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Abstract
Many applications in biomedicine and synthetic bioengineering depend on the ability to
understand, map, predict, and control the complex, context-sensitive behavior of chemical
and genetic networks. The emerging field of diverse intelligence has offered frameworks
with which to investigate and exploit surprising problem-solving capacities of
unconventional agents. However, for systems that are not conventional animals used in
behavior science, there are few quantitative tools that facilitate exploration of their
competencies, especially when their complexity makes it infeasible to use unguided
exploration . Here, we formalize and investigate a view of gene regulatory networks as
agents navigating a problem space. We develop automated tools to efficiently map the
repertoire of robust goal states that GRNs can reach despite perturbations. These tools rely
on two main contributions that we make in this paper: (1) Using curiosity-driven
exploration algorithms, originating from the AI community to explore the range of
behavioral abilities of a given system, that we adapt and leverage to automatically discover
the range of reachable goal states of GRNs and (2) Proposing a battery of empirical tests
inspired by implementation-agnostic behaviorist approaches to assess their navigation
competencies. Our data reveal that models inferred from real biological data can reach a
surprisingly wide spectrum of steady states, while showcasing various competencies that
living agents often exhibit, in physiological network dynamics and that do not require
structural changes of network properties or connectivity. Furthermore, we investigate the
applicability of the discovered “behavioral catalogs” for comparing the evolved
competencies across classes of evolved biological networks, as well as for the design of
drug interventions in biomedical contexts or for the design of synthetic gene networks in
bioengineering. Altogether, these automated tools and the resulting emphasis on
behavior-shaping and exploitation of innate competencies open the path to better
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interrogation platforms for exploring the complex behavior of biological networks in an
efficient and cost-effective manner. To read the interactive version of this paper, please visit
https://developmentalsystems.org/curious-exploration-of-grn-competencies.

Introduction
Developing methods to recognize, map, predict, and control the complex, context-sensitive
behavior of chemical and genetic networks is an essential frontier of research in science
and engineering. These systems, such as gene regulatory networks and protein pathways,
are known to be instructive drivers of embryogenesis, cell behavior, and complex
physiology [1]–[3]. Understanding the control properties of these systems is critical not
only for the study of evolutionary developmental biology [4]–[8], but also for
comprehending and intervening in various disease states, including cancer [9]–[11], and for
the construction of novel synthetic biologicals in bioengineering contexts [12]–[16].

Thus, much work has gone into mathematical modeling and computational inference of
both protein pathways and gene regulatory network models [17]–[20], which has resulted
in the development of large collections of publicly-available models such as the Biomodels
database [21], [22]. Yet, despite the wealth of available models, scientists still largely lack
an effective understanding of the range of possible behaviors that these models can exhibit
under different initial conditions and environmental stimuli, and are in search of systematic
methods to reveal and optimize those behaviors via external interventions. The full extent
of the computational and control properties of such networks are not yet well-understood;
while dynamical systems theory has been extensively used to characterize their behavior
[23], [24], it is not known what other sets of tools might reveal and exploit interesting
properties of this ubiquitous biological substrate. The field of diverse intelligence (also
known as basal cognition) has suggested that strong functional symmetries between
pathway networks and neural networks could imply the existence of learning and other
kinds of behavior in this unconventional substrate [25]–[29]. Specifically, it has been
hypothesized that gene regulatory networks (GRNs) and other molecular networks could
be endowed with surprising navigation competencies allowing them to robustly reach
diverse homeostatic or allostatic states despite a wide range of perturbations [30]–[33],
and that exploiting these innate competencies could provide a promising roadmap for the
design of interventions in regenerative medicine and bioengineering contexts [34], [35].

However, significant challenges remain in practice for the exploration and behavior-shaping
of these innate competencies, which presents a barrier to the use of these ideas in
regenerative medicine and bioengineering. Because of the non-linearity and redundancy in
pathway dynamics, passive exploration strategies such as random screening are likely to
either fail in uncovering the full range of potential behaviors or require time and energy
beyond the available resources. Here, we formalize and investigate a view of gene
regulatory networks as agents navigating a problem space. We propose a framework and
automated tools, leveraging (1) curiosity-driven goal-directed exploration algorithms
coming from recent advances in machine learning and (2) a battery of empirical tests

https://developmentalsystems.org/curious-exploration-of-grn-competencies
https://www.zotero.org/google-docs/?T23XZN
https://www.zotero.org/google-docs/?YxEUY7
https://www.zotero.org/google-docs/?pd2hDn
https://www.zotero.org/google-docs/?rCW84l
https://www.zotero.org/google-docs/?C3gE7s
https://www.zotero.org/google-docs/?QpnNz8
https://www.zotero.org/google-docs/?SXpkdD
https://www.zotero.org/google-docs/?a8RHrC
https://www.zotero.org/google-docs/?TivxHg
https://www.zotero.org/google-docs/?Uu0TEM
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inspired from behaviorist approaches, for mapping the repertoire of robust goal states that
GRNs can reach within this problem space despite various perturbations. A key novelty of
this work is the use of AI-based exploration tools to map the space of possible behaviors in
biological networks, which opens interesting avenues for efficient mapping of unfamiliar
system behaviors, yielding transferable insights for diverse problem-solving once such a
map is discovered.

The challenge of exploring and mapping spaces of complex and self-organized behaviors
appears in many fields such as diverse intelligence in biological systems, minimal active
matter, and robotics: many systems in these areas provide a rich space of evolved,
engineered, and hybrid systems that offer many of the same fundamental problems of
behavior and control regardless of specific composition or provenance [36]. These span
many orders of spatio-temporal scale, from molecular assemblies to swarms of complex
organisms [28], [37]–[39]. One set of approaches seeks to develop tools to identify the
optimal level of control, ranging from physical rewiring to various methods from
cybernetics and behavioral sciences, to reveal and exploit the native competencies and
computational capacities of these systems [12]. Specifically, it is increasingly realized that
the level of competency (and thus the appropriate level of control) often cannot be guessed
by inspection of a system’s components, and that its position on a spectrum ranging from
passive matter to complex metacognition must be determined empirically [40]–[42], [36].
This is critical not only for fundamental understanding of evolution of bodies and minds
[43]–[45], [26], [46], [47], but also for the design of interventions in biomedicine and
synthetic morphology contexts [48], [49]. Yet, a common property in many of these systems
is that it is expensive in time and energy to conduct experiments: empirical exploration
needs to be made under limited resources. Thus, methods for automating efficient
exploration and discovery of a diversity of behaviors in these spaces may be widely useful.
As explained below, we will here leverage methods from developmental artificial
intelligence initially designed for the specific purpose of exploring a diversity of behaviors
using a limited budget of experiments.

One especially fascinating set of systems concerns cellular molecular pathways, or gene
regulatory networks (GRNs). In the lab or clinic, these pathways are usually treated as
simple machines, with intervention strategies focusing on rewiring their structure to
achieve a desired outcome: adding or removing nodes (gene therapy), or changing
connection weights (by targeting promoter sequences or protein structures) [50]–[53].
However, the emergent, generative nature of development and physiology ensure that it is
often very hard to know which genes/proteins to modify, and how, in order to reach a
complex desired system-level outcome [54]. Moreover, the responses of cells and tissues to
drugs changes over time, making it even more difficult to infer specific interventions (e.g.
drugs) that will induce a stable improvement in pathway state in vivo. Indeed, with the
exception of antibiotics and surgery, most available treatment modalities do not solve the
underlying problem – they seek to mitigate symptoms, which recur (or expand) once the
drug is withdrawn. This is because current therapeutics function bottom-up, attempting to

https://www.zotero.org/google-docs/?aVX7Mg
https://www.zotero.org/google-docs/?IayBYt
https://www.zotero.org/google-docs/?t38MBd
https://www.zotero.org/google-docs/?Ow28fT
https://www.zotero.org/google-docs/?OzXHiu
https://www.zotero.org/google-docs/?RiM4aN
https://www.zotero.org/google-docs/?7gJ73e
https://www.zotero.org/google-docs/?TQPyoB
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force specific molecular states, as it has been challenging to develop methods for shifting
complex tissues and organs towards a stable health profile. Next-generation solutions,
which would offer true healing (stable correction), require an understanding of the
homeostatic and allostatic properties of networks with respect to how they traverse the
space of transcriptional, physiological and anatomical states. An understanding of the
behavior policies of networks as they dynamically navigate these problem spaces is
essential for predicting what stimuli can be used to re-set their setpoints and guide them to
autonomously maintain a healthy state. In the language of behavioral neuroscience, this
strategy corresponds to exploiting their native robustness, decision-making, and
navigational competencies to induce predictable, long-lasting changes in functionality.

Significant challenges remain in revealing and controlling the range of behaviors that can
self-organize in these cellular and molecular pathways . To characterize steady-state
concentrations and responses to small perturbations, conventional methods rely on
piecewise-linear approximation of the system behavior [55]–[59], but struggle with
higher-dimensional systems or wider parameter ranges which limits their applicability
[60]. Other works have proposed the porting of tools from network control theory to
identify sets of control nodes allowing to drive the network behavior toward target steady
states [61]. These methods typically exploit the network topology [61]–[65] or regulatory
structure [66]–[68] to identify control strategies based either on permanent
knockout/activation of genes or on temporary perturbations, the latter being preferable in
biomedical context.

However, these approaches often require prior knowledge of target attractor states or are
limited to Boolean network models. Other works have explored the use of machine learning
tools, such as evolutionary search [69]–[71] and gradient-descent optimization [72], [73],
for controlling continuous ODE biomolecular networks with high-dimensional parameter
spaces, mainly in the context of synthetic circuit engineering [74], [75]. While providing
powerful optimization tools, these approaches tend to focus on rewiring network structure
and connectivity. Moreover, the choice of a predefined fitness function and parameter range
initialization is not only critical to the success of optimization [70] but largely restricts
exploration of the behavior space [73].

In contrast, an alternative line of research proposes exploring and leveraging the inherent
molecular mechanisms of adaptivity and robustness in cellular pathways as a promising
approach for drug interventions that do not rely on genomic editing or gene therapy [30],
[76]. Recently, a broad, substrate-independent behavior science perspective suggests novel
properties of gene regulatory networks (GRNs) and other biological networks [25], [77].
This perspective views GRNs as agents that convert activation levels of specific genes
(inputs) to those of effector genes (outputs), with intermediate nodes in between, leading
to strategies for controlling network behavior based on a specific history of inputs
(experience) rather than through network rewiring. Notably, the concept of training a
chemical pathway using pulsed input stimuli (node activation or suppression drugs) has
been formalized, and several networks have been analyzed to establish a taxonomy of

https://www.zotero.org/google-docs/?XqzpjJ
https://www.zotero.org/google-docs/?9WCplU
https://www.zotero.org/google-docs/?UHHPHX
https://www.zotero.org/google-docs/?28mVEG
https://www.zotero.org/google-docs/?3IuiH8
https://www.zotero.org/google-docs/?NbAvlM
https://www.zotero.org/google-docs/?L4Xa1p
https://www.zotero.org/google-docs/?B7bazq
https://www.zotero.org/google-docs/?1DTA9H
https://www.zotero.org/google-docs/?MZ8Hu2
https://www.zotero.org/google-docs/?hktGJk
https://www.zotero.org/google-docs/?hktGJk
https://www.zotero.org/google-docs/?XXKeH6
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memory types found in biological GRNs and pathways [78], [79].

Here, building upon recent research [32], [78], [79], we take the next step and investigate a
view of gene regulatory networks as agents navigating a problem space toward target goal
states with varying degrees of competency (Figure 1-a). We seek to implement a definition
of goal that abstracts it from conventional associations with human or other advanced
brains and facilitates the use of tools from cybernetics, behavior science, and control theory
to understand broader aspects of biological regulation. Here we use the term “goal” state to
refer to a system’s steady state, which it expends effort to reach despite interventions or
barriers - a definition appropriate to the study of basal (or minimal) proto-cognitive
regulatory systems.. Our definition of goal does not imply “purpose” (high-level goals where
an agent has the meta-cognition to think about having goals and what they might be), and
we do not attribute high-level competencies (such as re-setting one’s own goals) to GRNs.

Our particular focus lies in investigating two types of navigation competencies: versatility,
which refers to the capacity to reach diverse goal states under different interventions, and
robustness, which refers to the ability to reach a goal state despite various perturbations.
The primary scientific question we aim to address is: What is the repertoire of robust goal
states that a GRN can actively reach through minimal and non-genetic interventions within a
navigation task context, and can we develop systematic methods and automated tools to aid
scientists in discovering this repertoire?

https://www.zotero.org/google-docs/?Zt61Kb
https://www.zotero.org/google-docs/?kpBCR1
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Figure 1: Overview of the proposed framework. (a) MOTIVATION: We often focus on studying the navigation and
behavior of organisms in conventional three-dimensional environments, neglecting the intelligence underlying
competencies at sub-organismal scales [32]. To better understand navigation competencies in unconventional
organisms solving problems in unconventional spaces (e.g., embryos in morphological space), it is essential to
construct comprehensive "behavioral catalogs" for these novel entities, which in turn requires sophisticated
exploration methods to discover the extent of possible behaviors. Images are taken and adapted from [80]–[85]. (b)
EXPERIMENTAL DESIGNS: We formalize GRN behavior as a navigation task and propose to investigate it by defining
abstract and observer-dependent “problem spaces” that we use to organize the observed biological behaviors and
their exploration in practice. (c) AUTOMATED EXPERIMENTATION: Pseudo-code of the curiosity-driven goal
exploration process we use to automate the discovery of behavioral abilities that the GRN can exhibit in behavior
space. (d) EMPIRICAL TESTS: We use a battery of empirical tests to identify the robust goal states of the systems,
i.e. the one that can be attained under a wide variety of perturbation (including noise in gene expression, and
pushes or walls during traversal of transcription space). (e) PERSPECTIVES: We explore several potential reuses of
the discovered “behavioral catalog” and proposed framework across evolutionary biology, biomedicine and
bioengineering contexts.

To address this question in practice, our experimental framework revolves around the
definition of “problem spaces”, which we use as tractable components of the GRN’s overall
state space (Figure 1-b), and on a set of methodological contributions which we organize
around three sub-questions:

1. Automated discovery of diverse behavioral abilities with autotelic curiosity search
(Figure 1-c): What is the range of possible goal states that GRNs can exhibit and how
can we devise efficient exploration strategies to automatically identify these goal
states? Defining goal states as attractor states of the underlying gene regulatory
network, we show that traditional screening methods can be very inefficient in
discovering the range of possible goal states. To address this, we propose to use
intrinsically-motivated goal exploration processes (IMGEP) [86], [87], a recent
family of diversity-driven machine learning approaches also known as autotelic
curiosity search which was recently shown to form a useful discovery assistant for
revealing the behavioral diversity of unfamiliar systems such as chemical oil-droplet
systems [88], physical non-equilibrium systems [89] and models of continuous
cellular automata [90]–[92].

