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Abstract

For partially ordered sets X we consider the square matrices MX

with rows and columns indexed by linear extensions of the partial
order on X. Each entry

(
MX

)
PQ

is a formal variable defined by a
pedestal of the linear order Q with respect to linear order P. We show
that all the eigenvalues of any such matrix MX are Z -linear combi-
nations of those variables.

1 The statement of the main result

Let X = {α1, ..., αn} be a partially ordered set with the partial order 4 . A
linear extension P of 4 is a bijection P : X → [1, ..., n], such that for any
pair αi, αj, satisfying αi 4 αj we have P (αi) ≤ P (αj) . We denote by TotX
the set of all such linear extensions (i.e. total orders extending 4).
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Let P,Q be two linear extensions of 4 . We call the node Q−1 (k) ∈ X
a (P,Q)-disagreement node iff P (Q−1 (k − 1)) > P (Q−1 (k)) . The index
k is called the disagreement index. By definition, the node Q−1 (1) is a
(P,Q)-agreement node. With every pair P,Q we associate the function εPQ :
{1, ..., n− 1} → {0, 1} , given by

εPQ (k) =

{
1 if Q−1 (k + 1) is a (P,Q)-disagreement node,

0 otherwise.
(1)

Note that for some pairs (P,Q) 6= (P ′, Q′) the functions εPQ, εP ′Q′ can
coincide (see the Examples section).

To formulate our main result we denote by E = {ε : {1, ..., n− 1} → {0, 1}}
the set of all 2n−1 different ε functions, and we associate with every ε a cor-
responding formal variable aε. For any poset X consider the square matrix
MX , whose matrix elements are indexed by the pairs (P,Q) , and are given
by
(
MX

)
PQ

= aεPQ
.

For example, the poset (X,4) with three elements and one relation: X =
{{u, v, w}, u < v} has three linear extensions of 4: u < v < w, u < w <
v, w < u < v. Let P be the linear extension u < v < w and Q – the linear
extension u < w < v. We have εPQ = (0, 1) since 2 is an agreement index
(u < v in both Q and P ) and 3 is a disagreement index (w < v in Q but not
in P ). The matrix MX is  a00 a01 a10

a01 a00 a10

a01 a10 a00

 . (2)

The eigenvalues of this matrix are a00−a01, a00−a10 and a00+a01+a10, so
they are Z-linear combinations of the letters entering the matrix. One of us
(O.O.) conjectured that it holds (the eigenvalues are Z-linear combinations
of the letters entering the matrix MX) for every poset X. Below we present
the proof of this conjecture:

Theorem 1 For every poset X the eigenvalues of the matrix MX are linear
combinations of the variables aε with integer coefficients.

The matrices MX were introduced in the paper [OS]. It is proven there
that the row sums

∑
Q

(
MX

)
PQ

do not depend on the row P, so the matrix

MX is ‘stochastic’ (up to scale), and ΠX ({aε}) =
∑

Q

(
MX

)
PQ

is its main
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eigenvalue. In [OS] the corresponding sums are called the ‘pedestal polyno-
mials’. They enter into the expression for the generating functions of the
monotone functions f : X → {0, 1, 2, ...} (e.g. the generating function of the
number of plane partitions, spacial partitions, etc.):

∑
monotone f :X→{0,1,2,...}

t
∑

x∈X f(x) = ΠX (t)
n∏
k=1

1

1− tk
, (3)

where the polynomial ΠX (t) is obtained from ΠX ({aε}) by the substitution

aε  t
∑n−1

k=1 kε(k).

We put into the Appendix the relevant combinatorial facts about the pedestals
and pedestal polynomials.

Our main tool is the filter semigroup of operators MX
F , introduced in the

next section. They have appeared first in [BHR, BD], where their spectral
properties were studied. In fact, part of Theorem 1 can be obtained from
Thm 1.2 in [BHR]. We give a shorter and more direct proof.

