agent able to follow a storage charge setpoint

We got interesting results about:
- how to penalize deviations from the setpoint.

-the impact of hyperparameters.

-the ability to generalize to other shapes of setpoint which is
great as depicted in the figure below.
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Open questions

1.How to model network configuration under different levels of
uncertainties and agents' objectives?

2.How do Dec-POMDP methods perform under transient network
configuration and with hundreds of nodes?

3.How to combine model-based MARL and Dec-POMDP to have
a performance independent of reward function and avoid reward
hacking?
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