2. Evaluation of the navigation competencies (Figure 1-d): How competent is the GRN,
in terms of robustness to perturbations, in attaining the diverse
previously-identified goal states? Prior studies have offered definitions of
robustness in biological networks, characterized as the degree of variation in
functionality [93] or phenotypic trait [94] under specific environmental or genetic
changes. However, these studies often consider a predefined functionality and
random perturbations in network parameters [95], [96], [71] or specific gene
knockouts [97]. Environmental perturbations on the other hand are often limited to
random variations in initial conditions within a predefined range [60], [98]. Here,
inspired from behaviorist approaches, we test hypotheses about non-genetic
resistance with respect to various navigation competencies that living agents often
exhibit, and that do not require structural changes of network properties or
connectivity. Those tests assess the system's ability to maintain robustness despite

https://www.zotero.org/google-docs/?fI7dzF
https://www.zotero.org/google-docs/?iw1mi6
https://www.zotero.org/google-docs/?Leyd8x
https://www.zotero.org/google-docs/?AR4rmI
https://www.zotero.org/google-docs/?y6Tsia
https://www.zotero.org/google-docs/?kEe89H
https://www.zotero.org/google-docs/?S8qDG9
https://www.zotero.org/google-docs/?vc2Wdn
https://www.zotero.org/google-docs/?a8SeeC
https://www.zotero.org/google-docs/?thDn7f
https://www.zotero.org/google-docs/?aBO5RS
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various perturbations encountered during traversal, including developmental noise
in gene expression levels, sudden "pushes" within transcriptional space, and the
presence of energy barriers or "walls" acting as force fields in the environment.

3. Potential reuses of the discovered “behavioral catalog” and framework (Figure 1-e):
Can the constructed behavioral catalogs be useful for fundamental research and
practical therapeutic applications, and can the framework be easily applied to other
systems and problem spaces? We propose that the discovered competencies may
provide valuable insights for understanding evolvability and developmental
robustness, and provide a fertile source for the design of interventions in
biomedicine and synthetic morphology contexts. We also suggest that the
framework and automated tools, which are observer-focused and
substrate-independent, could be transposed to other systems and problem spaces.

The overall framework is summarized in Figure 1. Applying it on a database of 30
continuous (ODE) models from the Biomodels website, consisting of a total of 432 systems
defined as GRN model-behavior space tuples, revealed several interesting insights. First,
results suggested that most of the surveyed systems are capable of reaching a surprisingly
wide spectrum of steady states depending on their initial state. Interestingly, random
screening strategies were not able to reveal this diversity of reachable states (or at least not
in a sample efficient way), confirming the need for more advanced exploration strategies
like curiosity search. Secondly, among the discovered steady states, we were able to identify
several robust goal states i.e. ones that the system consistently reaches despite various
perturbations during traversal of transcriptional space. Altogether, these findings seem to
suggest that cell phenotype and functionality could be the result of a multi-step program
[62] that could be flexibly and robustly reprogrammed by appropriate stimuli [42]. Finally,
we demonstrate possible reuses of this “behavioral catalog” for comparing the network’s
competencies across different classes of organisms, as well as for the design of non-genetic
drug interventions. We also demonstrate an alternative reuse of the framework to reveal
new kinds of reachable “goals” in synthetic gene networks, suggesting alternative strategies
for the design of gene networks in a bioengineering context.

An interactive executable version of the paper, as well as step-by-step tutorials and
notebooks can be found online at
https://developmentalsystems.org/curious-exploration-of-grn-competencies. The full
codebase of the proposed automated experimentation pipeline is written end-to-end in JAX,
a high-performance numerical computing library that we leverage for parallel
experimentation and computational speedups of the ODE models time-course simulations.

https://www.zotero.org/google-docs/?mZMqSo
https://www.zotero.org/google-docs/?OEYQ58
https://developmentalsystems.org/curious-exploration-of-grn-competencies
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Results

Generalizing GRN behavior as a navigation task
Dynamical Systems
Terminology

Behavioral Science
Terminology Proposed Isomorphism

Navigation Task
Terminology

system: a set of
interconnected elements
that interact to produce
emergent behavior

organism: a living being that
responds to stimuli and
adapts to its environment

Both are collections of
lower-level elements that
interact to produce emergent
behavior and can adapt at the
system level

agent or GRN

phase-space trajectory:
set of states taken by the
system when starting from
one particular initial
condition

behavioral trajectory: the
sequence of states that an
organism exhibits in response
to stimuli

Both represent the sequence
of states or behaviors that a
system or individual
experiences over time

trajectory

initial condition: initial
state of a system’s variables
and parameters that
condition its dynamics

stimuli: events that might (or
might not) trigger a response
in an organism

Both represent incoming
variations that set a system or
organism in motion

intervention or
perturbation

critical parameter: a
parameter or condition
that, if changed, can cause a
system to undergo a
qualitative change or phase
transition

salient stimuli: stimuli that
are particularly relevant or
meaningful to an organism,
either because they are
associated with reward or
punishment or because they
are novel or unexpected

Both represent the incoming
variations that have a
significant impact on a
system’s steady-state or
organism’s response

effective
intervention

steady-state (or
attractor): a stable state
(or set of states), towards
which the system tends to
evolve over time

observed response:
outcome or endpoint of a
behavioral trajectory towards
which an organism converges

Both represent the endpoint
that a system or organism is
moving towards

reached
endpoint or
goal

robust attractor: stable
attractor toward which the
system tends to evolve
under various initial
conditions and
perturbations

target goal: it is assumed
that an organism engages in a
goal-directed manner when it
exhibits new ways or actions
to achieve a similar outcome
when faced with novel
circumstances

Both represent a stable
endpoint or goal that the
system successfully attains
under various perturbations

robust goal

controllability: degree to
which the system’s
dynamics (and resulting
steady states) can be
controlled or manipulated

trainability: degree to which
an organism’s behavior can
be modified or shaped by
experience or conditioning

Both represent the capacity of
a system or individual to be
influenced or changed by
controlled interventions

versatility

Table 1: Glossary of terms used in this paper, with the proposed isomorphism which generalizes concepts from
dynamical complex systems and behavioral sciences under a common navigation task perspective.

The GRNs analyzed in this study are biological pathway networks taken from the BioModels
repository [21], [22]. The term “GRN” is used broadly to include protein interaction, gene
regulatory, and metabolic networks. In these mathematical models, the dynamic

https://www.zotero.org/google-docs/?Nzju6e
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interactions between nodes of the network (molecular species) are modeled with a system
of ordinary differential equations, enabling to quantitatively simulate time-course behavior
(model rollouts) and observe the dynamics of node activities over time (Figure 2-a). Here,
following a terminology which aims to integrate concepts from dynamical complex systems
with concepts from behavioral sciences, we propose to conceptualize GRN behavior as a
navigation task (Table 1). Model rollouts are viewed as “trajectories” in transcriptional
space where network steady states are "goal states" (endpoints) that the "agent" (GRN) can
reach with varying levels of competencies. As for living agents, these competencies may
range from unstable locomotion patterns to more advanced forms of goal-directed behavior
like path following, obstacle avoidance, or even forms of spatial memory and foresight. In
this paper, we are particularly interested in investigating two forms of navigation
competencies that we refer to as versatility, the capacity to reach diverse goal states under
various interventions, and robustness, the capacity to reach a goal state despite various
perturbations. Note that versatility and robustness are studied with respect to different
sources of incoming environmental variation, respectively interventions and perturbations.

Problem Space Generic definition Specific definition in this study

Observation
Space (O)

Space of raw observations made
during the GRN model rollout to
measure its state or behavior.

Records node activities over time as
, where y(t) is an n-dimensional𝑜 = 𝑦 0( ), ..., 𝑦 𝑇( )( )

vector (n = number of nodes) and T is the
measured reaction time.

Behavior
Space (Z)

A projection of the observation
space used by the experimenter to
encode the “goal states” of a
model rollout into a tractable
(lower-dimensional) space.

Encodes the trajectory endpoint of a model rollout.
Represents a cell phenotype defined by the state
values of some nodes (relevant biological markers),
such that (we use m=2 in𝑧 = 𝑦

𝑖1
𝑇( ), ··· 𝑦

𝑖𝑚
𝑇( )( )

this study for simplicity and visualization).

Intervention
Space (I)

A space where interventions
represent controlled sources of
incoming variation that the
experimenter can exert on the
GRN model rollout to drive it
toward novel or targeted states.

Sets the initial state of a model𝑖 = 𝑦
1

0( ), ..., 𝑦
𝑛

0( )( )
rollout. Defined as a hyper-rectangle I ⊆ℝⁿ where
the boundaries are proportional to the min and
max values taken by the respective nodes from
default initial conditions.

Perturbation
Space (U)

A space where perturbations
represent external sources of
incoming variation, used by the
experimenter to characterize the
robustness of a given goal state.

Includes three classes of (stochastic) perturbations
including noise perturbation , push perturbation𝑈

𝑛
, and wall perturbation .𝑈

𝑝
𝑈

𝑤

Table 2: Problem spaces used in this study.

To investigate these competencies in practice, our experimental framework is based on the
definition of “problem spaces”, which include the observation space (O), behavior space (Z),
intervention space (I) and perturbation space (U) as defined in Table 2. To be consistent
with our navigation task terminology introduced in Table 1, we refer to a behavior z as the
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reached “goal state” of a GRN trajectory. However these “goals” may lie on a continuum
between complete robustness and high sensitivity, and our primary interest lies in
identifying robust goals of the system. Whereas several choices could be made for the
intervention space I and perturbation space U, we intentionally consider minimal and
non-genetic interventions to investigate the “native” goal states of the GRN, and
environmental obstacles to investigate for navigation competencies classically observed in
other living agents. Examples of simulations, interventions, and perturbations are
illustrated in Figure 2.

Then, a typical analysis using our framework relies on a 2-step procedure, detailed in the
subsequent sections. First, to assess the versatility of the GRN, we define an exploration
strategy which organizes the sequence of interventions used to drive the system𝑖

1
, ..., 𝑖

𝑁
toward a maximally diverse set of reachable endpoints , while being given a{𝑧

𝑘
 ∈ 𝑍}

𝑘=1..𝑁
limited budget of experiments N. Secondly, to assess the robustness of the discovered goal
states , we conduct a battery of empirical tests to characterize their degree of{𝑧

𝑘
 ∈ 𝑍}

sensitivity to novel perturbations, with a fixed experimental budget of P perturbations per
selected behavior z. At the end of this 2-step procedure, we obtain the "behavioral catalog"
(H) of the studied GRN, which includes the history of experiments

.𝐻 = { 𝑖
𝑘
, 𝑜

𝑘
, 𝑧

𝑘
,  {(𝑢

𝑝
,  𝑜

𝑝
,  𝑧

𝑝
),  𝑝 = 1... 𝑃}( ), 𝑘 = 1 ... 𝑁}

Following this framework, the behavioral catalog is constructed for a database of 30
biological networks consisting of a total of 432 systems, where a system is defined as a
(GRN model, intervention space (I), behavior space (Z)) tuple, as described in Materials and
Methods and Table S1. These catalogs provide valuable empirical observations and insights
into the navigation competencies of the studied GRNs, particularly in their ability to
consistently achieve diverse goal states under various tested perturbations. Statistical
analyses of the results are presented in Figures 3, 5, and 7, and specific results for the
RKIP-ERK signaling pathway [99] are shown in Figures 2, 4, 6, and 8.

https://www.zotero.org/google-docs/?pXUKPx
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Figure 2: Illustration of the experimental setup and chosen problem spaces on an example GRN model which has
10 nodes and models the influence of RKIP on the ERK Signaling Pathway [99]. (a) Time-course evolution of the
different nodes y1,…, y10 (one color per node) when starting from the default initial conditions (as provided in
[99]). The observation captures the states taken through time o=[y(t=0),…, y(t=T)] where y=[y1,…, y10]. (b)
Corresponding trajectory in transcriptional space (phase space), for two target nodes (ERK, RKIPP_RP), from t=0 (A,
in red) to T=1000 seconds (B, in cyan). We can see that the trajectory converges to endpoint B in less than 100
seconds, and then stay there. The behavior (or reached goal state) is the endpoint ,𝐵 = [𝑦

𝐸𝑅𝐾
(𝑇),  𝑦

𝑅𝐾𝐼𝑃𝑅𝑃
(𝑇)]

where T is chosen big enough to ensure convergence. (c) The intervention is setting the initial state of the system
trajectory (for all nodes): i = [y1(t=0),…, y10(t=0)]. (d-e) Example of perturbations used in this paper. (d) Noise
perturbation, here applied to all 10 nodes every 5 secs until t=80 secs. (e) Push perturbation, here applied to the
two target nodes (ERK, RKIPP_RP) at t=3 seconds. (f) Wall perturbation, also applied to the two target nodes (ERK,
RKIPP_RP), here at 10% and 90% of the total distance traveled. Supplementary Figure S1 shows examples of other
possible “drug” or “genome” interventions that can be implemented in the accompanying software, as well as the
possibility to perform interventions (or perturbations) in parallel using batched computations.

https://www.zotero.org/google-docs/?l3SFAw
https://www.zotero.org/google-docs/?RnNNmf
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Curiosity Search Uncovers a Diversity of Reachable Goal States

Figure 3: Curiosity search uncovers a wide spectrum of reachable states in behavior space Z. (a) Diversity of
endpoints discovered by random search (pink) and curiosity search (blue) for the 432 systems. Diversity is
measured as the volume of the union of the set of hyperballs of radius that have for centers the discoveredϵ
endpoints as depicted by the shaded area in (b-c) with . (a-left) Mean and standard deviation{𝑧 ∈ 𝑍} ϵ = 0. 05
curves of the diversity of behaviors discovered throughout exploration (with random search having twice more
experiments n=900). Dots indicate significance (p<0.05) when testing curiosity search (n) against random search
(n) in brown, and against random search (n=900) in black, with a Welch's t-test. Standard deviation is divided by 4
for visibility. (a-right) Detail of the diversity obtained in the left plot for all 432 systems at n=450 and n=900, where
*** indicate significance (p<0.001). (b-c) Discovered endpoints at the end of exploration (n=450) by random search
(pink) and curiosity search (blue) for 6 example systems of our database. (b) Examples of systems for which
curiosity search is much more sample-efficient than random search in finding a diversity of reachable states in
behavior space Z. (c) Examples of systems with low-redundancy mapping I -> Z such that random search in is𝐼
already quite efficient in covering behavior space Z, and curiosity search performs equivalently.
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One advantage of modeling GRN behavior within a tractable behavior space Z is that we can
then deploy strategies to efficiently discover and map that space. Notably, recent
diversity-driven machine learning techniques such as Novelty Search [100], [101], Quality
Diversity [102], [103] and Intrinsically-Motivated Goal Exploration Processes (IMGEP) [86],
[87] are explicitly designed to efficiently explore a so-called “behavior space” or “goal
space” which is basically a (predefined or learned) model of the overall state space. In
particular IMGEPs, which were originally developed for the learning of inverse models of
highly-redundant mapping in robotics context [86], were recently shown to successfully
assist discovery in complex self-organizing systems [88]–[91].