The next section contains some general facts about posets. It is followed
by the section containing proofs.

2 The filter semigroup

At the end of this section we will introduce the filter semigroup. But it is
easier to describe it geometrically, as the face semigroup of a hyperplane
arrangement, which we do first.

2.1 Faces

Consider the central real hyperplane arrangement An consisting of hyper-
planes {Hij : 1 ≤ i < j ≤ n} in Rn defined by Hij = {(x1, ..., xn) : xi = xj} .
Every open connected component of the complement Rn \ {∪Hij} is called a
chamber. A cone is any union of closures of chambers, which is convex. Let
us introduce the (finite) set O (n) of all different cones thus obtained.

Let a poset X of n elements be given, with a binary relation 4. To every
pair i, j ∈ X which is in the relation i 4 j there corresponds a half-space
Kij = {xi ≤ xj} ⊂ Rn (here we assume that X is identified with {1, 2, . . . , n}
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as a plain set, ignoring the order). Consider the cone

A (X,4) =

{ ⋂
i,j:i4j

Kij

}
∈ O (n)

where the intersection is taken over all pairs i, j such that i 4 j.

The following statements are well-known (and easy to prove), see [B, D,
Sa, St].

Claim 2 The above defined correspondence (X,4)→ A (X,4) is a one-to-
one correspondence between the set of all partial orders on {1, 2, ..., n} and
the set of all cones O (n).

We present an illustration of this claim for n = 4 on Fig.1:

Figure 1: The central real hyperplane arrangement A4 in R4, projected to R3 along the
line x = y = z = t and intersected with the sphere S2 ⊂ R3. It is a partition of S2 into 24
equal triangles, each with the angles

(
π
2 ,

π
3 ,

π
3

)
. The types of convex unions of the triangles

are: the sphere, the hemisphere, the region between two great semicircles, an elementary
triangle – or e-triangle, a pair of e-riangles with a common side, a triangle made from
three e-triangles, a ‘square’ formed by four e-triangles with a common π

2 -vertex, a triangle
made from a ‘square’ and a fifth adjacent e-triange, a triangle formed by six e-triangles
with a common π

3 -vertex. The number of corresponding convex shapes are 1, 12, 60, 24,
36, 48, 6, 24, 8, with total being 219. This is precisely the number of partial orders on the
set of four distinct elements, see the sequence A001035 in OEIS [Sl].

Let f ′, f ′′ be two faces in A(X) = A (X,4) . (It is allowed that one or both
of them are in fact chambers, i.e. faces of highest dimension). Define the face
f = f ′′ (f ′) ∈ A (X) – or the face-product f ′′f ′ – by the following procedure:
choose points x′ ∈ f ′, x′′ ∈ f ′′ in general position and let sx′x′′ : [0, 1]→ Rn be
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a linear segment, sx′x′′ (0) = x′, sx′x′′ (1) = x′′. Consider the face f ∈ A (X)
which contains all the points sx′x′′ (1− ε) of our segment for ε > 0 small
enough. Such a face does exist due to the convexity of A(X). By definition,
f ′′ (f ′) = f. Note that if f ′′ is a chamber then f ′′f ′ = f ′′.

The face-product is associative. We mention for completeness that the
semigroups A (X,4) are what are called left-regular bands, see [Sa]:

Claim 3 For every choice of faces f, g, h ∈ A (X,4) we have

f (gh) = (fg)h,

ff = f, fgf = fg.

We do not give here the proofs as we are not using these relations.

2.2 Filters

Let F be a filter on X of rank k, i.e. a surjective map F : X → {1, ..., k} ,
preserving the partial order, and let

{b1, ..., bj1} , {bj1+1, ..., bj2} , ...,
{
bjk−1+1, ..., bjk

}
⊂ X

be its ‘floors’: {
bjr−1+1, ..., bjr

}
= F−1 (r) , r = 1, ..., k.