Here, we propose to use an IMGEP to control GRN initial states and maximize the diversity
of discovered endpoints within a limited budget of experiments. The IMGEP{𝑧 ∈ 𝑍} 𝑁
operates in two phases: initially, interventions are sampled randomly from to𝑁

𝑖𝑛𝑡
𝐼

populate history , then remaining interventions are generated through a goal-directed𝐻
process which relies on several key internal models. Those including a goal-embedding
module that encodes observations into the IMGEP goal space , a goal generator(𝑅) (𝑜) (Ƭ)
module that samples goals from the goal space based on intrinsic motivation incentives(𝐺)
(e.g. to promote novelty or learning progress), and a goal-conditioned optimization policy

that generates candidate intervention parameters to achieve the current goal. Given(Π)
those internal models, the goal-directed phase iterates through 1) sample a target goal

, 2) infer intervention parameters to achieve that goal , 3) conduct an𝑔 ∼ 𝐺(𝐻) 𝑖 ∼ Π(𝑔, 𝐻)
experiment with the intervention i, observe the outcome o, and compute the reached goal

, and 4) store the tuple in history . Here, we use the GRN behavior space𝑧 = 𝑅(𝑜) (𝑖, 𝑜, 𝑧) 𝐻
Z as the IMGEP goal space . Hence "target goal" refers to a goal sampled by IMGEPƬ = 𝑍
while "reached goal" refers to an actual endpoint of the GRN trajectory, discovered by
IMGEP while targeting a potentially different point in Z. Throughout exploration, the IMGEP
dynamically refines its Z-traversal strategy based on the knowledge acquired by its
discoveries. Here we opt for a simple IMGEP variant such that the exploration process can
be seen as performing novelty search in behavior space Z [104]. The pseudocode of our
IMGEP pipeline is shown in Figure 1-c and details about the internal models are provided in
Materials and Methods. The final outcome is a "behavioral catalog" of the GRN, containing
the diverse goal states discovered by IMGEP: .𝐻 = { 𝑖

𝑘
, 𝑜

𝑘
, 𝑧

𝑘( ), 𝑘 = 1 ... 𝑁}

We deploy the IMGEP, also known as "curiosity search," on all 432 systems in the biological
network database. Our evaluation focuses on two related competencies: the IMGEP agent's
ability to empirically reveal a diversity of reachable goal states in the (GRN, I, Z) system,
referred to as "discovered diversity," and the GRN agent's competency to naturally reach
diverse goal states, referred to as "versatility." The true versatility of the GRN is unknown
and can only be inferred through empirical exploration and proxy metrics.

For evaluating diversity, we measure the area covered in Z by the IMGEP discoveries using
the threshold-coverage metric [105] and compare it with the area covered by the diversity
of a naive random screening strategy (which uniformly samples interventions in ). In𝐼
Figure 3, the diversity discovered by the two exploration variants is shown for the 432

https://www.zotero.org/google-docs/?lMGqlU
https://www.zotero.org/google-docs/?sRVxnW
https://www.zotero.org/google-docs/?tZn5FC
https://www.zotero.org/google-docs/?tZn5FC
https://www.zotero.org/google-docs/?vedE0b
https://www.zotero.org/google-docs/?DMm3LR
https://www.zotero.org/google-docs/?e0Qfsf
https://www.zotero.org/google-docs/?k6wrOG
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systems, where random search is given a budget of experiments which is(𝐺𝑅𝑁,  𝐼,  𝑍) 𝑁
twice bigger (N=900) as the one given to the curiosity-search algorithm (N=450).
Interestingly we see that, on average, at n=290 the curiosity search already significantly
outperforms the final diversity achieved by random search, while only utilizing one-third of
its experimental budget (N=900). Whereas we are dealing with numerical systems and our
codebase allow for efficient and parallel execution, each experiment still consists of

model steps, where each step integrates the ODE system. Repeating that N𝑇
∆𝑇 = 25000

times for each of the 432 systems starts to be very costly, which is why having efficient
exploration strategies is very valuable (and would be even more valuable when scaling the
framework to larger databases). Even more critical, as illustrated in Figure 3-b, it seems
that, for some systems, random search is not able to discover the “latent” regions revealed
by the IMGEP in Z, or it would need an extremely large budget of experiments. On the other
hand, as illustrated in Figure 3-c, there are some systems for which random search is
already quite efficient in revealing diverse behaviors in Z, and for which IMGEP performs
equivalently.

In fact, the goal-directed strategy of the IMGEP is particularly beneficial for (𝐺𝑅𝑁, 𝐼, 𝑍)
systems with high nonlinearity or redundancy in their mapping, as seen in Figure 4𝐼 → 𝑍
and studied in robotics contexts [105]. Redundancy implies that many interventions in 𝐼
lead to similar effects in , as illustrated in Figure 2 where various interventions and𝑍
perturbations converge to the same endpoint. In these systems, random search will
preferentially discover points in areas of high redundancy in Z whereas the IMGEP, whose
exploration is directed uniformly in goal space, should cover different levels of redundancy
equally. In general, when dealing with large intervention spaces and limited experimental
budgets, curiosity search can be particularly useful for efficiently navigating Z-space.

https://www.zotero.org/google-docs/?EKakeP
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Figure 4: Illustration of the non linearity and redundancy of the I->Z mapping, and of the interest of using
goal-directed exploration strategies. Plot shows the reachable points discovered by curiosity search (a) and by
random search (b) in the behavior space Z and their corresponding starting points in the intervention space I, for
the RKIP-ERK signaling pathway system [99]. The intervention space is 10-dimensional, and here we show the TSNE
reduction in 2D. We apply HDBSCAN clustering [106] on the points discovered in Z, which produced 4 clusters for
curiosity search (displayed in gray, green, purple and orange; non-assigned points are displayed in light blue) and 2
clusters for random search (displayed in light and dark orange). We then visualize where those regions in behavior
space mapped back in the intervention space, by applying the same coloring. (a) Looking at the curiosity search
discoveries, we can see the non-linearity of the I->Z mapping, where small regions of intervention space can map to
large regions of the behavior space (like the orange area) and reversely (gray area). We can also see the
redundancy of the behavior space which is clearly concentrated in the left border of the space (ERK close to zero)
which can seemingly be reached from very large portions of the intervention space (gray area). (b) Looking at
random search discoveries, we can understand that it is very inefficient as it spends most of its exploration budget
in the region of intervention space that converges to the left border in Z , and fails to explore the orange, purple
and green regions discovered by curiosity search which seemingly lead to the more novelty in Z.

Finally, as the IMGEP efficiently drives the GRN into diverse goal states with minimal
interventions, we propose that the diversity achieved by the IMGEP can serve as a good
proxy metric of the GRN versatility. Notably, analysis of example systems in Figure 3 reveals
that many GRNs can reach a broad spectrum of steady states. Whereas our database is
limited to certain systems (see Materials and Methods) and might not be representative of
all biological pathways, this observation underlines the existence of various phenotypes
that can be realized. It also highlights the critical importance of identifying salient
interventions that can effectively control cellular states within this spectrum of
possibilities, notably as many cancer types are due to epigenetically non-identical cells
[107].

https://www.zotero.org/google-docs/?j06fyw
https://www.zotero.org/google-docs/?8YcXZo
https://www.zotero.org/google-docs/?eSpH9s


16

Empirical Tests Reveal Robust Navigation Competencies
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Figure 5: Identification of robust traversal strategies in transcriptional space. (a) Violin plots show, for each of the
432 systems (one point per system), the median sensitivity (over the K representative goal states) to the noise
(green), push (gray) and wall (yellow) perturbation families. Violin plots on the right detail the median sensitivity
for the 18 sub-families. (b-g) Each row provides examples of perturbed trajectories of either extremely-robust or
extremely-sensitive example (GRN, Z) system (on average over the K goal states) for the three families of
perturbations, as shown by annotations in (a). For instance, the first row (b) shows perturbed trajectories of the
(model #10, nodes (3,7)) system which has the highest sensitivity to noise whereas the last row (g) shows
trajectories of the (model #272, nodes (2,3)) system which has a nearly perfect robustness to walls. Each image
contains an example trajectory for a given , and one per sub-family is shown per column. For instance, in the𝑖, 𝑢( ) 𝑢
first row (b), the trajectories are perturbed with the different sub-families of noise

which can be seen as various levels of difficulty. For each trajectory we(σ
𝑛

∈ [0. 001, 0. 005, 0. 1],  𝑝
𝑛

∈ [10, 5, 1])
annotate the starting position (A), endpoint prior perturbation (B), and endpoint after perturbation (B’), and show
the original trajectory in black. The perturbed trajectory is shown in colorscale (from red at t=0 to cyan at t=3000
secs). (b) Except for few cases (trajectory #43), the system (model #10, nodes (3,7)) system is not robust to noise as
its trajectories are easily deviated from the original endpoint. (c) The (model #52, nodes (4,7)) system however,
except for rare cases (trajectory #35), consistently reaches its original target despite encountering various amounts
of noise. Interestingly, trajectories #36 and #40 consistently follows a complex up->right-down->left path, despite
the induced noise. (d) The (model #647, nodes (2,10)) system, except for few cases (trajectory #0), is typically
deviated from its original trajectory when being pushed away. Interestingly though, it seems to follow similar
(parallel) trajectories. (e) The (model #284, nodes (4,6)) system, is an example of an extremely robust system
which, despite many push configurations (in magnitude and number), consistently returns to its original trajectory.
Interestingly, the trajectories of this system are relatively complex with several loops and detours. (f) The (model
#84, nodes (4,6)) system is not very robust to walls, and typically deviates or blocked when it encounters a wall. (g)
The (model #272, nodes (2,3)) system is another example of an extremely robust system which, despite many wall
configurations (in length and number), consistently returns to its original path. Once again interestingly, the
trajectories of this system are relatively complex with several loops and detours.

We are then interested in characterizing the degree of robustness of the
previously-discovered “goal states” in order to identify the ones that can consistently be
reached by the GRN despite encountering various perturbations. Whereas many studies
have proposed rigorous analysis of the “robustness” of biological networks [93], [94], the
generated perturbations often target variations in the regulatory rules (i.e. variations at the
hardware level) and variations are often sampled independently (and prior) to
observations of the GRN dynamical behaviors [98], [95], [96], [71], [108], [60]. Here
instead, we propose to conduct a battery of empirical tests that draw inspiration from
classical “displacement experiments” [109], [110] and “barrier experiments” [111]
commonly used in behavioral sciences to assess the navigation competencies of various
animals. As illustrated in Figure 2, we consider environmental perturbations that perturb
the GRN trajectory with 1) various degree of noise in the gene expression levels, 2) sudden
“pushes” during the GRN traversal of transcriptional space, and 3) energy barriers or
“walls” acting as new force fields that constrain the GRN traversal. Importantly, those
perturbations are conditioned on the observed behavior of the GRN. The magnitude of the
noise and of the pushes is scaled proportionally to the extent of the observed trajectories,
and the walls are generated in locations of the space that the GRN would “naturally” visit
without the induced perturbation. While intuitive from a behaviorist point of view, where
one would adapt experimentation when testing animals in different contexts (e.g. to study
homing behavior of an ant and of a sea turtle, or of an ant in food deprivation and in
reproduction phase) [112], robustness studies in systems biology often neglect those
aspects. We propose that a behaviorist lens on robustness can help understanding forms of

https://www.zotero.org/google-docs/?hxR4oC
https://www.zotero.org/google-docs/?o2G85e
https://www.zotero.org/google-docs/?Rgti8Y
https://www.zotero.org/google-docs/?FEo3RT
https://www.zotero.org/google-docs/?E8aMCs
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non-genetic resistance in transcriptional space, which is crucial for the development of
therapeutic strategies [107].

To assess the degree of robustness of the discovered goal states, our evaluation procedure
is the following. For each (GRN, I,Z) system of the database, we retrieve a representative set
of trajectories previously discovered using the curiosity-search algorithm and subject these
trajectories to perturbations conditioned on the GRN goal-reaching trajectory𝑃 = 𝑠 × 𝑟

prior perturbation. Here, s represents the different perturbation distributions which𝑖 → 𝑧
correspond to various “tests” and “levels of difficulty” (e.g. noise magnitude and frequency,
number of walls, etc.) and is the number of (stochastic) perturbations sampled per family.𝑟
The pseudocode is illustrated in Figure 1-c and details about the different family of
perturbations are provided in Materials and Methods. At the end of this process, the
behavioral catalog is augmented with the perturbed trajectories
𝐻 = { 𝑖

𝑘
, 𝑜

𝑘
, 𝑧

𝑘
,  {(𝑢

𝑝
,  𝑜

𝑝
,  𝑧

𝑝
),  𝑝 = 1... 𝑃}( ), 𝑘 = 1 ... 𝐾}.

As the use of “spaces” comes with the notion of similarity and distance, we can then easily
evaluate the sensitivity of a goal state with respect to a set of perturbation𝑧 {𝑢

𝑝
,  𝑝 = 1... 𝑃}

as the average distance in behavior space Z between the original trajectory endpoint and𝑧
the perturbed trajectories endpoints . Here our distance is simply the Euclidean{𝑧

𝑝
}

distance, normalized by the extent of the trajectory prior perturbation in Z. We can then
identify the so-called “robust goals” of the systems as the ones that have the lower
sensitivity to perturbations. These sensitivity analyses can be useful in two important ways.
On the one hand, they allow us to quickly identify the “extreme” examples of robustness,
both at the system-level and at the goal-level, providing several insights into the degree of
“competencies” that some biological networks might exhibit in their relative space (Figure
5). On the other hand, these analyses also allow us to map the heterogeneity of cellular
responses and to better understand how non-genetic perturbations might modulate the
landscape of reachable cell phenotypes (Figure 6).