Consider the face fF ∈ A (X,4) , defined by the equations

xbjr−1+1
= ... = xbjr , r = 1, ..., k

and inequalities

xbj1 < xbj2 < ... < xbjk .

(More precisely, we write an equation for every floor of F which contains at
least two elements of X.) This is a one-to-one correspondence between faces
and filters. The filters of the highest rank n, i.e. the linear extensions of 4,
correspond to the chambers.

The corresponding filter-product looks as follows. For F ′, F ′′ being two
filters of X, the filter F = F ′′F ′ on X is uniquely defined by the following
properties:
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• For u, v with F ′′ (u) < F ′′ (v) we have F (u) < F (v) .

• For u, v with F ′′ (u) = F ′′ (v) we have F (u) < F (v) iff F ′ (u) < F ′ (v) .

Indeed, let f ′, f ′′ be the two faces, corresponding to the filters F ′, F ′′, and
the general position points x′, x′′ belong to corresponding faces.

The fact that F ′′ (u) < F ′′ (v) means that x′′u < x′′v. But the point
sx′x′′ (1− ε) is close to the point x′′, therefore [sx′x′′ (1− ε)]u < [sx′x′′ (1− ε)]v
for all ε small enough.

The fact that F ′′ (u) = F ′′ (v) while F ′ (u) < F ′ (v) means that x′′u = x′′v
while x′u < x′v. Since the map sx′x′′ : [0, 1] → Rn is linear, for any t < 1 we
have [sx′x′′ (t)]u < [sx′x′′ (t)]v .

Let F be a filter on X, and P is some filter of rank n, i.e. a linear order
on X. Then the filter FP is again a filter of rank n. Consider the square

matrix MX
F =

∥∥∥(MX
F

)
P,Q

∥∥∥ where P,Q are linear orders on X :

(
MX

F

)
P,Q

=

{
1 if Q = FP
0 if Q 6= FP

.

The operators MX
F play a central role in our proof.

Examples of the operators MX
F are given in the Example section below.

3 Proof of the main result

The plan of the proof is the following:

1. We will show that the matrix MX can be written as a linear combina-
tion of MX

F -s with integer coefficients.

2. We will show that all MX
F -s can be made upper-triangular via conjuga-

tion with the same matrix, and the resulting upper-triangular matrices
have integer entries on the diagonal.

3.1 The filter decomposition

Let us rewrite MX as the sum over all 2n−1 functions ε : {1, ..., n− 1} →
{0, 1}:

MX =
∑
ε

aεBX,ε, (4)
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where the entries of each matrix BX,ε are 0 or 1.

For every function ε we define the number r (ε) = 1 +
∑n−1

j=1 ε (j) , and we
partition the segment {1, ..., n} into r (ε) consecutive segments

{1, ..., n} = {1, ..., c1}
∪ {c1 + 1, ..., c1 + c2}
∪ {c1 + c2 + 1, ..., c1 + c2 + c3} ∪ ...
∪
{
c1 + ...+ cr(ε) + 1, ..., n

}
,

where the values c1 + 1, c1 + c2 + 1, ..., c1 + ... + cr(ε) + 1 are all the points
where the function ε takes value 1.

For c1, ..., cr being integers summing up to n we denote by Fc1,...,cr the set
of all filters F : X → [1, 2, ..., r] such that |F−1 (i)| = ci for all i = 1, ..., r.

Lemma 4 Suppose that the matrix BX,ε 6= 0, and the function ε has the
parameters r and c1, ..., cr. Then the following inclusion-exclusion identity
holds:

BX,ε =
∑

F∈Fc1,...,cr

MX
F −

 ∑
F∈Fc1+c2,c3,...,cr∪
∪Fc1,c2+c3,...,cr∪...

MX
F

 (5)

+

 ∑
F∈Fc1+c2+c3,c4,...,cr∪
∪Fc1+c2,c3+c4,...,cr∪...

MX
F

− ...
where the sums are taken over all possible mergers of neighboring indices ci,
and the signs are (−1)#mergers .