Figure 5 shows the median sensitivity, over the representative goal states, for the 432
systems of our database and for the noise, push and wall perturbations families (as well as
for the s=18 sub-families which correspond to varying degrees of perturbations). Overall,
even though we observe varying degrees of sensitivity between systems (and between
magnitudes of perturbations, which is expected), one first and interesting observation is
that the median sensitivity remains relatively low, suggesting that GRNs could not only
exhibit versatility (with respect to the considered interventions) but also robustness (with
respect to the considered perturbations). In fact, looking at the “extreme” examples, we can
identify quite impressive examples of complex and yet highly-robust space traversal
strategies, with non-linear trajectories exhibiting many “detours” and “loops” but yet
consistently reaching the same endpoint despite several pushes (Figure 5-e) or walls
(Figure 5-g) on the way.

https://www.zotero.org/google-docs/?xnzHCc
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Figure 6: Energy landscape visualization based on the trajectory-based landscape generation method [113], and
constructed from different set of GRN trajectories, respectively trajectories generated (a) by the random search
exploration, (b) by the curiosity-driven exploration, and (c) by the robustness tests experiments.

Figure 6 shows how the constructed catalog can be used to generate the energy𝐻
landscape of the studied system. In biology, landscape formalisms have been used to
comprehend the underlying dynamics of several systems, such as cell cycles and cell
differentiation [114], [115]. It is believed that such system-level visualizations could be
particularly useful to apprehend non-genetic heterogeneity in the context of cancer
treatment and stem cell differentiation [107], [113]. A recent landscape-generation method
only proposes to approximate the pseudopotential energy through simulation trajectories
obtained throughout exploration of the system [113], making it a widely applicable method
which we can directly apply here. However, the paper relied on Monte Carlo simulation to
generate the trajectories. Due to the previously mentioned non-linearity and redundancy of
the I->Z mapping, this can lead to poor estimation of the overall energy landscape (Figure
6-a). Instead, when generating the landscape from the trajectories discovered by our
curiosity search exploration, we are able to reveal a new and wide “valley” of reachable
states (Figure 6-b). Interestingly, the landscape-generation method can also be used to
better comprehend the effect of external cues on the gene regulatory network, by
visualizing how much they deform the energy landscape for instance leading to new shaped
valleys (Figure 6-c). For the example system RKIP-ERK pathway [99], results highlighted a
specific region of behavior space (with low RKIP and high ERK activation levels) that seems
to be particularly robust, i.e. consistently reached by the GRN from certain initial
conditions, and that might be associated with tumor development [116].

Possible reuses of the behavioral catalog and framework

Our framework generated a catalog of stimuli, responses, and navigation tests for the
different GRN models contained in our database. Creating and sharing such a “behavioral

https://www.zotero.org/google-docs/?bLlF8s
https://www.zotero.org/google-docs/?Swy9mJ
https://www.zotero.org/google-docs/?idtdkh
https://www.zotero.org/google-docs/?h6Tf4l
https://www.zotero.org/google-docs/?PoxArJ
https://www.zotero.org/google-docs/?BOxDTx
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catalog” with the scientific community is possibly one of the more exciting aspects of the
work with new organisms. Furnished with such an empirically based data-set and detailed
observations, one can 1) conduct statistical analysis across the population of studied
organisms to inform fundamental research questions and 2) reuse the acquired knowledge
to design specific behavior-shaping experiments in organisms of interest. As our
framework focuses on observable behavior and is agnostic about the internal construction
of the organism, another exciting perspective is to deploy it to different problem spaces and
other classes of natural, chimeric or synthetic organisms. This section illustrates
preliminary experiments along those three types of reuse.

To develop insights on the degree of sophistication of the different GRNs

Figure 7: Analysis and comparison of the degree of sophistication, in terms of versatility and robustness, between
different classes of GRN. We categorize the GRNs by class of organism they belong to: plant, bacteria, slime mold,
amphibian, rodent, homo sapiens, or generic. “n/a” refers to network models for which this information is not
available. (a) Violin plots show the versatility of the 432 systems (one point per system) for each class. Versatility of
one system is measured as the area covered by all the goal states discovered by curiosity search (equivalent to
what we call diversity in Figure 3). (b) Trade-off (aka Pareto) mean and standard deviation curves that represent the
trade-off among versatility and wall robustness performances as taken by the different classes of GRNs (standard
deviation is divided by 4 for visibility). For each system, versatility (y-value) is measured as the area covered by the
set of robustly achieved goal states, where the criterion of goal-achievement is a binary which tests whether the
goal-reaching sensitivity (on average overall wall perturbations) is below a certain threshold (x-values). Violin plots
in (a) are ordered in ascending order according to the class mean y-value at x=0.4 in (b).

A first use-case we explore is to conduct statistical analysis to categorize versatility and
robustness in the surveyed networks on the basis of species in evolutionary strata. We
consider seven categories, namely, plant, bacteria, slime mold, amphibian, rodent, homo
sapiens, or generic. Here, generic corresponds to the networks not associated with any
species but related to generalized biological processes. Please note that the surveyed
database is relatively small with respect to the wealth of available models and biological
pathways, so we can hardly claim that these results represent the true distribution of
competencies across these organism categories. Still, as shown in Figure 7, results
suggested interesting patterns.
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First, on average, generic and Homo sapiens GRNs exhibit higher versatility (mean 0.228
and 0.238) compared to rodent and amphibian GRNs (mean 0.163 and 0.169), which in
turn show higher versatility than bacteria and plant GRNs (mean 0.136 and 0.117). These
findings are particularly intriguing in the context of the recently-formulated hypothesis of
multi-scale competency architecture [42]: could the observed variation in versatility among
different classes of GRNs contribute to the degree of versatility observed at higher-level
scales? Collecting such experimental data for broader classes of organisms and GRNs will
be crucial to understand how competencies at the molecular scale can impact the overall
functionality and adaptability of organisms at higher scales, and to understand how
evolution might have exploited this modular architecture for shaping the observed
adaptivity and reprogrammability of biological systems.

Secondly, when comparing with the versatility of random networks (in black), generated to
follow the same distributions of network size and connectivity as biological networks (as
proposed in [79], see Materials and Methods), we observe that random network versatility
is much lower (<0.026) than the versatility observed in biological networks. Once again, it
is difficult to draw strong conclusions as the gene circuit model used for the random
networks is relatively limited, whilst generic and studied across a range of biological
contexts [117]–[120], and it will be interesting to scale the comparison to a broader and
more complex range of ODE-based random models. Still, these findings hint that versatility
prevalence might be a strong invariant of biological intelligence shaped by evolutionary
processes.

Finally, we categorize the versatility-robustness tradeoff in the different categories of
organisms. The idea is to compare the GRN competencies to robustly achieve diverse goal
states, for different robustness thresholds. In Figure 7-b, we plot the mean and standard
deviation pareto curves for the different categories of organisms and observe that, in
average, the pareto-optimal solutions are mostly achieved by generic cell GRNs, even
though bacteria GRNs can robustly reach more goal states for exigent robustness criteria
(high x-values). The slime mold GRN can reach highly diverse goal states but the tradeoff
quickly drops with wall perturbations, and there is only one system in our database
belonging to this category so results might be not representative. Once again, those results
are very interesting as generic cells GRNs are a building block that has been extensively
reused by evolution across several organisms and contexts, bacteria have evolved to be very
resistant (e.g. to antibiotics), and slime molds are a unicellular organism well known for its
diverse capabilities, especially navigational ones [121]–[124].

https://www.zotero.org/google-docs/?uqO0Dx
https://www.zotero.org/google-docs/?lleKq8
https://www.zotero.org/google-docs/?XBZsRl
https://www.zotero.org/google-docs/?314RTF
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For the development of therapeutic interventions

Figure 8: Identification of stimuli-based stepwise intervention triggering robust re-set of disease states into healthy
physiological states. (a) The 10 most robust identified goal states (average sensitivity <0.05) and the corresponding
reaching trajectories are displayed for the example RKIP-ERK signaling pathway [99]. We can see that most of them
converge toward attractors in the “disease” region (orange). (b) Discovered stepwise stimuli intervention on MEKPP
which we apply on states stuck in the “disease” region for 100 seconds. (c) The discovered intervention successfully
brings back all points from the “disease” region closer to the target endpoint in the “healthy” region, and this
under various tested perturbations (as shown in Supplementary Figure S2). The optimization procedure that led to
the discovery of this intervention is described in the main text.

Understanding forms of non-genetic resistance and non-genetic heterogeneity is crucial
across a wide range of cancer and treatment contexts [107]. Here, we illustrate how the
constructed behavioral catalog can provide a fertile source for the design of therapeutic
strategies, notably in the context of network control, using again the example of the
RKIP-ERK signaling pathway [99]. In Figure 4, we saw that curiosity search revealed four
clusters of reachable steady states for this system. From a clinical perspective, one might
denote the green cluster as “healthy” region of behavior space and the orange cluster as
“disease” region of the behavior space, as high levels of ERK and low-levels of RKIP are
often linked to tumor development [116]. In Figure 8-a, we plot those two clusters as well
as the 10 more robust goal-reaching behaviors from the behavioral catalog of this system,
i.e. the goal states with the lower average sensitivity to the induced perturbations. We see
that 6 out of the 10 more robust trajectories end up in the “disease” region, suggesting that
certain configurations of initial state are very likely to reach that region despite chemical
blockers (here pushes, walls, and noise), which was also visible on the system’s energy
landscape in Figure 6-c. Looking at the six trajectories, it seems that they all follow similar
patterns where RKIP activation level increases past a certain threshold, and only then
converge toward the disease region. This might already provide an interesting biomarker
for prediction of tumor development, but what we are really interested here is to build
upon that knowledge to develop stimuli-based interventions allowing to re-set the GRN
setpoints from the identified “disease” steady states back to steady states within the
identified “healthy” region . To do so, we define a parameterized stimuli-based intervention
and a performance function, and search for parameters that optimize this performance. For
the intervention function, we use a piecewise constant function that determines which
nodes to intervene on (here MEKPP), when to apply the intervention (here every 10
seconds for 100 seconds), and with what amplitude (which are the parameters that we are

https://www.zotero.org/google-docs/?OWSUGw
https://www.zotero.org/google-docs/?pSXsJ4
https://www.zotero.org/google-docs/?nqvYwI
https://www.zotero.org/google-docs/?HyutcO
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seeking to optimize). The choice of the intervention function, which is arbitrary in this
example, would typically depend on the experimental constraints, e.g. which nodes can be
targeted with drugs and at which precision. For the performance function, we define the
centroid of the “healthy” region as the target setpoint and compute performance of the
stepwise intervention as the average distance of the novel setpoints (after intervention
when starting from the 6 disease setpoints) to the target setpoint, and under a distribution
of stochastic walls, pushes and noise perturbations. Hence a successful intervention should
re-set the disease setpoints to healthy setpoints for all discovered disease states and
robustly across the various tested perturbations. For optimization, we simply perform
random search as this was sufficient here to discover one intervention (as shown in Figure
8-b) that successfully reset the setpoints (as shown in Figure 8-c) under various tested
perturbations (as shown in Supplementary Figure S2). Here random search was sufficient
to find a successful intervention, but more advanced optimization strategies like
evolutionary algorithms or stochastic gradient descent could be envisaged for harder
problems. Overall, mapping the “latent” behavioral abilities of GRNs in healthy physiology
and disease states may have important implications for the identification of robust
stimuli-based interventions that focus on behavior shaping instead of micromanaging all
molecular states, and that can be exploited in therapeutic contexts.

As an alternative strategy to gene circuit engineering
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Figure 9: Comparison of three alternative strategies for the design of oscillator circuits: curiosity search (blue),
random search (pink), and gradient descent (orange). (a-c) Given a budget of 5000 experiments, curiosity search is
able to find 1167 oscillator circuits (ones showing sustained oscillations), whereas random search only finds 42
oscillators and gradient descent does not discover any (starting from a single random initialization). (a) 3D scatter
plot of the 42 random search discoveries (pink) and 1167 curiosity search ones (blue) in the (amplitude, main
frequency, offset) analytic behavior space. (b) Box plots projecting points from the 3D scatter plot into the
respective (amplitude, main frequency, offset) axes. (c) Diversity discovered throughout exploration, where
diversity is measured with a binning-based space coverage metric (20 bins per dimension). (d) Evolution of the
training loss for the three exploration strategies. (e-f-g) Corresponding best discoveries (for which is minimal)𝐿 𝐿
for the three exploration strategies. (h-i) Local training loss and resulting finetuning of the best discoveries with
gradient descent.

The final type of reuse we explore is not a direct reuse of the constructed behavioral
catalogs, but rather a reuse of the proposed automated tools to reveal different kinds of
behaviors in a bioengineering context. A common problem in synthetic biology is to
optimize the configuration and parameters of a gene model network to optimally perform a
desired functionality, also known as gene circuit engineering [75]. Recent approaches rely
on optimization-driven machine learning strategies, such as evolutionary algorithms and
stochastic gradient descent. However, choosing the right loss function and parameter
initialization for these optimization methods is a well-known problem in machine learning.
These issues can lead to optimization algorithms getting trapped in local minima within the
complex landscape of possibilities. In response to these challenges, we propose to
investigate whether the curiosity-driven exploration strategy can be employed as an
alternative (diversity-driven) strategy. Whereas traditionally-employed for exploratory
purposes, these exploration strategies were also shown to facilitate the resolution of
external, pre-defined tasks characterized by sparse or deceptive rewards [125], by
effectively exploring solution space.

Here, we consider the target application of oscillator circuit engineering followed in [72] ,
where parameters of a gene circuit model are optimized to produce oscillation patterns
with target amplitude , frequency and offset . This time, the intervention space𝐴 𝑤 𝑏
includes both genetic interventions (setting kinematic parameters of regulatory rules) and
environmental interventions (setting the initial state ). We then compare three𝑦

0
alternative exploration strategies: curiosity search, random search and a global
optimization strategy using gradient descent as proposed in [72], all given the same
experimental budget . For curiosity search, the behavior space is defined as(𝑁 = 5000) 𝑍
the image space of the discrete Fourier transform of the observation. We then use the exact
same IMGEP algorithm as before, but operating within the novel problem spaces . For(𝐼, 𝑍)
gradient descent, we follow the procedure proposed in [72]. We define a loss function
which measures the mean square error between the observed node activation levels and𝑦
the target oscillation (represented as a cosine wave). We then randomly initialize the
parameters and use Adam optimizer for N=5000 optimization steps. In addition,𝑖 ∼ 𝑈(𝐼)
we also use gradient descent for local refinement of the best discoveries made by the other
exploration strategies (curiosity search and random search), this time with a limited budget
of optimization steps.𝑁 = 100

https://www.zotero.org/google-docs/?CLy4gW
https://www.zotero.org/google-docs/?Jsguw4
https://www.zotero.org/google-docs/?P6O2vo
https://www.zotero.org/google-docs/?UEWkfb
https://www.zotero.org/google-docs/?YDxkgj
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In Figure 9, we show that curiosity search is again significantly more efficient than random
search in revealing a diversity of possible oscillator behaviors. Out of 5000 trials, random
search was able to find only 42 configurations leading to sustained oscillations whereas
curiosity search was able to find 1167 (and gradient descent did not find any). Without
focusing on the target objective, curiosity search is able to efficiently cover the analytic

space (Figure 9, a-c), thus discovering oscillators close to the target one (Figure(𝐴, ω, 𝑏)
9-e). Instead, when starting from a random initial condition, gradient descent is very likely
to get trapped in a local minimum where it converges to the target offset but fails to𝑏
produce oscillations (Figure 9-d and 9-g). However, whereas the global optimization is
unsuccessful in this example, gradient descent seems to be useful to locally refine
close-enough solutions, as can be seen here when refining the best discoveries made by
curiosity search and random search (Figure 9-h, 9-i). These results suggest that a
diversity-driven exploration strategy, eventually combined with a more advanced local
optimization strategy, can offer promising and cost-effective alternatives for the design of
synthetic gene networks. More generally, as our framework only relies on empirical
investigation for inferring the mapping between interventions and behaviors (treating
them as abstract variables in observable problem spaces), we believe it offers an exciting
perspective to be deployed across various problem spaces and classes of organisms.

Discussion

This paper presents a novel framework aimed at uncovering the navigation competencies
of gene regulatory networks (GRNs). The framework conceptualizes GRNs as agents
actively navigating the transcriptional space and provides a set of tools, leveraging
computational models of curiosity-driven learning and exploration, with a battery of
empirical tests inspired from behaviorist tradition, for automated experimentation and
behavioral characterization. The proposed framework is novel in two central ways. First, it
introduces a novel AI-based toolbox to the field of biological network analysis. We show
how this toolbox, leveraging the successful ingredients of recent intrinsically motivated
learning algorithms - originally developed to enable robotic AI agents to explore and learn
diverse skills in novel and unstructured environments [86], [87] - can be transposed to
assist efficient discovery of behavioral abilities within biological pathway models like GRNs.
Secondly, rather than merely mapping the attractor states [23], [24], [59] or analyzing their
sensitivity to model parameter changes [56], [57] as extensively proposed in conventional
GRN analysis methods, our framework investigates the dynamic adaptability of these
networks' navigation competencies in response to various changing environmental
conditions. With this approach, our aim is to uncover whether diverse competencies,
analogous to the ones exhibited by living agents, can be found within physiological network
dynamics. Notably, these competencies are discovered without necessitating structural
alterations to network properties or connectivity. Importantly, our framework and its
associated tools do not make any assumptions about the structure or origin of the
biological network, making it in theory adaptable to the study of diverse unconventional
intelligences across various domains.

https://www.zotero.org/google-docs/?hbblsC
https://www.zotero.org/google-docs/?32q9ej
https://www.zotero.org/google-docs/?hV3fBr
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By applying this framework to a curated database of GRN models, we discovered a diverse
range of behavioral responses that GRN can exhibit under different initial conditions and
characterized their robustness to various perturbations. Notably, our analysis revealed a
number of interesting aspects of navigation of the state space which can be leveraged in
several contexts. These automated tools form the first step towards cost-effective in silico
simulation and interrogation platforms; as the “behavioral catalogs” produced by this
process can be a first stepping stone for better understanding the GRN functionalities as
well as for designing drug-driven interventions in a biomedical or bioengineering context.

There are several limitations and avenues for future work to this study. First, these
networks are studied as a model in isolation and it is possible that some of the ODE models
(or solvers) provide spurious behaviors within certain parameter ranges which might not
map to observable phenotypes in vitro. Interestingly, this limitation also suggests an
interesting further direction to this work: using the automated discovery toolbox to assist
model inference, allowing to efficiently identify the rare or unexpected behaviors of the
ODE model and suggest whether further refinement is needed or not. Another interesting
direction for future work, as our framework considers the GRN model as a black-box and
works with limited experimental budget, would be to directly apply it to in vitro GRN
models at the bench. One could for instance integrate experimental constraints to the
search by defining families of empirically-testable interventions and perturbations, as well
as specify clinically-relevant goal spaces and perturbations. Even if in a biological setting
versatility and robustness phenomena may be harder to detect, or harder to alter, these
results can be used to (1) design synthetic biology circuits with advanced capabilities [126],
and (2) conduct studies of subcellular proto-cognitive phylogenetics, to help understand
the evolutionary pressures for and against reprogrammability in cell regulatory machinery.
Another limitation of our work is that we consider predefined problem spaces, here the
space of GRN steady states (or Fourier descriptors of the dynamics in the bioengineering
example). The dynamics of gene regulatory networks are relatively simple (usually
converge to stable points or periodic orbits) allowing such hand-defined descriptors. To
scale the framework to higher-dimensional and more complex problem spaces, recent
works from the IMGEP literature suggest using unsupervised learning of goal space
representations [90], [91]. Whereas these works were applied to abstract models of
multicellular patterning, similar works could be envisaged in more realistic systems, such
as sophisticated model of multicellular morphogen and/or bioelectrical patterning which
were used to suggest in-vitro experimental manipulations [127], [128], [128].

The tools presented here, and the behavioral repertoire we identified, are just the
beginning, and much work remains. Future efforts must test additional competencies
across the spectrum of cognition (memory, creative problem-solving, valence, etc.) and
extend the tools we presented here to explore them. The predictions made by our
computational tools can now be tested in real cells, using emerging tools for physiological
profiling in the living state and a diverse set of biochemical, biomechanical, and
bioelectrical perturbations. We anticipate a tight and productive feedback loop between

https://www.zotero.org/google-docs/?i3M9qr
https://www.zotero.org/google-docs/?VkO7yr
https://www.zotero.org/google-docs/?8JwpH3
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computational theory that suggests new experiments, and results in living cells that greatly
extend our computational perspective on what they can do [129]–[133]. Such
interdisciplinary work, pulling together concepts and techniques across fields, is likely to
have major implications for fundamental understanding of evolution, intelligence, and
dynamical control, as well as drive novel kinds of therapeutics that leverage the innate
behavioral competencies of living matter [47], [134].

Materials and Methods

GRN models and numerical simulation
This study employs ordinary differential equation (ODE) models to represent molecular
pathways, with nodes representing pathway components and edges capturing their
interactions. The continuous node states, encompassing variables like gene expression
levels and protein concentrations, are interconnected through a system of ODEs, enabling
the modeling of complex regulatory dynamics. ODE models are often available in the
Systems Biology Markup Language (SBML), a standardized format that contains essential
information about variables, parameters, equations, and model metadata in XML files.

To perform numerical simulations of ODE SBML models, we rely on the SBMLtoODEjax
python library, a recent development that automates the parsing and conversion of SBML
models into python models written entirely in JAX [135]. Taking advantage of JAX
computing capabilities, SBMLtoODEjax enables efficient and parallel numerical solutions
for gene expression levels and other node states by recursively invoking the generated
python models to integrate the ODE equations with current gene expression levels.
Additionally, we have developed a python library
(https://github.com/flowersteam/autodiscjax) comprising additional modules and
pipelines that facilitate interventions on the GRN models such as genome or drug
interventions, as well as other perturbations such as noise, pushes, and walls that can be
applied to the states and kinematic parameters of gene regulatory networks.

Given the model species initial state , the desired rollout length and step𝑦(𝑡 = 0) 𝑇 (𝑠𝑒𝑐𝑠)
size , as well as the chosen intervention and/or perturbation , the model rollout∆𝑇 𝑖 𝑢
iteratively 1) integrates the system of ODE-governed equations that specifies the rate of

species changes using JAX odeint solver to update model species , 2)𝑑𝑦
𝑑𝑡 𝑦(𝑡) →  𝑦(𝑡 + ∆𝑇)

calls the model assignment rules to update kinematic parameters if needed, and 3) apply
the intervention and/or perturbation function to update (𝑦(𝑡 + ∆𝑇),  𝑤(𝑡 + ∆𝑇),  𝑐)
accordingly. In this paper we use and (25 001 time points per𝑇 = 2500 𝑠𝑒𝑐𝑠 ∆𝑇 = 0. 1
rollout including ). The ODE solver uses an absolute tolerance of and relative𝑡

0
1𝑒−6

tolerance of , with maximum number of solver steps of . For a step-by-step guide1𝑒−12 1000
on utilizing these libraries within the proposed framework, we refer interested readers to
our tutorial
(https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html),
which offers practical examples and detailed instructions.

https://www.zotero.org/google-docs/?XMz1Zk
https://www.zotero.org/google-docs/?ekRKOz
https://www.zotero.org/google-docs/?b7fBfZ
https://github.com/flowersteam/autodiscjax
https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html
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Experimental setup
In our computational models, we are able to record the activities of all nodes during a

model rollout. The observation space is such that where𝑂 ⊂ ℝ
+

𝑛× 𝑇
∆𝑇 𝑜 = 𝑦 0( ), ..., 𝑦 𝑇( )( )

y(t) represents the n-dimensional vector of node states at each time step, with T being the
total reaction time. The boundaries of the observation space are not known.

Regarding the exploration of problem spaces, namely the intervention space I and behavior
space Z, we specify them as follows.

For the main experiments on biological networks, the intervention space consists𝐼 ⊂ ℝ
+

𝑛 
of initial node states sampled from the hyper-rectangle where[𝑦

0, 𝑚𝑖𝑛
, 𝑦

0, 𝑚𝑎𝑥
]

and with and the minimum𝑦
0,𝑚𝑖𝑛

= 1
𝑟 × 𝑦

𝑑, 𝑚𝑖𝑛
𝑦

0,𝑚𝑎𝑥
= 𝑟 × 𝑦

𝑑, 𝑚𝑎𝑥
𝑟 = 20 (𝑦

𝑑, 𝑚𝑖𝑛
, 𝑦

𝑑, 𝑚𝑎𝑥
)

and maximum of each node of the model over the default time course simulation (with
initial conditions provided in the SBML file and T=25000). On the other hand, the behavior

space endpoint states where corresponds to the target𝑍 ⊂ ℝ
+

2 𝑧 = 𝑦
𝑖

𝑇( ), 𝑦
𝑗

𝑇( )( ) (𝑖, 𝑗)
phenotype nodes. We ensure that most trajectories have reached stable states at T = 2500
(as elaborated in the next section) such that Z can be viewed as the space of reachable
endpoints, whose boundaries are not known.

Database creation

Biological networks database
All the ODE models we use in this work are downloaded from the BioModels database [21],
[22] in SBML format. From all models referenced on the website, we only consider the ones
that are curated, that have at least 3 nodes, and that are handled by the SBMLtoODEjax
simulator (as SBMLtoODEjax does not handle models with discrete events, custom
functions or other specific cases as detailed in [135]). To ensure the inclusion of models
suitable for our analyses, we applied specific filters to the collected models.

First, we simulated the default model rollout for each model to obtain the concentration
profiles of the pathway components over a short time span (T=10 secs and ). We∆𝑇 = 0. 1
discarded simulation results containing invalid values (NaN or negative concentrations) or
those that took an excessive amount of time (>1sec). While it is acceptable that a rollout
sometimes returns NaN values (when there are no solutions given ODE tolerance options
for specific initial conditions), we consider the model invalid if this occurs for the default
initial conditions provided in the SBML file.

For the remaining models, we conducted further simulations with an extended time span
(T=2500) and 50 random initial conditions uniformly sampled within the model’s
intervention space (as defined before). Once again we discarded models whose batch𝐼
simulations took an excessive amount of time (>15 secs). From the remaining models, we
derived the resulting 50 trajectories for each node pair (i, j) and subjected them to
additional filters to refine the database. We removed node pairs where either 1) [filter F1] a

https://www.zotero.org/google-docs/?WYPzok
https://www.zotero.org/google-docs/?WYPzok
https://www.zotero.org/google-docs/?Jc3XGw
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substantial proportion of trajectories exhibited invalid concentrations (NaN or(> 20%)
negative) or unsettled behaviors

or periodic patterns(∃ 𝑡 ≥ 2400 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑦(𝑡) − 𝑦(𝑇)| ≥ 0. 02 × |𝑦(𝑇) − 𝑦(0)| )
; or [filter F2] the(∃ 𝑓 > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 |𝑆(𝑓)| ≥ 40 𝑤ℎ𝑒𝑟𝑒 𝑆 = 𝐷𝐹𝑇([𝑦( 𝑇

2 ),  ···,  𝑦(𝑇)])

reached space in was too small to discard cases𝑍 ((
𝑘=1···50

max  𝑦𝑘(𝑇) −
𝑘=1···5
min  𝑦𝑘(𝑇)) < 0. 1)

where “diversity” could result from floating point rounding errors; or [filter F3] the number
of attractors was less than four

.({𝑦𝑘(𝑇)}
𝑘=1···50

𝑐𝑜𝑣𝑒𝑟 ≤ 4 𝑏𝑖𝑛𝑠 𝑜𝑣𝑒𝑟 𝑎 20 × 20 𝑏𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑍)

Upon completion of the filtering process, our final database comprised 30 models,
consisting of a total of 432 systems, as detailed in Supplementary Table S1. These curated
models and systems served as the foundation for our subsequent analyses and
investigations into the navigation competencies of the molecular pathways.