Proof. Indeed, if we take an order Q from the row P which appears in the
lhs, then it agrees with P over the first c1−1 locations, then it disagrees once,
then it agrees again over next c2−1 locations, then disagrees once again, etc.
But an order Q from the row P which appears in the rhs and corresponds
to the first sum in (5) , agrees with P over the first c1 − 1 locations, then it
agrees or disagrees once, then it agrees again over next c2 − 1 locations,
then agrees or disagrees once again, etc. Therefore we have to remove all
these Q-s which agrees with P over the first c1 − 1 locations, then agrees
once again, then agrees also over next c2 − 1 locations, etc.

See the Examples section for some MX
F operators.
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3.2 Conjugation of MX
F -s to upper-triangular

Our matrices MX
F are of the size |TotX | × |TotX |. Let us now abolish all

order relations on X, getting the poset X̄ with |TotX̄ | = n! . Of course, MX
F

is a submatrix of M X̄
F . Imagine (after reindexing) that it is an upper-left

submatrix. We claim that to the right of this submatrix all matrix elements
of M X̄

F are zero, and so MX
F is a block of M X̄

F . Indeed, each row of M X̄
F has

exactly one 1, and the rest are 0-s. But each row of MX
F already has one 1.

So it is sufficient to know that the spectrum of M X̄
F consists of integers.

In what follows, the initial poset X will not appear any more, and we will
deal only with ‘totally unordered’ poset X̄. The fact that the matrices M X̄

F

can be conjugated simultaneously to upper-triangular ones can be deduced
from the results of the papers [BHR, BD]. We give a shorter and more direct
proof.

Let us consider an even bigger matrix, N X̄
F , of size 2n(n−1)/2. Here F is a

filter on X, while the rows and columns of N X̄
F are indexed by tournaments

between the n entries of X̄. A tournament is an assignment of an order
4 to each pair i 6= j of the elements of the set X̄, independently for each
pair. If we have a tournament 4 and a filter F on X̄, then we define a new
tournament 4F by the rule:

1. If F (i) = F (j) then i 4F j iff i 4 j,

2. If F (i) < F (j) then i 4F j.

We define N X̄
F by (

N X̄
F

)
44′

=

{
1 if 4′= 4F
0 if 4′ 6= 4F

Any linear order defines a tournament in an obvious way, so our matrices
M X̄

F are blocks of N X̄
F -s, and it is sufficient to study N X̄

F -s.

The key observation now is the fact that N X̄
F is a tensor product of

n (n− 1) /2 two-by-two matrices, corresponding to all pairs (i, j) , since the
tournament orders 4 can be assigned to the pairs independently. And since
the tensor product of upper triangular matrices is upper triangular, it is suf-
ficient to check our claim just for the filters and tournaments in the case
n =

∣∣X̄∣∣ = 2.

The two-element no-order set X̄ = {1, 2} carries three different filters
and has two possible tournaments. The three two-by-two matrices N X̄

F -s are
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N1 :=

(
1 0
1 0

)
, N2 :=

(
1 0
0 1

)
, and N3 :=

(
0 1
0 1

)
. Conjugating them

by the discrete Fourier transform matrix U = 1√
2

(
1 1
1 −1

)
brings them to

the triple of upper triangular matrices: UN1U
−1 =

(
1 1
0 0

)
, UN2U

−1 =(
1 0
0 1

)
, and UN3U

−1 =

(
1 −1
0 0

)
. Extending the conjugation through

the tensor product finishes the proof. �

Remark 5 Recall the definition (4) of the matrices Bµ: for a poset X,
the set of (0,1)-valued matrices {BX,ε}ε∈{0,1}{1,...,n−1} is defined by MX =∑

ε aεBX,ε. Let L(X) be the Lie algebra generated by the matrices {BX,ε}.
The proof shows that the Lie algebra L(X) is solvable.

Let us denote by ΦT the algebra of functions on the set TourX̄ of tour-
naments considered as the set {−1,+1}n(n−1)/2 ⊂ Rn(n−1)/2 of vertices of the
cube. This algebra carries an increasing filtration by subspaces

0 ⊂ Φ≤0
T ⊂ Φ≤1

T ⊂ · · · ⊂ Φ
≤n(n−1)

2
T = ΦT

consisting of restrictions of polynomials of degree ≤ 0,≤ 1, . . . to the vertices
of the cube. This filtration is strictly multiplicative in the sense that

Φ≤kT = Φ≤1
T · · · · · Φ

≤1
T︸ ︷︷ ︸

k times

.

Our considerations imply that all operators N X̄
F preserve this filtration, and

commute with each other on the associated graded space ⊕kΦ≤kT /Φ≤k−1
T . In-

deed, ΦT has basis
∏

i∈S xi where S runs through all subsets of {1, . . . , n(n−1)
2
}.

For each coordinate xi we have two commuting operators N2 =

(
1 0
0 1

)
and

(xi → −xi)∗ = N1 + N3 − N2 =

(
0 1
1 0

)
acting on the i-th tensor factor

R{−1,+1} = R[xi]/(x
2
i − 1)) preserving the filtration by degree, as well as one

extra operator (N3−N1) =

(
−1 1
−1 1

)
which strictly decreases the filtration

(it acts as 2∂xi in the basis (
∏

i∈S xi)S⊆{1,...,n(n−1)/2}). We see that on the as-

sociated graded space ⊕kΦ≤kT /Φ≤k−1
T our operators give the ones coming from

the commutative group algebra of the abelian group (Z/2Z)n(n−1)/2 acting
by involutions of coordinates.
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Restricting functions from ΦT to the subset TotX ⊂ TourX̄ we obtain
again a strictly multiplicative filtration on the algebra ΦX := RTotX of func-
tions on TotX , preserved by all operators MX

F where F runs through filters
on the poset X.

4 Appendices

4.1 Pedestals

Let again X be a finite poset with the partial order 4, and P,Q be a pair of
linear orders on X, consistent with 4 . We define the function qPQ on X by

qPQ
(
Q−1 (k)

)
= #

{
l : l ≤ k,Q−1 (l) is a (P,Q) -disagreement node

}
. (6)

Clearly, the function qPQ is non-decreasing on X, and qPQ (Q−1 (1)) = 0. It
is called the pedestal of Q with respect to P.

For example, let X be a 3× 2 Young diagram, and

P =

[
1 2 3
4 5 6

]
, Q =

[
1 2 5
3 4 6

]
be the two standard tableaux. Then

qPQ =

[
0 0 1
0 0 1

]
.

Let EP denotes the set of all pedestals qPQ. Clearly, there is a map EP → E ,
which to every pedestal qPQ corresponds its ‘discrete derivative’ εPQ.

The pedestals were introduced in [S] in the following context. Consider
the set P = PX of all non-negative integer-valued non-decreasing functions
p on X. Denote by v (p) the ‘volume’ of p :

v (p) =
∑
α∈X

p (α) ,

and let G be the following generating function:

GX (t) =
∑
k≥0

gkt
k =

∑
p∈PX

tv(p),

i.e. gk is the number of non-decreasing p-s with v (p) = k. For example, if
the poset X is in fact the set Xn = [1, 2, ..., n] , ordered linearly, then

GXn (t) =
n∏
l=1

1

1− tl
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is the generating function of the sequence gk of the number of partitions π
of the integer k into at most n parts: k = π (1) + π (2) + ... + π (n) , with
π (i) ≥ 0, π (i) ≤ π (i+ 1) . Let Yn denote the set of all such partitions π (i.e.
Young diagrams).