Random networks database
Following the methodology proposed in [79], we aimed to create a database of synthetic
networks with topologies similar to those of the biological networks, but with random
regulatory rules instead of evolved ones. The objective was to compare the versatility and
robustness competencies between biological and random networks, akin to the approach
used for memory competencies in [79]). To achieve this, we initially generated 300
networks based on the transcriptional gene circuit model [117], ensuring that they had the
same distribution of network size (number of nodes) and connectivity (nodes in-degree) as
the biological network database (using fitted gaussian distributions). The kinematic
parameters of these networks were randomized𝑊, 𝑏,  τ

where model step is defined as(𝑊 ∼ [− 30, 30]𝑛×𝑛,  𝐵 ∼ [− 10, 10]𝑛,  τ ∼ [1, 15])
and in-degree connectivity is𝑦(𝑡 + 1) =  ∆𝑇

τ × 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑦 + 𝐵) +  (1 − ∆𝑇
τ ) × 𝑦 

enforced by setting some weights of to zero. However, during the creation process, we𝑊
observed that none of the generated networks met the criterion for exhibiting a sufficient
number of steady states (criterion F3). This limitation arose from the inherent constraints
imposed by the gene circuit model's shape of ODE equations, limiting the diversity of
possible dynamical behaviors. As our focus was on networks with a possible spectrum of
steady states, akin to the biological network database, we decided not to pursue further
analyses on these networks.

Instead, we selected the systems (models and pairs of nodes) that demonstrated the
highest versatility (metric detailed below) from among all the generated systems that
passed the filters F1 and F2. The selected networks' versatility is presented in Figure 7, but
for future research, it would be interesting to explore broader and more complex classes of
equations to assess their potential for achieving higher behavioral diversity.

Curiosity-driven exploration
This section provides additional information about the internal models and
hyperparameters of the intrinsically-motivated goal exploration process. The overall IMGEP

https://www.zotero.org/google-docs/?t0xmTg
https://www.zotero.org/google-docs/?Vlh2P8
https://www.zotero.org/google-docs/?kYtXHj
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pipeline is illustrated in Figure 1-c. To sample a goal, the IMGEP uses a uniform sampling
strategy within the bounding hyper-rectangle of currently reached goals (scaled by a factor
1.3). Hence sampling bounds adapt to the discoveries and do not need to be predefined via
expert knowledge. The volume of the hyper-rectangle is larger compared to the cloud of
currently-reached goals, which incentivizes targeting unexplored areas outside of the cloud
and promotes diversity in the exploration process. Then, to generate an intervention for
achieving the sampled goal, the IMGEP selects the nearest previously reached goal in ,𝑍
identifies its associated intervention, and performs a local random step from that point

in the intervention space.(𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 ∼ \𝑚𝑎𝑡ℎ𝑐𝑎𝑙{𝑁}(0,  0. 1 * [𝑦
0,𝑚𝑎𝑥

− 𝑦
0,𝑚𝑖𝑛

])

While our implementation choices for the IMGEP goal representation, goal generation, and
goal-conditioned optimization are relatively straightforward, it is worth noting that
alternative strategies could be considered for each of these components for more complex
problems. The python library AutoDiscJax (https://github.com/flowersteam/autodiscjax)
that accompanies this paper can be used to implement this and other IMGEP variants in
JAX.

Robustness tests
We define 3 family of perturbations: 1) the noise perturbation which is𝑈

𝑛
σ

𝑛
, 𝑝

𝑛
 | 𝑦( )

parametrized by its standard-deviation (scaled proportionally to the extent of the observed
trajectory prior perturbation) and period (secs); 2) the push perturbation𝑦 𝑈

𝑝
𝑚

𝑝
, 𝑛

𝑝
 | 𝑦( )

parametrized by its magnitude (proportional to the extent of ) and number of𝑦
occurrences; 3) the wall perturbation parametrized by its length𝑈

𝑤
𝑙

𝑤
, 𝑛

𝑤
 | 𝑦( )

(proportional to the extent of ) and number, and where walls are generated in locations of𝑦
the space that the GRN would “naturally” visit without the induced perturbation. Details
about the implementation of walls are provided in Supplementary Figure S3.

To assess the robustness of the GRN systems in our database, we employ an evaluation
procedure, as depicted in Figure 1-d. For each system in the database with its𝐼, 𝑍( )
corresponding behavioral catalog discovered using the curiosity-search algorithm, we𝐻
perform the following steps. We first retrieve representative trajectories out of the𝐾 𝑁
discoveries, i.e. ones that cover well the reachable space. To do so, we randomly sample
tuples of K discoveries (among N) 500 times, and select the one with the maximum
diversity. One could test all trajectories with K=N but here we use K=N/10 mainly for
compute reasons, as we run the experimental campaign on all 432 systems. Next, we
subject each of these K trajectories to s=18 different perturbation{𝑦

𝑘
,  𝑘 = 1.. 𝐾} 

distributions, each representing various levels of difficulty:
,σ

𝑛
, 𝑝

𝑛( ) ∈ { 0. 001, 5( ), 0. 005, 5( ), 0. 1, 5( ), 0. 005, 10( ), 0. 005, 5( ), 0. 005, 1( )}
,𝑚

𝑝
, 𝑛

𝑝( ) ∈ { 0. 05, 1( ), 0. 1, 1( ), 0. 15, 1( ), 1, 0. 1( ), 2, 0. 1( ), 3, 0. 1( )}
. In each perturbation𝑙

𝑤
, 𝑛

𝑤( ) ∈ { 0. 05, 1( ), 0. 1, 1( ), 0. 15, 1( ), 1, 0. 1( ), 2, 0. 1( ), 3, 0. 1( )}
distribution, we sample r=3 random perturbations, resulting in perturbations.𝑃 = 𝑠 * 𝑟
For each perturbation in the set , we re-run the trajectory starting from the{𝑢

𝑝
,  𝑝 = 1... 𝑃} 

https://github.com/flowersteam/autodiscjax
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same initial state but with the sampled perturbation applied , and observe the𝑖 (𝑖, 𝑢
𝑝
)

resulting outcome and reached endpoint .(𝑜
𝑝
) (𝑧

𝑝
)

At the end of this process, the behavioral catalog is augmented with the perturbed
trajectories 𝐻 = { 𝑖

𝑘
, 𝑜

𝑘
, 𝑧

𝑘
,  {(𝑢

𝑝
,  𝑜

𝑝
,  𝑧

𝑝
),  𝑝 = 1... 𝑃}( ), 𝑘 = 1 ... 𝐾}.

Evaluation Metrics

Diversity measure
Diversity is measured by the area that explored observations cover in behavior space Z.
Each single exploration results in a new point in this space, such that diversity measures
how much area the algorithms explored in those spaces.

In general, existing approaches in the NS, QD and IMGEP literature use binning-based

metrics [90], [91], [136] or distance-based metric from ecology [137] to quantify the
diversity of a set of explored instances. However, those metrics are sensitive to the binning
strategy, or fail to discriminate between qualitatively significantly different explorations
[105]. Another approach, called the threshold coverage, measures diversity as the volume
of the union of the set of hyperballs of radius that have for centers the observed effectsϵ

. This diversity measure, while difficult to compute in high-dimensional spaces,{𝑧 ∈ 𝑍}
avoids the pitfalls of bin-based and distance-based metrics and is easily computable in
2-dimensional spaces [105].

Threshold coverage quantifies the area of the space that has been reached at a given
precision (the threshold), and is what we used in Figure 3 to compare random search andϵ 
curiosity-driven exploration strategies.

Sensitivity measure
In general, existing approaches in systems biology and evolutionary genetics measure
sensitivity (opposite of robustness) in a relative manner with respect to 1) a functionality
[93] or phenotypic trait [94] of interest, 2) specific perturbations (environmental or genetic
changes), and 3) a measure of the degree of variation. Here, we adopt a similar metric
where 1) the phenotypic trait of interest is defined as a goal state discovered by𝑧 ∈ 𝑍
curiosity search, 2) the set of perturbation is defined in previous section and{𝑢

𝑝
}

conditioned on the GRN goal-reaching trajectory , and 3) variation is measured as the𝑖 → 𝑧
Euclidean distance in behavior space, normalized by the extent of the trajectory prior
perturbation in Z.

This distance-based sensitivity measure proves straightforward as we explicitly use
“spaces” to observe and analyze behaviors. The results of this sensitivity analysis are
presented in Figure 4.

https://www.zotero.org/google-docs/?iG4DaC
https://www.zotero.org/google-docs/?vnWixt
https://www.zotero.org/google-docs/?UIuz7H
https://www.zotero.org/google-docs/?D78VED
https://www.zotero.org/google-docs/?4y5uuZ
https://www.zotero.org/google-docs/?C32HSX
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Versatility-Robustness measure
In this study, we introduce the terms "diversity" and "versatility" to characterize the
competencies of the exploration agent (IMGEP) and the gene regulatory network agent
(GRN), respectively. Diversity refers to the ability of the IMGEP agent to reveal a wide range
of behaviors in the GRN, while versatility refers to the capability of the GRN agent to reach
diverse goal states. The GRN versatility is unknown, and can only be approximated via
proxy metric. Here, we consider that the diversity of the IMGEP (measured with the
threshold coverage metric) is a good approximation of the versatility of a given GRN, as the
IMGEP was shown to efficiently drive the GRN into diverse possible goal states.
In Figure 7-a, we employ this diversity metric to categorize the versatility of surveyed
networks based on the class of organism they belong to. For the random networks, as they

all have less or equal than 4 attractors, the versatility remains below .0. 026 = 4 × πϵ2

(1+2ϵ)2

Figure 7-b, we introduce the versatility-robustness metric, which conditions the diversity
metric on a sensitivity threshold. Only goal states with sensitivity to perturbations below
this threshold are considered when computing the reached area of the space. A high
versatility-robustness score indicates that diverse goal states are achieved with a high level
of precision.

Experiments on the RKIP-ERK signaling pathway
This section details the additional experiments conducted on the RKIP-ERK signaling
pathway [99] . We refer to the accompanying notebook tutorial for reproducing these
experiments:
https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html.

For Figure 4, clustering in behavior space was performed using the HDBSCAN algorithm
[106] with hyperparameters set as min_cluster_size=10 and cluster_selection_epsilon=0.1.
Points in the 10-dimensional intervention space are visualized by applying a TSNE
2-dimensional reduction. To visualize the clusters in behavior space (and corresponding
clusters in intervention space), we fitted polygons on the cluster points using shapely
library unary_union, dilatation, and erosion operations [138].

In Figure 6, we generated trajectory-based energy landscapes following the method
proposed in [113]. Energy landscapes provide an intuitive way to understand how a system
with multiple steady states behave, by picturing it as a ball rolling downhill towards
low-energy valleys (steady states). Given a set of trajectories in behavior space Z, we
constructed a probability distribution (P) of system states and converted it into a
pseudopotential energy surface (U = −ln(P)). This energy surface was smoothed using cubic
spline interpolation and visualized using Plotly 3D surface plots. Figure 6-a, 6-b, and 6-c
differed by the input set of trajectories used for generating the landscape: a) employed the
set of trajectories discovered by random search, b) used the set of trajectories discovered
by curiosity search, and c) utilized the set of trajectories generated by robustness tests.

In Figure 8, the "healthy" and "disease" clusters were the same as in Figure 4 and visualized
similarly. We displayed trajectories with the lowest sensitivity (averaged over all

https://www.zotero.org/google-docs/?CMcZBh
https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html
https://www.zotero.org/google-docs/?k5ZqPN
https://www.zotero.org/google-docs/?KkLsAR
https://www.zotero.org/google-docs/?m1D5Gj


33

perturbations). The stimuli-based intervention shown in Figure 8-b was found𝑃 = 3 × 18
using a simple random search procedure. First, we defined an arbitrary target node and a
stepwise node-activation function, clamping MKEPP values to desired values

every 10 seconds for 100 seconds. Then, we randomly𝑥 = [𝑦
𝑀𝐸𝐾𝑃𝑃

(1), ···, 𝑦
𝑀𝐸𝐾𝑃𝑃

(10)]
sampled x within a range of values near the MKEPP current steady states (endpoints from
the 6 “disease” trajectories, assuming that the drug intervention cannot drastically remodel
those values). For each candidate x, we ran new trajectories starting from the disease states
and applying the intervention x under a distribution of noise, push, and wall perturbations.
Finally, we selected the intervention x that most successfully brought ERK-RKIP levels back
to the target setpoint (centroid of the healthy region). The resulting intervention (shown in
Figure 8-b) succeeds to robustly reset all 6 disease state points despite perturbations, as
shown in Figure 8-c. We refer to the notebook for reproducing the experiments.

Experiments on synthetic gene networks
This section details the additional experiments conducted on the synthetic gene networks
(Figure 9). We refer to the second accompanying tutorial for the full codebase:
https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto2.html.

In these experiments, we consider the target application of gene circuit engineering
followed in [72] , where parameters of a gene circuit model are optimized to produce target
oscillator patterns. The gene circuit model employed in [72] is the same than the one used
for the random networks database (Eq 1), with . Hence the intervention space is aτ = 1

dimensional space defined as ,𝑛2 + 2𝑛 𝐼 = [𝑦
𝑡=0, 𝑚𝑖𝑛

, 𝑦
𝑡=0, 𝑚𝑎𝑥

]⊕[𝑊
𝑚𝑖𝑛

, 𝑊
𝑚𝑎𝑥

]⊕[𝐵
𝑚𝑖𝑛

, 𝐵
𝑚𝑎𝑥

]
with . Here we𝑦

0, 𝑚𝑖𝑛
= 0,  𝑦

0, 𝑚𝑎𝑥
= 1,  𝑊

𝑚𝑖𝑛
=− 30, 𝑊

𝑚𝑎𝑥
= 30,  𝐵

𝑚𝑖𝑛
=− 10, 𝐵

𝑚𝑎𝑥
= 10

consider networks of n=3 nodes, with the first node being the target phenotype node. Thus,
what we seek here is kinematic parameters and initial concentrations that would(𝑊, 𝐵) 𝑦

0
produce a periodic pattern (T)] with target amplitude , frequency𝑦 = [𝑦

𝑛=0
(0),  ···,  𝑦

𝑛=0
𝐴

and offset . Here, the target are sample randomly with𝑤 𝑏 (𝐴, ω, 𝑏)
.𝐴 ∼ 𝑈([0. 1, 0. 5]),  𝑏 ∼ 𝑈([𝐴,  1 − 𝐴]),  ω ∼ 𝐵𝑒𝑡𝑎(α = 2,  β = 8)

We then compare three alternative exploration strategies: 1) curiosity search, 2) random
search and 3) gradient descent, i.e. pure optimization-driven search as proposed in [72], all
given the same experimental budget .𝑁 = 5000

For curiosity search, the behavior space is defined as the image space of the discrete𝑍
Fourier transform of the 1d-signal , where distance in the space measures average𝑦
difference in spectral amplitude. The IMGEP algorithm is then the same that the one
previously used, as detailed in Figure 1-c, but operating within the novel problem spaces

.(𝐼, 𝑍)

For random search, interventions are sample uniformly .(𝑖
1
,  ···,  𝑖

𝑁
) ∼ 𝑈(𝐼)

https://developmentalsystems.org/curious-exploration-of-grn-competencies/tuto1.html
https://www.zotero.org/google-docs/?atbBuw
https://www.zotero.org/google-docs/?oDsPds
https://www.zotero.org/google-docs/?bfTERZ
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For gradient descent, we follow the procedure proposed in [72]. We define a loss function
which, for a set of parameters , measures the mean square error between the𝑖 = (𝑊, 𝐵, 𝑦

0
)

phenotype node activation levels and the target oscillation represented as a cosine wave𝑦

with the desired : . We then sample a(𝐴, ω, 𝑏) 𝐿  =  
𝑡
∑(𝑦(𝑡)  −  (𝐴  cos(2πω × 𝑡) + 𝑏))2

random parameter and use Adam optimizer with𝑖 ∼ 𝑈(𝐼)
for optimization steps (same𝑙

𝑟
= 10−3,  𝑏1 = 0. 02,  𝑏3 = 0. 001,  ϵ = 10−8 𝑁 = 5000

number of model rollouts allowed than for curiosity search and random search).

In addition, we use gradient descent for local refinement of the best discoveries made by
the other exploration strategies (curiosity search and random search), this time with a
limited budget of optimization steps.𝑁 = 100

Visualizations in Figure 9 show: (a-b) the oscillators discovered by random search and
curiosity search (gradient descent did not find any oscillator in this example) in the

space, (c) the corresponding diversity (using this time a binning-based space(𝐴, ω, 𝑏)
coverage measure with bins as the space is 3-dimensional), (d) the evolution of the203

training loss throughout the N=5000 trials for the three exploration strategies, (e-f-g) the𝐿
corresponding best discoveries (for which is minimal) for the three exploration strategies,𝐿
and (h-i) the local training loss and resulting finetuning of the best discoveries with
gradient descent.

Data Availability
Source code is available on GitHub at
https://github.com/flowersteam/curious-exploration-of-grn-competencies. It contains
experimental data and an executable notebook version of the paper to reproduce all paper
figures, as well as additional step-by-step tutorials to reproduce results from scratch for
Figures 4, 6 and 8 (tutorial 1) and Figure 9 (tutorial 2), as well as the codebase to reproduce
the whole experimental campaign. All our codebase is open-source under MIT License.
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Supplementary

Figure S1: Examples of interventions that can be implemented within the accompanying AutodiscJax software. All
those examples can be reproduced in the accompanying tutorial 1. (a) Numerical simulations with interventions
can be performed in parallel by vectorizing simulations over different intervention parameters, simply using the jax
vmap operator. This offers a convenient (and fast) way to test several interventions in the biological network, as
shown here for testing the network under various initial conditions in batch mode. Examples of other possible
“drug” or “genome” interventions that can be implemented in the accompanying software, as well as the
possibility to perform interventions (or perturbations) in parallel using batched computations. In this example,
despite the numerous interventions, the GRN trajectories still converge to the same endpoint B. (b) Example
intervention where species amounts are clamped to specific values. In this example the node MEKPP is clamped to

for 10 seconds at t=0 and then to for 10 additional seconds at t=400. In this example, after the first2. 5µ𝑀 1µ𝑀
clamping the GRN trajectory still follows a similar S-shape curve and arrives close to the original endpoint B but
after the second clamping, ERK expression levels are shifted to a higher steady state B’. (c) Example intervention
where the numerical value of one kinematic parameter of the model (k5) is changed from 0.0315 to 0.1. In this
example we can see that changing the parameter k5 shifts the trajectory end point quite significantly, but
qualitatively the trajectory seems to preserve a similar S-shape.

BioModel ID
reference

number
of nodes

organism class systems (observed nodes pairs)

BIOMD0000000524 16 Homo sapiens (‘PrER’, ‘mGFP’), (‘DISC’, ‘tBid’), (‘p18inactive’, ‘PrER’), (‘p18inactive’, ‘tBid’), 18inactive’,
‘mGFP’), (‘p18inactive’, ‘PrNES’), (‘DISC’, ‘mCherry’), (‘PrNES’, ‘PrER’), (‘Bid’, ‘mCherry’),
(‘tBid’, ‘PrNES’), (‘p18inactive’, ‘PrER_mGFP’), (‘PrNES’, ‘mGFP’), (‘mCherry’,
‘PrER_mGFP’), (‘PrER_mGFP’, ‘PrER’), (‘FADD’, ‘PrNES’), (‘tBid’, ‘mGFP’), (‘DISC’, ‘PrER’),
(‘FADD’, ‘mGFP’), (‘mCherry’, ‘mGFP’), (‘FADD’, ‘mCherry’), (‘Bid’, ‘PrER’), (‘FADD’, ‘tBid’),
(‘DISC’, ‘p18inactive’), (‘Bid’, ‘PrNES’), (‘p18inactive’, ‘Bid’), (‘tBid’, ‘PrER_mGFP’), (‘FADD’,
‘PrER’), (‘tBid’, ‘mCherry’), (‘PrNES’, ‘PrER_mGFP’), (‘FADD’, ‘p18inactive’), (‘FADD’, ‘Bid’),
(‘Bid’, ‘mGFP’), (‘mCherry’, ‘PrER’), (‘PrNES’, ‘mCherry’), (‘DISC’, ‘Bid’), (‘DISC’, ‘PrNES’),
(‘Bid’, ‘tBid’), (‘DISC’, ‘PrER_mGFP’), (‘FADD’, ‘DISC’), (‘DISC’, ‘mGFP’), (‘p18inactive’,
‘mCherry’), (‘PrER_mGFP’, ‘mGFP’), (‘FADD’, ‘PrER_mGFP’), (‘tBid’, ‘PrER’)

https://www.ebi.ac.uk/biomodels/BIOMD0000000524
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BIOMD0000000050 14 n/a (‘Gly’, ‘Fru’), (‘FA’, ‘Mel’), (‘FA’, ‘MG’), (‘FA’, ‘Fru’), (‘Mel’, ‘Fru’), (‘Gly’, ‘Mel’), (‘FA’, ‘Glu’),
(‘Gly’, ‘AA’), (‘AA’, ‘Fru’), (‘Glu’, ‘Mel’), (‘MG’, ‘Fru’), (‘AA’, ‘Glu’), (‘FA’, ‘AA’), (‘Glu’, ‘Fru’),
(‘Gly’, ‘MG’), (‘Glu’, ‘MG’), (‘AA’, ‘MG’), (‘AA’, ‘Mel’), (‘Mel’, ‘MG’), (‘Gly’, ‘FA’)

BIOMD0000000647 11 n/a (‘RKIPP’, ‘MEKPP_ERK’), (‘RKIPP’, ‘RKIPP_RP’), (‘Raf1_RKIP’, ‘ERK’), (‘ERK’, ‘RP’), (‘ERK’,
‘MEKPP’), (‘Raf1’, ‘MEKPP’), (‘MEKPP’, ‘RKIPP_RP’), (‘MEKPP’, ‘RP’), (‘RKIP’, ‘RP’),
(‘ERKPP’, ‘RKIPP’), (‘Raf1’, ‘RKIPP’), (‘ERKPP’, ‘RP’), (‘Raf1_RKIP_ERKPP’, ‘ERK’),
(‘Raf1_RKIP’, ‘MEKPP’), (‘Raf1’, ‘ERKPP’), (‘ERKPP’, ‘MEKPP_ERK’), (‘ERK’, ‘MEKPP_ERK’),
(‘RKIP’, ‘RKIPP_RP’), (‘Raf1’, ‘ERK’), (‘ERKPP’, ‘Raf1_RKIP_ERKPP’), (‘RKIP’, ‘ERKPP’),
(‘Raf1_RKIP_ERKPP’, ‘RKIPP_RP’), (‘Raf1_RKIP_ERKPP’, ‘MEKPP’), (‘Raf1_RKIP’, ‘ERKPP’),
(‘RP’, ‘RKIPP_RP’), (‘MEKPP_ERK’, ‘RKIPP_RP’), (‘ERK’, ‘RKIPP_RP’), (‘ERKPP’, ‘ERK’),
(‘Raf1_RKIP_ERKPP’, ‘RP’), (‘Raf1’, ‘Raf1_RKIP_ERKPP’), (‘Raf1’, ‘Raf1_RKIP’), (‘MEKPP’,
‘MEKPP_ERK’), (‘Raf1_RKIP’, ‘RKIPP’), (‘Raf1_RKIP_ERKPP’, ‘RKIPP’), (‘Raf1_RKIP_ERKPP’,
‘MEKPP_ERK’), (‘MEKPP_ERK’, ‘RP’), (‘RKIP’, ‘MEKPP’), (‘Raf1’, ‘RKIP’), (‘RKIPP’, ‘RP’),
(‘RKIP’, ‘MEKPP_ERK’), (‘Raf1_RKIP’, ‘Raf1_RKIP_ERKPP’), (‘Raf1’, ‘RP’), (‘Raf1_RKIP’,
‘RKIPP_RP’), (‘Raf1’, ‘RKIPP_RP’), (‘Raf1_RKIP’, ‘MEKPP_ERK’), (‘ERKPP’, ‘MEKPP’), (‘RKIP’,
‘RKIPP’), (‘Raf1’, ‘MEKPP_ERK’), (‘RKIP’, ‘ERK’), (‘RKIPP’, ‘MEKPP’), (‘ERKPP’, ‘RKIPP_RP’),
(‘RKIP’, ‘Raf1_RKIP’), (‘ERK’, ‘RKIPP’), (‘Raf1_RKIP’, ‘RP’), (‘RKIP’, ‘Raf1_RKIP_ERKPP’)

BIOMD0000000520 3 Rodents (‘N0’, ‘N1’), (‘N1’, ‘N2’), (‘N0’, ‘N2’)

BIOMD0000000523 16 Homo sapiens (‘tBid’, ‘mCherry’), (‘PrER’, ‘mGFP’), (‘PrNES’, ‘mGFP’), (‘DISC’, ‘PrNES’), (‘DISC’, ‘tBid’),
(‘FADD’, ‘tBid’), (‘p18inactive’, ‘tBid’), (‘FADD’, ‘mCherry’), (‘mCherry’, ‘mGFP’),
(‘p18inactive’, ‘mCherry’), (‘tBid’, ‘PrNES’), (‘tBid’, ‘mGFP’), (‘FADD’, ‘DISC’),
(‘p18inactive’, ‘mGFP’), (‘mCherry’, ‘PrER’), (‘p18inactive’, ‘PrER’), (‘FADD’, ‘p18inactive’),
(‘DISC’, ‘p18inactive’), (‘DISC’, ‘PrER’), (‘FADD’, ‘PrER’), (‘DISC’, ‘mGFP’), (‘PrNES’,
‘mCherry’), (‘p18inactive’, ‘PrNES’), (‘FADD’, ‘PrNES’), (‘tBid’, ‘PrER’), (‘FADD’, ‘mGFP’),
(‘DISC’, ‘mCherry’), (‘PrNES’, ‘PrER’)

BIOMD0000000454 8 Generic (‘x3’, ‘y3’), (‘y4’, ‘y2’), (‘y1’, ‘y5’), (‘x3’, ‘y2’), (‘y4’, ‘y5’), (‘x2’, ‘y4’), (‘x1’, ‘y3’), (‘x1’, ‘y5’),
(‘y2’, ‘y3’), (‘y1’, ‘y3’), (‘x1’, ‘y4’), (‘x1’, ‘x3’), (‘y4’, ‘y3’), (‘y1’, ‘y2’), (‘y1’, ‘y4’), (‘y1’, ‘x3’),
(‘y5’, ‘y2’), (‘y1’, ‘x1’), (‘x2’, ‘x1’), (‘x1’, ‘y2’), (‘x2’, ‘x3’), (‘x3’, ‘y4’), (‘x3’, ‘y5’), (‘y1’, ‘x2’),
(‘x2’, ‘y2’), (‘x2’, ‘y5’), (‘x2’, ‘y3’), (‘y5’, ‘y3’)

BIOMD0000000069 10 Homo sapiens (‘srco’, ‘srca’), (‘srci’, ‘srca’), (‘srco’, ‘srcc’), (‘srca’, ‘Cbp_P’), (‘srcc’, ‘Cbp_P_CSK’), (‘srci’,
‘Cbp_P’), (‘srci’, ‘PTP’), (‘Cbp_P’, ‘PTP_pY789’), (‘srcc’, ‘PTP_pY789’), (‘CSK_cytoplasm’,
‘PTP’), (‘srci’, ‘PTP_pY789’), (‘srca’, ‘PTP_pY789’), (‘srcc’, ‘CSK_cytoplasm’),
(‘CSK_cytoplasm’, ‘Cbp_P_CSK’), (‘srca’, ‘CSK_cytoplasm’), (‘srca’, ‘PTP’), (‘srcc’, ‘Cbp_P’),
(‘srco’, ‘Cbp_P_CSK’), (‘CSK_cytoplasm’, ‘PTP_pY789’), (‘srcc’, ‘PTP’), (‘srca’, ‘Cbp_P_CSK’),
(‘srci’, ‘CSK_cytoplasm’), (‘Cbp_P’, ‘Cbp_P_CSK’), (‘Cbp_P’, ‘PTP’), (‘srci’, ‘srco’), (‘srco’,
‘PTP’), (‘CSK_cytoplasm’, ‘Cbp_P’), (‘srca’, ‘srcc’), (‘srci’, ‘Cbp_P_CSK’), (‘Cbp_P_CSK’,
‘PTP_pY789’), (‘PTP’, ‘PTP_pY789’), (‘Cbp_P_CSK’, ‘PTP’), (‘srci’, ‘srcc’), (‘srco’, ‘Cbp_P’),
(‘srco’, ‘PTP_pY789’), (‘srco’, ‘CSK_cytoplasm’)