In order to write a formula for GX for an arbitrary poset X one needs
pedestals. Namely, let us fix some ordering P of X, consider all pedestals
qPQ, and let

ΠP (t) =
∑
Q

tv(qPQ) (7)

be the generating function (in fact, generating polynomial) of the sequence
of the number of pedestals with a given volume. Then we have the identity:

GX (t) = ΠP (t)GXn (t) ≡ ΠP (t)
n∏
l=1

1

1− tl
, (8)

(compare with (3)). In particular, it follows from (8) that the polynomial
ΠP (t) does not depend on P, and thus can be denoted by ΠX (t) . The reason
for (8) to hold is the existence of the bijection between the set PX of nonde-
creasing functions and the direct product EP × Yn, respecting the volumes.
Namely, to each pedestal qPQ and each partition π it associates the following
function p on X :

p
(
Q−1 (k)

)
= qPQ

(
Q−1 (k)

)
+ π (k) , k = 1, ..., n.

Clearly, the function thus defined is non-decreasing on X. For the check that
this is a one-to-one correspondence, see [S].

In the case when X is a (2D) Young diagram, the functions p ∈ PX are
called ‘reverse plane partitions’. The generating function GX for these is also
given by the famous MacMahon formula,

GX (t) =
∏
α∈X

1

1− th(α)
,

where h (α) is the hook length of the cell α ∈ X. That means that for the
case of X being a Young diagram nice cancellations happen in the rhs of (8) .
One can check that for some X being a 3D Young diagram no cancellations
happen in (8) , and this is the reason why the analog of the MacMahon
formula in the 3D case does not exist.
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4.2 Pedestal polynomials

The fact that the function ΠP (t) (see (7)) does not depend on the order P on
X, but only on X, has the following generalization. Instead of characterizing
the pedestal qPQ just by its volume let us associate with it the monomial
mPQ (x1, x2, x3, ...) = xl1−1

1 xl2−l12 ...xlr−lr−1
r xn−lr+1

r+1 , where r is the number of
(P,Q)-disagreement nodes, and l1, ..., lr are their locations, see (6) . Note

that mPQ (1, t, t2, ...) = tv(qPQ).

It was shown in [OS] that the polynomial

hP (x1, x2, x3, ...) =
∑

Q∈TotX

mPQ (x1, x2, x3, ...)

is also independent of P, so it can be denoted as hX (x1, x2, x3, ...) . Another
way of expressing this is to say that the matrix M̃X of size |TotX | × |TotX | ,
with entries

(
M̃X

)
PQ

= mPQ (x1, x2, x3, ...) is stochastic, i.e. the vector

(1, 1, ..., 1) is the right eigenvector, with the eigenvalue hX (x1, x2, x3, ...) .

By replacing the monomials mPQ (x1, x2, x3, ...) with variables aεPQ
one

obtains from M̃X our matrix MX .

Remark 6 As we just said, we know from [OS] that the rows of the matrix
MX consist of the same matrix elements, permuted. So it is tempting to
consider the set of permutations πPP ′ ∈ S|TotX |, which permute the elements
of the row P to these of row P ′. Unfortunately, rows of the matrix MX can
contain repeated elements, so the permutations πPP ′ are not uniquely defined.

4.3 Examples

Here we present several examples in which our posets X correspond to par-
titions; standard Young tableaux are read row by row.

0. In all examples we considered the pedestal matrix is diagonalisable in
the generic point. However for special values of variables the pedestal matrix
might have non-trivial Jordan blocks. We give a minimal example - partition
(3,1). It is essentially the same example as the one before the main theorem,
with the pedestal matrix (2), because the box (1,1) comes first in any linear
order and can be omitted.
Here it is enough to take a partial evaluation a10 7→ −2a01. Then the Jordan
form is  a00 − a01 1 0

0 a00 − a01 0
0 0 a00 + 2a01

 .
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It would be interesting to understand the regimes in which the pedestal
matrix is not diagonalisible.