BIOMD0000000455 9 Generic (‘x2’, ‘y5’), (‘y5’, ‘y2’), (‘x2’, ‘y2’), (‘y1’, ‘y3’), (‘x3’, ‘y3’), (‘y1’, ‘x2’), (‘x2’, ‘x1’), (‘x2’, ‘y4’),
(‘x3’, ‘y2’), (‘x2’, ‘y3’), (‘y1’, ‘y4’), (‘y5’, ‘y3’), (‘y1’, ‘y5’), (‘x1’, ‘x3’), (‘x1’, ‘y4’), (‘y4’, ‘y5’),
(‘x1’, ‘y3’), (‘y1’, ‘x3’), (‘y4’, ‘y3’), (‘x3’, ‘y4’), (‘x3’, ‘y5’), (‘x1’, ‘y5’), (‘y1’, ‘x1’), (‘y1’, ‘y2’),
(‘y2’, ‘y3’), (‘y4’, ‘y2’), (‘x2’, ‘x3’), (‘x1’, ‘y2’)

BIOMD0000000526 16 Homo sapiens (‘FADD’, ‘PrER_mGFP’), (‘PrNES’, ‘mCherry’), (‘p18inactive’, ‘PrER_mGFP’), (‘DISC’,
‘p18inactive’), (‘FADD’, ‘p18inactive’), (‘p18inactive’, ‘mCherry’), (‘DISC’, ‘mGFP’),
(‘FADD’, ‘mGFP’), (‘p18inactive’, ‘tBid’), (‘p18inactive’, ‘mGFP’), (‘FADD’, ‘DISC’), (‘tBid’,
‘PrER’), (‘DISC’, ‘tBid’), (‘p18inactive’, ‘PrER’), (‘p18inactive’, ‘PrNES’), (‘PrNES’,
‘PrER_mGFP’), (‘PrNES’, ‘PrER’), (‘FADD’, ‘PrNES’), (‘DISC’, ‘PrER’), (‘DISC’, ‘mCherry’),
(‘FADD’, ‘tBid’), (‘PrER_mGFP’, ‘PrER’), (‘PrNES’, ‘mGFP’), (‘FADD’, ‘PrER’), (‘mCherry’,
‘mGFP’), (‘DISC’, ‘PrNES’), (‘tBid’, ‘PrNES’), (‘mCherry’, ‘PrER’), (‘PrER_mGFP’, ‘mGFP’),
(‘tBid’, ‘mCherry’), (‘FADD’, ‘mCherry’), (‘tBid’, ‘mGFP’), (‘mCherry’, ‘PrER_mGFP’),
(‘DISC’, ‘PrER_mGFP’), (‘PrER’, ‘mGFP’), (‘tBid’, ‘PrER_mGFP’)

BIOMD0000000284 9 Bacteria (‘D’, ‘E’), (‘A’, ‘D’), (‘X’, ‘C’), (‘B’, ‘E’), (‘C’, ‘Z’), (‘X’, ‘E’), (‘A’, ‘Z’), (‘X’, ‘Y’), (‘C’, ‘D’), (‘Y’, ‘Z’),
(‘E’, ‘F’), (‘F’, ‘Z’), (‘D’, ‘F’), (‘B’, ‘F’), (‘C’, ‘F’), (‘X’, ‘Z’), (‘A’, ‘Y’), (‘X’, ‘D’), (‘A’, ‘F’), (‘B’, ‘Z’),
(‘X’, ‘F’), (‘A’, ‘B’), (‘A’, ‘C’), (‘B’, ‘D’), (‘Y’, ‘E’), (‘B’, ‘C’), (‘B’, ‘Y’), (‘C’, ‘Y’), (‘Y’, ‘F’), (‘E’, ‘Z’),
(‘X’, ‘B’), (‘D’, ‘Z’), (‘D’, ‘Y’), (‘A’, ‘E’), (‘C’, ‘E’), (‘X’, ‘A’)

BIOMD0000000084 8 n/a (‘Rin’, ‘x2’), (‘x1’, ‘x3’), (‘x2’, ‘x3’), (‘x1’, ‘x2’), (‘Rin’, ‘x3’), (‘Rin’, ‘x1’)

https://www.ebi.ac.uk/biomodels/BIOMD0000000050
https://www.ebi.ac.uk/biomodels/BIOMD0000000647
https://www.ebi.ac.uk/biomodels/BIOMD0000000520
https://www.ebi.ac.uk/biomodels/BIOMD0000000523
https://www.ebi.ac.uk/biomodels/BIOMD0000000454
https://www.ebi.ac.uk/biomodels/BIOMD0000000069
https://www.ebi.ac.uk/biomodels/BIOMD0000000455
https://www.ebi.ac.uk/biomodels/BIOMD0000000526
https://www.ebi.ac.uk/biomodels/BIOMD0000000284
https://www.ebi.ac.uk/biomodels/BIOMD0000000084
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BIOMD0000000052 11 n/a (‘Triose’, ‘lys_R’), (‘Cn’, ‘lys_R’), (‘Acetic_acid’, ‘lys_R’), (‘lys_R’, ‘Melanoidin’), (‘Triose’,
‘Melanoidin’), (‘Cn’, ‘Melanoidin’), (‘Formic_acid’, ‘lys_R’), (‘C5’, ‘lys_R’), (‘C5’,
‘Formic_acid’), (‘Triose’, ‘Acetic_acid’), (‘C5’, ‘Acetic_acid’), (‘Acetic_acid’, ‘Melanoidin’),
(‘C5’, ‘Cn’), (‘C5’, ‘Melanoidin’), (‘Cn’, ‘Acetic_acid’), (‘C5’, ‘Triose’), (‘Formic_acid’,
‘Triose’), (‘Formic_acid’, ‘Cn’), (‘Triose’, ‘Cn’), (‘Formic_acid’, ‘Melanoidin’),
(‘Formic_acid’, ‘Acetic_acid’)

BIOMD0000000271 6 Rodents (‘EpoR’, ‘dEpoe’), (‘Epo_EpoRi’, ‘dEpoe’), (‘Epo_EpoR’, ‘dEpoe’), (‘Epo_EpoRi’, ‘dEpoi’),
(‘EpoR’, ‘dEpoi’), (‘Epo’, ‘dEpoe’), (‘Epo’, ‘dEpoi’), (‘Epo_EpoR’, ‘dEpoi’), (‘dEpoi’, ‘dEpoe’)

BIOMD0000000461 4 Bacteria (‘lacz’, ‘x’), (‘IPTG’, ‘sigb’), (‘sigb’, ‘x’), (‘sigb’, ‘lacz’), (‘IPTG’, ‘x’), (‘IPTG’, ‘lacz’)

BIOMD0000000525 16 Homo sapiens (‘p18inactive’, ‘PrNES’), (‘p18inactive’, ‘PrER’), (‘tBid’, ‘PrNES’), (‘DISC’, ‘PrER’),
(‘mCherry’, ‘PrER’), (‘PrNES’, ‘mCherry’), (‘DISC’, ‘tBid’), (‘FADD’, ‘mCherry’),
(‘p18inactive’, ‘tBid’), (‘FADD’, ‘PrER’), (‘FADD’, ‘p18inactive’), (‘tBid’, ‘mGFP’), (‘DISC’,
‘p18inactive’), (‘mCherry’, ‘mGFP’), (‘DISC’, ‘PrNES’), (‘PrER’, ‘mGFP’), (‘DISC’, ‘mGFP’),
(‘FADD’, ‘DISC’), (‘tBid’, ‘PrER’), (‘p18inactive’, ‘mCherry’), (‘tBid’, ‘mCherry’), (‘PrNES’,
‘mGFP’), (‘PrNES’, ‘PrER’), (‘FADD’, ‘PrNES’), (‘DISC’, ‘mCherry’), (‘p18inactive’, ‘mGFP’),
(‘FADD’, ‘tBid’), (‘FADD’, ‘mGFP’)

BIOMD0000000521 4 Homo sapiens (‘P’, ‘Q’)

BIOMD0000000010 8 Amphibians (‘MKK_P’, ‘MAPK’), (‘MKK’, ‘MAPK_PP’), (‘MKK’, ‘MKK_PP’), (‘MKK_P’, ‘MKK_PP’), (‘MKK’,
‘MAPK’), (‘MKK_PP’, ‘MAPK_P’), (‘MAPK’, ‘MAPK_PP’), (‘MKK_PP’, ‘MAPK’), (‘MKK’,
‘MAPK_P’), (‘MKK_PP’, ‘MAPK_PP’), (‘MAPK_P’, ‘MAPK_PP’), (‘MKK_P’, ‘MAPK_PP’),
(‘MKK’, ‘MKK_P’), (‘MKK_P’, ‘MAPK_P’)

BIOMD0000000029 4 Amphibians (‘M’, ‘MpT’), (‘M’, ‘MpY’), (‘MpY’, ‘MpT’)

BIOMD0000000197 5 n/a (‘x1’, ‘x2’), (‘x1’, ‘x4’), (‘x1’, ‘x3’), (‘x1’, ‘x5’), (‘x5’, ‘x4’), (‘x3’, ‘x5’), (‘x5’, ‘x2’)

BIOMD0000000272 6 Rodents (‘SAv_EpoR’, ‘SAv_EpoRi’), (‘EpoR’, ‘SAv_EpoR’), (‘EpoR’, ‘SAv_EpoRi’)

BIOMD0000000167 7 Generic (‘Pstat_nuc’, ‘stat_nuc’), (‘stat_nuc’, ‘species_test’), (‘Pstat_nuc’, ‘species_test’)

BIOMD0000000262 11 Rodents (‘Akt’, ‘S6’)

BIOMD0000000240 6 Bacteria (‘DegU’, ‘mDegU’), (‘Dim’, ‘mDegU’), (‘DegUP’, ‘mDegU’)

BIOMD0000000037 12 Slime Mold (‘Xi’, ‘Ya’), (‘Xi’, ‘Pi’), (‘Ya’, ‘Pi’)

BIOMD0000000263 11 Rodents (‘Akt’, ‘pro_TrkA’), (‘S6’, ‘pro_TrkA’), (‘Akt’, ‘S6’)

BIOMD0000000641 5 Homo sapiens (‘CellCact’, ‘Effectoract’)

BIOMD0000000413 5 Plants (‘TIR1’, ‘auxinTIR1’), (‘auxinTIR1’, ‘VENUS’), (‘TIR1’, ‘VENUS’)

BIOMD0000000624 7 Homo sapiens (‘APAP’, ‘APAPconj_Glu’)

BIOMD0000000945 5 Homo sapiens (‘L_m’, ‘H_m’)

BIOMD0000000459 4 Bacteria (‘IPTG’, ‘sigb’)

Table S1: List of biological networks from Biomodels used in this study. The resulting database includes 30
biological networks (one row per network) and a total of 432 systems, which is defined as a (GRN model, behavior
space (Z)) tuple and where the pairs of observed nodes (used as behavior spaces) per network are given in the last
column.

https://www.ebi.ac.uk/biomodels/BIOMD0000000052
https://www.ebi.ac.uk/biomodels/BIOMD0000000271
https://www.ebi.ac.uk/biomodels/BIOMD0000000461
https://www.ebi.ac.uk/biomodels/BIOMD0000000525
https://www.ebi.ac.uk/biomodels/BIOMD0000000521
https://www.ebi.ac.uk/biomodels/BIOMD0000000010
https://www.ebi.ac.uk/biomodels/BIOMD0000000029
https://www.ebi.ac.uk/biomodels/BIOMD0000000197
https://www.ebi.ac.uk/biomodels/BIOMD0000000272
https://www.ebi.ac.uk/biomodels/BIOMD0000000167
https://www.ebi.ac.uk/biomodels/BIOMD0000000262
https://www.ebi.ac.uk/biomodels/BIOMD0000000240
https://www.ebi.ac.uk/biomodels/BIOMD0000000037
https://www.ebi.ac.uk/biomodels/BIOMD0000000263
https://www.ebi.ac.uk/biomodels/BIOMD0000000641
https://www.ebi.ac.uk/biomodels/BIOMD0000000413
https://www.ebi.ac.uk/biomodels/BIOMD0000000624
https://www.ebi.ac.uk/biomodels/BIOMD0000000945
https://www.ebi.ac.uk/biomodels/BIOMD0000000459
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Figure S2: Additional results complementing Figure 8 of the main paper. This figure shows the resulting trajectories
after applying the discovered stimuli-based intervention (shown in Figure 8-b) to the example RKIP-ERK signaling
pathway [99] for the 6 “disease” trajectories originally discovered in the behavioral catalog (shown in Figure 8-a).

https://www.zotero.org/google-docs/?6RaNL3
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(a) For each trajectory (one per row), we see that the intervention successfully re-sets the disease setpoint
(startpoint of the trajectory shown in red in the orange region) to a healthy set-point (endpoint of the trajectory
shown in cyan in the green region). (b-c) Similar results are achieved despite adding push perturbations (b) or wall
perturbations (c) in addition to the stimuli-based intervention.

Figure S3: Wall implementation. Walls are implemented within the 2D space spanned by the 2 observed nodes.
Within that space, we can interpret the node activation levels as the trajectory of a particle moving.𝑦(0), ···,  𝑦(𝑡)
In order to simulate the interaction with “walls” in that space, several implementations could be envisaged. Within
the accompanying software AutoDiscJax we propose two possible variants: perfectly elastic collision (equivalent to
a discontinuous force field) and some continuous force field variant. The second variant (continuous force field) is
employed for the main results of this paper. (a) For the first variant, we consider a perfectly elastic collision without
loss of kinetic energy. In that case, when the trajectory is touching the wall at position with speed𝑝 𝑣 = 𝑣

⊥
+ 𝑣

‖
we deviate the trajectory in such a way that is “bouncing” against the wall such that is unchanged and𝑣

‖
. To implement it, we simply check whether the segment intersect the wall at each𝑣

⊥
← − 𝑣

⊥
[𝑦(𝑡),  𝑦(𝑡 + ∆𝑡)]

time step. It it does, we compute the intersection point and time , and set the activation level to𝑝 𝑡
1

 𝑦(𝑡 + ∆𝑡)
. (b) For the second variant, we implement walls as energy barriers acting as a 𝑝 + (∆𝑡 − 𝑡1) ·  [− 𝑣

⊥
+  𝑣

‖
]

new force field in the environment, constraining the GRN traversal of the space. This time, instead of having a
discontinuous effect on the perpendicular speed we define a wall force (+ if is going toward𝑣

⊥
𝑓

⊥
=  ± α𝑣

⊥
𝑣

⊥
wall, - otherwise ) and use it to update the perpendicular component of the trajectory speed as

. Here and is calculated as a function of the distance between the point and the𝑣
⊥

←  𝑣
⊥

+ 𝑓
⊥

· ∆𝑇 α ∈ [0, − 2]
wall. As illustrated in the figure, this basically results in a stadium-shaped force field around the wall.
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