1. Partition (3,2). The standard tableaux are

{1, 3, 5, 2, 4} , {1, 2, 5, 3, 4} , {1, 3, 4, 2, 5} , {1, 2, 4, 3, 5} , {1, 2, 3, 4, 5}.

The pedestal matrix M̃X is x2
1A(3,2), where

A(3,2) =


x3

1 x3
2 x2

1x2 x2
2x3 x1x

2
2

x3
2 x3

1 x2
2x3 x2

1x2 x1x
2
2

x2
1x2 x2

2x3 x3
1 x3

2 x1x
2
2

x2
2x3 x2

1x2 x3
2 x3

1 x1x
2
2

x2
2x3 x2

1x2 x3
2 x1x

2
2 x3

1

 .

After a replacement

φ : (x3
1, x

2
1x2, x1x

2
2, x

3
2, x

2
2x3)→ (a1, a2, a3, a4, a5) , (9)

we have

Aφ(3,2) =


a1 a4 a2 a5 a3

a4 a1 a5 a2 a3

a2 a5 a1 a4 a3

a5 a2 a4 a1 a3

a5 a2 a4 a3 a1

 .

The eigenvalues of Aφ(3,2) are

a1−a3 , a1+a2−a4−a5 , a1−a2+a4−a5 , a1−a2−a4+a5 , a1+a2+a3+a4+a5 .

2. Partition (3,1,1). The standard tableaux are

{1, 4, 5, 2, 3} , {1, 3, 5, 2, 4} , {1, 2, 5, 3, 4} , {1, 3, 4, 2, 5} , {1, 2, 4, 3, 5}, {1, 2, 3, 4, 5} .

The pedestal matrix is x2
1A(3,1,1) where

A(3,1,1) =


x3

1 x1x
2
2 x3

2 x2
1x2 x2

2x3 x1x
2
2

x1x
2
2 x3

1 x3
2 x2

1x2 x2
2x3 x1x

2
2

x1x
2
2 x3

2 x3
1 x2

2x3 x2
1x

2
2 x1x

2
2

x1x
2
2 x2

1x2 x2
2x3 x3

1 x3
2 x1x

2
2

x1x
2
2 x2

2x3 x2
1x2 x3

2 x3
1 x1x

2
2

x1x
2
2 x2

2x3 x2
1x2 x3

2 x1x
2
2 x3

1

 .
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After the same replacement (9) (the matrix A(3,1,1) contains the same mono-
mials as the matrix A(3,2)) we have

Aφ(3,1,1) =


a1 a3 a4 a2 a5 a3

a3 a1 a4 a2 a5 a3

a3 a4 a1 a5 a2 a3

a3 a2 a5 a1 a4 a3

a3 a5 a2 a4 a1 a3

a3 a5 a2 a4 a3 a1

 .

The eigenvalues of Aφ(3,1,1) are (the notation (y)k means that the multiplicity

of the eigenvalue y is k)

(a1−a3)2 , a1+a2−a4−a5 , a1−a2+a4−a5 , a1−a2−a4+a5 , a1+a2+2a3+a4+a5 .

The example (3, 1, 1) shows degeneration: the letter a3 appears twice in
every row of Aφ(3,1,1). The corresponding monomial is x3

1x
2
2 so for writing

down the decomposition of the matrix Ba3 we need filters from F3,2. There
are three of them in F3,2 (the notation is like for a matrix; element (i, j) is
in the intersection of row i and column j):

• F1: Floor 1 contains cells (1,1), (1,2) and (2,1);

• F2: Floor 1 contains cells (1,1), (1,2) and (1,3);

• F3: Floor 1 contains cells (1,1), (2,1) and (3,1).

The matrices of action of these filters on the linear orders are

MF1 =


0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0

 ,MF2 =


0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

 ,

MF3 =


1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

 .
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The family F5 contains one filter, which acts as the identity I. The matrix
Ba3 is thus

Ba3 =


0 1 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 1 0

 = MF1 +MF2 +MF3 − I ,

as dictated by the inclusion-exclusion formula.

3. Partition (3,2,1). The standard tableaux are

{1, 4, 6, 2, 5, 3} , {1, 3, 6, 2, 5, 4} , {1, 2, 6, 3, 5, 4} , {1, 3, 6, 2, 4, 5} ,
{1, 2, 6, 3, 4, 5} , {1, 4, 5, 2, 6, 3} , {1, 3, 5, 2, 6, 4} , {1, 2, 5, 3, 6, 4} ,
{1, 3, 4, 2, 6, 5} , {1, 2, 4, 3, 6, 5} , {1, 2, 3, 4, 6, 5} , {1, 3, 5, 2, 4, 6} ,
{1, 2, 5, 3, 4, 6} , {1, 3, 4, 2, 5, 6} , {1, 2, 4, 3, 5, 6} , {1, 2, 3, 4, 5, 6} .

To save the space we write down the pedestal matrix in which the replacement

(x6
1, x

5
1x2, x

4
1x

2
2, x

4
1x2x3, x

3
1x

3
2, x

3
1x

2
2x3, x

2
1x

4
2, x

2
1x

3
2x3, x

2
1x

2
2x

2
3, x

2
1x

2
2x3x4)→

(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)

is made. This matrix Aφ(3,2,1) is

Aφ(3,2,1) =



a1 a5 a7 a3 a9 a2 a6 a8 a3 a9 a5 a2 a8 a4 a10 a6

a5 a1 a7 a3 a9 a6 a2 a8 a3 a9 a5 a2 a8 a4 a10 a6

a5 a7 a1 a9 a3 a6 a8 a2 a9 a3 a5 a8 a2 a10 a4 a6

a5 a3 a9 a1 a7 a6 a2 a8 a4 a10 a6 a2 a8 a3 a9 a5

a5 a9 a3 a7 a1 a6 a8 a2 a10 a4 a6 a8 a2 a9 a3 a5

a2 a6 a8 a3 a9 a1 a5 a7 a3 a9 a5 a4 a10 a2 a8 a6

a6 a2 a8 a3 a9 a5 a1 a7 a3 a9 a5 a4 a10 a2 a8 a6

a6 a8 a2 a9 a3 a5 a7 a1 a9 a3 a5 a10 a4 a8 a2 a6

a6 a2 a8 a4 a10 a5 a3 a9 a1 a7 a5 a3 a9 a2 a8 a6

a6 a8 a2 a10 a4 a5 a9 a3 a7 a1 a5 a9 a3 a8 a2 a6

a6 a8 a2 a10 a4 a5 a9 a3 a7 a5 a1 a9 a3 a8 a6 a2

a5 a3 a9 a2 a8 a6 a4 a10 a2 a8 a6 a1 a7 a3 a9 a5

a5 a9 a3 a8 a2 a6 a10 a4 a8 a2 a6 a7 a1 a9 a3 a5

a6 a4 a10 a2 a8 a5 a3 a9 a2 a8 a6 a3 a9 a1 a7 a5

a6 a10 a4 a8 a2 a5 a9 a3 a9 a2 a6 a9 a3 a7 a1 a5

a6 a10 a4 a8 a2 a5 a9 a3 a8 a6 a2 a9 a3 a7 a5 a1



.
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The eigenvalues of Aφ(3,2,1) are

(a1−a4−a7+a10)3 , a1−a4+a7−a10 , (a1+a2−a5−a6)2 , (a1−a2−a5+a6)2 ,

(a1−a2−a3 +a4 +a7−a8−a9 +a10)2 , (a1−a2−a3 +a4−a7 +a8 +a9−a10)2 ,

(a1 − a4 + a5 − a6 + a7 − a10)2 , a1 + 2a2 + 2a3 + a4 − a7 − 2a8 − 2a9 − a10 ,

a1 + 2a2 + 2a3 + 2a5 + 2a6 + a7 + 2a8 + 2a9 + a10 .
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